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We numerically study the next-to-leading order corrections of the Lorentzian Engle-Pereira-Rovelli-

Livine (EPRL) 4-simplex amplitude in the large-j expansions. We perform large-j expansions of

Lorentzian EPRL 4-simplex amplitudes with two different types of boundary states, the coherent

intertwiners and the coherent spin-network, and numerically compute the leading-order and the next-
to-leading order O(1/;) contributions of these amplitudes. We also study the dependences of these O(1/)
corrections on the Barbero-Immirzi parameter y. We show that they, as functions of y, stabilize to finite real

constants as y — oo. Lastly, we obtain the quantum corrections to the Regge action because of the O(1/)

contribution to the spinfoam amplitude.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a candidate for
background-independent and nonperturbative quantum
theory of gravity [1-3]. The spinfoam model is a covariant
approach to loop quantum gravity, and it provides LQG
transition amplitudes, the spinfoam amplitude, as a sum-
over-history of quantum geometries [4,5]. Because of
the simplicity and semiclassical behavior [6-8] of the
Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) model
[9], it is one of the most successful spinfoam models. In
the Lorentzian EPRL model, the spinfoam amplitude can
be described by a path integral representation that is
employed in studying the large-j asymptotic behavior.
This asymptotic behavior is related to the Regge action
of the classical discrete gravity [10,11]. Computing spin-
foam amplitudes is central in developing the spinfoam
formulation of LQG, especially from the perspective of
extracting quantum corrections to the classical gravity.
Existing studies on the Lorentzian EPRL model mainly
focus on the leading order contribution in the large-j
asymptotics, and leave the higher order corrections unex-
plored. Higher order corrections in the large-j expansion
are expected to relate to the quantum-gravity effects in
LQG, while the leading-order terms relate to the semi-
classical limit.
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The purpose of this paper is to study the next-to-leading
corrections in the large-j expansion of the Lorentzian
EPRL 4-simplex amplitude with two types of boundary
states which are coherent intertwiners and coherent spin-
networks. Here we introduce the main results of this paper.
We consider the same Lorentzian nondegenerate 4-simplex
geometry and boundary data as [12] and construct spin-
foam critical points of the EPRL amplitude. For the
coherent intertwiners as the boundary state, there are
two critical points (of opposite 4-simplex orientations).
Following the asymptotic expansion (Hormander’s theorem
7.7.5 in [13]), we perform large j asymptotic expansion of
the 4-simplex amplitude at both critical points, and numeri-
cally compute both the leading-order and the next-to-
leading order corrections. If we scale spins by j; — 4j;
for all boundary triangles f, the expansion in A is
represented as below

AE = c@(y) . [1 + K(i;(y) + 0<%2)] (1.1)

where C*) k() depending on the value of y are
computed numerically in this work. C*) is identical
to the leading-order asymptotics given by Barrett et al
[7]. The evaluation of the next-to-leading order
coefficient x(*)(y) is one of main interests in this work.

It turns out that x(*)(y) =x(7)(y). As an example, at
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y =0.1, [x*)(0.1)| ~3.14 and the 4-simplex amplitude
A, = Aﬁ” —|—A§,_) is given by1

1)° 1 \4355x 10718

X {cos(0.106 +0.014)

3.14 1
+ 7 sin(~1.27 4 0012) + 0 (72)] : (1.2)

where Sgegee = 0.014 in the terms of cosine and sine is the
Regge action of the geometrical 4-simplex. The next-to-
leading order corrections have to be sufficiently small in
order to validate the semiclassical approximation of A, with
the leading-order terms as [7]. By the above result, for
example, when 4 = 30, the magnitude of the second term in
Eq. (1.1), [™)(0.1)/4] ~ 0.1, is about 10% of the leading-
order terms. We can conclude that approximating the

amplitude A(Ui) solely by the leading order term C)(y)
leads to an error about 10% in the case of y = 0.1 and
A =30. The similar behaviors are supported by several
numerical examples with different boundary geometries.

This conclusion may become different when we impose
the different boundary state. We consider the boundary
state to be the coherent spin-networks in Section V. In this
case, the EPRL amplitude A/, contains summing over j. The
boundary coherent spin-networks determine one critical
point of the amplitude while eliminating the others. The
asymptotic expansion gives

A, =Cr)- [1 + K/i” + 0</1—12>}

(1.3)

We find that in certain example of 4-simplex geometry and
boundary data, at y = 0.1, the next-to-leading order coef-
ficient gives |«’(0.1)] ~240.67. When A = 30, |«/(0.1)/4| ~
1.36 is even larger than the leading-order term. Clearly, the
semiclassical approximation of A/, is invalid at A = 30, and
a much larger A is needed. For instance, when A > 300,
|'(0.1)/4] is bounded by about 13% of the leading-order
term. We suggest a much safer zone to be A > 3000 for A/,
(4 > 300 for A,) where the next-to-leading order correction
is about 1% of the leading-order term. However, we find
this increase of allowed A when y is small is not universal, it
only happens in certain examples.

Moreover, we numerically study the dependences of x(*)
and x’ on y in several examples with different boundary
geometries. Numerical results support that they stabilize to
real constants asymptotically as y — oo.

"The next-to-leading order gives a sine function similar to the
expansion of 6j symbol [14].

Main computations in this work are carried out by
Mathematica. Mathematica codes for constructing critical
points and computing large-j expansion can be found in
[15]. Although our computation fixes the 4-simplex boun-
dary data, the codes can be easily adapted to other
boundary data.

In addition, A, in Eq. (1.2) can be rewritten (up to an
overall phase) as

1

(+) (=)
A, ~ W (escff + eSeir ), (1,4)
where
0.601 1.182
S =4 (0.01/1 +0.106 _T> ~28.6667—~— -
(1.5)

can be viewed as the “quantum effective action” with
quantum corrections to the Regge action Sgegee = 0.014.
Here are some other works on numerical analysis of
spinfoam models from different perspectives: [12,16]
numerically compute the EPRL amplitude in the spin-
intertwiner representation, by decomposing Clebsch-
Gordan coefficients of SL(2,C) in terms of those of SU(2).
References [17,18] numerically compute symmetry-
restricted spinfoam models and their renormalization.
This paper is organized as follows: Sec. II is a brief
review of the EPRL 4-simplex amplitude. Section III
explains the boundary data and the construction of critical
points. New results of this paper start from Sec. IV, where
we expand the amplitude with the coherent intertwiner
boundary state and numerically compute both the leading-
order terms and the next-to-leading order corrections for
various values of y. Section V, we study the EPRL
amplitude with the boundary coherent spin-network, and
numerically compute both the leading-order terms and
next-to-leading-order corrections for various values of y.

II. EPRL 4-SIMPLEX AMPLITUDE

Here we focus on the Lorentzian 4-dimensional spinfoam
4-simplex amplitude, illustrated by Fig. 1, where each black
box is dual to a boundary tetrahedron and each edge is dual
to a triangle. Boundary tetrahedra are labeled by indexes
a,b=1,...,5 and carry group variables g, € SL(2,C).
The triangle dual to the edge is shared by the ath and bth
tetrahedra and carries an SU(2) spin j ;. We first impose the
boundary state made by a tensor product of five coherent
intertwiners, one for each tetrahedron,

- =

oG8 = / Ay ® haljun ). a=1...5,  (2.1)
SU(2)  b#a

where |j,p, ) is the SU(2) coherent state. The EPRL
4-simplex amplitude with the boundary state has the integral
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FIG. 1. The graphical illustration of the 4-simplex amplitude:
Five black boxes correspond to boundary tetrahedra carrying
J. € SL(2,C) (a =1, 2, 3, 4, 5). Edges correspond to triangles
carrying spins j,;. Circles as endpoints of edges carry boundary
states &,;, and &,,. Arrows represent orientations a < b.

expression [7,8,10,19-21] which is particularly useful for
studying the large-j asymptotic behavior.

Ay(Gaps i / H dg, / SH i Q. (22)
a<b
withd; =2j,,+1.g, € SL(2,C) associates to each tetra-

hedron. The first tetrahedron is gauge fixed, g; = 1. dg,, is
the Haar measure on SL(2, C). Q, is the measure on CP':

Q
<Zah’ Zah> <Zhav Zha> ’

’/ llf

Here the constant C is bounded when f stays in a bounded
set in C3**1(X). We have used the standard multi-index
notation a = (ay, ..., a,) and

Quh =

(2.3)

Hlal

D% = (—i)”W’ (2.6)

where ||

n
i=1

L,u(xy) denotes the following operation on u:

o (_1)12—1 n » 82 1
=02 2 T | 2 R g

[—m=s2[>3m

x (g5 u) (x0),

Lsu(x())

(2.7)

11 _1 k=1
dx — eAf(x0) [det( f (xo )] ’ ( > Lu(xp)
s=0

where |Zab> = gj;lzab)’ > = g£|zab> and |Zab> is a 2-
component spinor for each triangle ab. The Hermitian inner
product is (z,w) =Zowo+2;w;. Here Q=£(zodz; —z,dz) A
(Zodz,—Z1dZ,) is a homogeneous measure on C?, and we
choose the section of CP': (z9,z;) = (—sin9e™®, cos$),
for which Q reduces to Q = %d@d@.

The integrand in Eq. (2.2) is written as an exponential e5
with the action

JEpusZba o A
g Zz.]abl Zap, @h)l( $basZy, >l+l7/]abl (ZpasZy >’
a<b <Zah’Zab>2<Zba’Zba>2 <Zab’Zab>
(2.4)

where y is the Barbero-Immizi parameter and J is the

antilinear map
z -z
()=(3)
21 20

The coherent state is labeled by the spin j, and a
normalized 2-component spinor |&,,) which is determined
by 7y, = (Eupr 6E,,) (0 are Pauli matrices).

To study the large-j behavior of the amplitude, we scale
spins j,, = 4j,, by a large parameter 1. As a consequence of
the scaling of spins, the action S + AS. This scaling motivates
us to study the asymptotical behavior of A, in the large-;
regime with the generalized stationary phase approximation
analysis guided by Hérmander’s theorem 7.7.5 [13].

Theorem 2.1. Let K be a compact subset in R”, X
an open neighborhood of K, and k a positive integer. If
(1) the complex functions u € C3(K), f € C***1(X) and
Im f > 0in X; (2) there is a unique point x, € K satisfying
Im(S(xp)) =0, f(x9) =0, and det(f"(x0)) #0 (f”
denotes the Hessian matrix), f' # 0 in K\{xy} then we
have the following estimation:

(2.5)

1\ &
<C<Z> Z sup | D%ul.

|| <2k

where H(x) = f”(x) denotes the Hessian matrix and the
function g, (x) is given by

01 (x) = 1) = Fx0) = 5 H (30) (x = ), (x = o)y
such that g, (x9) = g3, (xo) = gk, (x9) = 0. Foreachs, L; is
a differential operator of order 2s acting on u(x).

Employing this Theorem, we can compute the 4-simplex
amplitude in Eq. (2.2) as an 1/ asymptotic series at critical
points. As a consequence, the asymptotics of 4-simplex
amplitude as 4 — oo is dominated by contributions of
critical points which are the solutions of the critical point
equations,
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Re(S) =0, d,,5=0, and 9,5=0, (2.8)

Zab

where S[g, z] is given by Eq. (2.4). Results from literatures
[7,8,20-22] show that for boundary states whose data
Jap>Eap correspond to the geometrical boundary of a
nondegenerate 4-simplex (and satisfy the orientation
matching condition), S has two critical points having the
geometrical interpretation as the nondegenerate geometri-
cal 4-simplex with opposite orientations. S evaluated at
critical points gives the Regge action of the 4-simplex with
opposite signs. In the next section, we review the boundary
data and the construction of critical points for the EPRL
amplitude with the coherent intertwiner boundary state.

ITII. BOUNDARY DATA AND CRITICAL POINT

A. Boundary data

The boundary state |y) =®>_, |i,) for demonstrating
our algorithm is the same as [12]. [y/) is labeled by ten spin
variables Aj,, and twenty &, which relate to face 3-d
normals 7i,,. As an example, we set the area of six faces of
the geometrical 4-simplex to be 2 and other areas to be 5. We
focus on this example in this section, a few other examples is
given in Appendix B. Although we use dimensionless
numbers to describe the areas, physical areas are obtained
by attaching proper units to those numbers. In our calcu-
lation, those areas are j,;, (spins are 4j ;). Furthermore, the
face normals, denoted as 7, are gained by the 4-simplex
geometry. For convenience, we denote the five vertices of
the 4-simplex as P, and five tetrahedra as 7,, where
a€{1,2,3,4,5}. We first write down the coordinates of
the vertices P, in the Minkowski spacetime. Our starting
point s the tetrahedra 7|, which is an equilateral tetrahedron
with all areas equaling to 5. We endow the vertices of 7| with
coordinates P, = (0,0,0,0), P, = (0,0,0,-2v/5/3!/4),
P; = (0,0,=3"4y/5,=3'/4y/5) and P, = (0,—2/10/3%/4,
—\/5/33/*,—=/5/31/4) respectively. It means that we locally
set up a frame (f,x,y,z) so that T is embedded in the
subspace expanded by x, y, z axis. The 4-simplex can be well
located in our frame if one can find a coordinate of the vertex
Ps = (t;,x1,y1, z;) such that the 4-d distances between Ps
and P,(a #5) are the same and areas of the triangles
connecting Ps to other P, are all 2. By solving the system of
equations, one can find Ps is (=37/41071/2, - /5/2/3%/4,
—\/5/33/*,—\/5/3/*). Then, from the coordinates of P,,
we calculate the 4-d normals N, of each tetrahedra T,
respectively. From the vertices, we compute the edge vectors
Il, of the tetrahedron a at edge e, with I =0, 1,2, 3 a
Cartesian coordinate index. Then one can determine the
4-d normals, N,, from the triple product of wedges
with a common vertex determined by three edges labeled
by e =1, 2, 3 respectively

L

€IJKL lal lazla%
K L

||€IJKL lal Lo las

’

where the norms and scalar products are given by the
Minkowski metric # = diag(—, +, +, +), and the epsilon
symbol is of the convention €y1,3 = 1. Hence, 4-d normal
vectors are given by:

5 3
le(_1707070)7 N2_(\/—2—29 5707())7

5 1 2
N - s ) ) 0 5
} <\/22 V66 /33 )

5 1 11
N - P s ) )
N <\/22 V66 V33 V1 1>

5 1 1 1
v~ v v ) G1)

The next step is to find the transformation which takes all 4-d
normal vectors to the time gauge 7 = (—1,0,0,0) [12]:

AL =nh+ (NIN,+T'T,+N.\T,

1-N,- T
_(1_2N ‘T)T[Nal)’

ALNI=T! det Al,=1, a#1, 1,J=0,1,23.

Then the 3-d face normals are

I _Al Ni_"Né(Na'Nb)
(Ny+Np)* =1

(3.2)

=
2
>

The gauge-fixed tetrahedron, a =1, has A; =# and
N; =T. The 3-d normals resulting from Eq. (3.2) are
showing in Table I.

n,;, can be converted to the spinor |£,,) (by fixing the
phase convention):

M, = (sin ® cos @, sin O sin @, cos @) —

= sin © e ® cos ®
N 2 T2 )

The boundary state |£,,) is showing in Table II. Once
boundary data j,;, &, are fixed, critical points (g3, z°,) are
obtained by solving critical point equations (2.8).

|§ah>
(3.3)

B. Critical points

Critical points of the integral (2.2) are denoted by (g2,
z%,). From the critical point equations (2.8), Re(S) =0
leads to the equations [20]

ezy/ e Wha

Ep) =——0qhlz.), and |JEp, 3.4
) =z e Zar) a0 ) =7 (34)

gll|zab>
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TABLE 1. Each cell of the table is the 3-d normal vector for the face shared by the line number tetrahedra and the column
number tetrahedra.

b

Normal 7,

a 1 2 3 4 5
1 o (1,0,0) (—0.33,0.94,0) (—0.33,-0.47,0.82) (-0.33,-0.47,-0.82)
2 (-1,0,0) (0.83, 0.55, 0) (0.83,-0.28,0.48) (0.83,—0.28,—0.48)
3 (0.33,-0.94,0) (0.24,0.97,0) (—0.54,0.69,0.48) (—0.54,0.69,—0.48)
4 (0.33,0.47,-0.82) (0.24,-0.48,0.84) (—0.54, 0 068 0.84) (-0.54,-0.76,0.36)
5 (0.33,0.47,0.82) (0.24,-0.48,-0.84) (—0.54,0.068, —0.84) (-0.54,-0.76, —0.36)
TABLE II.  Each cell of the table is boundary state |£,,) for the face shared by the line number tetrahedra and the column number
tetrahedra.

b

|§ab>
1 2 3 4 5

a

1 - (0.71,0.71)
2 (0.71,-0.71)

3 (0.71,024—0.671)  (0.71,0.17 + 0.69 i)
4 (0.96, 0.13 — 0.25 i)
5

(0.28, 0.43 - 0.86 1)

(0.30, 0.55 +0.78 1)
(0.95, 0.17 4+ 0.25 1)

(0.71,-0.24 + 0.67 1)
(0.71,0.59 4+ 0.39 1)

(0.96, —0.28 + 0.035 1)
(0.28, —=0.95 +0.12 i)

(0.95,-0.17-0.25 1)
(0.86, 0.48 — 0.16 1)
(0.86, —0.31 +0.40 1)

(0.30,-0.55-0.78 1)
(0.51, 0.82 - 0.27 1)
(0.51, —0.53 4 0.68 1)

e (0.83, —0.33 — 0.46 1)
(0.57, =0.48 — 0.67 1) e

where HZabH = |<Zavaab>|1/2a Yab and Ypa are phases.
The two equations above can be combined to

1Z5all

V/nb Whu ( T)_l|‘]§b >'
1Zasll € % ‘

(gh)™"|€a) = (3.5)

The variation of the action with respect to a spinor
9,8 = 0 leads to the equation

1Za|l
1Zpal ©

ga‘fab>

War = 9b|J§ba> (3.6)

The variation with respect to g, gives the closure condition
Z] abﬁab =0
b

Solutions of above equations have been studied extensively
in the literature. Given the boundary data j,,,&,, which
satisfies the orientation matching condition, then the
above equations have two solutions corresponding to the
4-simplex geometry with opposite orientations [7]. These
solutions are denoted by (¢**), z0%)). ¢°*) relates to the
Lorentz transformation acting on each tetrahedron 7', and
gluing them together to form one 4-simplex. They can be
expressed explicitly [12] by ¢ =1,

(3.7)

00 = exp <(i€L + i)y, - ‘2’) a#1, (3.8

where & are Pauli matrices. 0%, is the 4-d dihedral angle
which is the boost angle between two 4-d normals of
tetrahedra, defined by:

Ny -N, = cosh&,, a#l, (3.9)

where N, and N, are given by (3.1). From Eq. (3.8), we can

see that 92<i> are combinations of boosts given by +60% and

an additional rotation z in the same direction. Resulting
from this rotation, 3-d normals in the first tetrahedron are
opposite to the corresponding ones in the adjacent tetra-
hedra. The numerical results for critical point gg(i)
shown in Table III.

Zap can be fixed by 92“[) and |&,,), up to a complex
scaling, by the first equation in Eqgs. (3.4)

are

&S O(E)T\ -
25) e (g0 T) e ).

Scaling of z,, is a gauge transformation of S. We fix the

(3.10)

scaling by normalizing |zgf)> and making the following
parametrization

0(+) ¢

b =i
0(£)y —sin "2 e ab
|Zab >_

(3.11)

0(+) ’
ab
COs—5

here, 6’22i> and d)gg,i) are real.
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TABLE III.  Each cell of the table is the critical point of ath tetrahedron group element 92

)

a 1 2 3

4 5

0.18; 0.18i 0.18i 0.96 —0.341
1.01¢ 0.18i —0.96 —0.34i 0.18i

0

1

0 —-0.18i —1.01i —-0.18i 0.96—0.34i
1 1.01i -0.18i -0.96-0.34i —0.18i

1.01: —0.65i

0.48—-0.34i —0.48—-0.34i
-0.48-0.34i —0.65i 0.48-0.34i 1.01i

0.65i —1.01i

—0.48 —0.34i —0.48—-0.34i
0.48—0.34i —1.01§ 0.48-0.34i 0.65i

TABLE IV. Each cell of the table is the critical point para-
metrized by (H%,i), ¢2§,i>) for the face shared by the line number
tetrahedron a and the column number tetrahedron b, a < b. Two

tables list the results for two distinct critical points.

b
0 0
@07 o)
a 2 3 4 5
1 (=1.57,0) (=1.57,1.91) (=2.53,-2.19) (-0.62,-2.19)
2 oy (-1.57,-0.82) (-0.89,0.49) (-2.25,0.49)
3 (-0.89,1.42) (-2.25,1.42)
4 - (—2.94,0.96)
b
0(=) ,0(-
(0057, 427
a 2 3 4 5
1 (=1.57,0) (=1.57,191) (=2.53,-2.19) (—=0.62,-2.19)
2 e (=1.57,-0.41) (=1,21,0.22) (—1.93,0.22)
3 (-1.21,1.69) (—1.93,1.69)
4 . (=2.94,-2.19)

The numerical results for (ng),qﬁ%ﬁ) are shown in

Table IV. All critical point data of zgiji) and 92<i>
found in Mathematica notebooks [15].

In this work, we choose a specific boundary geometry
Jap = (5,2)A to be consistent with the results of [12]. To
improve the strength of our claims, we also perform the
analysis with other boundary geometries j,, = (8,3)4
and j,, = (11,4)1 in the same way. The boundary
data and critical points for boundary geometries j,, =
(8,3)4 and j,, = (11,4)4 can be found in Appendix B.
In the following context, if we do not specify the boundary
geometry particularly, the boundary geometry we are refer-
ring to is j,, = (5,2)A.

can be

IV. NEXT-TO-LEADING ORDER CORRECTION IN
LARGE+ 4-SIMPLEX AMPLITUDE WITH
COHERENT-INTERTWINER BOUNDARY STATE

A. Explicit expression of 4-simplex amplitude

Given one of the critical points, we make the following
parametrization of g, and z,, of the neighborhood of the

critical point in the integration domain of Eq. (2.2): The
group variable g, € SL(2, C) is parametrized by

ga(xalayalﬂxa% Ya2sXa3» ya3)

1 +Xu1+i)’a| X+ 1Y
2 2
0() V2 .\/_ .
= Ja X 1+Xa2+'h,zxa3+'ya3 R (4.1)
Xg3+1Ya3 V2 i V2
\/i 1+Xal:;%"a]

where x, and y,(a#1,i=1,2,3) are real. The first
tetrahedron is gauge-fixed, ¢g; = 1. There are 24 real
variables x,; and y,; (a =2, 3, 4, 5) because of group
variables g,. The spinor z,, € CP! is parametrized by

2

a—:)
ab ab
Cos (—2

Each triangle ab has two real variables ©,;, and ®;,, so we

0(+) .
—_ Sin (M) e_l(‘/)gg,i)“"q)ah)

Zab<®ab’ q)ab) = (42)

need in total 20 real variables to describe 2. |Zap) = 9hZap
follows from (4.1) and (4.2). The arguments of the action in
Eq. (2.4) are now x,;, y,i, O, and @,

For the group integral, the SL(2, C) Haar measure dg can
be written explicitly by

f[dga _ f[ 1 dxaldyaldxa2dya2dxa3dya3 ]
a=2

- 7.4 Xa1+HiVal 2
a:22ﬂ |1_|_d\/§“

(4.3)

The details of this derivation are in Appendix A. We define
the function u(x,;, y4i, Oup, Pup) by

M(Xm-, Yai» ®ab’ q)ab)H H dxaidyaidq)ahd@ah

a<bi=123
= H'Q'abdgav (44)
a<b
where Q,, is the measure on CP! in (2.3):
i (0" 1@
Q, = 0u +Os) o 4p (a3

4<Zabv Zab> <Zba’ Zba>

There are 44 arguments in u(X,;, Yai, Oup» Pup). The
amplitude (2.2) gives
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(4.6)

by / H dx;u(X) S
<h

where X = (x1, %), ..., X44) = (X4is Yai» Oup> @) contains
44 components. Equation. (4.6) expresses the EPRL
4-simplex amplitude in the form as Eq. (2.7). Besides,
the critical point for S(X) is at X, = (0,0, ..., 0). Next, we
will apply Theorem 2.1 to expand the integral (4.6) and
numerically compute the leading-order terms and next-to-
leading order corrections.

We emphasize that the parametrization X is within the
neighborhood of one critical point in the integration
domain, and (4.6) is A, restricted in the neighborhood.
A, has 2 critical points which leads to 2 different notions of
X. We do not put the label (+) to X in order to make
notations less cumbersome.

a

B. Asymptotic expansion and next-to-leading
order correction

Following the convention in Theorem 2.1, we rewrite the
exponent in the integrand

44 i
/H dx;u(X) e
i=1

Here, S(X) = —iS(X), Hessian matrix H;(X) =

corrections in Eq. (2.7) correspond to s =0 and s = 1.
In (2.7), the expression of Lu(xy) sums a finite number of
terms for each s.
Our scheme of computation is as follows: at s = 0, the
corresponding term for L,_qu(X) is
Iy = u(0). (4.7)
At s =1, the possible (m,l) are (0,1),(1,2),(2,3) to
satisfy 2/ > 3m. The corresponding terms are of the types:

(1) (m.1) = (0,1):

1 [& 9?u(0)
I, = —— =10 4.8
= [Z ROER ax]} (43)
where we have expressed X = (x, Xy, ..., X4). We

compute the second-order derivative of the function
u(X) with respect to x; and x; and evaluate the result

0%u(0)
0x;0x;

at X = 0. We save the resulting 44 x 44 matrix
and contract it with the Hessian matrix.

ki

44 3 0

44 ) (2) (m,1) = (1,2): We define
:/de,-u(i)e"’ls(’?)
i=1 - -
- . (X) = S(X) = S(0 H, 4.9
The leading-order terms and the next-to-leading-order
|
1 44 » 82 44 » 82
B | 22 7 O] | il O | 600
ot
1 pg—1
|:l Z H Hkl 8x,~(9xj8xk8xl] (gx()u)(())
0’9y, (0) du(0) = g,(0) Ju(0) = gy, (0) du(0) g, (0) ;
3x,@xj8xk 3xl 8x,-8xj8xl axk 8xj8xk8x, 8)Cl- 8x,»8xk8x, an 8x,»8xj8xk8x,
(4.10)

To compute less expensively, we use following
techniques in our code [15]. First, for &g, (0) and
d*g,,(0), there are 44° possible third order partial
derivatives and 44* fourth order partial derivatives.
However, for function g, (X), the mixed partial
derivatives are equal, which means that the order
in which we differentiate will not matter. To save
space, we save g, (0) as a 3-d upper “triangle”
array G©®) and d*g,,(0) as a 4-d upper “triangle”
array G( >. Hence, the size of the array is deduced
from 444 to (**¢=1). Second, because of the sym-
metric property of the Hessian matrix, we can
simplify the above summation from Y%, | Fijy

44 i j kR
to > ijl > i1 2 i—1 Fiju, here we use Fj; to

denote the factors’ product in Eq. (4.10). To be clear,
we use an example i =9, j =8, k =8,/ =1, ie,
(9,8,8,1), to explain the technique. We sum all
possible Hi;'Hy/!' first, it is 4Hg Hgg + 8H811H89

Here, we use the symmetric property of H~! and the
counting principle to get each terms and the corre-
sponding coefficient. In this case,

Fogg) = (4H g Hgd + 8Hg! Hgy)

3) 0u(0)
Oxg

u(0)>.

Ox,

(3) Ou(0)
+G881 axg

ou(0
<G988 ()"'2 G981

4
+ Gy,

(4.11)
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One can find the details in our Mathematica notebooks [15].

@) (m.l)=(2.3):

1 = —1g-1gg-1 86 2
13 o _% |:i,j,k§nl HU Hkl Hmn 8xi8xj6xk8xlaxmaxn (gxou)(())
_ 1 f: g ]| 2900 Pg5,(0) - 8gy(0) 99, (0) gy (0) gy (0)
48i Lt ij SkL Ox;0x;0x; 0x;0x,,0x, ~ 0x;0x,,0x,, 0x;0x,0x, = Ox;0x;0x, Ox;0x,0x,,

g,,(0) g, (0) = &g, (0) &g (0) = &g, (0) &g, (0) = &g,0) 3g,(0)
Ox;0x,0x,, Ox;0x,0x, ~ 0x,;0x,0x, 0x;0x,,0x,, = Ox;0x,,0x, Ox;0x;0x; ~ 0x;0x,;0x,, Ox;0x;0x,
g,,(0) g, (0) = &g, (0) &g, (0) = &g, (0) g,(0) u(xy)
Ox.0x,0x, 0x;0x;0x,, = 0x;0x,,0x, Ox;0x;0x; ~ 0x;0x,,0x, Ox;0x ;0x 0/

(4.12)

We have deduced sixth-order derivative to third-order derivatives with the condition g, (0) = 0, g (0) =0 and

dx,(0) = 0. Factors in each term in the square-bracket above are elements which we have stored in table G®). We use
similar techniques in (2) to simplify the summation above to make the computation less expensive.

C. Numerical results

The asymptotic results for the integral (4.6) are
Av = AS/‘+) +A$;_),

1
A = AP LA 4 0 (ﬁ) ’

d,- . 15" e —% N
Ag)i)() _ 24H /Z_ab emS(xo) [det( (XO )>:| u(X(j):),

a<b 2mi
dyi e AS"(XEN\ 12 1 .
AP =] /17] QiIS(EE) [det (#)] 2} (I, + I, + I;) (). (4.13)
a<b

where AE,H and AE,_) are asymptotic expansions of A, at two distinct critical points X corresponding to the geometrical
4-simplex with opposite orientations. Aﬁ,i)" stands for the leading-order term of the asymptotics and A(f)l is the next-to-
leading order correction. The additional factor 2* comes from the double multiplicity of the solutions g, = +¢° for a # 1.

We evaluate the leading-order term and the next-to-leading-order corrections at y = 0.1 as an example:

A _ (1 +L>6<1 +L)41-77 x 10713 4 1.87 x 10_14ie4'60’1i<1 _3.082+O.601i>’

42 104 A2 A
A~ (1 +4_1/1>6<1 +ﬁ)4 177 x 10“3/;21.87 x 10_14%4-5%(1 3082 ;0.6011‘)’ @14
where 4.60 and 4.58 in exponents are values of S(X). The factor (1 +£)0(1 +5)* = [T, ds;,,/(24j.p) and
24}1 2ﬂiab {de(zs;gat))] _%u(ﬁg) _ 177 10‘13/:521.87 x 10714 @.15)

We obtain the asymptotics of the EPRL 4-simplex amplitude A, with the next-to-leading-order corrections:

16 1 \43.55x 10713 : 3.14 . 1
A, = <1+4/1> <1+m> Te“% {cos(O.lO6+0.01/l)+lsm(—1.27+0.01/1)+0</12)]. (4.16)

It has been arranged in terms of cosines and sines, similar to the case of 6j symbol [14]. The asymptotic amplitudes A, with
the other boundary geometries can be found in Egs. (B1) and (B2). The Regge action Sg,,. Of the geometrical 4-simplex is
inside the cosine and sine
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Sregee =AY _Viap0%, = 0.01A.

a<b

(4.17)

Next, we combine cosines and sines in Eq. (4.16) to be in a
nicer form. As A — oo, we can expand log (1 — 3082£0.601i)
to st order in 1/2

3.082+0.601: 3.082 0.601:
l—fzexp - exp| £ ] .

(4.18)

Hence, (4.16) can be rewritten as

1

Ay (S + o). (4.19)
where
0.601
S = 4 (o.ou +0.106 — ﬂ) +4.592i
1.182
~ 286667~ (4.20)

can be viewed as a “quantum effective action” providing
quantum correction to the Regge action.” The term 4.594i is
from the overall phase.

Both the leading-order term and the next-to-leading-order
corrections depend on y, we write the asymptotic amplitude as

- (4.23)

which reduces to (4.14) when y = 0.1. Here, CF)(y)
coincides with the leading-order asymptotics. *)(y) is the

I the functional integration of QFT, ¢ £V =

Ik Dq[)eéf @HEWIHID) where T is the source. When we expand
the path integral at a classical solution (a critical point) ¢, we
obtain (see P.372 in [23])

2

B = % / dX(Llpa] + o) ~ 3oz det {- 5‘;{;} +o(h)

(4.21)

where O(h) corresponds to re-exponentiating 1+ O(1/1) ~
e9U/%) from Theorem 2.1. In our case, O(1/1) is the analog
of O(#). The quantum effective action I'[¢py] is defined by the
Legendre transformation I'[¢p,| = —E[J] — [ d*xJ¢. The quan-
tum effective action evaluated at ¢ is given by

2

: c
Mgl = / L] - %log det {— 5‘;5 (/J L o) (422)

where O(h) is the same as the one in E[J] in the perturbative

(£)

. +) . . .
expansion. Our S’ is an analog of I when we view the spinfoam

amplitude as an analog of the functional integration. Siﬁ-) gives
1/ correction to the leading Regge action in the same way as "

gives O(#) correction to the classical action [d*xL. Here we
have both Séff) since there are 2 critical points.

next-to-leading order coefficient. C*)(y), x(*) depending on
the value of y. The ratio of the next-to-leading order
corrections to the leading-order term is

kB y) _1P()
A Au(Xg)’

(4.24)

here, u(Xy ) = $8%3 and u(Xy) = 5% are independentony,

IF)(y) = (I, + I, + I3)(X}) depends on y, and
(4.25)

We use |«(7)| to denote |{*) (y)| and [x(~) (y)|. We show some
results of | I(*) (y)| and |«(y)| at different y in Table V. We plot
k()| and x(*)(y) versus y in Fig. 2.

Table V and Figure 2 demonstrate how the next-to-
leading order corrections change with different values of y.
For the specific boundary geometry j,, = (5,2)4, |x(y)]
increases first and then decrease with increasing y, and
the maximum occurs at about y = 2. The red points on
Figs. 2(b) and 2(c) show that x*)(y) stabilize to real
constants 0.76 as y — co. We also perform the analysis to
other boundary geometries j,, = (11,4)1 and j,, =
(8,3)4 (black and blue points in Fig. 2). In the case of
Jar = (8,3)4, ) (y) stabilizes to real constants 0.61 as
y = oo. For j,, = (11,4)4, *)(y) maintain at real con-
stants 0.54 as y — co. We can conclude that x*)(y) will
stabilize to a real constant as y — oo.

The semiclassical approximation of A, with the leading

order as in [7] is valid when 4 is large enough so that @
can be negligible comparing to 1. For example, at 4 = 30
and y = 0.1, |x(y)|/A ~0.10 is about 10% of the leading
order. In our opinion, a much safer regime for validating the
semiclassical approximation needs an even larger 4, e.g.,

2 =300 so that |x(y)|/A ~ 0.01.

V. NEXT-TO-LEADING ORDER CORRECTION
IN LARGE+ 4-SIMPLEX AMPLITUDE
WITH COHERENT SPIN-NETWORK
BOUNDARY STATE

A. Coherent spin-network state

Above discussions take the coherent intertwiners as the
boundary state for the 4-simplex amplitude. In this section,
we use the coherent spin-networks as the boundary state.
The coherent spin-networks relate to coherent intertwiners
by a superposition

Wo) = D Wi () O (G 8).

jabez+ /ZU{O}

(5.1)

-,

where y;, 4 (j) is given by,
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TABLE V. [I®)(y)| and |«(y)| with respect to y.

v 0.1 0.5 1 2 3 4 5 8
248 716 |[(+) (7)| 0.023 0.033 0.044 0.047 0.042 0.037 0.033 0.025
2487[16|[(—)(y)| 0.87 1.28 1.70 1.80 1.60 1.41 1.26 0.97
[x(y)| 3.14 4.6 6.10 6.46 5.75 5.07 4.53 3.46

y 10 20 50 100 200 500 800 1000
248 16 |[(+) (7)| 0.022 0.013 0.007 0.006 0.0056 0.0055 0.0055 0.0055
248ﬂ16|](—)(y)| 0.83 0.50 0.28 0.23 0.22 0.21 0.21 0.21
k()| 2.99 1.77 1.01 0.83 0.78 0.77 0.76 0.76

-

Yoo () =exp (‘iz}’fﬁgb(jab - (jO)ab))
ab

as the above discussions. We set values of ¢d”

choose (jy),, = (5,2)4 and &,, are the same boundary data

by

X exp <_1 Za(db)(cd) -](lb - .(J())ab.lcd - F]O)Cd) , aS‘(; §+)
2 V0w vV o)ea gh = =207 (5.3)
a}uh
(5.2)
o o ) ) al@b)(cd) i5 a 10 x 10 matrix given by
which is a Gaussian times a phase. (jo),, € Z, /2. 3 is
the discrete extrinsic curvature relating to the dihedral angle
b)(cd) _ b)(cd b)(cd b)(cd
of the triangle ab in a 4-simplex geometry. Here we first alPed) = g, 51PND 4 aum PN - ggulel)D - (5.4)
| ()] (@)
o ‘e o fw=(114)
5} o
° o o jip=(8.3)
° .
o ® ° ® ja=(5.2)
[ ]
il ¢ o0 B
oo o
o o0 ¢ o o ]
1+ ° [ ] °
% % ® o oo
0% ® o o o o e
‘ , L ® o o o e
0.1 1 10 100 1000
o E -
5} IRe[x™ W]l O o (b) 50 Im[x (Yl]l o« ° %o, . ()
° L4 o g o * °
o o° . 1¢ » 8 o
o 0.500" ® ' ’ ..: . °
' .. <
2l o $ ® e o
e o o 0.100} b
® 0 .. ° "
0.050" b4
e oo o ° . ®e
1k o ® o L @
o o ° 0.010; L °
[ . ® o 005/
L4 o oo
o e o o o oo .
o L...% e o . 0 o ope . . . \ L
01 1 10 100 1000 0.1 1 10 100 1000
FIG. 2. (a) A log-log plot of the specified list of y and |«(y)| values. (b) List log-log plot of y and the absolute value of real part of

k) (y). (c) List log-log plot of y and the absolute value of the imaginary part of x(*)(y). We use different colors to denote various

boundary geometries j,, = (5,2) (red solid points), j,, = (8,3) (blue solid points), j,, = (11,4) (black solid points).
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slab)led) = 1 if (ab) = (cd), m\@)(d) =1 if just two
indexes are the same, and n(@)(¢d) = 1 if all four indexes
are different, and in all other cases these quantities vanish
[24]. The coherent spin-networks depend on 3 free param-
eters a;, a,, a3.3 We choose a; =2, @, =3, a3 = 4 in our
computation. The spinfoam amplitude with coherent spin-
networks as the boundary state depends on the choice of
a’s. Our result depends on our choice of values of a’s.
The EPRL 4-simplex amplitude with coherent spin-
network boundary sums A, over j,, weighted by y;, 4 ( J)
The 4-simplex amplitude for a coherent spin network state

A;,v = Z Yoo (])A1/ (jab’ ia)
Jav€Z 1 [20{0}
&S dj b
Hdga [OIH—aQalw (55)
]abeL/zu{O} a<b *
where the “total action” S, is given by
= (J0)ap Jea = (o) ca

; 1 ab)(c ja

— i v ap — (
ab

\/(jO)cd
Jo)ay) + S0, 9.2),

(5.6)
where S is the same action as (2.4).
We use Poisson resummation formula
oof Zfl]l +5 f 0) (5.7)
jez./2u{0} /eZ/z
0 |
=2 djf(j)e¥* + = £(0 5.8
Z/ i)™ 43 f0)  (58)

kez

where f(j) corresponds to the summand in Eq. (5.5). When
(Jo)ap are large, the Gaussian in y; 4 is peaked at large
Spins ju, = (Jo)ap- [Wj,.4,| 1S exponentially small when j,,
is far from the large (jg),,, s0 f(0) is exponentially small
and negligible. Similarly, the integral [ dj is dominated by
the large-j domain with j,;, ~ (jo),,, While the integral
outside this domain is exponentially suppressed. Motivated
by this, we scale j,, and (jy),, bY Jjaup = Ajapr and
(jo)ap = A(jo)ap- Therefore, “total action” is scaled by
St = ASr and

AL =(2)) 102 /deab Ha / Hdga /CPI . Sl [

ka€ZY a<b a<b

(5.9)

3[25] shows that coherent spin-networks with o, = a3 =0
relates to Thiemann’s coherent state [26].

where

k . .
St = Sior + 470> japka

a<b

(5.10)

Integrals in Eq. (5.9) can be analyzed with stationary phase
approximation as in Theorem 2.1. Critical point equations

of each St((lft) are

Re(S,) =0, 0, S =4niky,, 0,5=0,,S=0.

(5.11)

It is not hard to see these equations imply critical equations
of S in Egs. (2.8) and j,;, = (jy),,- Among two solutions
20" of Eq. (2.8), only X" satisfy Eq. (5.11) when all
ky, = 0. Any k,;, # 0 leads to no solution for Egs. (5.3).
Therefore all integrals except for all k,, = 0 in (5.9) are
suppressed as O(A™") for all positive integer N.

We focus on all k,;, = 0 and neglect exponentially small

eIrors
5
21 IO/HdJab< /1111[7) /Hdga
a<b a=2
e
x /C[pl 10 E}Q ab
_ (2/1)10/Hd,11 ulsm,
n= ({jab - (JO)ab}a<b’ §) (512)
where SYtot = _iStot and ”/(’1) = ”(i) Ha<b(d/ljab/ﬂ)-

The asymptotic expansion (2.7) can be applied to
compute (5.12). A/, has only one critical point given by
Jab = (Jo)ap and X = X, because the boundary coherent
spin-network specifies both boundary 3-geometry and
extrinsic curvature [27].

B. Numerical results

The asymptotic expansion of A/, with the next-to-leading
order correction can be computed with the same scheme as
Sec. IV B. Numerical results are presented below.

As an example, at y = 0.1,

A, =C(y) {1 + K/iy) + 0(,12”

1\6 41. 107° 1x10719;
_210<1+ > (H——) 85 x +9.31x10"

(5.13)

4 104 A

26.58 +30.78i 1

where C'(y) stands for the leading-order terms. () is the
next-to-leading order coefficient. The asymptotic ampli-
tudes A/, with the other boundary geometries can be found

x et 60 [1 (5.14)
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TABLE VL. |I'(y)| and |«'(y)| at different y.

y 0.1 0.5 1 2 3 4 5 8

248 226| 1 ()| 129.13 23.86 745 175 50.96 6.17 291 2.77
K (7)] 40.67 751 2.34 0.55 16.05 1.94 0.92 0.87
v 10 20 50 100 200 500 800 1000
2487226| ' ()| 277 2.64 2.46 2.34 2.32 2.32 2.32 2.32
K (7)] 0.87 0.83 0.77 0.75 0.74 0.73 0.73 0.73

in Eq. (B3) and Eq. (B4). The ratio of the next-to-leading
order corrections to the leading-order terms is

() _11'0)
A 2u(0)

(5.15)

here, I' = I| + I, + I; is obtained by applying the com-
putation in Egs. (4.8), (4.10) and (4.12) to u’ and S‘tot.
u'(0) = 238—;826 in the leading-order term is independent of y.

From the result of Eq. (5.14), the next-to-leading order
coefficient gives |[k/(0.1)| ~40.67 at y =0.1. When
A =130, |«’(0.1)/4]| ~1.36 is even larger than the lead-
ing-order term. Clearly, the expansion in this case is invalid

at A = 30. The semiclassical approximation of A’, (approxi-
mation by the leading order) requires a much larger A. For
example, 4 > 300, then [x'(0.1)/4| is bounded by about
13% of the leading order. We suggest 4 > 3000 to be a
much better regime for A, at y = 0.1 where the next-to-
leading order term is about 1% of the leading order.
This increase is not universal but only happens in cer-
tain examples. There are other examples (with different
boundary geometries) giving |k'(0.1)] ~O(1) and not
requiring a large increase of A. For examples, |«'(0.1)| ~
0.50 when j,, = (11,4)4, and [£'(0.1)|~2.23 when
Jap = (8,3)1, see Figs. 5 and 4. It illustrates that
|'(0.1)| damps off significantly as j,,/A goes from (5,2)

5Iotc ‘Wl (a) [ '] (b)
° 0@
°
°
® 30
10
°
°
5 % °
° [ ] 20
° °
°
°
] 10
% 00 ¢ ¢ oo
°
0.5 ° ®
Y 'Y ) b ® 14
0.1 1 10 100 1000 2 3 4 5
IRe[x' (V]I () [Im[x" ]I ()
[ ] [ ]
10 R 10 . ¢
5 ° ® .0. °
.. [ ] L J
° 1
]
1 ©0e o0 o o o oo
0.50 ° ‘. 0.10 °® ® o .
]
0.10 .
0.05 . 0.01 ..
0.1 1 10 100 1000 ¥ 1 10 100 10007
FIG. 3. The numerical results with boundary geometry j,, = (5,2)4. (a) the log-log plot of |«(y)| versus y. (b) the plot of |«'(y)]|

with relatively small y. Panel (b) is a zoom of panel (a) for y € [0.1, 5]. (c) the log-log plot of the absolute value of the real part of «’(y).
(d) the log-log plot of absolute value of the imaginary part of ().
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[IL(7]]
®
°
, ®
°
°®
] °
°
° Y o0 00 o °
0.5
°
o
0.2 Y
0.1 1 10 100
[Re[x'(]I [Im[x’ V]|
° (b)
° °
° 1o %o
1 L L4 0.500
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0.1 1 10 100 1000 0.1
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FIG. 4. The numerical results with boundary geometry j,;, = (8, 3) (a) the log-log plot of |«’(y)| versus y. (b) the log-log plot of the
absolute value of the real part of «’(y). (c) the log-log plot of absolute value of the imaginary part of «'(y).
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The numerical results with boundary geometry j,, = (11,4)4. (a) the log-log plot of |«'(y)| versus y. (b) the log-log plot of the

absolute value of the real part of «’(y). (c) the log-log plot of absolute value of the imaginary part of «'(y).

124010-13



HAN, HUANG, LIU, and QU

PHYS. REV. D 102, 124010 (2020)

to (11,4). Our numerical studies demonstrate these results,
although we don’t have a mathematical argument for the
increase/nonincrease of A due to the complication of the
sum at the next-to-leading order corrections.

Moreover, we study numerically the dependence of ¥’ on
y. We list some results of |I'(y)| and |«’(y)| at different
values of y in Table VI for (jj),, = (5,2)A. The plot of
|’ (y)| versus y is given by Figs. 3(a), 4(a) and 5(a).

In the case of boundary geometry (jj),, = (5,2)4
Figs. 3(c) and 3(d) indicate that «’(y) stabilizes to a real
constant 0.73 asymptotically as y — oo. For (jg),, =
(11,4)4 and (jg),, = (8,3)4, «/(y) maintain at real
constants 0.58 and 0.52 respectively as y — oo0. From
Figs. 3-5, we can conclude that the next-to-leading-order
corrections depend on y, |«’(y)| oscillates first for small 7,
but it will stabilize to a constant as y — oo. For small y,
|’ (7)| is relatively large and results in that 4 has to be large
for y = 0.1, (jo),» = (5,2)4, while it becomes smaller for

(o)ap = (11,4)2 or (jo)ap = (8,3)4.

VI. CONCLUSION

In this paper, we use the coherent intertwiners
and coherent spin-networks respectively as boundary
states to study the large-j asymptotic expansion of the
EPRL 4-simplex amplitude. We numerically derive the
next-to-leading order corrections and compare them to
the leading-order terms. We demonstrate how the
next-to-leading order corrections depend on the Barbero-
Immirzi parameter y, and how to obtain quantum correc-
tions to the Regge action. In the context of this, our work
makes it possible to quantitatively describe the quantum
behavior of 4-simplex amplitude. The results help to
estimate a proper regime defined by A where the semi-
classical approximation of A, is valid, with a dominant
leading-order term and a negligible next-to-leading order
correction.

It is important to extract predictions of quantum
gravity effect from the spinfoam LQG as a candidate
theory of quantum gravity. Our work propose to study
the spinfoam amplitude perturbatively in the large-j regime
and understand the quantum gravity correction to be
O(1/j) corrections in the EPRL spinfoam amplitude.
We demonstrate that this proposal can be successfully
carried out by numerical computations, at least at the level
of one 4-simplex amplitude. Existing results on the large-j
EPRL spinfoam amplitude has only been focused on the
semiclassical consistency by neglecting O(1/j). Moreover,
Our method of computation is a straight-forward applica-
tion of the stationary phase expansion of oscillatory
integral, and the same method (and the Mathematica
notebooks in [15]) can be adapted to any spinfoam vertex
amplitude.

The future generalization of this work may be along two
directions: spinfoam amplitudes with multiple 4-simplices
and nonperturbative computations. The challenge of gen-
eralizing to multiple 4-simplices relates to increasing
number of integration variables, which makes the compu-
tation in Sec. IV B more expensive. However, it may be still
interesting and possible to study the complex with three
4-simplices as the model in [28] and understand how the
next-to-leading order correction interacts with the issue of
flatness in the spinfoam model.

The other direction is to numerically evaluate the
spinfoam amplitude nonperturbatively (without the asymp-
totic expansion), in order to understand the model both in
and beyond the large-j regime. It has been difficult since
the integral (2.2) is oscillatory which makes numerical
evaluation difficult. However, recent developments in
lattice gauge theories discover new Monte-Carlo methods
on Lefschetz thimbles for oscillatory integrals [29,30]. The
strategy is first deforming the integration contour to integral
cycles called Lefschetz thimbles on which Im(S) is a
constant, then applying the Monte-Carlo simulation to
nonoscillatory integrals on Lefschetz thimbles. We have
applied this method to study the amplitude A/, and results
will be reported elsewhere [31].
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APPENDIX A: THE SL(2,C) HAAR MEASURE

Here, we derive the SL(2,C) Haar measure dg in our
case. For any SL(2,C) group element, it can be para-
metrized as:

3 .
ap+a ay —la
g:aol—i—Zakak:( 0 3 : 2)

= ay +ia, ag—as
a a; + ia + i
_< ﬂ)_( i P .ﬂz)’ (A1)
Yy Y1 +iyy o+ i

here, 7 is 2 x 2 identity matrix, o; is Pauli matrix, and a;
(i - 0’ 1’ 2’ 3)?

a=a;+ i,

B =P+ ip,

y=n+ira W = ) + iwy,

are complex variables, where ay, &y, 1, 2,71, 72, @1, @
are real. From the book [32], the measure for the group
SL(2,C) is
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k=1 i=0
1 3 8(Re(a0),lm(a0), ...,Re(a3),1m(a3))> ‘

=—35|a? - 2_1)|d DaDpDyD
o (ao ;é;“k ) et(&(Rﬁ(al)InﬂaZL.”,Re(wlLInﬂah)) abpDrPe

= %6((1@0 —yp# —1)DaDpDyDaw, (A2)
167

here, we use this calculation

3

a%—Za%—lzaa}—yﬁ—l,
=1

det(@(Re(ao), Im(ay), ...,Re(az), Im(a3))> 1

d(Re(a;),Im(a,), ..., Re(w, ), Im(w,)) ) ~ 16
One can find the details in our Mathematica notebooks [15]. For any complex variable z = x + iy, we use the notation:
Dz =dxdy and &(z) = 6(x)8(y).

Then, (A2) can be derived as

1
dg = @5(0‘1@1 —awy = Piyy + Para — 1)d(ay@y + aywy = Piys — Pary)dw dw,DaDBDy
. 1 D(ZDﬂD}/ o 1 daldazdﬁl dﬁzdyldJ/Z (A3)
162t o> 162 |af? '
The following calculation can show the details for the third step. For convenience, we define
fi=Re(aw —yp—1) = qyo; — qw; = 71 + fara — 1,
fo=1Im(aw —yp — 1) = 1@, + o, = fi72 — far1-
l
Then, the product of the delta function can be written as 1.e.,
_5(0)1—5)1)5(%—5)2) a :1+x_1 a _ L %
8(f1)(f2) = det 00l : 1 NeA VA P Nok
Aow) y, V2 X3 V3
2:_7 7/1:_’ }/2:_’
det—a(fl’fZ) =& +a =|a? V2 V2 V2
8(601 ’ 602)
o o ) ) Then, (A3) can be written as
here, @, and w, are the solutions of the system of equations
=0and f, =0,
fr=0and f, dy— L dndndodndudy,
- 4 3 +iy; 12 ’
P +afiy1 + by + wfrya — ooy 167" x 2 1+ XI\/;_}1 |
1 of + a3 ’
- a,(Bary + P172) + (=1 = Biy1 + Pora which is the SL(2, C) group haar measure we used in our
Wy = > o . case. The parameters of the SL(2,C) group are
ay +a;
Next, we parametrized 1+ )‘14’% "24’%
= wtingti || A5)
1 . 1 , 1 , g P e v (
0’:14‘%(3514‘1}’1)’ ﬁ:ﬁ(xz‘i‘lh), 725(3534‘!%), e 1+31*%2
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respectively. Table IX and Table X gives the boundary state
|E,p) for each tetrahedron with boundary geometries j,;, =
(8,3)4 and j,, = (11,4)A respectively.

We also give critical points with different boundary
geometries. Table XI and Table XIII are critical points with
boundary geometry j,, = (8,3)4, Table XII and Table XIV
are critical points with boundary geometry j,, = (11,4)A

With these boundary data and critical points for the
different boundary geometries, we can compute the asymp-
totics of the EPRL 4-simplex amplitude with the next-to-
leading-order corrections. We take y = 0.1 as an example

for the following results. For the coherent intertwiner as the

boundary state, the asymptotic amplitude A5;8‘3>

dary geometry j,,=(8,3)4 can be written as:

At the critical point g=T or X =y =0,

1
dg - 4—23dx1dy1dx2dy2dx3dy3. (A6)

167" x

APPENDIX B: BOUNDARY DATA, CRITICAL
POINTS, AND NUMERICAL RESULTS WITH
DIFFERENT BOUNDARY GEOMETRIES

Here we list the boundary data with different boundary
geometries j,, = (8,3)4 and j,, = (11,4)4. Table VII
shows the coordinates of vertices for the boundary geom-
etries j,, = (8,3)4 and j, = (11,4)1 respectively.
Table VIII gives the 4-d normal vectors for each tetrahedron
for boundary geometries j,, = (8,3) and j,, = (11,4)

with boun-

TABLE VII. Each cell of the table is the coordinate of the vertex P, in the Minkowski spacetime.
Py P, Py P, Ps
j ab — (87 3) ( 5 09 5 ( s U,y

0, 0,0,0) (0,0,0,-4.298) (0,0,-3.722,-2.149) (0,-3.510,—1.241,-2.149) (~0.601,—0.8774, —1.241, —2.149)
Ju» = (11,4) (0,0, 0,0) (0,0,0,-5.040) (0,0,-4.365,-2.520) (0,—4.115,—1.455,-2.520) (—0.810,—1.029,—1.455, -2.520)

TABLE VIII.  Each cell of the table is 4-d normal vectors for each tetrahedron with boundary geometries j,, = (8,3)4 and j,, =
(11,4)4 respectively.

N, N, N, N, Ny

ju = (8.3)  (=1,0,0,0) (1.37,0.94,0.,0) (1.37,-0.31,0.89,0.) (1.37,—0.31,—-0.44,0.77) (1.37,-0.31,-0.44,-0.77)
' (=1,0,0,0) (1.62, 1.28,0.,0.) (1.62,—0.43,1.20,0.) (1.62,-0.43,-0.60,1.04) (1.62,—0.43,-0.60,—1.04)

TABLE IX. Each cell of the table is the boundary state |£,,) for the face shared by the line number tetrahedra and the column number
tetrahedra with boundary geometry j,, = (8,3)A.

b

‘fab>
1 2 3 4 5
(0.71, 0.71) (0.71,-0.24 4+ 0.67 i) (0.95,-0.17-0.25 1) (0.30,—-0.55 - 0.78 1)
(0.71,0.63 +0.32 1) (0.84,0.53 -0.14 1) (0.55,0.81 - 0.21 1)

(0.84,—-0.31 +0.46 1) (0.55,-0.47 +0.69 1)
(0.85,-0.30 - 0.42 1)

a

1 .

2 (0.71,-0.71)
3 (0.71,024-067i)  (0.71,0.09 +0.70 i)
4 (0.96,0.07 — 0.26 i)
5

(0.27,0.25 - 0.93 1)

(0.96,-0.27 - 0.02 1)
(0.27,-0.96 — 0.07 1)

(0.30,0.55 4+ 0.78 1)

(0.95,0.17 4 0.25 1) (0.52,-0.49 - 0.70 1)

TABLE X. Each cell of the table is boundary state |£,,) for the face shared by the line number tetrahedra and the column number
tetrahedra with boundary geometry j,, = (11,4)4

b
‘gab>
1 2 3 4 5
(0.71,-0.24 4+ 0.67 1) (0.95,-0.17-0.25 1) (0.30,—-0.55 - 0.78 1)

a

1 e

2 (0.71,-0.71)

3 (071,024 - 0.67 i)
4 (0.30,0.55+0.78 i)
5 (0.95.0.17 +0.25 i)

(0.71, 0.71)

(0.71,0.05 + 0.71 1)
(0.96,0.04 — 0.26 1)
(0.26,0.14 — 0.96 1)

(0.71,0.64 + 0.28 1)

(0.96,-0.26 — 0.05 1)
(0.26,-0.95 - 0.19 1)

(0.82,0.55-0.12 1)
(0.82,-0.30 + 0.49 1)

(0.57,0.80 — 0.17 i)
(0.57,-0.43 +0.70 i)
. (0.87,-0.28 — 0.40 i)
(0.50,-0.50 — 0.71 i) e
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TABLE XI. Each cell of the table is the critical point of ath tetrahedron group element g?,(i) with boundary geometry j,, = (8,3)A

a 1 2 3 4 5

gu(+> 10 0.43i 1.09i 0.43i 1.03-0.36i 1.32i  -0.51-0.36i -0.46i —0.51-0.36i
01 1.09i 0.43i —-1.03-0.36i  0.43i 0.51-0.36i  —0.46i 0.51-0.36i 1.32i

gg(‘) 10 —0.43; 1.09i -0.43i  1.03-0.36i 0.46i  —0.51-0.36i —-1.32i -0.51-0.36i
01 1.09i —0.43i —-1.03-0.36i  0.43i 0.51-0.36i —1.32i 0.51-0.36i 0.46i

TABLE XII. Each cell of the table is the critical point of a-th tetrahedron group element gg(i) with boundary geometry j,, = (11,4)4

a 1 2 3 4 5

ga(+> 10 0.55i 1.14i 0.56i 1.08-0.38i 1.49i  —0.54-0.38i -0.38i —0.54-0.38i
01 1.14i 0.56i —-1.08-0.38;  0.56i 0.54-0.38; —0.38i 0.54-0.38i 1.49i

gg(‘) 10 —0.56i 1.44i -0.56i  1.08-0.38i 038  —0.54-0.38i -1.49i —0.54-0.38i
01 1.14i —0.56i —-1.08-0.38; —0.56i 0.54—-0.38;  —1.48i 0.54—-0.38i 0.38i

112

The asymptotic amplitude AE,H"U

1\6 1\*641 x 10718 171 1
:<1+> (1+> X 107 {005(0.18+0.14/1)+2sin(—1.28+0.14/1)+0<12)]. (B1)

with boundary geometry j,, = (11,4)1 is

1\6 14559 %102 , 1.21 1
AMNY = (1+—> <1+—) 27X A {005(0.19—1—0.31/1)+Tsin(—1.24—|—0.3li)—|—0<—)]. (B2)

4 104 A2

For the coherent spin-network as the boundary state, the asymptotic amplitude A’

Ja = (8,3)4 s

TABLE XIII. Each cell of the table is the critical point para-
metrized by (H%i), ¢2(bi)) for the face shared by the line number
tetrahedron a and the column number tetrahedron b, a < b. Two
tables list the result for two distinct critical points with boundary
geometry j,, = (8,3)A

12

5)8’3) with the boundary geometry

TABLE XIV. Each cell of the table is critical point parametrized
by (Qg(bi),d)g;i)) for the face shared by the line number
tetrahedron a and the column number tetrahedron b, a < b.
Two tables list the result for two distinct critical points with
boundary geometry j,, = (11,4)A

b b
(0 da) (0 dap)
a 2 3 4 5 a 2 3 4 5
1 (=1.57,0) (=1.57,1.91) (=2.53,-2.19) (=0.62,-2.19) 1 (=1.57,0) (=1.57,1.91) (=2.53,-2.19) (=0.62,-2.19)
2 - (=1.57,-1.02) (=0.74,0.69) (-2.40,0.69) 2 .- (=1.57,-1.09) (=0.70,0.76)  (—2.44,0.76)
3 . (0.74, 1.23)  (—2.40,1.23) 3 iy (-0.70,1.15)  (—2.44,1.15)
4 - (-2.74,0.96) 4 = (-2.67,0.96)
b b
(6 - das ) (0 oy )
a 2 3 4 5 a 2 3 4 5
1 (=1.57,0) (=1.57,1.91) (=2.53,-2.19) (=0.62,-2.19) 1 (=1.57,0) (-=1.57,1.91) (=2.53,-2.19) (=0.62,-2.19)
2 - (-1.57,-021) (=1,39,0.11) (-1.75,0.11) 2 ... (-1.57,-0.14) (=1.45,0.07) (=1.70,0.07)
3 o (-1.39,1.80)  (—1.75,1.80) 3 iy (-1.45,1.84) (—1.70,1.84)
4 cos (-2.74,-2.19) 4 o (=2.67,-2.19)
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WD 210(1 +l>6(1 +L>4 8.94 % 107'? +3.85 x 10_12ie10-85ﬁ [1

and the asymptotic amplitude A’ i,‘ 14)

2.06 + 0.88i 1
(20008 o(1Y]

with the boundary geometry j,, = (11,4)4 is

A _ 210<1 +$>6<1 N 1 >43.7O x 10713 +1.67 x 10_13ie4'57’1i {1

104

—-0.43 - 0.25i 1
(=020 5(1)] gy
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