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Quasicrystals have been discovered in a variety of materials ranging
from metals to polymers. Yet, why and how they form is incom-
pletely understood. In situ transmission electron microscopy of alloy
quasicrystal formation in metals suggests an error-and-repair mech-
anism, whereby quasiperiodic crystals grow imperfectly with phason
strain present, and only perfect themselves later into a high-quality
quasicrystal with negligible phason strain. The growth mechanism has
not been investigated for other types of quasicrystals, such as dendri-
meric, polymeric, or colloidal quasicrystals. Soft-matter quasicrystals
typically result from entropic, rather than energetic, interactions,
and are not usually grown (either in laboratories or in silico) into
large-volume quasicrystals. Consequently, it is unknown whether
soft-matter quasicrystals form with the high degree of structural
quality found in metal alloy quasicrystals. Here, we investigate
the entropically driven growth of colloidal dodecagonal quasicrys-
tals (DQCs) via computer simulation of systems of hard tetrahedra,
which are simple models for anisotropic colloidal particles that form
a quasicrystal. Using a pattern recognition algorithm applied to par-
ticle trajectories during DQC growth, we analyze phason strain to
follow the evolution of quasiperiodic order. As in alloys, we observe
high structural quality; DQCs with low phason strain crystallize di-
rectly from the melt and only require minimal further reduction
of phason strain. We also observe transformation from a denser
approximant to the DQC via continuous phason strain relaxation.
Our results demonstrate that soft-matter quasicrystals dominated
by entropy can be thermodynamically stable and grown with high
structural quality––just like their alloy quasicrystal counterparts.
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Quasicrystals are crystals that possess long-range quasiperi-
odic order without translational periodicity. Since the first

report of an icosahedral quasicrystal in an Al–Mn alloy melt (1),
quasicrystals with 8-, 10-, 12-, and 18-fold symmetry as well as
icosahedral symmetry have been discovered in many alloys (2),
carbon allotropes (3, 4), metal oxides (5), and various soft-matter
systems including dendrimers (6), block copolymers (7, 8), and
colloids (9–12). The apparent structural universality of quasi-
crystals across these very disparate systems begs the question: Is
quasicrystal growth the same across all systems, regardless of
length scale?
How quasicrystals form is a matter of some debate (13, 14).

Two growth models have been proposed: the matching rule
model and the error-and-repair model. The matching rule model
(15) asserts that quasicrystals form as tiles––i.e., subunits of the
quasicrystal pattern comprising clusters of particles in specific
arrangements––attach at the growth front to match the existing
pattern. Matching rules dictate which attachments are allowed
and which are not, and the model imagines that the tiles act as
puzzle pieces with precise local fit. Via matching rules, quasi-
crystals grow “perfectly,”maintaining strict quasiperiodicity at all
times, thereby resulting in an ideal (or perfect) tiling. In contrast,
the error-and-repair model (16, 17) describes quasicrystal for-
mation as a two-step process. In the first step, tiles or particle

clusters quickly attach to the growing quasicrystal in a way that is
at least to some degree random. These imperfect attachments
eventually produce phason strain, a measure of quasiperiodic
disorder over long distances (18, 19). In the second––much
slower––step, phason strain is relaxed through local particle
rearrangements called phason flips. Ultimately, a quasicrystal
with negligible phason strain is possible, so that the end result for
both models can be very similar.
Recent in situ observations of decagonal (10-fold) quasicrystal

growth from Al–Ni–Co melts using transmission electron mi-
croscopy (17) and of a self-assembling icosahedral quasicrystal
using molecular dynamics simulations from a single-particle spe-
cies interacting via an isotropic pair potential (20) support the
error-and-repair mechanism. While these two systems, one ex-
perimental and one computational, are clearly different, in both
cases potential energy, rather than entropy, drives quasicrystal
growth. Which growth model holds for entropically driven quasi-
crystal formation (21–23)? There is recent evidence that kinetic
crystallization pathways in energy-dominated and entropy-dominated
systems are similar (24). Does it follow that soft-matter quasicrystals
form via error-and-repair, and thus that high-quality quasicrystals are
realizable in entropy-driven soft-matter systems?
In this work, we answer this question for the case of the

dodecagonal quasicrystal (DQC) in the hard tetrahedron system
(25). Because the tetrahedron particles are hard, i.e., interact
only via excluded volume, the system we study is governed solely
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by entropy––that is, the DQC forms from entropy maximization––
and thus is a good representation of a soft-matter quasicrystal. We
discover from Monte Carlo (MC) simulation runs that phason strain
remains small during DQC growth and only weakly relaxes further,
resulting in a high-quality DQC with negligible phason strain directly
from the melt. We also observe that an approximant structure, a
periodic crystal closely resembling the DQC and with inherent
linear phason strain (25, 26), can relax to the DQC via contin-
uous phason strain relaxation; that is, the solid–solid transition
(27, 28) occurs via a process analogous to the repair step of the
error-and-repair model (16, 17).

Results
Tiling Hierarchy. Phason strain analysis is best performed by
considering the tiling patterns for the quasicrystal under study.
Fig. 1A introduces a hierarchical series of four tilings. All tilings
are generated by inflation or deflation (2) with inflation factor
f = 2 cos(π=15) ≈ 1.956 to rescale the tile edge length. At each
hierarchy level, the centers of vertex motifs (Fig. 1B) form ver-
tices of square, triangle, and rhombus tiles. The tiling employed
in previous work (25) corresponds to the third hierarchy level
(red color in Fig. 1B), in which clusters of 22 tetrahedra are
arranged in a noninterdigitating fashion; that is, the clusters do
not share tetrahedra. A single 22-tetrahedron cluster (22-T)
consists of a ring of 12 tetrahedra and 2 pentagonal dipyramids
(SI Appendix, Fig. S1) (25).
Phason strain in quasicrystals is quantified by numerically

evaluating the geometry of the tiling. This analysis is indepen-
dent of the tiling chosen within the series up to linear scaling.
This means the DQC structure can in principle be analyzed using
any of the four tilings in Fig. 1. The second hierarchy level (green
color in Fig. 1B) is used in the present work. Details on tile
decorations are shown in SI Appendix, Fig. S2.

Growth of the Quasicrystalline Tiling. As an initial step, we inves-
tigate the appearance of densely packed local motifs that are
involved in the formation of various quasicrystals including
DQCs (29–32). In dense fluid of hard tetrahedra, three local
motifs have been identified: the pentagonal dipyramid (PD),
icosahedron, and 22-T (SI Appendix, Figs. S3 and S4). We in-
vestigate the evolution of these motifs along the DQC assembly

pathway obtained from an MC simulation initialized in a dense
fluid phase at constant packing fraction ϕ = 0.49 (Fig. 2A). At
this packing fraction, previous work has shown that fluid-DQC
coexistence is thermodynamically preferred (25). After 8 × 106
MC sweeps, the fraction of tetrahedra belonging to a 22-T motif
significantly increases, while the fraction of tetrahedra belonging
to the icosahedron and/or PD motifs only decreases. In the late
stages of the simulation, 22-T becomes the dominant motif. In
parallel with this, the local density distribution gradually evolves
from unimodal to bimodal by growing a second, high-density
peak (Fig. 2B). Both observations indicate that quasicrystal nu-
cleation occurs at 8 × 106 MC sweeps and that the motif involved
in nucleation and growth in the hard tetrahedron system is the
22-T (Movie S1).
We can obtain an intuitive picture of the contribution of 22-Ts

to DQC formation by considering their spatial arrangements in
the dense fluid. For this, we identify clusters of particle-sharing
22-Ts. Specifically, we track the clusters that comprise 22-Ts with
six or more neighboring 22-Ts (SI Appendix, Fig. S5). As shown
in SI Appendix, Fig. S6A, relatively small clusters emerge and
disappear in the fluid in the early stages of the simulation trajectory
(before nucleation). After 8 × 106 MC sweeps (postnucleation), a
single large cluster emerges (SI Appendix, Fig. S6B and Movie S2).
The diffraction pattern of the growing cluster exhibits 12-fold
symmetry (Fig. 2C), indicating that the cluster is growing as a DQC.
More discussion on the self-assembly of the DQC is provided in SI
Appendix, Figs. S7 and S8.
The 22-T motifs in the growing cluster form square, triangle,

and rhombus tiles as demonstrated by the networks of 22-T
centers (green solid circles) in Fig. 2D (SI Appendix, Fig. S9 and
Movie S3). Diffraction patterns and bond orientational order
diagrams of the 22-T centers in the growing cluster also show
12-fold symmetry (Fig. 2D and SI Appendix, Fig. S9B) with
sharpening peaks, confirming that the evolving arrangements of
the tiles correspond to a growing DQC tiling.

Analysis of Phason Strain. We calculated the phason strain in the
DQC tiling during quasicrystal growth by performing a phason
displacement field analysis (11, 20, 33). For this purpose, we
prepared a large DQC in a thin tetragonal box by seed-assisted
growth with N = 129,030 hard tetrahedra. The 12-fold axis of the

A B
scale = a × f -2

scale = a × f -1

scale = a × f 0

scale = a × f +1

Fig. 1. Tiling hierarchy in the DQC from hard regular tetrahedra. (A) Thick gray lines connect the centers of nearest-neighbor tetrahedra. The DQC can be
described as a decorated tiling on different hierarchy levels as indicated by colors. On each hierarchy level, tile vertices are located at the centers of motifs
marked by translucent colored circles. Connecting tile vertices gives square tiles, triangle tiles, and rhombus tiles (as phason defects (50, 51), SI Appendix, Fig.
S2) arranged into a quasiperiodic tiling. Four hierarchical tilings are shown within the yellow square tile. (B) Left column: PD (blue), interdigitating 22-T
(green), noninterdigitating 22-T (red), and large dodecahedral cluster (yellow) motifs. Middle and right columns: Arrangement of the motifs and relationship
to the tetrahedron network for a triangle tile. In this work, we analyze the DQC using the green scale.
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seed was aligned parallel to the short box axis such that growth of
the 12-fold tiling proceeded laterally (see Materials and Methods
for more details). We find that it is important to not restrict
phason strain relaxation by periodic boundary conditions. For
this reason, we performed the simulation at constant packing
fraction ϕ = 0.47, which corresponds to a density at which the
DQC coexists with its fluid. In this way, the DQC does not grow
into itself across periodic boundaries and is always surrounded by
fluid. The contact with the fluid allows the quasicrystal to con-
tinuously relax its phason strain and reach thermodynamic
equilibrium.
For the phason displacement analysis, each vertex am of the

two-dimensional (2D) tiling is assigned to a point in a four-
dimensional (4D) configurational space by a lifting procedure
(SI Appendix). The lifted 4D point is then projected onto the
phonon-corrected position of the vertex a‖m in 2D parallel space
and a coordinate in 2D perpendicular space a⊥m that encodes
phason displacement (SI Appendix) (34). The relationship of
the distance between two tile vertices in parallel space,
r‖mn =

⃒⃒
a‖m − a‖n

⃒⃒
, and the corresponding distance in perpendicular

space, r⊥mn =
⃒⃒
a⊥m − a⊥n

⃒⃒
characterizes phason strain and is defined

as the phason displacement (SI Appendix) (33). In particular, the
slope α of the linear fit, r⊥ = αr‖ + β is known as the phason
strain (SI Appendix) (35). We calculate α after removing back-
ground noise (SI Appendix, Fig. S10) and scale α by the value of
phason strain in the first-order approximant (SI Appendix) (25,
26) α1st.
Fig. 3A shows a growing DQC (first row) and its corre-

sponding quasicrystalline tiling (second row). DQC growth is
complete after approximately 9 × 106 MC sweeps, which is
reflected in the convergence of the reduced pressure Pp = P=kBT
(magenta arrowhead in Fig. 3B) and that of the fraction of
particles belonging to the solid (SI Appendix, Fig. S11). At
9 × 106 MC sweeps, the phason strain is α=α1st = 0.013 (green
arrow in Fig. 3 B and C), which is comparable to the phason
strain in the third-order approximant of the DQC (SI Appendix)
(25), α3rd=α1st = 0.010 (SI Appendix, Fig. S12). The phason strain
then gradually decreases, becoming negligible (zero) at around
18 × 106 MC sweeps (cyan arrow in Fig. 3 B and C). These results
demonstrate that only weak phason strain is introduced during
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Fig. 2. Evolution of the quasicrystalline tiling during DQC growth. (A) Fractions of tetrahedra that are part of an icosahedron, a 22-T, both an icosahedron
and a 22-T, a PD but not an icosahedron or a 22-T, and none of these motifs (“None”) during DQC growth. All five labels add up to 100% (SI Appendix, Fig.
S4). (B) Distribution of local density ϕloc sampled at four different MC checkpoints as marked by the four vertical lines in A. The distribution changes from
unimodal to bimodal and back to mostly unimodal, indicating first the appearance and then the partial disappearance of solid–fluid coexistence. Because the
simulation is conducted in the isochoric ensemble at ϕ = 0.49, peaks shift toward lower densities as the solid grows. (C) The growing solid is identified by
clustering 22-Ts that share tetrahedra as shown after 103106 and 153106 MC sweeps. Tetrahedra belonging to the fluid are translucent gray. Diffraction
patterns of the solid (Lower Right Inset) exhibit 12-fold symmetry indicating that the solid is a DQC. (D) Networks of 22-T centers in C, which define the
quasicrystalline tiling of DQC (green hierarchy level in Fig. 1). Spots in bond orientational order diagrams (Upper Right Inset) and diffraction patterns (Lower
Right Inset) of the tilings gradually sharpen as DQC growth proceeds.
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growth and subsequent relaxation eventually results in a high-
quality DQC with negligible phason strain and weak equilibrium
phason fluctuations (SI Appendix, Fig. S13 A and B). We confirm
formation of high-quality DQCs with negligible phason strain in
three independent simulations (SI Appendix, Fig. S14). More
discussion on the phason strain relaxation in our DQC is pro-
vided in SI Appendix. Next, we show that the observed phason
relaxation can even occur in quasicrystal approximants with in-
herent phason strain, which demonstrates thermodynamic sta-
bility of DQCs over the approximants.

Transformation of the First-Order Approximant. Quasicrystal approx-
imants are characterized by linear phason strain (36). Lower free
energy of the quasicrystal compared to its approximants is a pre-
requisite for thermodynamic stability of the quasicrystal and has thus
been investigated in both experiment (37) and simulation (38).
Specifically, the first-order DQC approximant was tested for relative
stability with respect to DQC in the hard tetrahedron system (26).
Equations of state demonstrated that the first-order approx-
imant is more densely packed than both the DQC and higher-
order approximants (26). These results suggested that the first-
order approximant is the thermodynamically stable phase. But,
no tests of its stability have been reported.
We revisited the stability of the DQC by initializing a simu-

lation from the first-order approximant (SI Appendix, Fig. S20)
(25, 26) in a tetragonal box at packing fraction ϕ = 0.47. We now

find that the approximant gradually transforms into the DQC.
This is demonstrated by the evolution of the diffraction pattern
from 4-fold symmetry to 12-fold symmetry (Fig. 4A and SI Ap-
pendix, Figs. S15 and S16 and Movie S4). The transformation is
also observed at a lower packing fraction ϕ = 0.46 (SI Appendix,
Fig. S17). These results indicate that the DQC is thermody-
namically more stable than approximants at these packing frac-
tions. We confirmed that the geometry of the simulation box
does not affect the transformation (SI Appendix, Fig. S18).

We calculated phason strain during the transformation using
the phason displacement field analysis. The phason strain decays
exponentially as α=α1st ∝ exp(−t=t0) with t0 = 14 × 106 as a func-
tion of MC sweeps t. Phason strain is zero within fluctuations
after t = 80 × 106 (Fig. 4B). Both types of simulations, growth
from the fluid and transformation of the approximant, converge
to a high-quality DQC free of phason strain, demonstrating
unambiguously the thermodynamic stability of the DQC. This is
an observation of a transformation from an approximant to a
quasicrystal in a three-dimensional (3D) simulation and the
demonstration of thermodynamic stability of a simulated DQC
in 3D. Our observation is in line with previous simulation reports
of entropically stabilized dodecagonal or decagonal quasicrystals
in 2D (38–40).

Relaxation of phason strain requires coherent phason flips
within the tiling. We analyzed the enhancement of structural quality
of the tiling by following the evolution of the spatial distribution of
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Fig. 3. Phason strain analysis during DQC growth starting from the hard tetrahedron fluid. (A) The growing DQC solid (Upper Row) and its tiling (Lower
Row). Diffraction patterns at 93106 MC sweeps for tetrahedron centers (Upper Right) and tiling vertices (Lower Right) show many peaks with 12-fold
symmetry, indicating a well-formed quasicrystal. (B) Evolution of system pressure P* (magenta) and phason strain αmeasured from the tiling (blue). The tiling
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tile vertices projected to perpendicular space. This distribution is
known as the occupation domain. It is a polygonal domain with
sharp boundaries for an ideal dodecagonal tiling with shield tiles, a
spherical domain blurred out near the boundary in the case of a
random tiling, and a noncompact domain in the case of an
approximant (33). During transformation from the approximant to
the DQC, the radial density of projected points in perpendicular
space gradually sharpens (Fig. 4 C andD), showing improvement in
the structural quality of the tiling. The occupation domain remains
blurred near the boundary, indicating that the DQC permits weak
random phason fluctuations in equilibrium (SI Appendix, Fig. S13 C
and D).

Discussion
Since 2004 a growing number of colloidal quasicrystals have been
reported (6–12), including a quasicrystal comprising tetrahedron-
shaped nanoparticles (41). But, the quasicrystals in these systems
are characterized by relatively low structural quality when com-
pared to that of classic examples of quasicrystals of atomic alloys
(2, 42). This leads to the question of whether soft-matter quasi-
crystals are necessarily of inferior structural quality. The purely
entropic hard tetrahedron system studied in this paper can be
considered a soft-matter system because the particles interact

weakly (i.e., not at all) compared to atoms. Our observation of the
formation of high-quality DQCs with negligible phason strain
demonstrates that soft-matter quasicrystals can indeed exhibit a
high degree of quasiperiodic order comparable to their alloy
counterparts. Our work also reveals a potential limiting factor to-
ward quasicrystals with high structural quality: the need to anneal
the quasicrystal long enough to heal out phason strain and other
defects created initially during rapid growth. Atoms in alloys move
orders of magnitude faster than the much more massive colloids,
which explains why annealing is less of an issue in traditional QCs.
Future work should search for formation modes that lead to soft-
matter quasicrystals with few defects (43) or defects that heal
quickly. Those soft-matter quasicrystals will be the best candidates
for functional materials, e.g., complete photonic bandgap materials
for next-generation optical devices (44, 45) made via self-assembly.

Materials and Methods
Particle Geometry. A tetrahedron is the convex hull of the four vertices
v1 = (1,1,1), v2 = (1, − 1, − 1), v3 = (−1,1, − 1), v4 = (−1, − 1,1). Edge length

and volume of the tetrahedra are σ = 2
̅̅̅
2

√
and V = 8=3, respectively.

Simulation Code. Simulations were performed with the hard-particle MC
(HPMC) (46) simulation code implemented in the HOOMD-blue software
package, version 2.4.2 (47). We used HPMC on multiple central processing
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Fig. 4. Continuous transformation from the first-order approximant to the DQC during a long MC simulation. (A) Evolution of the diffraction pattern from
fourfold symmetry in the approximant (03106 MC sweeps) to 12-fold symmetry in the DQC (803106 MC sweeps). (B) Phason strain α=α1st gradually relaxes to
zero during the transformation. (C) Radial density in perpendicular space r⊥ sharpens over time toward a compact occupation domain as expected for a high-
quality DQC. (D) Snapshots of projected tile vertices in the perpendicular space sampled at 03106, 103106, and 803106 MC sweeps. When the transformation
is complete (803106 MC sweeps), the positions form a single roughly circular domain with radius δ, where δ is the tile edge length. Due to random phason
fluctuations, the boundary of the domain is blurred.
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units (CPUs) with message passing interface domain decomposition or on a
single graphics processing unit at XSEDE (48). All simulations were per-
formed in the isochoric ensemble with periodic boundary conditions. The
open-source analysis package freud (49) was used to detect motifs via pat-
tern recognition and to quantify the local density distribution of tetrahedra.

Self-Assembly Simulation. Simulations were started from a fluid of 16,384
hard tetrahedra at low density, compressed to either packing fraction
ϕ = 0.49 or ϕ = 0.52, and run for 20 × 106 MC sweeps.

Analysis of Local Motifs. Positions and orientations of tetrahedra were av-
eraged over short trajectories to reduce noise. Icosahedron and 22-T motifs
were detected by grouping and vector displacement analysis. In the grouping
analysis, tetrahedron vertices within distance cutoff 0.3σ were grouped. The
clusters of tetrahedra containing groups of size 20 and 22 vertices are can-
didates for icosahedron and 22-T motifs, respectively. Subsequently, in the
vector displacement analysis, we created the set of vectors connecting the
center of a candidate cluster to the centers of the tetrahedra in the candi-
date cluster. If the angular displacements between the vector set of the
candidate cluster and that of the ideal motif was lower than a threshold, the
candidate motif was successfully identified with the ideal motif. Detection of
PDs was performed analogously with the difference that tetrahedron edge
centers instead of vertices were grouped. Local packing fraction of a tetra-
hedron ϕloc is defined as the packing fraction around the tetrahedron within
a sphere of radius 1.77σ. The local density distribution is the histogram of
local packing fractions.

Seed-Assisted DQC Growth (Approximant-to-DQC Transformation) Simulations.
The simulationwas started from a fluid prepared by placing 129,600 (136,000)
hard, regular tetrahedra at low density in a thin tetragonal simulation box
and compressing the system to ϕ = 0.46. A static seed of 546 (50,324) hard
tetrahedra was placed with the 12-fold axis of the seed pointed along the
thin box dimension as shown in SI Appendix, Fig. S19 (SI Appendix, Fig. S20)
and all overlapping hard tetrahedra of the fluid removed. The simulation
box was then compressed to ϕ = 0.47. The final box dimension was
69.3σ × 6.71σ × 69.3σ (70.97σ × 6.71σ × 70.97σ). The HPMC simulation was
run for 23 × 106 95 × 106( ) MC sweeps with the seed immobilized for about

106 MC sweeps and then released. In the seed-assisted growth simulation,
the DQC grows primarily in the quasiperiodic plane perpendicular to the
short box axis. This approach grows a large DQC in reasonable computation
time, a prerequisite to study the evolution of phason strain during the
growth process. We confirmed that the short box axis does not significantly
affect growth of the DQC at ϕ = 0.47 by performing simulations in boxes
with various thicknesses (SI Appendix, Fig. S21).

Tiling Determination for Phason Strain Analysis. Samples were quickly com-
pressed to ϕ = 0.64 to remove structural noise. The DQC was set as the seed-
containing tetrahedron cluster with local densities ϕloc > 0.68 (SI Appendix,
Fig. S22). The approximant was set as the largest tetrahedron cluster with
local densities ϕloc > 0.68. A 2D tiling with edge length δ was obtained by
projecting the centers of interdigitating 22-T motifs onto the plane per-
pendicular to the 12-fold axis. Because our DQC primarily grows in the 2D
quasiperiodic plane, the DQC is well described by a 2D tiling. Radial density
of particle positions in perpendicular space was obtained by measuring
number density in concentric rings around the center of mass.

Data Availability. All study data are included in the article and/or supporting
information.
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