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Abstract— Cooperative wireless networks, enabled by 
Cognitive Radios, facilitate mobile users to dynamically share 
access to spectrum. However, spectrum bands can be accessed 
illegitimately by malicious users. Therefore, the success of 
dynamic spectrum sharing relies on automated enforcement of 
spectrum policies. While the focus has been on ex ante spectrum 
enforcement, this work explores new approaches to address 
efficient ex post spectrum enforcement. The main objective of 
this work is to ensure maximum coverage of the area of 
enforcement and accurate detection of spectrum access 
violation. The first objective is achieved with the help of Lloyd’s 
algorithm to divide the enforcement area into a set of uniformly 
sized coverage regions. The interference detection accuracy is 
achieved through crowdsourcing of the spectrum access 
monitoring to volunteers, based on their computational 
capabilities, location attributes and reputation. A simulation 
framework was developed in CSIM19 (C++ version) to analyze 
the performance of the proposed system over the entire area of 
enforcement. The results show that the proposed scheme 
ensures efficient coverage of all the channels and regions in the 
area of enforcement and a high average accuracy of detection.  

Keywords—cooperative wireless networks, volunteer, sentinel, 
reputation, ex post enforcement, crowdsourced spectrum 
monitoring, volunteer selection. 

I. INTRODUCTION  

As the use of wireless services increases exponentially, the 
demand for additional spectrum is steadily on the rise. In order 
to address spectrum scarcity, the Federal Communications 
Commission (FCC) proposed Dynamic Spectrum Access 
(DSA), wherein unlicensed users use idle licensed frequency 
bands. FCC adopted a three-tiered spectrum sharing 
infrastructure that is administered and enforced by Spectrum 
Access System (SAS) [1]. This architecture consists of 
Incumbents in tier 1, followed by Priority Access Licensed 
(PAL) devices in tier 2 and General Authorized Access 
(GAA) devices in tier 3. While it is ensured that the spectrum 
is always available to the incumbent users when and where 
needed, the next level of access is provided opportunistically 
to PAL and GAA devices. [2]. 

Cooperative wireless networks that are empowered by 
cognitive radios, allow users which are on the move with 
speeds ranging from the speed of walking to the speed of 
moving in vehicles, to dynamically share access to spectrum. 
These networks are however plagued by the possibility of 

malicious users illegitimately accessing spectrum bands. 
Thus, the success of spectrum sharing systems is dependent 
on our ability to automate their enforcement. The key aspect 
of enforcement for our consideration, is the timing of 
enforcement. Timing of an enforcement can be either ex ante 
(before a potentially “harmful” action has occurred) or ex post 
(after a potentially “harmful” action has occurred, but 
potentially before or after an actual “harm” has been done) 
[3][4]. Ex ante and ex post enforcement effects are 
inextricably linked. For example, if ex ante rules are 
sufficiently strong then ex post harms may be prevented 
before they occur. However, even strong ex ante rules may 
require ex post enforcement; for example, licensing approval 
for equipment is usually based on a prototype or pre-
production unit, but compliance of production units may 
require some kind of policing. Till date, more significance has 
been given on automating ex ante enforcement of usage rights. 
For example, the TV White Spaces database systems 
essentially work by preventing users with subordinate rights 
from using spectrum when and where other users with 
superior rights are operating [5]. This concept has been 
extended in the new Citizens Broadband Radio Service 
(CBRS) to a SAS that is designed to distinguish the three 
classes of user types discussed previously [2]. 

We observe that both SAS and CBRS have well-
developed mechanisms to avoid interference but provide no 
support for addressing interference when it occurs. In this 
paper, we focus on the detection of an interference event that 
is caused by a malicious user. The primary challenge is to 
ensure efficient ex post spectrum enforcement. In order to 
address this challenge, the paper proposes an enforcement 
framework that aims to achieve a) maximum coverage of the 
entire area of enforcement, b) optimal coverage of the 
channels in the area of enforcement c) accurate detection of 
spectrum access violations, d) accurate estimation of the 
qualification of  a crowdsourced detecting agent e) use of an 
effective method for hiring and deploying detecting agents. 
By employing a hybrid infrastructure of crowdsourced and 
trusted, dedicated resources, we aim to ensure “optimal” 
detection of spectrum access violation in dynamic spectrum 
sharing wireless networks. The major contributions of this 
paper are: 

a)   Coverage: We explore mechanisms to aim for both 
region and channel coverage in the area of enforcement.   
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b)   Accuracy of Crowdsourced Detection: We explore a 
mechanism to select crowdsourced detecting agents  for 
ensuring that a spectrum violation is detected with high 
probability of accuracy and efficiency. 

The paper is organized in the following manner. Section II 
of the paper discusses about the related works. Section III and 
IV of the paper discusses about the enforcement framework 
and the crowdsourced monitoring methodology, respectively. 
Section V discusses about the experiments and results. Section 
VI underlines the conclusion and future scope of this work. 

II. RELATED WORKS 

Jin et al. [20] introduces the first crowdsourced spectrum 
misuse detection for DSA systems. Dutta and Chiang [13] 
discusses about crowdsourced spectrum enforcement for 
accurate detection and location of spectrum enforcement. 
Salama et al. [22] proposed an optimal channel assignment 
framework for crowdsourced spectrum monitoring, where 
volunteers are assigned to monitor channels based on their 
availability patterns and are awarded with incentives in return. 
Li et al. [23] models the spectrum misuse problem as a 
combinatorial multi armed bandit problem to decide which 
channels to monitor, how long to monitor each channel, and 
the order in which channels should be monitored. Yang et al. 
[7] studied two incentive based crowdsourcing models, where 
a Stackelberg Equilibrium was computed in the platform-
centric model, and a truthful auction mechanism was proposed 
under the user-centric model. [6] takes the Sybil attack into 
consideration for incentive based crowdsourced spectrum 
sensing. The works [11] and [12] propose frameworks for 
crowdsourced spectrum sensing without violating the location 
privacy of mobile users. Wang et al. [14] and Benedetto et al. 
[25] discusses a reputation-based framework where malicious 
users are identified based on data agreement and by statistics 
of the consecutively true and false decisions respectively. 
Contrary to the formerly proposed spectrum monitoring 
approaches, which rely exclusively either on large deployment 
of physical monitoring infrastructure [8]-[10] or on 
crowdsourcing, we believe that spectrum access rights 
violations can be effectively prevented by using a hybrid of 
trusted infrastructure, composed of a central DSA 
Enforcement Infrastructure and a minimal number of mobile, 
wireless devices with advanced trust and authentication 
capabilities, augmented with an opportunistic infrastructure of 
wireless devices with various software and hardware 
capabilities. In addition, contrary to majority of the previous 
works which have studied the reputation of a secondary user, 
we focus on modeling the reputation of agents who monitor 
the behavior of secondary users. Also, while reputation has 
been majorly modeled to change in a static manner based on 
the success/failure of a user, we focus on a strategic approach 
to build reputation over time for ensuring high accuracy of 
detection. We further explore ways to combine different 
attributes to estimate the qualification of a crowdsourced 
agent to monitor multiple channels in a region and select them 
using a mechanism that ensures high coverage of enforcement 
area and of channels. This work is an extension of our 
previous work [26] which is a much simpler model, with 
simpler, fewer parameters and experiments for spectrum 
enforcement in only a single channel per region. 

III. ENFORCEMENT FRAMEWORK 

The main challenge in the design of a hybrid infrastructure 
stems from the fact that it is not easy to determine where and 

how the resources are to be mobilized, given the non-
deterministic nature of mobile devices’ behavior. It is equally 
difficult to determine how collaboration between these 
devices must take place to ensure swift detection and response 
to spectrum misuse. To address this, we broadly follow a 
crowdsourced monitoring infrastructure, supported by 
sentinel-based monitoring and a central DSA Enforcement 
Infrastructure. 

The entire area of enforcement R is divided into smaller 
regions, with an Access Point , associated with every . 
Authorized users, who are legitimate Secondary Users (SUs) 
gain access to an available channel through the local  in . 
On the contrary, malicious users are unauthorized transmitters 
who intrude on spectrum by illegitimately using spectrum 
frequencies in  that they have not been authorized to use by 
the local . Some of the authorized users volunteer to 
monitor a given channel for access violation, in addition to 
accessing the spectrum to transmit their own data. Such 
volunteers are mobile agents who can monitor radio access 
behavior within their neighborhood and detect anomalous use 
of spectrum. Volunteers are classified as honest and corrupt. 
We assume that honest volunteers always tell the truth and 
corrupt volunteers tell the truth probabilistically. The system 
model further consists of a set of sentinels ′ who monitor a 
given channel in  at random intervals to verify the detection 
results reported by the volunteers and to prevent selection of 
corrupt volunteers. 

As shown in Figure 1, the system model further consists 
of a central DSA Enforcement Infrastructure, which consists 
of a set of Volunteer Service units  for  every ∈ , a 
Volunteer Selection Unit and a DSA Database. A volunteer 
 in ∈  registers itself to the  associated with . A 
 stores and updates volunteer attributes over the entire 

period of enforcement. The Volunteer Selection Unit uses the 
latest attributes of all the volunteers in a  to  select 
volunteers for monitoring a given channel in  over the next 
epoch of enforcement. The DSA Database maintains a 
channel-user occupancy list, for the entire area of 
enforcement . The information contained in the DSA 

 
Figure 1. System Model. 
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Database is used to identify the channels and their respective 
authorized users in .  
To ensure maximum coverage of an area  for 

enforcement, we follow a divide and conquer method. We 
propose to divide the entire area 	into smaller regions and 
then focus on solving the enforcement problem for a single 
region ∈ . This in turn can be used for solving the problem 
for the whole . For division of  into regions, we propose 
the employment of the Voronoi algorithm [15]. Initially, we 
assume that the volunteers in  are randomly distributed over 
 and the access points are spread uniformly over  . For each 
volunteer ∈ , its corresponding Voronoi region  consists 
of every volunteer in the Euclidean plane whose distance 
to the  local  is less than or equal to its distance to any 
other  [15]. However, the Voronoi algorithm may not 
produce regions that are of equal size. This is a disadvantage 
as it may result in some of the regions to be undersupplied by 
volunteers over time, which in turn may result in possible loss 
in detection of spectrum misuse. Thus, we propose to apply a 
relaxation to the Voronoi algorithm, called the Lloyd’s 
Algorithm [16], which produces uniformly sized convex 
regions, and thus improves the probability of a fair distribution 
of volunteers over all regions. The number of regions in  is 
equal to the number of access points in . 

IV. CROWDSOURCED SPECTRUM MONITORING 

We divide the total enforcement time into a set of 
intervals called the Monitoring Intervals, MIs. Each MI is 
further divided into a set of sub-intervals called the Access 
Unit Intervals (AUIs). One AUI is defined as the smallest 
interval over which a user, intruder or legitimate, can 
accomplish useful work.  It is used as the interference 
monitoring interval by the selected volunteers to determine 
access violation or legitimacy. Each AUI is divided into 
Sampling Intervals (SIs), over which a sentinel and a 
volunteer senses a channel to determine its access type. A 
new set of volunteers is selected at the beginning of every MI 
by the  of region . Volunteer selection in  is primarily 
based upon the parameters of reputation, sojourn time, 
duration to destination and likelihood of visit, all of which 
are discussed below.  

A. Reputation 

As shown in Figure 2, a volunteer  in region  makes an 

observation Ο,,
,
 of the access state of channel  in every SI 

 and a sentinel  makes an observation Ο,,
,  at a random SI 

 of an AUI . Based on these observations, both  and  
decide the spectrum access state over AUI . We assume that 

a volunteer ’s decision	
,,
 is accurate if it is the same as 

the decision ,, of  sentinel . The trustworthiness of a 
volunteer is determined by its accuracy in detection of 
spectrum access violation as given by (1). 

 ,,=
,,( )

,,( )+ ,,( )
 (1) 

 

where ,,( ) and ,,( ) are the number of times that 
the decisions of  and  matched and didn’t match for channel 
 respectively, over a given MI. A sentinel decides to 
monitor  at random AUIs to verify the decisions made by the 
volunteers.  The minimum number of observations  required 
by a sentinel in an AUI to determine the ground truth of 

spectrum access state with a margin of error  at % 
confidence level is given by (2). 

 ≥ 0.25. 
∗

 (2) 

 

where ∗ is the critical value. 

The reputation ,, of  a  volunteer  in  for  channel  is 
established based on the volunteer’s trustworthiness over an 
extended duration. The tenet of our approach is to increase the 
reputation slowly after success and penalize the reputation 

rapidly after it falls below a threshold. The reputation ,,
,	
 

of a volunteer  at the beginning of AUI +1 of  MI  for 
monitoring channel  in region  is given by (3). 

 ,,
, =

,,
, + ,,

, , 		

,,
, − ,,

, , 	ℎ
 (3) 

 

where ,,
, is the trustworthiness of  for  monitoring  in  

after it makes a decision in AUI  of  MI , ,,
, ∝ ,,

, 

and ,,
, ∝ 	.		( ,,

,
), such that  increases if ,,

, <
, where  is the threshold below which we decrease 
reputation more rapidly. So, the reputation is increased 
linearly when an accurate decision is made by  and decreased 
exponentially otherwise.  

B. Sojourn Time 

In order to efficiently support detection of channel access 
violation in a region , volunteers who are most likely to 
reside a major proportion of time in  after a visit to , are 
given preference. To this end, we estimate the sojourn time of 
a volunteer ∈  in ∈  after every visit of  to . After 
the ()  visit  of  to , we measure its (− 1)  sojourn 

time, (), in  as the difference between its (− 1)  

departure time, () from  and  its (− 1)  arrival 

time, ()   in . Based on this information, the  
estimates the proportion of time that  is likely to stay in  
before its  departure from , as an exponentially smoothed 
average, given by (4).  

 () = . () + 1 − 	 . () (4) 

 

In order to estimate the smoothed average, () more 
accurately, smoothing factor  is computed as: 

 
Figure 2. Decisions by volunteer  after every AUI and by sentinel  

after random AUIs, for a given MI. 
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=ℎ.
( ())

()
	 (5) 

 

where 0<ℎ<1, () = 	 () − () is  the 

prediction error, and () is the average of the past square 
prediction errors on visit , as shown in (6). 
 

()=ℎ.( ())+ 1−	ℎ. ()      (6) 

 

C. Duration To Destination 

Volunteers who are likely to reach a region  in shortest 
time are given preference to monitor  for efficient spectrum 
access violation detection. At any given time , the location 
 of volunteer  enables us to estimate the shortest duration 
() needed by  to reach a region , as shown in (7).  
 

 () =
( , )

 (7) 

 
where >0 is a system parameter,  is average velocity of 
,  is the centroid of region  and ( , ) is the shortest 
distance between  and .  

D. Likelihood of Visit 

The Volunteer Selection Unit prefers volunteers who 
have a high likelihood of visiting and residing in a region . 
The likelihood () of a volunteer  to  visit  is given by 
the fraction of time spent by  in , as shown in (8). 
 

 () =
()

∑ ()∈

 (8) 

 
where () is the time spent by  in region .  

E. Volunteer Selection 

The Volunteer Selection Unit selects  qualified 
volunteers to monitor region  at the beginning of every MI. 
This is determined by the estimated Qualification ,,( ) 
of a volunteer  to monitor a channel  in  over the next MI, 
given by (9), defined below.  
 

   ,,( )= (,,, (), (), ()) (9) 

 

Since ,,, (), () and () represent  the 
measurement of different parameters, we normalize them by 
using the min-max normalization technique [17] such that 0≤

,,, (), (), ()≤1. Clearly, reputation is the 
most significant component of the selection metric. 
Untrustworthy volunteers, regardless of their location or 
likelihood to be in a region, must be eliminated. Furthermore, 
since a volunteer can only monitor a channel in a region that 
it resides in over an AUI, the likelihood of visit () of  in 
 is next in priority. With this assumption, we explore ways to 
aggregate the above four parameters in  in order to assess 
their impact in measuring the qualification of a volunteer as 
shown in (10)-(13).  

 = .(log(1+ ).log(1+ )) (10) 

 
= .(log(1+ )+log(1+ )) (11) 

= .(
+ 1+ + 2) 

(12) 

 
= .(

+ 1. + 2) 
(13) 

 

  In the above equations, we assume that = 
(). .,,  where >0, =1− () and =

(),	  and  are the weights associated with  and  
respectively. We define  as such because lower duration to 
destination ()is preferred, unlike the other three 
parameters. We observe that reputation ,,, being the 
dominating factor, exponentially impacts the qualification 

,,( ), while the parameter () is multiplied linearly to 

it. In (10) and (11), parameters () and () are  used 

logarithmically and thus have a sub-linear impact. () and 
() are aggregated by addition and multiplication in (10) 

and (11) respectively. On the contrary, in (12) and (13), 

parameters () and () are combined in a weighted 
linear manner and aggregated by addition and multiplication 
respectively. 

Volunteers are selected by using a variant of the Multiple-
Choice Secretary Algorithm [18][26]. Using this algorithm, 
we select up to /2 volunteers from the initial  
volunteers, where 	is a random sample drawn from a 
Binomial distribution. The observed qualification values are 
used to determine a threshold such that among the remaining 
volunteers, only those whose qualification values surpass this 
threshold are selected. However, this algorithm does not 
ensure that all the channels are covered efficiently. To address 
this, we devise a scheme to efficiently assign channels to the 
selected volunteers. We maintain a hash table , ,

( ) 

where a channel  is mapped to the list Λ, ,
 of all ∈ , 

(where , is the set of selected volunteers in region  in  a 
MI), ordered in descending order by their qualification values 
to monitor . For every region ∈ , a channel  is  then 
assigned in a round robin manner to the topmost  in Λ, ,

, 

i.e.,  is assigned to the volunteer who is most qualified to 
monitor , after which  is deleted from the list Λ, ,

 of 

every channel ∈  in , ,
( ). This ensures that no 

volunteer monitors more than one channel over a given MI 
and further helps to ensure effective coverage of all channels 

V. EXPERIMENTS AND RESULTS 

The enforcement framework is simulated using the C++ 
version of CSIM19. The total area of enforcement is divided 
into two regions of equal area and each region is assigned a 
similar set of five channels. A random fraction of the 
population is chosen as volunteers (equals 183 volunteers). 
The mobility of volunteers is based upon the Random 
Waypoint mobility model. The corrupt volunteers detect 
accurately with probability ranging from 0 to 0+  (=0.5) 
and the honest volunteers detect accurately with a probability 
of 1. Also, we assume that =  for  all . Accuracy of 
spectrum misuse detection and hit ratio are primary metrics 
used to measure the effectiveness of a given procedure. Hit 
ratio is the ratio of the number of hits to the total number of 
hits and misses. If a volunteer  selected for monitoring  is 
in  at the beginning of an AUI in a MI that  is selected for, 
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then it is a hit, otherwise it is a miss. Thus, a higher hit ratio 
signifies higher coverage of regions over the period of 
enforcement. 

In Figure 3, we compare the mean hit ratio and mean 
accuracy of volunteers selected by using different variations 
of the function  that  computes  qualification ,,( ) in 
(9), such that = 1% − 25%	 	||||, probability of a 
volunteer to be corrupt is 0.5, , = 1 and ℎ = 0.03. While 
the variations  and  are as defined in (10) and (11) 
respectively, the variation  (defined in (12)) is divided into 
(. .		 > ), (. .		 = ) and (. .		 <
). Similarly, variation  (defined in (13)) is divided into 
, and . We observe that the variations which 

aggregate  and  additively  ( and all variations of ) 
give higher accuracy than the remaining variations which use 
multiplicative aggregation. This is because multiplication of 
the exponential reputation term in  by the product of the 
other terms (which are fractions between 0 and 1), decreases 
the overall domination of  in  determining ,,( ). By 
using variation , the selected volunteers give the highest 
mean accuracy (0.92) and hit ratio (0.78). This is better than 
the mean accuracy (0.89 and 0.83) and hit ratio (0.73 and 0.62) 
obtained by using  and  respectively. This proves that 
having higher weights associated with , results in better 
overall performance when  and  are used linearly and 
aggregated additively.  

In all the remaining experiments, we use the variation  
to calculate ,,( ) because it gave the best performance 
(as shown in Figure 3). We assume = 25% −
50%	 	|||| and that the probability of a volunteer to be 
corrupt is 0.5. The proposed algorithm has the potential to be 
designed as an incentive-based variant, which can then be 
compared against the incentive-based auction algorithms that 
have been used in many of the related works. Instead, we 
compare the performance between volunteers that are selected 
by using the proposed algorithm and by using an Algorithm R 
which selects volunteers in a random fashion, irrespective of 
their qualification. In Figure 4, we observe that the mean hit 
ratio of volunteers selected by using the proposed algorithm is 
greater than that of Algorithm R for all values of . However, 
by applying the proposed algorithm, the mean hit ratio 
decreases consistently with the increase in  because  the 
proportion of highly qualified selected volunteers reduces as 
the value of  increases.  Also, there is an overall decrease in 
standard deviation for both the algorithms as range of  
increases from 1-25% of |||| to 75-100% of |||| because a 

balance is approached between the proportions of highly 
qualified and less qualified selected volunteers as the value of 
 increases. In Figure 5, we observe that even though the 
mean accuracy of detection by using the proposed algorithm 
decreases as  increases, yet it performs better for all ranges 
of  when compared to Algorithm R. In Figure 6, we observe 
that the mean accuracy of misuse detection decreases for both 
the algorithms as the probability of a volunteer to be corrupt 
increases. This is intuitive because more corrupt volunteers 
are selected with the increase in probability of a volunteer to 
be corrupt. Interestingly, for both the algorithms, the accuracy 
decreases at a faster rate than in Figure 5, proving that the 
probability of a volunteer to be corrupt has greater impact than 
the range of  in the overall accuracy of detection. Also, we 
see that using the proposed algorithm, the standard deviation 
increases with the increase in probability of a volunteer to be 
corrupt because of the increasing disparity of results between 
corrupt and honest volunteers. However, it decreases when 
the probability of a volunteer to be corrupt is 1 because of the 
decrease in disparity between their results. Finally, for 
probability of a volunteer to be corrupt being 0.5, we observe 
that the standard deviation in mean accuracy of detection 
across all the five channels is 0.0056 for =25%−
50%	 	|||| and the average standard deviation in detection 
accuracy across all the five channels for all the ranges of k is 
0.00705, which are significantly low. Thus, our mechanism 
ensures efficient and uniform channel coverage. 

VI. CONCLUSION 

   In this paper, we discussed about a spectrum enforcement 
framework in cooperative wireless networks, based on  
crowdsourced infrastructure, supported by sentinel-based 

 
 

Figure 3. Comparison of the performance of volunteers selected by 
using different variations of function  in (9) 
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Figure 5. Comparison of the mean accuracy by selecting volunteers 
using the proposed algorithm and Algorithm R.
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Figure 4. Comparison of the mean hit ratio by selecting volunteers 
using the proposed algorithm and Algorithm R.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-25%  25-50%  50-75%  75-100%

Me
a
n 
Hi
t 
Ra
ti
o

Range of k (% of ||V||)

Proposed Algorithm Algorithm R

2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 24,2021 at 20:06:34 UTC from IEEE Xplore.  Restrictions apply. 



monitoring and by a central DSA Enforcement Infrastructure. 
The objective was to maximize coverage of the area of 
enforcement, the coverage of all the channels in it and to 
ensure accurate detection of spectrum access violation by 
selecting qualified volunteers. We developed a framework to 
select volunteers based on their reputation, sojourn time, 
estimated duration to reach a destination and likelihood of 
visit to a region. We explored ways to aggregate the above 
four parameters in order to assess their impact in measuring 
the qualification of a volunteer. We used a variant of the 
multiple-choice Secretary algorithm to select volunteers 
dynamically based on their qualifications to monitor a region 
and developed a mechanism for optimal assignment of 
channels to volunteers. The results indicate that our proposed 
methodology ensures higher accuracy in detection of 
spectrum access violation and higher coverage of enforcement 
area when compared to an algorithm that selects volunteers in 
a random fashion. Efficient coverage of all channels is ensured 
too.  

We plan to extend this work to develop an incentive-based 
variant of the proposed algorithm and explore more 
algorithms to select volunteers for multi-channel spectrum 
enforcement. We further plan to explore different AI based 
mechanisms to determine the reputation and location 
likelihood of volunteers in the enforcement area. 

ACKNOWLEDGMENT 

This work was sponsored in part by the National Science 
Foundation through grants 1265886, 1547241, 1563832, and 
1642928. 

REFERENCES 

[1] Federatedwireless.com.  (2019).  [online]  Available  at:  
http://federatedwireless.com/wp-content/uploads/2017/03/CBRS-
Spectrum-Sharing-Overview-v3.pdf [Accessed 25 Jul. 2019]. 

[2] Federal Communications Commission. 3.5 GHz Band / Citizens 
Broadband  Radio  Service.   [Online].  Available  from:  
https://www.fcc.gov/wireless/bureau-divisions/broadband-
division/35-ghz-band/35-ghz-band-citizens-broadband-radio#block-
menu-block-4 [Accessed 25 Jul. 2019]. 

[3] E. Schlager and E. Ostrom, “Property-Rights Regimes and Natural 
Resources: A Conceptual Analysis,” Land Econ., vol. 68, no. 3, 1992, 
pp. 249–262. 

[4] Shavell, Steven. “The Optimal Structure of Law Enforcement.” The 
Journal of Law & Economics, vol. 36, no. 1, 1993, pp. 255–287. 
JSTOR, www.jstor.org/stable/725476. 

[5]  A. Gopinathan, Z. Li, and C. Wu, “Strategyproof auctions for 
balancing social welfare and fairness in secondary spectrum markets,” 
2011 Proc. IEEE INFOCOM, 2011, pp. 3020–3028. 

[6] J. Lin, M. Li, D. Yang, G. Xue, and J. Tang, “Sybil-proof incentive 
mechanisms for crowdsensing,” in IEEE INFOCOM 2017, pp. 1–9. 

[7] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to 
Smartphones: Incentive Mechanism Design for Mobile Phone 
Sensing,” in Proceedings of the 18th Annual International Conference 
on Mobile Computing and Networking, 2012, pp. 173–184. 

[8] M. B. H. Weiss, M. Altamimi, and M. McHenry, “Enforcement and 
spectrum sharing: A case study of the 1695-1710 MHz band,” in 8th 
International Conference on Cognitive Radio Oriented Wireless 
Networks, 2013, pp. 7–12. 

[9] D. Yang, X. Zhang, and G. Xue, “PROMISE: A framework for truthful 
and profit maximizing spectrum double auctions,” in Proceedings - 
IEEE INFOCOM, 2014, pp. 109–117. 

[10] R. Chen, J.-M. Park, and J. H. Reed, “Defense Against Primary User 
Emulation Attacks in Cognitive Radio Networks,” IEEE J.Sel. A. 
Commun., vol. 26, no. 1, Jan. 2008, pp. 25–37. 

[11] X. Jin, R. Zhang,  Y. Chen, T. Li, and  Y. Zhang, “DPSense: 
Differentially Private  Crowdsourced  Spectrum Sensing,”  in  
Proceedings of the 2016 ACM SIGSAC Conference on Computer and 
Communications Security, 2016, pp. 296–307. 

[12] X. Jin and Y. Zhang, “Privacy-Preserving Crowdsourced Spectrum 
Sensing,” IEEE/ACM Trans. Netw., vol. 26, no. 3, Jun. 2018, pp. 
1236–1249. 

[13] A. Dutta and M. Chiang, ““See Something, Say Something” 
Crowdsourced Enforcement of Spectrum Policies,” IEEE Trans. Wirel. 
Commun., vol. 15, no. 1, Jan. 2016, pp. 67–80. 

[14] Wang, T.-H. Tsai, and W.-H. Chung, “The Novel Crowdsourcing 
Algorithm for Cooperative Spectrum Sensing,” 2018 IEEE Int. Symp. 
Dyn. Spectr. Access Networks, pp. 1–5, 2018.  

[15] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental 
geometric data structure”, ACM Comput. Surv., vol. 23, no. 3, Sep. 
1991, pp. 345–405. 

[16] Q. Du, M. Emelianenko, and L. Ju, “Convergence of the Lloyd 
Algorithm for Computing Centroidal Voronoi Tessellations,” SIAM J. 
Numer. Anal., vol. 44, no. 1, Jan. 2006, pp. 102–119. 

[17] B. Talukder, K. W. Hipel, and G. W. vanLoon, “Developing Composite 
Indicators for Agricultural Sustainability Assessment: Effect of 
Normalization and Aggregation Techniques,” Resources, vol. 6, no. 4, 
2017. 

[18]  Gautam Kamath. Advanced Algorithms, Matroid Secretary Problems. 
[Online].  Available  from:  
http://www.gautamkamath.com/writings/matroidsec.pdf. 

[19] R. Kleinberg, “A Multiple-choice Secretary Algorithm with 
Applications to Online Auctions,” in Proceedings of the Sixteenth 
Annual ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 
630–631. 

[20] X. Jin, J. Sun, R. Zhang, Y. Zhang, and C. Zhang, “SpecGuard: 
Spectrum misuse detection in dynamic spectrum access systems,” 2015 
IEEE Conf. Comput. Commun., 2015, pp. 172–180. 

[21] Pittsburgh Population. (2018-06-12). [Online]. Available from: 
http://worldpopulationreview.com/us-cities/pittsburgh/. 

[22] A. M. Salama, M. Li, and D. Yang, “Optimal Crowdsourced Channel 
Monitoring in Cognitive Radio Networks,” in IEEE Global 
Communications Conference, GLOBECOM, Singapore, December 4-
8, 2017, pp. 1–6. 

[23] M. Li, D. Yang, J. Lin, M. Li, and J. Tang, “SpecWatch: A framework 
for adversarial spectrum monitoring with unknown statistics,” Comput. 
Networks, vol. 143, 2018, pp. 176–190. 

[24] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial Multi-Armed 
Bandit: General Framework and Applications,” in Proceedings of the 
30th International Conference on Machine Learning, 2013, vol. 28, no. 
1, pp. 151–159. 

[25] F. Benedetto, A. Tedeschi, G. Giunta, and P. Coronas, “Performance 
improvements of reputation-based cooperative spectrum sensing,” in 
2016 IEEE 27th Annual International Symposium on Personal, Indoor, 
and Mobile Radio Communications (PIMRC), 2016, pp. 1–6. 

[26] D. Das, T. Znati, M. Weiss, P. Bustamante, M. Gomez, S. Rose, 
“Crowdsourced Misuse Detection in Dynamic Spectrum Sharing 
Wireless Networks”, International Conference on Networks (ICN),  
2019, pp. 74-81. 

 

 
 

Figure 6. Comparison of the mean accuracy of detection for different 
probabilities of a volunteer to be corrupt. 
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