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The problem of simulating complex quantum processes on classical computers gave rise to the
field of quantum simulations. Quantum simulators solve problems, such as Boson sampling, where
classical counterparts fail. In another field of physics, the unification of general relativity and
quantum theory is one of the greatest challenges of our time. One leading approach is Loop Quantum
Gravity (LQG). Here, we connect these two fields and design a linear-optical simulator such that the
evolution of the optical quantum gates simulates the spinfoam amplitudes of LQG. It has been shown
that computing transition amplitudes in simple quantum field theories falls into the class BQP —
which strongly suggests that computing transition amplitudes of LQG are classically intractable.
Therefore, these amplitudes are efficiently computable with universal quantum computers which
are, alas, possibly decades away. We propose here an alternative special-purpose linear-optical
quantum computer, which can be implemented using current technologies. This machine is capable
of efficiently computing these quantities. This work opens a new way to relate quantum gravity to

quantum information and will expand our understanding of the theory.

PACS numbers:

Introduction.—Linear optics promises a great oppor-
tunity to implement and execute quantum protocols in
order to accomplish quantum computational and quan-
tum information processing tasks [1, 2]. Photons are
also the fastest qubits — a crucial property for quantum
communication [3] — and their easy manipulation makes
them ideal for quantum sensing applications as well [4, 5].
In addition, linear optics has been shown to be useful
for entangled-state preparation [6] and quantum circuit
preparation [7], with applications to, e.g., one-way quan-
tum computing [8-10].

Simulations of complex quantum systems are inef-
ficient while running on conventional computers [11].
However, efficient quantum simulations are within reach,
if run on near-term quantum computers or quantum sim-
ulators [12, 13]. Several protocols for efficient quantum
simulations are realizable using linear optics [14-16]. One
distinguished example — Boson sampling — has been
demonstrated [17-20]. That work has led to a Boson-
sampling-inspired algorithm for simulating vibrational
states of molecules [21].

Quantum simulators also have applications in funda-
mental physics such as, e.g., efficient simulation of quan-

tum field theories [22-24]. Indeed, S. P. Jordan et al. [23]
has recently shown that computing even simple quantum
field-theoretic transition amplitudes falls within the com-
putational complexity class BQP. This result strongly
suggests that computing the transition amplitudes of,
say, Loop Quantum Gravity (LQG) — a more compli-
cated quantum field theory — also falls into this class.

We therefore anticipate that LQG amplitudes, specif-
ically spinfoam amplitudes, are efficiently calculable on
universal quantum computers — which may be decades
away. Contrariwise, in this work, we design a special-
purpose linear-optical quantum computer able to com-
pute the spinfoam amplitudes of LQG efficiently. Since
the spinfoam amplitudes are related to many key issues
in LQG — such as the semiclassical limit, the continuum
limit, and many key physical predictions — our results
may shed light on fundamental aspects of quantum grav-
ity.

LQG is a Dbackground-independent and non-
perturbative approach to the theory of quantum
gravity [25-27]. As LQG analogs of Feynman path
integrals for quantum gravity, spinfoam amplitudes are
transition amplitudes for the evolution of LQG quantum



geometry states [28-30]. The spinfoam amplitude plays
the central role in the covariant dynamics of LQG in
3+1 dimensions.

The spinfoam amplitude is a network of quantum
gates, which are quantum transitions of LQG quantum
geometry states within Planck-scale volume regions [31].
Matrix elements of these quantum gates are called vertex
amplitudes (see FIG.1). This feature of spinfoam ampli-
tude shares a similarity with systems in quantum com-
putation and allows spinfoams to be demonstrated on a
quantum simulator device (see, e.g., [32, 33] for existing
studies relating LQG to quantum computation).

Here, we develop a new relation between the spinfoam
LQG and a linear-optical quantum simulator. Based on
this relation, we design a special-purpose linear-optical
device for simulating spinfoam amplitudes (FIG. 1). In
our simulation, we map LQG quantum tetrahedron ge-
ometries to qubits and photon modes. We encode the
spinfoam vertex amplitude in an optical quantum circuit,
which is designed as a chain of linear-optical unitary op-
erations followed by post-selection. This optical quantum
circuit can be implemented on a chip, which is within
the capability of current experiments [6] and permits the
simulation of spinfoam amplitudes with many vertices —
due to the inherent scalability of linear-optical quantum
information processors. Our work will shed light on com-
puting spinfoam amplitudes with multiple vertices, which
is intractable with classical numerical computation.

Our simulation has a broad applicability as it is valid
for spinfoam amplitudes for all 7 > 1/2. It can also
be applied to simulate tensor-network models that share
similar structures as spinfoams and used to explore vari-
ous aspects of topological quantum field theories.

Quantum tetrahedra and the Spinfoam vertexr ampli-
tude.—Among important quantum geometry states in
LQG, a quantum tetrahedron is a tensor state |¢)) €
Hj, ® - @ H;, (H;is the SU(2)-irreducible representa-
tion labelled by spin-j). The state satisfies the following
constraint equation
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where J() = (jw,jy,jz)(i) is the angular-momentum
operator acting on H;,. The J@ quantizes the ori-
ented area E¢) = (E,, E, E,)® of the i*® tetrahe-
dron face (i = 1,---,4) [32, 34, 35] (see FIG.1 (a)).
|IE®| and E®/|E®| are the area and unit normal of
the i*" face. Eq.1 quantizes the geometrical constraint
ED + E® + EG) + E® = 0, meaning that the four
tetrahedron faces form a closed surface. We denote
by Hiet the Hilbert space of all |¢)) satisfying Eq.1.
Hier = Invgy (o) (Hj, @---@H,;,) is the space of invariant
tensors of SU(2). The spin j; is associated with the i-th
face of the tetrahedron. Quantum tetrahedra are fun-
damental building blocks of quantum spatial geometries,
since any geometry can be triangulated by tetrahedra.
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FIG. 1: (a) A four-simplex whose boundary is made by five
tetrahedra. Each tetrahedron is quantized to |¢;) € Hiet
(i = 1,---,5). E is the oriented area vector of the *"
tetrahedron face, and is quantized as quantum angular mo-
menta. (b) The quantum gate A with three input quantum
tetrahedra and two output. We note that at least three qubits
are needed to operate this non-unitary gate and even more if
a unitary expansion of the gate is used. The spinfoam vertex
amplitude is the matrix element of A. (c) An example of LQG
spinfoam amplitude made by connecting five quantum gates
A. Post-selection and feed-forward make simulation of this
spinfoam amplitude possible with a linear-optical quantum
computer [2].

When j; = -+ = j4 = 1/2, dim(Htet) = 2, a quantum
tetrahedron |1) can be described by a single qubit.
Spinfoam amplitudes describe the evolution of quan-
tum geometry states. The spinfoam amplitude is defined
on a triangulation of a four-dimensional (4D) manifold,



while its building block — vertex amplitude A, — asso-
ciates to a four-simpler o, the elementary cell of the 4D
triangulation.

The four-simplex o is a 4D region whose boundary is a
three-dimensional (3D) closed surface made by five tetra-
hedra (FIG.1(a)). We can choose to view o as a time
evolution from three tetrahedra in the past to two tetra-
hedra in the future [42]. These tetrahedra carry quantum
geometries |¢;) € Hier (1 = 1,---,5). A, is a quantum
transition amplitude from three initial quantum tetrahe-
dra |11), |¥2), |[1s) to two final tetrahedra |1)4), [t)5). This
quantum transition can be formulated as a quantum gate
A Hiet @Hiot @ Hiet — Hiet @ Hiet (FIGl(b)) The ver-
tex amplitude A, = (4, 5] A1, 12, 1¥3) is the probabil-
ity amplitude of having an output |i4), [¢5) provided the
input is |t¢1), [12),|¢s). A spinfoam amplitude in LQG
is built by connecting N quantum gates A, where each
A associates to a four-simplex o and N is the number of
o’s in the triangulation (FIG.1(c)).

If we set all j = 1/2, then |¢1), -, |1)5) are qubits.
Thus, A is a quantum gate from three qubits to two
qubits and can be simulated by a quantum linear-optical
experiment. The design of the simulation is given in the
next section.

The simulation can be applied to higher spins (j > 1/2)
as well, with dim(Ht) > 2. In concrete, let us firstly
consider an example of A whose quantum tetrahedra have
all j = 1, so that all five dim(Hset) are 3-dimensional.
We choose a basis |eg=123) in each Hiey, and make the
orthogonal decomposition

Htet = 7_[-‘,— @ H_v H+ = HgtD) (2)

where H™T is spanned by |e;) and |es), and H ™ is
spanned by |ez). We can restrict inputs and out-
puts of A into subspaces H* and obtain sub-matrices.
For instance, restricting all inputs and outputs of A
to five HT gives ATTTTT whose matrix elements are
AXEEBJFE = (ea,ep|Alec,ep,egr) where A, B,C,D,E =
1,2. AT*T+FT is a gate from 3 qubits to 2 qubits and
is accordingly a 4 x 8 matrix. Restricting some inputs
and/or outputs to H™ gives, e.g., AT™t~F whose ma-
trix elements are A;'{EE"’ = (ea, es|Alec, es, eg), where
A,C,E =1,2. At =t=T is a gate from 2 qubits to one
qubit and is accordingly a 2 x 4 matrix. All 32 A%19s
(a; = %) are linear transformations of qubits (A=~~~
a trivial transformation) and cover all information of A.
Our strategy of linear-optical simulation is to design a
quantum circuit on chip for each A%, We need 32
quantum circuits (less than 32 in practice since A==~~~
is trivial and AT~777 is just a qubit) to simulate the
complete A with j = 1. The most nontrivial design for
ATT++F is discussed in detail in the next section, while
all other circuits for A¥*+++ are much simpler and can
be designed similarly.

Our strategy can be easily generalized to A with ar-
bitrary j: Hiet of arbitrary dimension d can be de-
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FIG. 2: The 12 x 12 unitary transformation. The input state

is 1 for one mode, 1,---,8 and 0 for all other 11 modes.
The output state is the evolved state in modes, 1,--- ,4 and
conditioned vacuum is measured in modes, 5,--- ,12.

composed into mutually orthogonal subspaces H(*) with
dim(H @) < 2:

M
Hier = @H(a), M = {3;1
a=1

2

ISH
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d odd ®)
Restricting inputs and outputs of A in different H(*) gives
M?® quantum gates A%% (a; = 1,---, M) of qubits.
Each A% can be cast into a linear-optical quantum
circuit as discussed in the next section.

When we prepare the input state for A, we require
the state to satisfy the area-matching condition [30], i.e.
for ¢, and 1, corresponding to 2 tetrahedra sharing a
face, their spin j associated to the triangle has to be
identical. This condition should also be imposed on the
input state in general when we connect N quantum gates
A to simulate spinfoams with N 4-simplices.

In the following, we will discuss the implementation of
the gate on a photonic chip. We note that such chips
usually have room for active control, which may enable
making all different configurations in one physical chip,
without the need to fabricate a chip per gate.

Linear-optical simulator.—The gate A from three
qubits to two qubits can be represented by a 22 x 23
matrix and is clearly non-unitary. However, it is possible
to extend A to a 12 x 12 unitary matrix U which includes
A as a submatrix [5]. We use the singular-value decom-
position; A = LSR, where L (4x4), R (8x8) are unitary
and S is 4 x 8 matrix, with the singular values, s1, ..., s4,
on the diagonal and zeros elsewhere.

Now we can reconstruct the unitary matrix:

LVI — SSTL>

—RSTL (4)

U — A
~ \RVI-STSR

where I is the identity matrix (with the proper size).
One can check that this 12 x 12 matrix is unitary and



that A is submatrix of it. The condition for the uni-
tarity of the matrix is that all of the singular values
are strictly less than one [36]. This is indeed the case
for spinfoam amplitudes. We obtain A numerically for
a Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) spin-
foam amplitude [37, 38], and check it satisfies the condi-
tion (shown in the supplemental information [39]). Gen-
erally speaking, all closed-system physical processes con-
serve probability. Thus, a complete physical process is
unitary, and while partial physical process can be nonuni-
tary, the singular values of such systems are limited by
the complete process and cannot be larger than one [36].
We note that any unitary transformation can be imple-
mented with linear optics, as explicitly shown in the sup-
plemental information [39].

This unitary can be implemented with any four-qubit
system, where the 12 x 12 unitary above would be a
submatrix of a 16 x 16 unitary acting on the four-qubit
Hilbert space. We note that, in the general case of spins
(j > 1/2), one can use four qudits with the same dimen-
sionality as the spins. The decomposition of the unitary
in this case, to two-qudit unitary operations, can be done
in a similar fashion as the qubit case but is beyond the
scope of this work.

We now show how a simpler decomposition can be
done. Instead of using four qubits, one can use a sin-
gle photon and 12 spatial modes. Not only is it much
easier to conduct experiments with a single photon, but
it is also easier to perform the two-mode operations be-
tween spatial-mode pairs. Let us rewrite the three input
qubits as:

W)in = |¥)1 ® [¢)2 ® |¢))3 =
(@10]0) + 11]1)) @ (a20[0) + c211)) @ (v20[0) + 21 (1))

3 1
= TI>_ cslk); (5)
j=1k=0

where |k); is the k state of the j qubit with amplitude of
ok Rewriting the indices, the initial state is

7
[W)in =D anln), (6)
n=0

where a,, = aj;az;a3, and (ijk) is the binary represen-
tation of n. Thus ¥ may be reinterpreted as a qudit of
dimension d = 8.

One implementation of this state is a single photon
in a superposition of eight different spatial modes, i.e.,
eight different waveguides (Fig. 2). By taking such a
system, the number of physical particles is reduced to
one! The total unitary matrix can be implemented in a
12-waveguide chip where the number of integrated MZIs
is bounded by N(N —1)/2 = 66 (Fig. 3), which is within
the capability of current optical experiments [6].

The elements of A can be measured by changing the
input state and monitoring the output. In general, the
output state is:

|\P>out = U|\I/>in ) (7)
where the - denotes the complete 12-mode states in con-
trast to the 8 or 4-mode reduced states. Taking the
initial state to be the j*® basis vector of the trivial basis,
which physically means to input one photon in the jt
port, will result the output state amplitudes to be the
4 column of U:

0 oy,
E Uz;
0

U 1 jth = ) (8)
0 Un;

Measuring the detection probability of the photon at the
it" output port then gives the elements of U:

Py = |G|U5)1* = Uy . (9)
Recalling Eq. 4, A is a submatrix of U, thus Eq. 9 holds
also for A. The phase of A can be found by preparing the
initial state in an equal superposition of two modes, say
j and j7’. Then, the detection probability of the photon
in the i*® mode is |U;; + U;;+|?/2. Taking this and Eq. 9,
the phase between U,; and U;;» can be extracted.

The protocol for implementing A includes post-
selection of vacuum in modes 5,---,12 (see e.g. Fig.
2 and Ref. [5]). Here we see another advantage of using
just one physical particle; if it is measured in one mode it
cannot be measured in any other modes. Therefore, the
post-selection is automatically satisfied by just measur-
ing the detection probability of the four first modes and
ignoring any photon in the other modes.

Unlike other implementations to LQG, ours also in-
cludes path entanglement, which is generated by the
beamsplitters and post selection [5]. We quantify
the entanglement with the Von Neumann entropy:
— Zn 5n logy 55, where 5, is the is the nth singular value
of the density matrix after post selection and partial
trace. Since there are four spatial modes, there are 14
different ways to perform the partial trace, and we max-
imized the entropy over all options. The amount of en-
tanglement depends on the gate A and the input state.
Taking an example gate (see supplemental information
[39]) and varying in the input state, the entanglement
ranges between .014 —.986, with 1 being maximal for the
four-dimensional Hilbert space (see supplemental infor-
mation for more details [39]).
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FIG. 3: Linear-optical circuit representation of U (Eq. S5) for N = 12 spatial modes.

B phase compensation
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For consistency with notation, the

top-left input corresponds to the N*" (12") mode. The one below that is the (N — 1)*® mode, and so on. The location of the
corresponding output modes is found by following the transmission path of the input. For example, the bottom-right output is
the N*® mode. The one above that is the (N — 1)th mode, and so on. The yellow boxes before the MZIs represent the phases
¢, the blue boxes within the MZIs represent the phases w, and the red boxes on the far right represent elements of the diagonal
phase compensation matrix D. (see the supplemental information for more details [39])

The above discussion is for encoding the spinfoam ver-
tex amplitude in one chip of optical gates. The general-
ization to spinfoam amplitudes with NV vertex amplitudes
is made by building N similar optical chips and connect-
ing them optically. Performing measurement on this en-
larged system will produce spinfoam amplitudes with N
vertices. Implementing the gate-on-chip with 12 spatial
modes reduces the required number of photons from four,
without spatial multiplexing, to one with it. Thus, the
number of photons is bound by the number of vertices
and thus simulating a few-vertex spinfoam amplitude is
experimentally practical.

Given a spinfoam amplitude with IV vertices and spins
{jr}, its complexity can be estimated: We denote by C
the complexity of a single U. C is the number of 2-mode
gates in U [40], and is bounded by 66 (see the supple-
mental information [39]). N spinfoam vertices give the
complexity CV. Moreover there are multiple choices of
H(@ for j > 1/2 at each tetrahedron A as described in
(3). If the number of choices at each A is denoted by Ma,
the total complexity of a spinfoam amplitude is bounded
by CN [[o Ma where [[5 products over all tetrahedra
A in the 4D triangulation. If we take into account sum-
ming over internal spins in the spinfoam amplitude, the
complexity is bounded by CV [[, Ma [I; Js where [];
products over all internal triangles f and J is the num-
ber of spins summed at f. In principle, the sum over all
triangulations should be calculated, but summing over
triangulations is beyond the scope of the present letter.

Summary.—In summary, we have developed a scalable
linear-optical implementation for efficiently simulating
LQG spinfoam vertex amplitudes — a problem which is
strongly believed to be in the computational complexity
class BQP — which means there exists no efficient clas-

sical simulation. The implementation of the quantum
gate that simulates the vertex amplitude requires only a
single photon and a 12 spatial-mode circuit. The exten-
sion to N-vertex spinfoam amplitudes can then be made
by ‘stitching’ many of these primitive vertex-amplitude
gates together (Fig. 1). Thus, simulating N-vertex spin-
foam amplitudes in LQG is now within experimental
reach.
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