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We numerically study the next-to-leading order corrections of the Lorentzian Engle-Pereira-Rovelli-
Livine (EPRL) 4-simplex amplitude in the large-j expansions. We perform large-j expansions of
Lorentzian EPRL 4-simplex amplitudes with two different types of boundary states, the coherent
intertwiners and the coherent spin-network, and numerically compute the leading-order and the next-
to-leading orderOð1=jÞ contributions of these amplitudes. We also study the dependences of these Oð1=jÞ
corrections on the Barbero-Immirzi parameter γ. We show that they, as functions of γ, stabilize to finite real
constants as γ → ∞. Lastly, we obtain the quantum corrections to the Regge action because of the Oð1=jÞ
contribution to the spinfoam amplitude.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a candidate for
background-independent and nonperturbative quantum
theory of gravity [1–3]. The spinfoam model is a covariant
approach to loop quantum gravity, and it provides LQG
transition amplitudes, the spinfoam amplitude, as a sum-
over-history of quantum geometries [4,5]. Because of
the simplicity and semiclassical behavior [6–8] of the
Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) model
[9], it is one of the most successful spinfoam models. In
the Lorentzian EPRL model, the spinfoam amplitude can
be described by a path integral representation that is
employed in studying the large-j asymptotic behavior.
This asymptotic behavior is related to the Regge action
of the classical discrete gravity [10,11]. Computing spin-
foam amplitudes is central in developing the spinfoam
formulation of LQG, especially from the perspective of
extracting quantum corrections to the classical gravity.
Existing studies on the Lorentzian EPRL model mainly
focus on the leading order contribution in the large-j
asymptotics, and leave the higher order corrections unex-
plored. Higher order corrections in the large-j expansion
are expected to relate to the quantum-gravity effects in
LQG, while the leading-order terms relate to the semi-
classical limit.

The purpose of this paper is to study the next-to-leading
corrections in the large-j expansion of the Lorentzian
EPRL 4-simplex amplitude with two types of boundary
states which are coherent intertwiners and coherent spin-
networks. Here we introduce the main results of this paper.
We consider the same Lorentzian nondegenerate 4-simplex
geometry and boundary data as [12] and construct spin-
foam critical points of the EPRL amplitude. For the
coherent intertwiners as the boundary state, there are
two critical points (of opposite 4-simplex orientations).
Following the asymptotic expansion (Hörmander’s theorem
7.7.5 in [13]), we perform large j asymptotic expansion of
the 4-simplex amplitude at both critical points, and numeri-
cally compute both the leading-order and the next-to-
leading order corrections. If we scale spins by jf → λjf
for all boundary triangles f, the expansion in λ is
represented as below

Að�Þ
v ¼ Cð�ÞðγÞ ·

�
1þ κð�ÞðγÞ

λ
þO

�
1

λ2

��
ð1:1Þ

where Cð�Þ; κð�Þ depending on the value of γ are
computed numerically in this work. Cð�Þ is identical
to the leading-order asymptotics given by Barrett et al.
[7]. The evaluation of the next-to-leading order
coefficient κð�ÞðγÞ is one of main interests in this work.

It turns out that κðþÞðγÞ ¼ κð−ÞðγÞ. As an example, at*dqu2017@fau.edu
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γ ¼ 0.1, jκð�Þð0.1Þj ≃ 3.14 and the 4-simplex amplitude

Av ¼ AðþÞ
v þ Að−Þ

v is given by1

Av ¼
�
1þ 1

4λ

�
6
�
1þ 1

10λ

�
4 3.55 × 10−13

λ12
e4.59λi

×

�
cosð0.106þ 0.01λÞ

þ 3.14
λ

sinð−1.27þ 0.01λÞ þO

�
1

λ2

��
; ð1:2Þ

where SRegge ¼ 0.01λ in the terms of cosine and sine is the
Regge action of the geometrical 4-simplex. The next-to-
leading order corrections have to be sufficiently small in
order to validate the semiclassical approximation of Av with
the leading-order terms as [7]. By the above result, for
example, when λ ¼ 30, the magnitude of the second term in
Eq. (1.1), jκð�Þð0.1Þ=λj ≃ 0.1, is about 10% of the leading-
order terms. We can conclude that approximating the

amplitude Að�Þ
v solely by the leading order term Cð�ÞðγÞ

leads to an error about 10% in the case of γ ¼ 0.1 and
λ ¼ 30. The similar behaviors are supported by several
numerical examples with different boundary geometries.
This conclusion may become different when we impose

the different boundary state. We consider the boundary
state to be the coherent spin-networks in Section V. In this
case, the EPRL amplitude A0

v contains summing over j. The
boundary coherent spin-networks determine one critical
point of the amplitude while eliminating the others. The
asymptotic expansion gives

A0
v ¼ C0ðγÞ ·

�
1þ κ0ðγÞ

λ
þO

�
1

λ2

��
: ð1:3Þ

We find that in certain example of 4-simplex geometry and
boundary data, at γ ¼ 0.1, the next-to-leading order coef-
ficient gives jκ0ð0.1Þj ≃ 40.67. When λ ¼ 30, jκ0ð0.1Þ=λj ≃
1.36 is even larger than the leading-order term. Clearly, the
semiclassical approximation of A0

v is invalid at λ ¼ 30, and
a much larger λ is needed. For instance, when λ ≥ 300,
jκ0ð0.1Þ=λj is bounded by about 13% of the leading-order
term. We suggest a much safer zone to be λ ≥ 3000 for A0

v
(λ ≥ 300 for Av) where the next-to-leading order correction
is about 1% of the leading-order term. However, we find
this increase of allowed λ when γ is small is not universal, it
only happens in certain examples.
Moreover, we numerically study the dependences of κð�Þ

and κ0 on γ in several examples with different boundary
geometries. Numerical results support that they stabilize to
real constants asymptotically as γ → ∞.

Main computations in this work are carried out by
Mathematica. Mathematica codes for constructing critical
points and computing large-j expansion can be found in
[15]. Although our computation fixes the 4-simplex boun-
dary data, the codes can be easily adapted to other
boundary data.
In addition, Av in Eq. (1.2) can be rewritten (up to an

overall phase) as

Av ≃
1

λ12
ðeSðþÞ

eff þ eS
ð−Þ
eff Þ; ð1:4Þ

where

Sð�Þ
eff ¼�i

�
0.01λþ0.106−

0.601
λ

�
−28.6667−

1.182
λ

ð1:5Þ

can be viewed as the “quantum effective action” with
quantum corrections to the Regge action SRegge ¼ 0.01λ.
Here are some other works on numerical analysis of

spinfoam models from different perspectives: [12,16]
numerically compute the EPRL amplitude in the spin-
intertwiner representation, by decomposing Clebsch-
Gordan coefficients of SL(2,C) in terms of those of SU(2).
References [17,18] numerically compute symmetry-
restricted spinfoam models and their renormalization.
This paper is organized as follows: Sec. II is a brief

review of the EPRL 4-simplex amplitude. Section III
explains the boundary data and the construction of critical
points. New results of this paper start from Sec. IV, where
we expand the amplitude with the coherent intertwiner
boundary state and numerically compute both the leading-
order terms and the next-to-leading order corrections for
various values of γ. Section V, we study the EPRL
amplitude with the boundary coherent spin-network, and
numerically compute both the leading-order terms and
next-to-leading-order corrections for various values of γ.

II. EPRL 4-SIMPLEX AMPLITUDE

Herewe focus on the Lorentzian 4-dimensional spinfoam
4-simplex amplitude, illustrated by Fig. 1, where each black
box is dual to a boundary tetrahedron and each edge is dual
to a triangle. Boundary tetrahedra are labeled by indexes
a; b ¼ 1;…; 5 and carry group variables ga ∈ SLð2;CÞ.
The triangle dual to the edge is shared by the ath and bth
tetrahedra and carries an SU(2) spin jab. We first impose the
boundary state made by a tensor product of five coherent
intertwiners, one for each tetrahedron,

jiaðj⃗; ξ⃗Þi¼
Z
SUð2Þ

dha ⊗
b≠a

hajjab;ξabi; a¼1;…;5; ð2:1Þ

where jjab; ξabi is the SU(2) coherent state. The EPRL
4-simplex amplitudewith the boundary state has the integral

1The next-to-leading order gives a sine function similar to the
expansion of 6j symbol [14].
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expression [7,8,10,19–21] which is particularly useful for
studying the large-j asymptotic behavior.

Avðjab; iaÞ ¼
Z Y5

a¼2

dga

Z
ðCP1Þ10

eS
Y
a<b

djab
π

Ωab; ð2:2Þ

with djab ¼ 2jabþ1. ga ∈ SLð2;CÞ associates to each tetra-
hedron. The first tetrahedron is gauge fixed, g1 ¼ 1. dga is
the Haar measure on SLð2;CÞ. Ωab is the measure on CP1:

Ωab ¼
Ω

hZab; ZabihZba; Zbai
; ð2:3Þ

where jZabi ¼ g†ajzabi, jZbai ¼ g†bjzabi and jzabi is a 2-
component spinor for each triangle ab. The Hermitian inner
product is hz;wi¼ z̄0w0þ z̄1w1. HereΩ¼ i

2
ðz0dz1−z1dz0Þ∧

ðz̄0dz̄1− z̄1dz̄0Þ is a homogeneous measure on C2, and we
choose the section of CP1: ðz0; z1Þ → ð− sin Θ

2
e−iΦ; cos Φ

2
Þ,

for which Ω reduces to Ω ¼ sinΘ
4

dΦdΘ.
The integrand in Eq. (2.2) is written as an exponential eS

with the action

S¼
X
a<b

2jab ln
hZab;ξabihJξba;Zbai
hZab;Zabi12hZba;Zbai12

þ iγjab ln
hZba;Zbai
hZab;Zabi

;

ð2:4Þ
where γ is the Barbero-Immizi parameter and J is the
antilinear map

J

�
z0
z1

�
¼

�−z̄1
z̄0

�
:

The coherent state is labeled by the spin jab and a
normalized 2-component spinor jξabi which is determined
by n̂ab ¼ hξab; σ⃗ξabi (σ⃗ are Pauli matrices).
To study the large-j behavior of the amplitude, we scale

spins jab→λjab by a large parameter λ. As a consequence of
the scalingof spins, the actionS ↦ λS. This scalingmotivates
us to study the asymptotical behavior of Av in the large-j
regime with the generalized stationary phase approximation
analysis guided by Hörmander’s theorem 7.7.5 [13].
Theorem 2.1. Let K be a compact subset in Rn, X

an open neighborhood of K, and k a positive integer. If
(1) the complex functions u ∈ C2k

0 ðKÞ, f ∈ C3kþ1ðXÞ and
Im f ≥ 0 in X; (2) there is a unique point x0 ∈ K satisfying
ImðSðx0ÞÞ ¼ 0, f0ðx0Þ ¼ 0, and detðf00ðx0ÞÞ ≠ 0 (f00
denotes the Hessian matrix), f0 ≠ 0 in Knfx0g then we
have the following estimation:

����
Z
K
uðxÞeiλfðxÞdx − eiλfðx0Þ

�
det

�
λf00ðx0Þ
2πi

��
−1
2
Xk−1
s¼0

�
1

λ

�
s
Lsuðx0Þ

���� ≤ C

�
1

λ

�
k X
jαj≤2k

sup jDαuj: ð2:5Þ

Here the constant C is bounded when f stays in a bounded
set in C3kþ1ðXÞ. We have used the standard multi-index
notation α ¼ hα1;…; αni and

Dα ¼ ð−iÞα ∂ jαj

∂xα11 …∂xαnn ; where jαj ¼
Xn
i¼1

αi ð2:6Þ

Lsuðx0Þ denotes the following operation on u:

Lsuðx0Þ ¼ i−s
X
l−m¼s

X
2l≥3m

ð−1Þl2−l
l!m!

�Xn
a;b¼1

H−1
ab ðx0Þ

∂2

∂xa∂xb
�l

× ðgmx0uÞðx0Þ; ð2:7Þ

where HðxÞ ¼ f00ðxÞ denotes the Hessian matrix and the
function gx0ðxÞ is given by

gx0ðxÞ ¼ fðxÞ − fðx0Þ −
1

2
Habðx0Þðx − x0Þaðx − x0Þb

such that gx0ðx0Þ ¼ g0x0ðx0Þ ¼ g00x0ðx0Þ ¼ 0. For each s, Ls is
a differential operator of order 2s acting on uðxÞ.
Employing this Theorem, we can compute the 4-simplex

amplitude in Eq. (2.2) as an 1=λ asymptotic series at critical
points. As a consequence, the asymptotics of 4-simplex
amplitude as λ → ∞ is dominated by contributions of
critical points which are the solutions of the critical point
equations,

FIG. 1. The graphical illustration of the 4-simplex amplitude:
Five black boxes correspond to boundary tetrahedra carrying
ga ∈ SLð2;CÞ (a ¼ 1, 2, 3, 4, 5). Edges correspond to triangles
carrying spins jab. Circles as endpoints of edges carry boundary
states ξab and ξba. Arrows represent orientations a < b.
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ReðSÞ ¼ 0; ∂zabS ¼ 0; and ∂gaS ¼ 0; ð2:8Þ

where S½g; z� is given by Eq. (2.4). Results from literatures
[7,8,20–22] show that for boundary states whose data
jab; ξab correspond to the geometrical boundary of a
nondegenerate 4-simplex (and satisfy the orientation
matching condition), S has two critical points having the
geometrical interpretation as the nondegenerate geometri-
cal 4-simplex with opposite orientations. S evaluated at
critical points gives the Regge action of the 4-simplex with
opposite signs. In the next section, we review the boundary
data and the construction of critical points for the EPRL
amplitude with the coherent intertwiner boundary state.

III. BOUNDARY DATA AND CRITICAL POINT

A. Boundary data

The boundary state jψi ¼⊗5
a¼1 jiai for demonstrating

our algorithm is the same as [12]. jψi is labeled by ten spin
variables λjab and twenty ξab which relate to face 3-d
normals n⃗ab. As an example, we set the area of six faces of
the geometrical 4-simplex to be 2 and other areas to be 5.We
focus on this example in this section, a few other examples is
given in Appendix B. Although we use dimensionless
numbers to describe the areas, physical areas are obtained
by attaching proper units to those numbers. In our calcu-
lation, those areas are jab (spins are λjab). Furthermore, the
face normals, denoted as n⃗ab, are gained by the 4-simplex
geometry. For convenience, we denote the five vertices of
the 4-simplex as Pa and five tetrahedra as Ta, where
a ∈ f1; 2; 3; 4; 5g. We first write down the coordinates of
the vertices Pa in the Minkowski spacetime. Our starting
point is the tetrahedraT1, which is an equilateral tetrahedron
with all areas equaling to 5.We endow thevertices ofT1with
coordinates P1 ¼ ð0; 0; 0; 0Þ, P2 ¼ ð0; 0; 0;−2 ffiffiffi

5
p

=31=4Þ,
P3 ¼ ð0; 0;−31=4 ffiffiffi

5
p

;−31=4
ffiffiffi
5

p Þ and P4 ¼ð0;−2 ffiffiffiffiffi
10

p
=33=4;

−
ffiffiffi
5

p
=33=4;−

ffiffiffi
5

p
=31=4Þ respectively. It means that we locally

set up a frame ðt; x; y; zÞ so that T1 is embedded in the
subspace expanded by x, y, z axis. The 4-simplex can bewell
located in our frame if one can find a coordinate of the vertex
P5 ¼ ðt1; x1; y1; z1Þ such that the 4-d distances between P5

and Paða ≠ 5Þ are the same and areas of the triangles
connectingP5 to otherPa are all 2. By solving the system of
equations, one can find P5 is ð−3−1=410−1=2;−

ffiffiffiffiffiffiffiffi
5=2

p
=33=4;

−
ffiffiffi
5

p
=33=4;−

ffiffiffi
5

p
=31=4Þ. Then, from the coordinates of Pa,

we calculate the 4-d normals Na of each tetrahedra Ta
respectively. From thevertices, we compute the edge vectors
lIae of the tetrahedron a at edge e, with I ¼ 0, 1, 2, 3 a
Cartesian coordinate index. Then one can determine the
4-d normals, Na, from the triple product of wedges
with a common vertex determined by three edges labeled
by e ¼ 1, 2, 3 respectively

NaI ¼
ϵIJKLlJa1l

K
a2l

L
a3

kϵIJKLlJa1lKa2lLa3k
;

where the norms and scalar products are given by the
Minkowski metric η ¼ diagð−;þ;þ;þÞ, and the epsilon
symbol is of the convention ϵ0123 ¼ 1. Hence, 4-d normal
vectors are given by:

N1 ¼ ð−1; 0; 0; 0Þ; N2 ¼
�

5ffiffiffiffiffi
22

p ;

ffiffiffiffiffi
3

22

r
; 0; 0

�
;

N3 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;
2ffiffiffiffiffi
33

p ; 0

�
;

N4 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;−
1ffiffiffiffiffi
33

p ;
1ffiffiffiffiffi
11

p
�
;

N5 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;−
1ffiffiffiffiffi
33

p ;−
1ffiffiffiffiffi
11

p
�
: ð3:1Þ

The next step is to find the transformationwhich takes all 4-d
normal vectors to the time gauge T ¼ ð−1; 0; 0; 0Þ [12]:

ΛI
aJ ¼ ηIJþ

1

1−Na ·T
ðNI

aNaJþTITJþNI
aTJ

− ð1−2Na ·TÞTINaJÞ;
ΛI
aJN

J
a ¼TI det ΛI

aJ ¼ 1; a≠ 1; I;J¼ 0;1;2;3:

Then the 3-d face normals are

nIab ≔ −ΛI
aJ
NJ

b þ NJ
aðNa · NbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNa · NbÞ2 − 1
p : ð3:2Þ

The gauge-fixed tetrahedron, a ¼ 1, has Λ1 ¼ η and
N1 ¼ T. The 3-d normals resulting from Eq. (3.2) are
showing in Table I.
n⃗ab can be converted to the spinor jξabi (by fixing the

phase convention):

n⃗ab ¼ ðsinΘ cosΦ; sinΘ sinΦ; cosΘÞ → jξabi

¼
�
− sin

Θ
2
e−iΦ; cos

Φ
2

�
: ð3:3Þ

The boundary state jξabi is showing in Table II. Once
boundary data jab; ξab are fixed, critical points (g0a, z0ab) are
obtained by solving critical point equations (2.8).

B. Critical points

Critical points of the integral (2.2) are denoted by (g0a,
z0ab). From the critical point equations (2.8), ReðSÞ ¼ 0

leads to the equations [20]

jξabi¼
eiψab

kZabk
g†ajzabi; and jJξbai¼

eiψba

kZbak
g†ajzabi; ð3:4Þ
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where kZabk≡ jhZab; Zabij1=2, ψab and ψba are phases.
The two equations above can be combined to

ðg†aÞ−1jξabi ¼
kZbak
kZabk

eiðψab−ψbaÞðg†bÞ−1jJξbai: ð3:5Þ

The variation of the action with respect to a spinor
∂zabS ¼ 0 leads to the equation

gajξabi ¼
kZabk
kZbak

eiðψab−ψbaÞgbjJξbai: ð3:6Þ

The variation with respect to ga gives the closure conditionX
b

jabn⃗ab ¼ 0: ð3:7Þ

Solutions of above equations have been studied extensively
in the literature. Given the boundary data jab; ξab which
satisfies the orientation matching condition, then the
above equations have two solutions corresponding to the
4-simplex geometry with opposite orientations [7]. These
solutions are denoted by ðg0ð�Þ; z0ð�ÞÞ. g0ð�Þ relates to the
Lorentz transformation acting on each tetrahedron Ta and
gluing them together to form one 4-simplex. They can be
expressed explicitly [12] by g01 ¼ 1,

g0ð�Þ
a ¼ exp

�
ð�θL1a þ iπÞn⃗1a ·

σ⃗

2

�
; a ≠ 1; ð3:8Þ

where σ⃗ are Pauli matrices. θL1a is the 4-d dihedral angle
which is the boost angle between two 4-d normals of
tetrahedra, defined by:

N1 · Na ¼ cosh θL1a; a ≠ 1; ð3:9Þ

whereN1 andNa are given by (3.1). From Eq. (3.8), we can

see that g0ð�Þ
a are combinations of boosts given by�θL1a and

an additional rotation π in the same direction. Resulting
from this rotation, 3-d normals in the first tetrahedron are
opposite to the corresponding ones in the adjacent tetra-

hedra. The numerical results for critical point g0ð�Þ
a are

shown in Table III.

zab can be fixed by g0ð�Þ
a and jξabi, up to a complex

scaling, by the first equation in Eqs. (3.4)

jz0ð�Þ
ab i ∝C ðg0ð�Þ†

a Þ−1jξabi: ð3:10Þ

Scaling of zab is a gauge transformation of S. We fix the

scaling by normalizing jz0ð�Þ
ab i and making the following

parametrization

jz0ð�Þ
ab i ¼

0
@− sin

θ0ð�Þ
ab
2

e−iϕ
0ð�Þ
ab

cos
θ0ð�Þ
ab
2

1
A; ð3:11Þ

here, θ0ð�Þ
ab and ϕ0ð�Þ

ab are real.

TABLE II. Each cell of the table is boundary state jξabi for the face shared by the line number tetrahedra and the column number
tetrahedra.

b

jξabi
a 1 2 3 4 5

1 � � � (0.71,0.71) (0.71;−0.24þ 0.67 i) (0.95;−0.17 − 0.25 i) (0.30;−0.55 − 0.78 i)
2 ð0.71;−0.71Þ � � � (0.71; 0.59þ 0.39 i) (0.86, 0.48 − 0.16 i) (0.51, 0.82 − 0.27 i)
3 (0.71, 0.24—0.67 i) (0.71, 0.17þ 0.69 i) � � � (0.86, −0.31þ 0.40 i) (0.51, −0.53þ 0.68 i)
4 (0.30, 0.55þ 0.78 i) (0.96, 0.13 − 0.25 i) (0.96, −0.28þ 0.035 i) � � � (0.83, −0.33 − 0.46 i)
5 (0.95, 0.17þ 0.25 i) (0.28, 0.43 − 0.86 i) (0.28, −0.95þ 0.12 i) (0.57, −0.48 − 0.67 i) � � �

TABLE I. Each cell of the table is the 3-d normal vector for the face shared by the line number tetrahedra and the column
number tetrahedra.

b

Normal n⃗ab

a 1 2 3 4 5

1 � � � (1,0,0) ð−0.33; 0.94; 0Þ ð−0.33;−0.47; 0.82Þ ð−0.33;−0.47;−0.82Þ
2 ð−1; 0; 0Þ � � � (0.83, 0.55, 0) ð0.83;−0.28; 0.48Þ ð0.83;−0.28;−0.48Þ
3 ð0.33;−0.94; 0Þ (0.24,0.97,0) � � � ð−0.54; 0.69; 0.48Þ ð−0.54; 0.69;−0.48Þ
4 ð0.33; 0.47;−0.82Þ ð0.24;−0.48; 0.84Þ ð−0.54; 0.068; 0.84Þ � � � ð−0.54;−0.76; 0.36Þ
5 (0.33,0.47,0.82) ð0.24;−0.48;−0.84Þ ð−0.54; 0.068;−0.84Þ ð−0.54;−0.76;−0.36Þ � � �
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The numerical results for ðθ0ð�Þ
ab ;ϕ0ð�Þ

ab Þ are shown in

Table IV. All critical point data of z0ð�Þ
ab and g0ð�Þ

a can be
found in Mathematica notebooks [15].
In this work, we choose a specific boundary geometry

jab ¼ ð5; 2Þλ to be consistent with the results of [12]. To
improve the strength of our claims, we also perform the
analysis with other boundary geometries jab ¼ ð8; 3Þλ
and jab ¼ ð11; 4Þλ in the same way. The boundary
data and critical points for boundary geometries jab ¼
ð8; 3Þλ and jab ¼ ð11; 4Þλ can be found in Appendix B.
In the following context, if we do not specify the boundary
geometry particularly, the boundary geometry we are refer-
ring to is jab ¼ ð5; 2Þλ.

IV. NEXT-TO-LEADING ORDER CORRECTION IN
LARGE-j 4-SIMPLEX AMPLITUDE WITH

COHERENT-INTERTWINER BOUNDARY STATE

A. Explicit expression of 4-simplex amplitude

Given one of the critical points, we make the following
parametrization of ga and zab of the neighborhood of the

critical point in the integration domain of Eq. (2.2): The
group variable ga ∈ SLð2;CÞ is parametrized by

gaðxa1; ya1; xa2; ya2; xa3; ya3Þ

¼ g0ð�Þ
a

0
B@

1þ xa1þiya1ffiffi
2

p xa2þiya2ffiffi
2

p

xa3þiya3ffiffi
2

p 1þxa2þiya2ffiffi
2

p xa3þiya3ffiffi
2

p

1þxa1þiya1ffiffi
2

p

1
CA; ð4:1Þ

where xai and yaiða ≠ 1; i ¼ 1; 2; 3Þ are real. The first
tetrahedron is gauge-fixed, g1 ¼ 1. There are 24 real
variables xai and yai (a ¼ 2, 3, 4, 5) because of group
variables ga. The spinor zab ∈ CP1 is parametrized by

zabðΘab;ΦabÞ ¼

0
BB@

− sin
�
θ0ð�Þ
ab þΘab

2

	
e−iðϕ

0ð�Þ
ab þΦabÞ

cos
�
θ0ð�Þ
ab þΘab

2

	
1
CCA: ð4:2Þ

Each triangle ab has two real variables Θab and Φab, so we
need in total 20 real variables to describe zab. jZabi ¼ g†azab
follows from (4.1) and (4.2). The arguments of the action in
Eq. (2.4) are now xai, yai, Θab and Φab.
For the group integral, the SLð2;CÞHaar measure dg can

be written explicitly by

Y5
a¼2

dga ¼
Y5
a¼2

1

27π4
dxa1dya1dxa2dya2dxa3dya3

j1þ xa1þiya1ffiffi
2

p j2 : ð4:3Þ

The details of this derivation are in Appendix A. We define
the function uðxai; yai;Θab;ΦabÞ by

uðxai; yai;Θab;ΦabÞ
Y
a<b

Y
i¼1;2;3

dxaidyaidΦabdΘab

¼
Y
a<b

Ωabdga; ð4:4Þ

where Ωab is the measure on CP1 in (2.3):

Ωab ¼
sin ðθ0ð�Þ

ab þ ΘabÞ
4hZab; ZabihZba; Zbai

dΘabdΦab: ð4:5Þ

There are 44 arguments in uðxai; yai;Θab;ΦabÞ. The
amplitude (2.2) gives

TABLE III. Each cell of the table is the critical point of ath tetrahedron group element g0ð�Þ
a .

a 1 2 3 4 5

g0ðþÞ
a

�
1 0

0 1

� �
0.18i 0.18i
1.01i 0.18i

� �
0.18i 0.96−0.34i

−0.96−0.34i 0.18i

� �
1.01i 0.48−0.34i

−0.48−0.34i −0.65i

� �
−0.65i −0.48−0.34i

0.48−0.34i 1.01i

�

g0ð−Þa

�
1 0

0 1

� �
−0.18i −1.01i
1.01i −0.18i

� �
−0.18i 0.96−0.34i

−0.96−0.34i −0.18i

� �
0.65i −0.48−0.34i

0.48−0.34i −1.01i

� �
−1.01i −0.48−0.34i

0.48−0.34i 0.65i

�

TABLE IV. Each cell of the table is the critical point para-
metrized by ðθ0ð�Þ

ab ;ϕ0ð�Þ
ab Þ for the face shared by the line number

tetrahedron a and the column number tetrahedron b, a < b. Two
tables list the results for two distinct critical points.

b

ðθ0ðþÞ
ab ;ϕ0ðþÞ

ab Þ
a 2 3 4 5

1 ð−1.57; 0Þ ð−1.57; 1.91Þ ð−2.53;−2.19Þ ð−0.62;−2.19Þ
2 � � � ð−1.57;−0.82Þ ð−0.89; 0.49Þ ð−2.25; 0.49Þ
3 � � � � � � ð−0.89; 1.42Þ ð−2.25; 1.42Þ
4 � � � � � � � � � ð−2.94; 0.96Þ

b

ðθ0ð−Þab ;ϕ0ð−Þ
ab Þ

a 2 3 4 5

1 ð−1.57; 0Þ ð−1.57; 1.91Þ ð−2.53;−2.19Þ ð−0.62;−2.19Þ
2 � � � ð−1.57;−0.41Þ ð−1; 21; 0.22Þ ð−1.93; 0.22Þ
3 ð−1.21; 1.69Þ ð−1.93; 1.69Þ
4 � � � � � � � � � ð−2.94;−2.19Þ
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Y
a<b

dλjab
π

Z Y44
i¼1

dxiuðx⃗ÞeλSðx⃗Þ; ð4:6Þ

where x⃗ ¼ ðx1; x2;…; x44Þ≡ ðxai; yai;Θab;ΦabÞ contains
44 components. Equation. (4.6) expresses the EPRL
4-simplex amplitude in the form as Eq. (2.7). Besides,
the critical point for Sðx⃗Þ is at x⃗0 ¼ ð0; 0;…; 0Þ. Next, we
will apply Theorem 2.1 to expand the integral (4.6) and
numerically compute the leading-order terms and next-to-
leading order corrections.
We emphasize that the parametrization x⃗ is within the

neighborhood of one critical point in the integration
domain, and (4.6) is Av restricted in the neighborhood.
Av has 2 critical points which leads to 2 different notions of
x⃗. We do not put the label (�) to x⃗ in order to make
notations less cumbersome.

B. Asymptotic expansion and next-to-leading
order correction

Following the convention in Theorem 2.1, we rewrite the
exponent in the integrand

Z Y44
i¼1

dxiuðx⃗ÞeλSðx⃗Þ ¼
Z Y44

i¼1

dxiuðx⃗ÞeiλS̃ðx⃗Þ:

Here, S̃ðx⃗Þ ¼ −iSðx⃗Þ, Hessian matrix Hijðx⃗Þ ¼ ∂i∂jS̃ðx⃗Þ.
The leading-order terms and the next-to-leading-order

corrections in Eq. (2.7) correspond to s ¼ 0 and s ¼ 1.
In (2.7), the expression of Lsuðx0Þ sums a finite number of
terms for each s.
Our scheme of computation is as follows: at s ¼ 0, the

corresponding term for Ls¼0uðx⃗Þ is

I0 ¼ uð0Þ: ð4:7Þ

At s ¼ 1, the possible ðm; lÞ are (0,1),(1,2),(2,3) to
satisfy 2l ≥ 3m. The corresponding terms are of the types:
(1) ðm; lÞ ¼ ð0; 1Þ:

I1 ¼ −
1

2i

�X44
i;j¼1

H−1
ij ð0Þ

∂2uð0Þ
∂xi∂xj

�
: ð4:8Þ

where we have expressed x⃗ ¼ ðx1; x2;…; x44Þ. We
compute the second-order derivative of the function
uðx⃗Þ with respect to xi and xj and evaluate the result
at x⃗ ¼ 0. We save the resulting 44 × 44 matrix ∂2uð0Þ

∂xi∂xj
and contract it with the Hessian matrix.

(2) ðm; lÞ ¼ ð1; 2Þ: We define

gx0ðx⃗Þ ¼ S̃ðx⃗Þ − S̃ð0Þ − 1

2

X44
i;j¼1

Hijð0Þxixj; ð4:9Þ

I2¼
1

8i

�X44
i;j¼1

H−1
ij ð0Þ

∂2

∂xi∂xj
��X44

k;l¼1

H−1
kl ð0Þ

∂2

∂xk∂xl
�
ðgx0uÞð0Þ

¼ 1

8i

� X44
i;j;k;l¼1

H−1
ij H

−1
kl

∂4

∂xi∂xj∂xk∂xl
�
ðgx0uÞð0Þ

¼ 1

8i

X44
i;j;k;l¼1

H−1
ij H

−1
kl

� ∂3gx0ð0Þ
∂xi∂xj∂xk

∂uð0Þ
∂xl þ ∂3gx0ð0Þ

∂xi∂xj∂xl
∂uð0Þ
∂xk þ ∂3gx0ð0Þ

∂xj∂xk∂xl
∂uð0Þ
∂xi þ ∂3gx0ð0Þ

∂xi∂xk∂xl
∂uð0Þ
∂xj þ ∂4gx0ð0Þ

∂xi∂xj∂xk∂xl uð0Þ
�
:

ð4:10Þ

To compute less expensively, we use following
techniques in our code [15]. First, for ∂3gx0ð0Þ and∂4gx0ð0Þ, there are 443 possible third order partial
derivatives and 444 fourth order partial derivatives.
However, for function gx0ðx⃗Þ, the mixed partial
derivatives are equal, which means that the order
in which we differentiate will not matter. To save
space, we save ∂3gx0ð0Þ as a 3-d upper “triangle”
array Gð3Þ and ∂4gx0ð0Þ as a 4-d upper “triangle”
array Gð4Þ. Hence, the size of the array is deduced
from 44d to ð44þd−1

d Þ. Second, because of the sym-
metric property of the Hessian matrix, we can
simplify the above summation from

P
44
i;j;k;l¼1 Fijkl

to
P

44
i¼1

P
i
j¼1

Pj
k¼1

P
k
l¼1 F̃ijkl, here we use Fijkl to

denote the factors’ product in Eq. (4.10). To be clear,
we use an example i ¼ 9, j ¼ 8, k ¼ 8, l ¼ 1, i.e.,
(9,8,8,1), to explain the technique. We sum all
possible H−1

ij H
−1
kl first, it is 4H−1

19H
−1
88 þ 8H−1

81H
−1
89 .

Here, we use the symmetric property of H−1 and the
counting principle to get each terms and the corre-
sponding coefficient. In this case,

F̃9881 ¼ ð4H−1
19H

−1
88 þ 8H−1

81H
−1
89 Þ

×

�
Gð3Þ

988

∂uð0Þ
∂x1 þ 2 ×Gð3Þ

981

∂uð0Þ
∂x8

þGð3Þ
881

∂uð0Þ
∂x9 þGð4Þ

9881uð0Þ
�
: ð4:11Þ
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One can find the details in our Mathematica notebooks [15].
(3) ðm; lÞ ¼ ð2; 3Þ:

I3 ¼ −
1

96i

� X44
i;j;k;l;m;n¼1

H−1
ij H

−1
kl H

−1
mn

∂6

∂xi∂xj∂xk∂xl∂xm∂xn
�
ðg2x0uÞð0Þ

¼ −
1

48i

X44
i;j;k;l;m;n¼1

H−1
ij H

−1
kl H

−1
mn

� ∂3gx0ð0Þ
∂xj∂xk∂xl

∂3gx0ð0Þ
∂xi∂xm∂xn þ

∂3gx0ð0Þ
∂xj∂xk∂xm

∂3gx0ð0Þ
∂xi∂xl∂xn þ

∂3gx0ð0Þ
∂xj∂xk∂xn

∂3gx0ð0Þ
∂xi∂xl∂xm

þ ∂3gx0ð0Þ
∂xj∂xl∂xm

∂3gx0ð0Þ
∂xi∂xk∂xn þ

∂3gx0ð0Þ
∂xj∂xl∂xn

∂3gx0ð0Þ
∂xi∂xk∂xm þ ∂3gx0ð0Þ

∂xj∂xm∂xn
∂3gx0ð0Þ
∂xi∂xk∂xl þ

∂3gx0ð0Þ
∂xk∂xl∂xm

∂3gx0ð0Þ
∂xi∂xj∂xn

þ ∂3gx0ð0Þ
∂xk∂xl∂xn

∂3gx0ð0Þ
∂xi∂xj∂xm þ ∂3gx0ð0Þ

∂xk∂xm∂xn
∂3gx0ð0Þ
∂xi∂xj∂xl þ

∂3gx0ð0Þ
∂xl∂xm∂xn

∂3gx0ð0Þ
∂xi∂xj∂xk

�
uðx0Þ: ð4:12Þ

We have deduced sixth-order derivative to third-order derivatives with the condition gx0ð0Þ ¼ 0; g0x0ð0Þ ¼ 0 and
g00x0ð0Þ ¼ 0. Factors in each term in the square-bracket above are elements which we have stored in tableGð3Þ. We use
similar techniques in (2) to simplify the summation above to make the computation less expensive.

C. Numerical results

The asymptotic results for the integral (4.6) are

Av ¼ AðþÞ
v þ Að−Þ

v ;

Að�Þ
v ¼ Að�Þ0

v þ Að�Þ1
v þO

�
1

λ2

�
;

Að�Þ0
v ¼ 24

Y
a<b

dλjab
π

eiλS̃ðx⃗
�
0
Þ
�
det

�
λS00ðx⃗�

0 Þ
2πi

��−1
2

uðx⃗�
0 Þ;

Að�Þ1
v ¼ 24

Y
a<b

dλjab
π

eiλS̃ðx⃗�0 Þ
�
det

�
λS00ðx⃗�

0 Þ
2πi

��−1
2 1

λ
ðI1 þ I2 þ I3Þðx⃗�

0 Þ: ð4:13Þ

where AðþÞ
v and Að−Þ

v are asymptotic expansions of Av at two distinct critical points x⃗�
0 corresponding to the geometrical

4-simplex with opposite orientations. Að�Þ0
v stands for the leading-order term of the asymptotics and Að�Þ1

v is the next-to-
leading order correction. The additional factor 24 comes from the double multiplicity of the solutions ga ¼ �g0 for a ≠ 1.
We evaluate the leading-order term and the next-to-leading-order corrections at γ ¼ 0.1 as an example:

AðþÞ
v ¼

�
1þ 1

4λ

�
6
�
1þ 1

10λ

�
4 1.77 × 10−13 þ 1.87 × 10−14i

λ12
e4.60λi

�
1 −

3.082þ 0.601i
λ

�
;

Að−Þ
v ¼

�
1þ 1

4λ

�
6
�
1þ 1

10λ

�
4 1.77 × 10−13 − 1.87 × 10−14i

λ12
e4.58λi

�
1 −

3.082 − 0.601i
λ

�
; ð4:14Þ

where 4.60 and 4.58 in exponents are values of S̃ðx⃗�
0 Þ. The factor ð1þ 1

4λÞ6ð1þ 1
10λÞ4 ¼

Q
a<b dλjab=ð2λjabÞ and

24
Y
a<b

2λjab
π

�
det

�
λS00ðx⃗�

0 Þ
2πi

��−1
2

uðx⃗�
0 Þ ¼

1.77 × 10−13 � 1.87 × 10−14i
λ12

: ð4:15Þ

We obtain the asymptotics of the EPRL 4-simplex amplitude Av with the next-to-leading-order corrections:

Av ¼
�
1þ 1

4λ

�
6
�
1þ 1

10λ

�
4 3.55 × 10−13

λ12
e4.59λi

�
cosð0.106þ 0.01λÞ þ 3.14

λ
sinð−1.27þ 0.01λÞ þO

�
1

λ2

��
: ð4:16Þ

It has been arranged in terms of cosines and sines, similar to the case of 6j symbol [14]. The asymptotic amplitudes Av with
the other boundary geometries can be found in Eqs. (B1) and (B2). The Regge action SRegge of the geometrical 4-simplex is
inside the cosine and sine
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SRegge ¼ λ
X
a<b

γjabθLab ¼ 0.01λ: ð4:17Þ

Next, we combine cosines and sines in Eq. (4.16) to be in a
nicer form. As λ → ∞, we can expand log ð1 − 3.082�0.601i

λ Þ
to 1st order in 1=λ

1−
3.082�0.601i

λ
≈exp

�
−
3.082
λ

�
exp

�
�0.601i

λ

�
:

ð4:18Þ
Hence, (4.16) can be rewritten as

Av ≃
1

λ12
ðeSðþÞ

eff þ eS
ð−Þ
eff Þ: ð4:19Þ

where

Sð�Þ
eff ¼ �i

�
0.01λþ 0.106 −

0.601
λ

�
þ 4.59λi

− 28.6667 −
1.182
λ

ð4:20Þ

can be viewed as a “quantum effective action” providing
quantum correction to the Regge action.2 The term 4.59λi is
from the overall phase.
Both the leading-order term and the next-to-leading-order

corrections dependon γ,wewrite the asymptotic amplitude as

Að�Þ
v ≈ Cð�ÞðγÞ

�
1þ κð�ÞðγÞ

λ

�
; ð4:23Þ

which reduces to (4.14) when γ ¼ 0.1. Here, Cð�ÞðγÞ
coincides with the leading-order asymptotics. κð�ÞðγÞ is the

next-to-leading order coefficient.Cð�ÞðγÞ; κð�Þ depending on
the value of γ. The ratio of the next-to-leading order
corrections to the leading-order term is

κð�ÞðγÞ
λ

¼ 1

λ

Ið�ÞðγÞ
uðx⃗�

0 Þ
; ð4:24Þ

here, uðx⃗þ
0 Þ ¼ 0.0073

248π16
anduðx⃗−

0 Þ ¼ 0.28
248π16

are independent on γ,

Ið�ÞðγÞ ¼ ðI1 þ I2 þ I3Þðx⃗�
0 Þ depends on γ, and

κðþÞðγÞ ¼ κð−ÞðγÞ: ð4:25Þ

Weuse jκðγÞj to denote jκðþÞðγÞj and jκð−ÞðγÞj.We showsome
results of jIð�ÞðγÞj and jκðγÞj at different γ in TableV.We plot
jκðγÞj and κðþÞðγÞ versus γ in Fig. 2.
Table V and Figure 2 demonstrate how the next-to-

leading order corrections change with different values of γ.
For the specific boundary geometry jab ¼ ð5; 2Þλ, jκðγÞj
increases first and then decrease with increasing γ, and
the maximum occurs at about γ ¼ 2. The red points on
Figs. 2(b) and 2(c) show that κð�ÞðγÞ stabilize to real
constants 0.76 as γ → ∞. We also perform the analysis to
other boundary geometries jab ¼ ð11; 4Þλ and jab ¼
ð8; 3Þλ (black and blue points in Fig. 2). In the case of
jab ¼ ð8; 3Þλ, κð�ÞðγÞ stabilizes to real constants 0.61 as
γ → ∞. For jab ¼ ð11; 4Þλ, κð�ÞðγÞ maintain at real con-
stants 0.54 as γ → ∞. We can conclude that κð�ÞðγÞ will
stabilize to a real constant as γ → ∞.
The semiclassical approximation of Av with the leading

order as in [7] is valid when λ is large enough so that κ
ð�ÞðγÞ
λ

can be negligible comparing to 1. For example, at λ ¼ 30
and γ ¼ 0.1, jκðγÞj=λ ≈ 0.10 is about 10% of the leading
order. In our opinion, a much safer regime for validating the
semiclassical approximation needs an even larger λ, e.g.,
λ ¼ 300 so that jκðγÞj=λ ≈ 0.01.

V. NEXT-TO-LEADING ORDER CORRECTION
IN LARGE-j 4-SIMPLEX AMPLITUDE
WITH COHERENT SPIN-NETWORK

BOUNDARY STATE

A. Coherent spin-network state

Above discussions take the coherent intertwiners as the
boundary state for the 4-simplex amplitude. In this section,
we use the coherent spin-networks as the boundary state.
The coherent spin-networks relate to coherent intertwiners
by a superposition

jΨ0i ¼
X

jab∈Zþ=2∪f0g
ψ j0;ϕ0

ðj⃗Þ ⊗5
a¼1 jiaðj⃗; ξ⃗Þi; ð5:1Þ

where ψ j0;ϕ0
ðj⃗Þ is given by,

2In the functional integration of QFT, e−iE½J� ¼R
Dϕe

i
ℏ

R
d4xðL½ϕ�þJϕÞ where J is the source. When we expand

the path integral at a classical solution (a critical point) ϕcl, we
obtain (see P.372 in [23])

−iE½J� ¼ i
ℏ

Z
d4xðL½ϕcl� þ JϕclÞ−

1

2
log det

�
−

δ2L
δϕδϕ

�
þOðℏÞ

ð4:21Þ
where OðℏÞ corresponds to re-exponentiating 1þOð1=λÞ ∼
eOð1=λÞ from Theorem 2.1. In our case, Oð1=λÞ is the analog
of OðℏÞ. The quantum effective action Γ½ϕcl� is defined by the
Legendre transformation Γ½ϕcl�≡ −E½J� − R

d4xJϕcl. The quan-
tum effective action evaluated at ϕcl is given by

Γ½ϕcl� ¼
i
ℏ

Z
d4xL½ϕcl� −

1

2
log det

�
−

δ2L
δϕδϕ

�
þOðℏÞ ð4:22Þ

where OðℏÞ is the same as the one in E½J� in the perturbative
expansion. Our Sð�Þ

eff is an analog of Γwhen we view the spinfoam
amplitude as an analog of the functional integration. Sð�Þ

eff gives
1=λ correction to the leading Regge action in the same way as Γ
gives OðℏÞ correction to the classical action

R
d4xL. Here we

have both Sð�Þ
eff since there are 2 critical points.
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ψ j0;ϕ0
ðj⃗Þ¼ exp

�
−i
X
ab

γϕab
0 ðjab− ðj0ÞabÞ

�

×exp

�
−
1

2

X
ab;cd

αðabÞðcdÞ
jab− ðj0Þabffiffiffiffiffiffiffiffiffiffiffiffiðj0Þab
p jcd− ðj0Þcdffiffiffiffiffiffiffiffiffiffiffiffiðj0Þcd

p
�
;

ð5:2Þ

which is a Gaussian times a phase. ðj0Þab ∈ Zþ=2. ϕab
0 is

the discrete extrinsic curvature relating to the dihedral angle
of the triangle ab in a 4-simplex geometry. Here we first

choose ðj0Þab ¼ ð5; 2Þλ and ξab are the same boundary data
as the above discussions. We set values of ϕab

0 by

γϕab
0 ¼ ∂S̃ðj⃗; x⃗þ

0 Þ
∂jab : ð5:3Þ

αðabÞðcdÞ is a 10 × 10 matrix given by

αðabÞðcdÞ ¼ α1δ
ðabÞðcdÞ þ α2mðabÞðcdÞ þ α3nðabÞðcdÞ; ð5:4Þ

FIG. 2. (a) A log-log plot of the specified list of γ and jκðγÞj values. (b) List log-log plot of γ and the absolute value of real part of
κðþÞðγÞ. (c) List log-log plot of γ and the absolute value of the imaginary part of κðþÞðγÞ. We use different colors to denote various
boundary geometries jab ¼ ð5; 2Þ (red solid points), jab ¼ ð8; 3Þ (blue solid points), jab ¼ ð11; 4Þ (black solid points).

TABLE V. jIð�ÞðγÞj and jκðγÞj with respect to γ.

γ 0.1 0.5 1 2 3 4 5 8

248π16jIðþÞðγÞj 0.023 0.033 0.044 0.047 0.042 0.037 0.033 0.025

248π16jIð−ÞðγÞj 0.87 1.28 1.70 1.80 1.60 1.41 1.26 0.97
jκðγÞj 3.14 4.6 6.10 6.46 5.75 5.07 4.53 3.46
γ 10 20 50 100 200 500 800 1000
248π16jIðþÞðγÞj 0.022 0.013 0.007 0.006 0.0056 0.0055 0.0055 0.0055

248π16jIð−ÞðγÞj 0.83 0.50 0.28 0.23 0.22 0.21 0.21 0.21
jκðγÞj 2.99 1.77 1.01 0.83 0.78 0.77 0.76 0.76
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δðabÞðcdÞ ¼ 1 if ðabÞ ¼ ðcdÞ, mðabÞðcdÞ ¼ 1 if just two
indexes are the same, and nðabÞðcdÞ ¼ 1 if all four indexes
are different, and in all other cases these quantities vanish
[24]. The coherent spin-networks depend on 3 free param-
eters α1, α2, α3.

3 We choose α1 ¼ 2, α2 ¼ 3, α3 ¼ 4 in our
computation. The spinfoam amplitude with coherent spin-
networks as the boundary state depends on the choice of
α’s. Our result depends on our choice of values of α’s.
The EPRL 4-simplex amplitude with coherent spin-

network boundary sums Av over jab weighted by ψ j0;ϕ0
ðj⃗Þ.

The 4-simplex amplitude for a coherent spin network state

A0
v ¼

X
jab∈Zþ=2∪f0g

ψ j0;ϕ0
ðj⃗ÞAvðjab;iaÞ

¼
X

jab∈Zþ=2∪f0g

Z Y5
a¼2

dga

Z
ðCP1Þ10

eStot
Y
a<b

djab
π

Ωab; ð5:5Þ

where the “total action” Stot is given by

Stotðjab; g; zÞ ¼ −
1

2

X
ab;cd

αðabÞðcdÞ
jab − ðj0Þabffiffiffiffiffiffiffiffiffiffiffiffiðj0Þab
p jcd − ðj0Þcdffiffiffiffiffiffiffiffiffiffiffiffiðj0Þcd

p
− i

X
ab

γϕab
0 ðjab − ðj0ÞabÞ þ Sðj; g; zÞ;

ð5:6Þ

where S is the same action as (2.4).
We use Poisson resummation formula

X
j∈Zþ=2∪f0g

fðjÞ ¼ 1

2

X
j∈Z=2

fðjjjÞ þ 1

2
fð0Þ ð5:7Þ

¼ 2
X
k∈Z

Z
∞

0

djfðjÞe4πikj þ 1

2
fð0Þ ð5:8Þ

where fðjÞ corresponds to the summand in Eq. (5.5). When
ðj0Þab are large, the Gaussian in ψ j0;ϕ0

is peaked at large
spins jab ¼ ðj0Þab. jψ j0;ϕ0

j is exponentially small when jab
is far from the large ðj0Þab, so fð0Þ is exponentially small
and negligible. Similarly, the integral

R
dj is dominated by

the large-j domain with jab ∼ ðj0Þab, while the integral
outside this domain is exponentially suppressed. Motivated
by this, we scale jab and ðj0Þab by jab → λjab and
ðj0Þab → λðj0Þab. Therefore, “total action” is scaled by
Stot → λStot, and

A0
v¼ð2λÞ10

X
kab∈Z

ZY
a<b

djab
dλjab
π

Z Y5
a¼2

dga

Z
ðCP1Þ10

eλS
ðkÞ
tot

Y
a<b

Ωab

ð5:9Þ

where

SðkÞtot ¼ Stot þ 4πi
X
a<b

jabkab ð5:10Þ

Integrals in Eq. (5.9) can be analyzed with stationary phase
approximation as in Theorem 2.1. Critical point equations

of each SðkÞtot are

ReðStotÞ¼ 0; ∂jabStot¼ 4πikab; ∂gaS¼ ∂zabS¼ 0:

ð5:11Þ
It is not hard to see these equations imply critical equations
of S in Eqs. (2.8) and jab ¼ ðj0Þab. Among two solutions

x⃗ð�Þ
0 of Eq. (2.8), only x⃗ðþÞ

0 satisfy Eq. (5.11) when all
kab ¼ 0. Any kab ≠ 0 leads to no solution for Eqs. (5.3).
Therefore all integrals except for all kab ¼ 0 in (5.9) are
suppressed as Oðλ−NÞ for all positive integer N.
We focus on all kab ¼ 0 and neglect exponentially small

errors

A0
v ¼ ð2λÞ10

Z Y
a<b

djab

�
dλjab
π

�Z Y5
a¼2

dga

×
Z
ðCP1Þ10

eλStot
Y
a<b

Ωab

¼ ð2λÞ10
Z Y54

i¼1

dηiu0ðηÞeiλS̃totðηÞ;

η ¼ ðfjab − ðj0Þabga<b; x⃗Þ ð5:12Þ
where S̃tot ¼ −iStot and u0ðηÞ ¼ uðx⃗ÞQa<bðdλjab=πÞ.
The asymptotic expansion (2.7) can be applied to
compute (5.12). A0

v has only one critical point given by
jab ¼ ðj0Þab and x⃗ ¼ x⃗þ

0 , because the boundary coherent
spin-network specifies both boundary 3-geometry and
extrinsic curvature [27].

B. Numerical results

The asymptotic expansion of A0
v with the next-to-leading

order correction can be computed with the same scheme as
Sec. IV B. Numerical results are presented below.
As an example, at γ ¼ 0.1,

A0
v ¼ C0ðγÞ

�
1þ κ0ðγÞ

λ
þO

�
1

λ2

��
ð5:13Þ

¼ 210
�
1þ 1

4λ

�
6
�
1þ 1

10λ

�
4 1.85×10−9þ9.31×10−10i

λ7

×e4.60λi
�
1þ26.58þ30.78i

λ
þO

�
1

λ2

��
; ð5:14Þ

where C0ðγÞ stands for the leading-order terms. κ0ðγÞ is the
next-to-leading order coefficient. The asymptotic ampli-
tudes A0

v with the other boundary geometries can be found
3[25] shows that coherent spin-networks with α2 ¼ α3 ¼ 0

relates to Thiemann’s coherent state [26].
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in Eq. (B3) and Eq. (B4). The ratio of the next-to-leading
order corrections to the leading-order terms is

κ0ðγÞ
λ

¼ 1

λ

I0ðγÞ
u0ð0Þ ; ð5:15Þ

here, I0 ¼ I01 þ I02 þ I03 is obtained by applying the com-
putation in Eqs. (4.8), (4.10) and (4.12) to u0 and S̃tot.
u0ð0Þ ¼ 3.18

248π26
in the leading-order term is independent of γ.

From the result of Eq. (5.14), the next-to-leading order
coefficient gives jκ0ð0.1Þj ≃ 40.67 at γ ¼ 0.1. When
λ ¼ 30, jκ0ð0.1Þ=λj ≃ 1.36 is even larger than the lead-
ing-order term. Clearly, the expansion in this case is invalid

at λ ¼ 30. The semiclassical approximation of A0
v (approxi-

mation by the leading order) requires a much larger λ. For
example, λ ≥ 300, then jκ0ð0.1Þ=λj is bounded by about
13% of the leading order. We suggest λ ≥ 3000 to be a
much better regime for A0

v at γ ¼ 0.1 where the next-to-
leading order term is about 1% of the leading order.
This increase is not universal but only happens in cer-

tain examples. There are other examples (with different
boundary geometries) giving jκ0ð0.1Þj ∼Oð1Þ and not
requiring a large increase of λ. For examples, jκ0ð0.1Þj ≃
0.50 when jab ¼ ð11; 4Þλ, and jκ0ð0.1Þj ≃ 2.23 when
jab ¼ ð8; 3Þλ, see Figs. 5 and 4. It illustrates that
jκ0ð0.1Þj damps off significantly as jab=λ goes from (5,2)

TABLE VI. jI0ðγÞj and jκ0ðγÞj at different γ.
γ 0.1 0.5 1 2 3 4 5 8

248π26jI0ðγÞj 129.13 23.86 7.45 1.75 50.96 6.17 2.91 2.77
jκ0ðγÞj 40.67 7.51 2.34 0.55 16.05 1.94 0.92 0.87
γ 10 20 50 100 200 500 800 1000
248π26jI0ðγÞj 2.77 2.64 2.46 2.34 2.32 2.32 2.32 2.32
jκ0ðγÞj 0.87 0.83 0.77 0.75 0.74 0.73 0.73 0.73

FIG. 3. The numerical results with boundary geometry jab ¼ ð5; 2Þλ. (a) the log-log plot of jκ0ðγÞj versus γ. (b) the plot of jκ0ðγÞj
with relatively small γ. Panel (b) is a zoom of panel (a) for γ ∈ ½0.1; 5�. (c) the log-log plot of the absolute value of the real part of κ0ðγÞ.
(d) the log-log plot of absolute value of the imaginary part of κ0ðγÞ.
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FIG. 5. The numerical results with boundary geometry jab ¼ ð11; 4Þλ. (a) the log-log plot of jκ0ðγÞj versus γ. (b) the log-log plot of the
absolute value of the real part of κ0ðγÞ. (c) the log-log plot of absolute value of the imaginary part of κ0ðγÞ.

FIG. 4. The numerical results with boundary geometry jab ¼ ð8; 3Þλ. (a) the log-log plot of jκ0ðγÞj versus γ. (b) the log-log plot of the
absolute value of the real part of κ0ðγÞ. (c) the log-log plot of absolute value of the imaginary part of κ0ðγÞ.
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to (11,4). Our numerical studies demonstrate these results,
although we don’t have a mathematical argument for the
increase/nonincrease of λ due to the complication of the
sum at the next-to-leading order corrections.
Moreover, we study numerically the dependence of κ0 on

γ. We list some results of jI0ðγÞj and jκ0ðγÞj at different
values of γ in Table VI for ðj0Þab ¼ ð5; 2Þλ. The plot of
jκ0ðγÞj versus γ is given by Figs. 3(a), 4(a) and 5(a).
In the case of boundary geometry ðj0Þab ¼ ð5; 2Þλ,

Figs. 3(c) and 3(d) indicate that κ0ðγÞ stabilizes to a real
constant 0.73 asymptotically as γ → ∞. For ðj0Þab ¼
ð11; 4Þλ and ðj0Þab ¼ ð8; 3Þλ, κ0ðγÞ maintain at real
constants 0.58 and 0.52 respectively as γ → ∞. From
Figs. 3–5, we can conclude that the next-to-leading-order
corrections depend on γ, jκ0ðγÞj oscillates first for small γ,
but it will stabilize to a constant as γ → ∞. For small γ,
jκ0ðγÞj is relatively large and results in that λ has to be large
for γ ¼ 0.1, ðj0Þab ¼ ð5; 2Þλ, while it becomes smaller for
ðj0Þab ¼ ð11; 4Þλ or ðj0Þab ¼ ð8; 3Þλ.

VI. CONCLUSION

In this paper, we use the coherent intertwiners
and coherent spin-networks respectively as boundary
states to study the large-j asymptotic expansion of the
EPRL 4-simplex amplitude. We numerically derive the
next-to-leading order corrections and compare them to
the leading-order terms. We demonstrate how the
next-to-leading order corrections depend on the Barbero-
Immirzi parameter γ, and how to obtain quantum correc-
tions to the Regge action. In the context of this, our work
makes it possible to quantitatively describe the quantum
behavior of 4-simplex amplitude. The results help to
estimate a proper regime defined by λ where the semi-
classical approximation of Av is valid, with a dominant
leading-order term and a negligible next-to-leading order
correction.
It is important to extract predictions of quantum

gravity effect from the spinfoam LQG as a candidate
theory of quantum gravity. Our work propose to study
the spinfoam amplitude perturbatively in the large-j regime
and understand the quantum gravity correction to be
Oð1=jÞ corrections in the EPRL spinfoam amplitude.
We demonstrate that this proposal can be successfully
carried out by numerical computations, at least at the level
of one 4-simplex amplitude. Existing results on the large-j
EPRL spinfoam amplitude has only been focused on the
semiclassical consistency by neglectingOð1=jÞ. Moreover,
Our method of computation is a straight-forward applica-
tion of the stationary phase expansion of oscillatory
integral, and the same method (and the Mathematica
notebooks in [15]) can be adapted to any spinfoam vertex
amplitude.

The future generalization of this work may be along two
directions: spinfoam amplitudes with multiple 4-simplices
and nonperturbative computations. The challenge of gen-
eralizing to multiple 4-simplices relates to increasing
number of integration variables, which makes the compu-
tation in Sec. IV B more expensive. However, it may be still
interesting and possible to study the complex with three
4-simplices as the model in [28] and understand how the
next-to-leading order correction interacts with the issue of
flatness in the spinfoam model.
The other direction is to numerically evaluate the

spinfoam amplitude nonperturbatively (without the asymp-
totic expansion), in order to understand the model both in
and beyond the large-j regime. It has been difficult since
the integral (2.2) is oscillatory which makes numerical
evaluation difficult. However, recent developments in
lattice gauge theories discover new Monte-Carlo methods
on Lefschetz thimbles for oscillatory integrals [29,30]. The
strategy is first deforming the integration contour to integral
cycles called Lefschetz thimbles on which ImðSÞ is a
constant, then applying the Monte-Carlo simulation to
nonoscillatory integrals on Lefschetz thimbles. We have
applied this method to study the amplitude A0

v, and results
will be reported elsewhere [31].
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APPENDIX A: THE SLð2;CÞ HAAR MEASURE

Here, we derive the SLð2;CÞ Haar measure dg in our
case. For any SLð2;CÞ group element, it can be para-
metrized as:

g ¼ a0I þ
X3
k¼1

akσk ¼
�

a0 þ a3 a1 − ia2
a1 þ ia2 a0 − a3

�

¼
�
α β

γ ω

�
¼

�
α1 þ iα2 β1 þ iβ2
γ1 þ iγ2 ω1 þ iω2

�
; ðA1Þ

here, I is 2 × 2 identity matrix, σk is Pauli matrix, and ai
(i ¼ 0, 1, 2, 3),

α ¼ α1 þ iα2; β ¼ β1 þ iβ2;

γ ¼ γ1 þ iγ2; ω ¼ ω1 þ iω2;

are complex variables, where α1; α2; β1; β2; γ1; γ2;ω1;ω2

are real. From the book [32], the measure for the group
SLð2;CÞ is
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dg ¼ c20δ

�
a20 −

X3
k¼1

a2k − 1

�Y3
i¼0

Dai; c0 ¼ π−2

¼ 1

π4
δ

�
a20 −

X3
k¼1

a2k − 1

����� det
�∂ðReða0Þ; Imða0Þ;…;Reða3Þ; Imða3ÞÞ
∂ðReðα1Þ; Imðα2Þ;…;Reðω1Þ; Imðω2ÞÞ

�����DαDβDγDω

¼ 1

16π4
δðαω − γβ − 1ÞDαDβDγDω; ðA2Þ

here, we use this calculation

a20 −
X3
k¼1

a2k − 1 ¼ αω − γβ − 1;

det
�∂ðReða0Þ; Imða0Þ;…;Reða3Þ; Imða3ÞÞ
∂ðReðα1Þ; Imðα2Þ;…;Reðω1Þ; Imðω2ÞÞ

�
¼ 1

16
:

One can find the details in our Mathematica notebooks [15]. For any complex variable z ¼ xþ iy, we use the notation:

Dz ¼ dxdy and δðzÞ ¼ δðxÞδðyÞ:

Then, (A2) can be derived as

dg ¼ 1

16π4
δðα1ω1 − α2ω2 − β1γ1 þ β2γ2 − 1Þδðα1ω2 þ α2ω1 − β1γ2 − β2γ1Þdω1dω2DαDβDγ

¼ 1

16π4
DαDβDγ

jαj2 ¼ 1

16π4
dα1dα2dβ1dβ2dγ1dγ2

jαj2 : ðA3Þ

The following calculation can show the details for the third step. For convenience, we define

f1 ¼ Reðαω − γβ − 1Þ ¼ α1ω1 − α2ω2 − β1γ1 þ β2γ2 − 1;

f2 ¼ Imðαω − γβ − 1Þ ¼ α1ω2 þ α2ω1 − β1γ2 − β2γ1:

Then, the product of the delta function can be written as

δðf1Þδðf2Þ ¼
δðω1 − ω

∘
1Þδðω2 − ω

∘
2Þ

j det ∂ðf1;f2Þ∂ðω1;ω2Þ j
;

���� det ∂ðf1; f2Þ∂ðω1;ω2Þ
���� ¼ α21 þ α22 ¼ jαj2;

here, ω
∘
1 and ω

∘
2 are the solutions of the system of equations

f1 ¼ 0 and f2 ¼ 0,

ω
∘
1 ¼

α1 þ α1β1γ1 þ α2β2γ1 þ α2β1γ2 − α1β2γ2
α21 þ α22

;

ω
∘
2 ¼

α1ðβ2γ1 þ β1γ2Þ þ α2ð−1 − β1γ1 þ β2γ2
α21 þ α22

:

Next, we parametrized

α¼1þ 1ffiffiffi
2

p ðx1þiy1Þ; β¼ 1ffiffiffi
2

p ðx2þiy2Þ; γ¼ 1ffiffiffi
2

p ðx3þiy3Þ;

i.e.,

α1 ¼ 1þ x1ffiffiffi
2

p ; α2 ¼
y1ffiffiffi
2

p ; β1 ¼
x2ffiffiffi
2

p ;

β2 ¼
y2ffiffiffi
2

p ; γ1 ¼
x3ffiffiffi
2

p ; γ2 ¼
y3ffiffiffi
2

p :

Then, (A3) can be written as

dg ¼ 1

16π4 × 23
dx1dy1dx2dy2dx3dy3

j1þ x1þiy1ffiffi
2

p j2 ; ðA4Þ

which is the SLð2;CÞ group haar measure we used in our
case. The parameters of the SLð2;CÞ group are

g ¼

0
BB@

1þ x1þiy1ffiffi
2

p x2þiy2ffiffi
2

p

x3þiy3ffiffi
2

p 1þx2þiy2ffiffi
2

p x3þiy3ffiffi
2

p

1þx1þiy1ffiffi
2

p

1
CCA: ðA5Þ
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At the critical point g ¼ 1 or x⃗ ¼ y⃗ ¼ 0,

dg →
1

16π4 × 23
dx1dy1dx2dy2dx3dy3: ðA6Þ

APPENDIX B: BOUNDARY DATA, CRITICAL
POINTS, AND NUMERICAL RESULTS WITH

DIFFERENT BOUNDARY GEOMETRIES

Here we list the boundary data with different boundary
geometries jab ¼ ð8; 3Þλ and jab ¼ ð11; 4Þλ. Table VII
shows the coordinates of vertices for the boundary geom-
etries jab ¼ ð8; 3Þλ and jab ¼ ð11; 4Þλ respectively.
Table VIII gives the 4-d normal vectors for each tetrahedron
for boundary geometries jab ¼ ð8; 3Þ and jab ¼ ð11; 4Þ

respectively. Table IX and Table X gives the boundary state
jξabi for each tetrahedron with boundary geometries jab ¼
ð8; 3Þλ and jab ¼ ð11; 4Þλ respectively.
We also give critical points with different boundary

geometries. Table XI and Table XIII are critical points with
boundary geometry jab ¼ ð8; 3Þλ, Table XII and Table XIV
are critical points with boundary geometry jab ¼ ð11; 4Þλ.
With these boundary data and critical points for the

different boundary geometries, we can compute the asymp-
totics of the EPRL 4-simplex amplitude with the next-to-
leading-order corrections. We take γ ¼ 0.1 as an example
for the following results. For the coherent intertwiner as the

boundary state, the asymptotic amplitude Að8;3Þ
v with boun-

dary geometry jab¼ð8;3Þλ can be written as:

TABLE VII. Each cell of the table is the coordinate of the vertex Pa in the Minkowski spacetime.

� � � P1 P2 P3 P4 P5

jab ¼ ð8; 3Þ (0, 0, 0, 0) ð0; 0; 0;−4.298Þ ð0; 0;−3.722;−2.149Þ ð0;−3.510;−1.241;−2.149Þ ð−0.601;−0.8774;−1.241;−2.149Þ
jab ¼ ð11; 4Þ (0, 0, 0, 0) ð0; 0; 0;−5.040Þ ð0; 0;−4.365;−2.520Þ ð0;−4.115;−1.455;−2.520Þ ð−0.810;−1.029;−1.455;−2.520Þ

TABLE VIII. Each cell of the table is 4-d normal vectors for each tetrahedron with boundary geometries jab ¼ ð8; 3Þλ and jab ¼
ð11; 4Þλ respectively.

� � � N1 N2 N3 N4 N5

jab ¼ ð8; 3Þ ð−1; 0; 0; 0Þ (1.37, 0.94, 0., 0.) ð1.37;−0.31; 0.89; 0.Þ ð1.37;−0.31;−0.44; 0.77Þ ð1.37;−0.31;−0.44;−0.77Þ
jab ¼ ð11; 4Þ ð−1; 0; 0; 0Þ (1.62, 1.28, 0., 0.) ð1.62;−0.43; 1.20; 0.Þ ð1.62;−0.43;−0.60; 1.04Þ ð1.62;−0.43;−0.60;−1.04Þ

TABLE IX. Each cell of the table is the boundary state jξabi for the face shared by the line number tetrahedra and the column number
tetrahedra with boundary geometry jab ¼ ð8; 3Þλ.

b

jξabi
a 1 2 3 4 5

1 � � � (0.71, 0.71) ð0.71;−0.24þ 0.67 iÞ (0.95;−0.17 − 0.25 i) (0.30;−0.55 − 0.78 i)
2 ð0.71;−0.71Þ � � � (0.71; 0.63þ 0.32 I) (0.84; 0.53 − 0.14 i) (0.55; 0.81 − 0.21 i)
3 (0.71; 0.24 − 0.67 i) (0.71; 0.09þ 0.70 i) � � � (0.84;−0.31þ 0.46 i) (0.55;−0.47þ 0.69 i)
4 (0.30; 0.55þ 0.78 i) (0.96; 0.07 − 0.26 i) (0.96;−0.27 − 0.02 i) � � � (0.85;−0.30 − 0.42 i)
5 (0.95; 0.17þ 0.25 i) (0.27; 0.25 − 0.93 i) (0.27;−0.96 − 0.07 i) (0.52;−0.49 − 0.70 i) � � �

TABLE X. Each cell of the table is boundary state jξabi for the face shared by the line number tetrahedra and the column number
tetrahedra with boundary geometry jab ¼ ð11; 4Þλ.

b

jξabi
a 1 2 3 4 5

1 � � � (0.71, 0.71) (0.71;−0.24þ 0.67 i) (0.95;−0.17 − 0.25 i) (0.30;−0.55 − 0.78 i)
2 ð0.71;−0.71Þ � � � (0.71; 0.64þ 0.28 I) (0.82; 0.55 − 0.12 i) (0.57; 0.80 − 0.17 i)
3 (0.71; 0.24 − 0.67 i) (0.71; 0.05þ 0.71 i) � � � (0.82;−0.30þ 0.49 i) (0.57;−0.43þ 0.70 i)
4 (0.30; 0.55þ 0.78 i) (0.96; 0.04 − 0.26 i) (0.96;−0.26 − 0.05 i) � � � (0.87;−0.28 − 0.40 i)
5 (0.95; 0.17þ 0.25 i) (0.26; 0.14 − 0.96 i) (0.26;−0.95 − 0.19 i) (0.50;−0.50 − 0.71 i) � � �
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Að8;3Þ
v ¼

�
1þ 1

4λ

�
6
�
1þ 1

10λ

�
4 6.41 × 10−18

λ12
e10.71λi

�
cosð0.18þ 0.14λÞ þ 1.71

λ
sinð−1.28þ 0.14λÞ þO

�
1

λ2

��
: ðB1Þ

The asymptotic amplitude Að11;4Þ
v with boundary geometry jab ¼ ð11; 4Þλ is

Að11;4Þ
v ¼

�
1þ 1

4λ

�
6
�
1þ 1

10λ

�
4 5.59 × 10−21

λ12
e4.26λi

�
cosð0.19þ 0.31λÞ þ 1.21

λ
sinð−1.24þ 0.31λÞ þO

�
1

λ2

��
: ðB2Þ

For the coherent spin-network as the boundary state, the asymptotic amplitude A0ð8;3Þ
v with the boundary geometry

jab ¼ ð8; 3Þλ is

TABLE XI. Each cell of the table is the critical point of ath tetrahedron group element g0ð�Þ
a with boundary geometry jab ¼ ð8; 3Þλ.

a 1 2 3 4 5

g0ðþÞ
a

�
1 0

0 1

� �
0.43i 1.09i
1.09i 0.43i

� �
0.43i 1.03−0.36i

−1.03−0.36i 0.43i

� �
1.32i −0.51−0.36i

0.51−0.36i −0.46i

� �
−0.46i −0.51−0.36i

0.51−0.36i 1.32i

�

g0ð−Þa

�
1 0

0 1

� �
−0.43i 1.09i
1.09i −0.43i

� �
−0.43i 1.03−0.36i

−1.03−0.36i 0.43i

� �
0.46i −0.51−0.36i

0.51−0.36i −1.32i

� �
−1.32i −0.51−0.36i

0.51−0.36i 0.46i

�

TABLE XII. Each cell of the table is the critical point of a-th tetrahedron group element g0ð�Þ
a with boundary geometry jab ¼ ð11; 4Þλ.

a 1 2 3 4 5

g0ðþÞ
a

�
1 0

0 1

� �
0.55i 1.14i
1.14i 0.56i

� �
0.56i 1.08−0.38i

−1.08−0.38i 0.56i

� �
1.49i −0.54−0.38i

0.54−0.38i −0.38i

� �
−0.38i −0.54−0.38i

0.54−0.38i 1.49i

�

g0ð−Þa

�
1 0

0 1

� �
−0.56i 1.44i
1.14i −0.56i

� �
−0.56i 1.08−0.38i

−1.08−0.38i −0.56i

� �
0.38i −0.54−0.38i

0.54−0.38i −1.48i

� �
−1.49i −0.54−0.38i

0.54−0.38i 0.38i

�

TABLE XIII. Each cell of the table is the critical point para-
metrized by ðθ0ð�Þ

ab ;ϕ0ð�Þ
ab Þ for the face shared by the line number

tetrahedron a and the column number tetrahedron b, a < b. Two
tables list the result for two distinct critical points with boundary
geometry jab ¼ ð8; 3Þλ.

b

ðθ0ðþÞ
ab ;ϕ0ðþÞ

ab Þ
a 2 3 4 5

1 ð−1.57; 0Þ ð−1.57; 1.91Þ ð−2.53;−2.19Þ ð−0.62;−2.19Þ
2 � � � ð−1.57;−1.02Þ ð−0.74; 0.69Þ ð−2.40; 0.69Þ
3 � � � � � � (0.74, 1.23) ð−2.40; 1.23Þ
4 � � � � � � � � � ð−2.74; 0.96Þ

b

ðθ0ð−Þab ;ϕ0ð−Þ
ab Þ

a 2 3 4 5

1 ð−1.57; 0Þ ð−1.57; 1.91Þ ð−2.53;−2.19Þ ð−0.62;−2.19Þ
2 � � � ð−1.57;−0.21Þ ð−1; 39; 0.11Þ ð−1.75; 0.11Þ
3 � � � � � � ð−1.39; 1.80Þ ð−1.75; 1.80Þ
4 � � � � � � � � � ð−2.74;−2.19Þ

TABLE XIV. Each cell of the table is critical point parametrized
by ðθ0ð�Þ

ab ;ϕ0ð�Þ
ab Þ for the face shared by the line number

tetrahedron a and the column number tetrahedron b, a < b.
Two tables list the result for two distinct critical points with
boundary geometry jab ¼ ð11; 4Þλ.

b

ðθ0ðþÞ
ab ;ϕ0ðþÞ

ab Þ
a 2 3 4 5

1 ð−1.57; 0Þ ð−1.57; 1.91Þ ð−2.53;−2.19Þ ð−0.62;−2.19Þ
2 � � � ð−1.57;−1.09Þ ð−0.70; 0.76Þ ð−2.44; 0.76Þ
3 � � � � � � ð−0.70; 1.15Þ ð−2.44; 1.15Þ
4 � � � � � � � � � ð−2.67; 0.96Þ

b

ðθ0ð−Þab ;ϕ0ð−Þ
ab Þ

a 2 3 4 5

1 ð−1.57; 0Þ ð−1.57; 1.91Þ ð−2.53;−2.19Þ ð−0.62;−2.19Þ
2 � � � ð−1.57;−0.14Þ ð−1.45; 0.07Þ ð−1.70; 0.07Þ
3 � � � � � � ð−1.45; 1.84Þ ð−1.70; 1.84Þ
4 � � � � � � � � � ð−2.67;−2.19Þ
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A0ð8;3Þ
v ¼ 210

�
1þ 1

4λ

�
6
�
1þ 1

10λ

�
4 8.94 × 10−12 þ 3.85 × 10−12i

λ7
e10.85λi

�
1þ 2.06þ 0.88i

λ
þO

�
1

λ2

��
; ðB3Þ

and the asymptotic amplitude A0ð11;4Þ
v with the boundary geometry jab ¼ ð11; 4Þλ is

A0ð11;4Þ
v ¼ 210

�
1þ 1

4λ

�
6
�
1þ 1

10λ

�
4 3.70 × 10−13 þ 1.67 × 10−13i

λ7
e4.57λi

�
1þ −0.43 − 0.25i

λ
þO

�
1

λ2

��
: ðB4Þ
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