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SUMMARY
Ekman layers develop at the boundaries of the Earth’s fluid core in response to precession.
Instabilities in these layer lead to turbulence when a local Reynolds number, Re, based on the
thickness of the Ekman layer, exceeds a critical value. The transition to turbulence is often
assessed using experiments for steady Ekman layers, where the interior geostrophic flow is
independent of time. Precessionally driven flow varies on diurnal timescales, so the transition
to turbulence may occur at a different value of Re. We use 3-D numerical calculations in a local
Cartesian geometry to assess the transition to turbulence in precessional flow. Calculations
retain the horizontal component of the rotation vector and account for the influence of fluid
stratification. The transition to turbulence in a neutrally stratified fluid occurs near Re = 500,
which is higher than the value Re = 150 usually cited for steady Ekman layers. However, it
is comparable to the nominal value for precessional flow in the Earth. Complications due to
fluid stratification or a magnetic field can suppress the transition to turbulence, reducing the
likelihood of turbulent Ekman layers in the Earth’s core.
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1 INTRODUCTION

Precession drives fluid motion in the Earth’s liquid core (Stewartson
& Roberts 1963). A large part of this motion is comprised of a rigid-
body rotation relative to the overlying mantle. Viscous boundary
layers (i.e. Ekman layers) form to satisfy no-slip boundary condi-
tions. This basic flow is subject to a number of instabilities. Inertial
instabilities can develop in the interior of the fluid (Kerswell 1993),
and shear instabilities can occur in the Ekman layers (Lorenzani &
Tilgner 2001). A quantitative assessment of the shear instabilities
(Cebron et al. 2019) is often based on the related and well-studied
case of steady Ekman layers (Deusebio et al. 2014), where the in-
terior flow is independent of time. By comparison, the precessional
flow varies on diurnal timescales. This means that the timescale for
change in the flow is comparable to the time required to develop
a steady Ekman layer. Precessional flows should still become tur-
bulent when the velocity is large enough, but differences might be
expected from predictions based on a steady Ekman layer (Caldwell
& Van Atta 1970).

Linear stability of steady Ekman layers is formulated in terms of a
local Reynolds number,Re=ULν /ν, whereU is the amplitude of the
interior flow, ν is the kinematic viscosity, and Lν is the thickness of
the Ekman layer (defined below). The onset of instability occurs at
Re= 55 and takes the form of rolls that are slightly misaligned with
the direction of flow (Lilly 1966). Accounting for the horizontal
component of the rotation vector in Cartesian geometries causes
a modest shift the critical Re, depending on the direction of flow
(Leibovich & Lele 1985). Subsequent development of turbulent

flow is shown by experiments to occur once Re = 150 (Caldwell &
Van Atta 1970; Sous et al. 2013).

Precessionally driven flow is nominally 4 mm s−1 near the core–
mantle boundary (Tilgner 2015), which corresponds to a local Re≈
500 for a representative value of viscosity. Flow with this range of
Re should become turbulent if the results of steady Ekman layers are
applicable to oscillatory flows. A possible complication in the core
arises from the presence of a magnetic field. The study of Desjardins
et al. (1986) found that a radial magnetic field increases the critical
value of Re by a factor of two (or less) for plausible magnetic fields.
This change is probably not enough to alter our expectations of
turbulence based on the steady Ekman layer. Consequently, a key
question for precessional flow is whether the steady Ekman layer
establishes the conditions for turbulence.

To address this question we run a series of numerical experiments
in Cartesian geometries to quantify the nature of turbulence in both
steady and oscillatory Ekman layers. Results for the steady Ekman
layer confirm many of the well-established features of this flow.
Extensions to the oscillatory Ekman layer show that the onset of
instability occurs in a form similar to that for the steady case.
However, turbulence does not occur until Re reaches or exceeds
500. These results suggest that precessional flow in the Earth lies
close to the conditions for turbulent boundary layers. Our turbulent
solutions at Re = 500 have viscous stresses at the boundary that
are only marginally above those for the basic laminar flow. This
means that turbulent Ekman layers should not substantially alter the
viscous stress on the mantle. However, turbulence can be effective
in mixing stratified fluid near the boundary.
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We begin in Section 2 with a brief discussion of steady and
oscillatory Ekman layers. We adopt a frame of reference that moves
with the interior fluid so that the Ekman layer is generated by moving
the solid boundary relative to a static interior. This choice greatly
simplifies the numerical implementation. The numerical model is
developed in Section 3 using Oceananigans.jl (Ramadhan et al.
2018), which is a flexible solver for incompressible fluid flow. A
series of 3-D solutions for steady and oscillatory Ekman layers is
presented in Section 4. We explore the role of fluid stratification in
Section 5 and draw conclusions in Section 6.

2 STEADY AND OSCILLATORY EKMAN
LAYERS

Ekman layers in this study are described in a local Cartesian system
[x, y, z], where x and y denote the eastward and northward coor-
dinates, and z defines the vertical position. The fluid occupies the
region z ≤ 0. We avoid the need to prescribe a background flow in
the interior by imposing a horizontal velocity on the solid boundary
at z = 0 above an initially static fluid. The steady and oscillatory
cases are distinguished by the time dependence of this boundary
condition.

In the absence of stratification the fluid velocity, u = [u, v, w],
in the boundary layer is governed by (see the Appendix)

∂u

∂t
+ u · ∇u + f × u = − 1

ρ
∇P + ν∇2u (1)

where P is the modified pressure and the Coriolis parameter,

f = 2� [0, sin θ, cos θ ] , (2)

depends on the planetary rotation rate, �, and the colatitude, θ , of
the local Cartesian coordinate system. Solutions are also subject to
the incompressibility condition ∇ · u = 0.

2.1 Steady Case

Steady solutions arise when the imposed boundary motion is inde-
pendent of time. A solution is sought in the form

u = �(ũ(z)[x̂ + i ŷ]) (3)

where ũ(z) describes the unknown depth-dependence and (x̂, ŷ) de-
fine unit vectors in the coordinate directions. The horizontal com-
ponents of the momentum equation in the Ekman layer represent a
balance between Coriolis and viscous forces, whereas the vertical
component involves the pressure gradient and the horizontal com-
ponent of the Coriolis parameter. Substitution of eq. (3) into eq. (1)
yields

∂2ũ

∂z2
= −i2(�/ν) cos θ ũ(z) (4)

and

1

ρ

∂P

∂z
= −2� sin θ ũ(z) . (5)

Solutions for P (if needed) can be obtained from eq. (5) once ũ(z) is
computed from eq. (4). Setting ũ(0) = U (a real constant) imposes
a steady boundary velocity in the x̂ direction. The solution for ũ(z)
in the region z ≤ 0 becomes

ũ(z) = Ue(1−i)z/Lν (6)

Figure 1. Velocity components u and v in a steady Ekman layer. The ana-
lytical solution (solid lines) is compared with a nearly steady-state solution
from a 3-D numerical model (circles) at Re = 25.

where

Lν =
√

ν

� cos θ
(7)

defines the thickness of the steady Ekman layer. Individual compo-
nents of the velocity are

[u, v, w] = Uez/Lν [cos(z/Lν), sin(z/Lν), 0] . (8)

A representative solution for u and v at cos θ = 1 is shown in Fig. 1.
We also plot the velocities from a 3-D numerical solution of eq. (1)
at Re = 25. A nearly steady numerical solution is established after
a time interval of several rotation periods (i.e. T = 2π /�).

2.2 Oscillatory Case

A large part of the fluid motion due to precession is attributed to
a misalignment of the angular velocity of the core from that of the
mantle. This misalignment for the case of the Earth is small (Busse
1968), which means that the relative rotation of the core can be
approximated by a time-dependent vector in the equatorial plane
(defined by unit vectors X̂ and Ŷ ). We express the relative rotation
of the core in the form (Rochester et al. 1975)

ω f = �( ω̃ f [̃X̂ + iŶ ] ei�t ), (9)

so the relative velocity of the core becomes

v f (r, t) = ω f × r, (10)

where r is the position vector in a mantle-fixed frame. Expressing
v f in spherical coordinates [r, θ , φ] gives

v f = �( iω̃ f r [θ̂ + i cos θ φ̂] eiφei�t ) (11)

where [r̂, θ̂ , φ̂] define the coordinate basis vectors. A conversion
of v f to our local Cartesian system is done by letting x̂ = φ̂ and
ŷ = −θ̂ . The velocity of the mantle relative to the core is simply
−v f . A nominal estimate for the amplitude of the motion at the core–
mantle boundary (r = 3480 km) is specified by the misalignment
angle m̃ f = 1.7 × 10−5 radian (Tilgner 2015). The amplitude of the
relative rotation is ω̃ f = �m̃ f , and the relative velocity is roughly
U = ω̃ f r ≈ 4.3 mm s−1. Thus the boundary condition at z = 0 in
the oscillatory case is

[u, v, w] = U [cos θ cos �(t − t0), −U sin �(t − t0), 0] (12)
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where t0 makes a specific choice for the initial phase of the oscil-
latory motion. This motion is circular near the poles and becomes
increasingly linear towards the equator (Pais & Le Mouel 2001)

A general solution for the oscillatory Ekman layer can be found in
terms of (complex) velocity components u± = u ± iv. A horizontal
balance between inertia, Coriolis and viscous forces yields

∂u±
∂z2

= ±i
�

ν
(2 cos θ ± 1) (13)

so the solution for the horizontal velocity becomes

u±(z, t) = u±(0, t)e(1±i)z/L±
ν , (14)

where

L±
ν =

√
ν

�

(
2

2 cos θ ± 1

)1/2

. (15)

The nominal thickness of the boundary layer is (ν/�)1/2, although
the value for L−

ν diverges at θ = π /3 because 2cos θ − 1 = 0. (A
similar divergence in L+

ν occurs at θ = 2π /3). We return to this
point in the discussion of the numerical solution.

3 NUMERICAL METHOD

3-D solutions of eq. (1) are computed using Oceananigans.jl (Ra-
madhan et al. 2018). The governing equations are expressed in
non-dimensional form using Lν = √

ν/� as a length scale and U
as a velocity scale. The timescale is Lν /U and the pressure scale is
ρU2. The non-dimensional form of the momentum equation in eq.
(1) becomes

∂u

∂t
+ u · ∇u + 2Re−11� × u = −∇P + Re−1∇2u, (16)

where 1� = [0, sin θ, cos θ ] is the unit vector in the direction of the
planetary rotation axis. Solutions in a neutrally stratified fluid are
entirely determined by the Reynolds number

Re = ULν

ν
= U√

ν�
. (17)

Representative values for viscosity, ν = 10−6 m2 s−1 (Ichikawa &
Tsuchya 2015), and rotation rate, � = 0.7292 × 10−4 s−1, give a
boundary thickness of Lν = 0.11 m. Adopting a boundary velocity
ofU= 4.3 mm s−1 means that the Reynolds number for precessional
flow at the core–mantle boundary is Re = 470.

Numerical solutions are based on the finite-volume method using
963 cells in a domain with non-dimensional size 30 × 30 × 20.
(Consistent results are obtained using 643 cells in a 20 × 20 × 12.5
domain, suggesting that the domain size is not an important factor.)
Time-stepping is done using a third-order Runge–Kutta method and
the advective terms are handled using a fifth-order WENO method
(Shu 1998). Boundary conditions in x and y are periodic, and a
stress-free condition is imposed on the lower boundary at z = −20.
A no-slip condition at the top boundary (z = 0) defines the type of
Ekman layer. A constant boundary velocity in the x direction defines
the steady Ekman layer. An oscillatory Ekman layer is defined using
the boundary conditions in eq. (12). To be specific we set t0 = 0
in (12), although solutions are evolved over one or more rotation
periods (defined by T = 2π /�). This means that a full cycle of
time-varying boundary conditions are imposed in the calculation.
Extensions of the numerical model to account for the effects of fluid
stratification are presented in Section 5.

Figure 2. Root-mean-square velocity variation 
urms(z) about a horizontal
average. Variations at z = −3.2 are plotted as a function time for several Re.

4 NUMERICAL RESULTS

We begin our discussion with the steady Ekman layer. Calculations
for this case confirm several well-known features and provide a
context for assessing the oscillatory Ekman layer.

4.1 Solutions for a steady Ekman Layer

We consider solutions at Re = 100, 200 and 300 to illustrate the
transition from laminar to turbulent flow. The initial condition for
each solution corresponds to a static fluid with small random fluctu-
ations. Growth of these random fluctuations is monitored using the
root-mean-square velocity variation about a horizontal average. We
denote this quantity by 
urms(z) and note that it vanishes for a lam-
inar Ekman layer. Fig. 2 shows the temporal evolution of 
urms(z)
at a depth of z= −3.2 for the three values of Re. The initial value of

urms(z) is set by the amplitude of the random fluctuations (≈10−2),
although much of this initial perturbation has spatial wavelengths
that decay with time. A smaller number of unstable modes grow
with time and eventually dominate the solution. Growth of the in-
stability at Re = 100 is very slow and remains below 10−4 after
two rotation periods (i.e. t/T = 2). On the other hand, the solution
at Re = 100 does not decay, indicating that this Ekman layer is un-
stable. However, the weak growth of this instability is not sufficient
to produce turbulence. By comparison, the solutions at Re = 200
and 300 grow more rapidly and eventually saturate before t/T ≈ 1.
Differences between the solutions at Re = 100 and Re = 200, 300
are consistent with a transition to turbulent flow at Re = 150.

The planform of u(x, y, z) at z= −3.2 reveals striking differences
between Re = 100 and 300 (see Fig. 3). Flow at Re = 300 exhibits
strong spatial variability (Fig. 3b), whereas the motion at Re = 100
is close to the laminar solution (Fig. 3a). Calculating and removing
the horizontal average of u(x, y, z) at z = −3.2 reveals a wave-like
feature that aligns in the direction of flow. This flow is presumably
a superposition of modes that are unstable above the critical value
of Re = 55. Consequently, the flow at Re = 100 may not represent
a single mode of instability, but the collective properties of the
unstable modes appear to account for the computed flow.

The frictional velocity, u∗, is another important property of the
Ekman layer. This quantity is defined in terms of the viscous stresses
at z = 0 according to (Tennekes & Lumley 1972)

|τ | = ρ u2
∗ , (18)

where |τ | denotes the magnitude of the horizontal shear stress in
the x̂ and ŷ directions. Fig. 4 shows the value of u∗ at Re = 300,
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Figure 3. Eastward velocity u(x, y, z) in a steady Ekman layer at a depth of z = −3.2. (a) The variation in u about a horizontal average at Re = 100 reveals a
wave-like disturbance in the direction of the imposed boundary velocity. (b) The variation in u(x, y, z) at Re = 300 shows a spatially complex flow.

Figure 4. Frictional velocity u∗ as a function of time for Re = 300. The
numerical solution for u∗ is normalized by the frictional velocity for a
laminar flow.

normalized by the frictional velocity for laminar flow

ulam
∗ = 21/4Re−1/2 u(0) . (19)

Large stresses at early times are due to the transient associated with
a static initial condition. Once the turbulent flow evolves into a
statistical steady-state we see fluctuations in u∗ slightly above the
laminar value. We conclude that turbulence at Re = 300 does not
substantially alter the stress on the solid boundary.

Another quantity of interest is the depth of the turbulent Ekman
layer (denoted by Lt). Dimensional arguments suggest (Blackadar
& Tennekes 1968)

L t ≈ u∗
fz

(20)

where fz = 2�cos θ is the vertical component of f . Noting that
u∗ ≈ ulam

∗ at Re = 300 we have

L t ≈
(

Re

23/2

)1/2

Lν (21)

when cos θ = 1. This means that Lt ≈ 10Lν at Re = 300. By
comparison, the vertical flow w(x, y, z) at Re = 300 is mainly
confined to a region above z = −8 (see Fig. 5). This result suggests
that the depth of the turbulent layer is somewhat smaller than u∗/fz;
a better estimate is L t = 0.8 u∗/ fz .

All of the results in Figs 2–5 have been computed without a hor-
izontal component in f . The neglect of fy is usually justified when
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Figure 5. Turbulent vertical flow w(x, y, z) in a steady Ekman layer at Re = 300. Most of the turbulent flow in a y − z cross-section is confined to a region
above z = −8.

Figure 6. RMS variation 
urms(z) in a steady Ekman layer at mid-latitude
θ = π /4. The growth of instabilities at Re = 200 depends on the direction of
flow when the horizontal component of the rotation vector is retained in the
calculation. Eastward flow in the core corresponds to a negative boundary
velocity.

the vertical extent of flow is small compared to the horizontal di-
mensions. This approximation is valid for the laminar Ekman layer,
but it ceases to be true once instabilities develop. The horizontal
scale of the instability is comparable to the vertical scale (Lei-
bovich & Lele 1985), so the conventional arguments do not apply.
One consequence of including fy in the dynamics is that the insta-
bility depends on the direction of flow. Fig. 6 shows the evolution
of 
urms at Re = 200 and z = −3.2 for positive and negative values
of U. Positive/negative boundary velocities are equivalent to west-
ward/eastward flows in the core. Eastward flow produces a faster
growth rate in 
urms and a higher value once the flow equilibrates.
Conversely, westward flow has a slower growth rate for 
urms and
a lower level of saturation. Calculations for 
urms(z) with cos θ =
1 and fy = 0 are intermediate between these two results.

4.2 Solutions for an Oscillatory Ekman Layer

Instabilities in an oscillatory Ekman layer have a form similar to
those in a steady Ekman layer. However, the value of Re for the
transition to turbulence appears to be different. The evolution of

Figure 7. Evolution of velocity variation 
urms(z) in an oscillatory Ekman
layer. The value of 
urms(z) is evaluated at z = −3.2 for several choices
of Re and colatitude θ . The Ekman layers at Re = 500 become turbulent
after an initial transient, whereas the Ekman layer at Re = 250 exhibits
low-amplitude oscillations.


urms(z) at z = −3.2 for Re = 250 (and θ = 0) exhibits low-
amplitude oscillations (see Fig. 7). By comparison, the solution at
Re = 500 exhibits turbulent fluctuations in 
urms around a value of
roughly 10−1. Only small differences in the amplitude of 
urms(z)
are recovered for θ = 0 and θ = π /3 after the initial transient.
There is also a hint of a small modulation in the turbulent amplitude
of 
urms(z) for θ = π /3 due to changes in the amplitude of the
boundary flow over a cycle.

Differences in the solutions at Re = 250 and 500 are also evident
from the planform of u(x, y, z) at z = −3.2 (see Fig. 8). The
solution for u(x, y, z) at Re = 250 has the form of rolls with a
time-dependent orientation. By comparison the solution at Re =
500 is more disordered. Differences are also apparent in the friction
velocity u∗. Here we normalize the frictional velocity by the laminar
value for precessional flow at θ = 0,

ulam
∗ = Re−1/2u(0) . (22)

The solution for u∗ at Re = 250 is very close the laminar value after
an initial transient (Fig. 9). By comparison u∗ at Re = 500 jumps
to 1.2ulam

∗ after the onset of turbulence. The usual definition of the
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Figure 8. Eastward velocity u(x, y, z) in an oscillatory Ekman layer at z = −3.2. (a) The solution at Re = 250 exhibits low-amplitude oscillations. (b) The
solution at Re = 500 is turbulent.

Figure 9. Frictional velocity u∗ in an oscillatory Ekman layer as a function
of time. Solutions are normalized by the laminar value of u∗. The solution
at Re = 500 shows only a modest increase in friction after the onset of
turbulence.

boundary-layer thickness,

L t ≈ u∗
fz

≈
(

1.2

2

)
Re1/2Lν , (23)

yields Lt = 13Lν . Our numerical solution for w(x, y, z) at Re = 500
and θ = 0 (see Fig. 10) reveals that flow is mainly confined to the
region above z = −10, although a weak flow persists below this
depth. The depth of the turbulent flow at θ = π /3 is broadly similar.
Consequently the active part of the turbulent layer is confined to a
layer with a thickness of roughly 0.8u∗/ fz .

There is no vestige in the numerical solution of a divergence in the
laminar boundary-layer thickness when θ = π /3. Viscous stresses
for θ = π /3 are smaller than those for θ = 0, but this is partly
due a lower boundary velocity over part of the cycle. Normalizing
the gradients ∂u/∂z and ∂v/∂z by the respective boundary velocities
defines an effective length scale that differs by only 20 per cent
between θ = π /3 and θ = 0. It is likely that divergent boundary
layers do not develop in a transient numerical solution. While a
laminar viscous layer grows into the underlying fluid at early times,
the onset of turbulence alters the character of the Ekman layer.
The additional complexity in the governing equations prevents the
solution from reaching the long-time, laminar solution in eq. (15).

Boundary-layer instabilities in precessional flow have previously
been reported by Lorenzani & Tilgner (2001). Their numerical cal-
culations revealed instabilities above a nominal value of Re. Be-
cause these authors adopted a boundary-layer thickness of 1.4Lν ,
their critical value for Re in our notation is ≈140. It is likely that
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Figure 10. Turbulent vertical velocity w(x, y, z) at Re = 500 in a y–z cross-section. Solutions at (a) θ = 0 and (b) θ = π /3 are broadly similar in amplitude.
Weaker vertical flow persists below z = −10.

these instabilities represent wave-like features (analogous to our so-
lution at Re = 250). A peak vertical flow was reported at a depth
of 1.4Lν , which is close to the depth of the maximum vertical flow
(≈2Lν) in our calculation at Re = 250. Moreover the depth of the
peak vertical flow in Lorenzani & Tilgner (2001) was nearly uni-
form over the boundary. Our results at Re = 500 suggest that a
turbulent boundary layer is deeper than 1.4Lν . Moreover, we expect
large local variations in the amplitude of w(x, y, z). We conclude
that Ekman-layer instabilities are likely in the Earth’s core, but the
nominal value of Re = 500 for the precessional flow appears to be
just large enough to permit a transition to turbulence.

5 INFLUENCE OF STRATIF ICAT ION

Fluid stratification suppresses turbulence by restricting vertical flow
(Wei & Tilgner 2013). We account for the influence of stratification
by adding buoyancy effects to the momentum equation in eq. (1).
The buoyancy term for the influence of density perturbations, 
ρ,
is

Fb = 
ρ

ρ(z0)
g = − 
ρ

ρ(z0)
g ẑ ≡ b ẑ (24)

where g = −g ẑ is the gravity vector, ρ(z0) is the reference density
and b defines the buoyancy perturbation due to motion through a
background buoyancy profile

B(z) = − ρ(z)

ρ(z0)
g , (25)

which is independent of time. The strength of stratification is defined
by

∂B

∂z
= N 2 (26)

where N2 is the (squared) buoyancy frequency.
Stratification may arise from either thermal or compositional

gradients at the top of the core. The origin of stratification is not
crucial for present purposes, but we do need to specify a value for
the diffusivity, κ , of the buoyancy perturbation. The conservation
equation for b is

∂b

∂t
+ u · ∇(B + b) = κ∇2b, (27)

which can be written in non-dimensional form using N2Lν as a
characteristic scale for B and b. (The previous choices for length
and timescales also apply.) The non-dimensional equation for b
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Figure 11. Vertical stratification in an oscillatory Ekman layer as a function
of time. The total buoyancy B + b coincides with the initial stratification B
= N2z at t/T = 0 because the initial perturbation b vanishes. The strength
of the initial stratification is set by N = � and the non-dimensional solution
for B + b is scaled by N2Lν . The amplitude of boundary motion in the
oscillatory Ekman layer is defined by Re = 500. Turbulent mixing begins in
the upper part of the layer (z > −8) after the onset of turbulence at t/T = 1.
Mixing continues across the entire domain at later times.

yields a single dimensionless parameter

Pe = ULν

κ
. (28)

The corresponding non-dimensional momentum equation with
buoyancy effects becomes

∂u

∂t
+ u · ∇u + 2Re−11� × u = −∇P + Ri b ẑ + Re−1∇2u (29)

where

Ri = N 2

(U/Lν)2
(30)

can be interpreted as the Richardson number.
Numerical solutions of eqs (27) and (29) are obtained using 963

cells in a domain with dimensions 30 × 30 × 20. We let κ = ν and
take N = �. Periodic boundary conditions are imposed on b in the x
and y directions, and no-flux conditions are imposed on b at the top
and bottom boundaries. (Recall that the background stratification,
B(z), is independent of time.) Velocity boundary conditions are
chosen to define an oscillatory Ekman layer with Re = 500.

Expectations for the influence of stratification are guided by the
value of Ri. Introducing a dimensionless buoyancy frequency Ñ =
N/� allows us to write the Richardson number as Ri = (Ñ/Re)2.
Our previously stated choices for Ñ = 1 and Re = 500 give Ri
= 4 × 10−6, which is small compared with the usual condition
Ri < 0.25 for instability (Miles 1961). We expect this level of
stratification to have little influence on the turbulent, and only small
differences in 
urms(z) are found in the calculation relative to the
neutrally stratified case. Consequently, we focus on the extent to
which turbulence homogenizes the initial stratification.

Fig. 11 shows the horizontal average of the total buoyancy field,
B + b, as a function of depth at several different times. The initial
buoyancy profile at t = 0 is defined solely by B because the initial
value of the perturbation is b = 0. After one rotation period (t/T =
1) the region above z = −8 has been partially mixed to produce a
weaker stratification, whereas the deeper region develops a steeper
buoyancy profile. Later (t/T = 1.3) the total buoyancy field is modi-
fied across the entire layer; values at the top and bottom of the layer

are evolving towards a mean value of B + b = −10. Given that the
overall strength of the stratification is reduced at t/T = 1.3, it seems
likely that mixing will continue with time.

The break in the buoyancy profile at z = −8 and t/T = 1 roughly
coincides with the base of the turbulent layer, as inferred from the
amplitude of the vertical velocity. A weaker vertical flow persists
below the nominal depth of the turbulent layer, and this flow appears
to be sufficient to cause mixing. We expect this mixing to continue
with time because stratification is diminished at t/T = 1.3, and this
lowers resistance to further mixing. However, mixing cannot extend
to substantially greater depths because the amplitude of w(x, y, z)
gradually decreases with depth. Eventually the vertical flow will
be insufficient to mix the background stratification. A numerical
assessment of the depth of mixing requires larger domains that
retain the resolution needed to capture the viscous boundary layer.

Increasing the strength of the stratification to a value of N =
10� could reasonably be expected to limit the depth of mixing.
Instead, the occurrence of turbulence is suppressed, even though the
Richardson number is still small (Ri = 4 × 10−4). An oscillatory
fluctuation in 
urms appears with a persistent peak value of roughly
10−3. Decreasing the stratification to N = 5� does not change the
oscillatory behaviour, although peak amplitude is slightly higher.
This result can be attributed to the close proximity of Re = 500 to
the onset of turbulence in the neutral case. Even small values for Ri
are sufficient to change the nature of the solution. Setting Re= 1000
shifts the solution further into the turbulent regime and reduces the
sensitivity to very small values of Ri. Consequently, the onset of
turbulence in the Ekman layer of precessional flow with Re ≈ 500
is liable to be sensitive to other factors, such as stratification or the
presence of a magnetic field.

6 CONCLUS IONS

Ekman layers in the Earth due to precession are probably unstable
(Lorenzani & Tilgner 2001), but we do not expect these layers to
become fully turbulent under all possible conditions. Numerical
calculations at a representative Reynolds number of Re = 500,
based on the boundary-layer thickness Lν , show that turbulence
develops in the case of neutral stratification. The thickness of the
turbulent Ekman layer at Re = 500 is nominally 10Lν . However,
the introduction of fluid stratification can suppress the development
of turbulence. A weak stratification (N = �) appeared to have
little influence on the flow relative to the neutral case, whereas a
stronger stratification (N = 10�) suppresses turbulence. Mixing in
the case of weak stratification extends below the nominal depth of
the turbulent layer, indicating that small-amplitude vertical motions
persist below the nominal depth of the turbulent layer.

Strong sensitivity to the strength of stratification is surprising
because the value of the Richardson number, Ri, is well below
the usual condition for instability (i.e. Ri < 0.25). We attribute
this sensitivity to a correspondence between the value of Re in
the Earth and the value required for the transition to turbulence.
A larger value for Re shifts the solution further into the turbulent
regime and reduces the sensitivity to Ri. Strong stratification (N =
10�) does not inhibit turbulent mixing at Re = 1000, although less
mixing occurs below the base of the turbulent layer. Geophysical
relevance of this result is possible with a lower value of viscosity
(ν ≈ 0.25 × 10−6 m2s−1). Such a value would enable mixing of
plausible stratifications in a region a few meters below the core–
mantle boundary, but it would have much less influence on the
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magnitude of the viscous stress. The turbulent stress is generally
within a factor of two of the laminar value, even when Re = 1000.
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APPENDIX : GOVERNING EQUATIONS

Several different reference frames have been used in previous stud-
ies to describe precessionally driven motion in the fluid core. The
studies of Busse (1968) and Noir et al. (2003) adopted a frame of
reference that rotates with the slow angular velocity of precession,
�p. This choice means that the angular velocities of the mantle,
�m, and the fluid core, �f , are independent of time. Alternatively,
the fluid motion can be described in a coordinate system that rotates
with the mantle. In this case we need to account for changes in
the orientation of �m due to precession. A third option (considered
here) adopts a reference frame that rotates with the mean angular
velocity of the fluid core (e.g. Noir et al. 2001). The angular mis-
alignment between �m and �f is quite small (m̃f ≈ 10−5 radian),
and both of these rotation vectors precess at the same rate (Busse
1968).

It is convenient to start with the equations of motion in the mantle-
fixed frame (Tilgner & Busse 2001)

∂u

∂t
+ u · ∇u + 2(�m + �p) × u = − 1

ρ
∇P + ν∇2u

−(�p × �m) × r, (A1)

where the Coriolis term includes a contribution from precession and
the Poincaré term is added to the end of eq. (A1) to account for time
variations in �m. Solutions for flow in the interior of the core are
often obtained by setting the viscous term to zero (Stewartson &
Roberts 1963). This solution is possible when |�p|/|�m| ≈ 10−7 is
much less than the flattening of the core–mantle boundary (εf = 2.6
× 10−3). The resulting inviscid fluid velocity, u0, is comprised of a
rigid rotation and a small correction to satisfy boundary conditions
on the normal component of the velocity u0 · n = 0, where n is the
(outward) unit normal on the boundary. A viscous correction, u1,
is added to the inviscid solution to satisfy no-slip conditions (i.e.
u1 = −u0). The equations for the viscous correction are obtained by
substituting u = u0 + u1 into eq. (A1) and subtracting the known
solution for u0, yielding

∂u1

∂t
+ u1 · ∇u0 + u0 · ∇u1 + u1 · ∇u1 + 2(�m + �p)

× u1 = − 1

ρ
∇P1 + ν∇2u1, (A2)
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where P1 is the pressure perturbation associated with u1. Steep
gradients in u1 develop in the direction normal to the boundary.
Because these gradients are perpendicular to u0 near the boundary
we can drop the term u0 · ∇u1 from eq. (A2). Similarly, we can drop
u1 · ∇u0 because the gradients in u0 are quite weak. The remaining
nonlinear term, u1 · ∇u1, is retained in the dynamics. Finally, we
use the condition �p << �m to obtain the governing equation in
eq. (1).

One further approximation is adopted in the numerical solution.
The no-slip condition at the core–mantle boundary requires u1 =
−u0. We have evaluated u0 using only the rigid rotation of the fluid
core. This means that we omit the small correction associated with
ellipsoidal boundaries. The relative error incurred by this omission
is on the order of the flattening of the core–mantle boundary.
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