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Abstract—HOOMD-blue is a library for running molecular dynamics and hard
particle Monte Carlo simulations that uses pybind11 to provide a Python in-
terface to fast C++ internals. The package is designed to scale from a single
CPU core to thousands of NVIDIA or AMD GPUs. In developing HOOMD-blue
version 3.0, we significantly improve the application protocol interface (API)
by making it more flexible, extensible, and Pythonic. We have also striven to
provide simpler and more performant entry points to the internal C++ classes
and data structures. With these updates, we show how HOOMD-blue users will
be able to write completely custom Python classes which integrate directly into
the simulation run loop and analyze previously inaccessible data. Throughout
this paper, we focus on how these goals have been achieved and explain design
decisions through examples of the newly developed API.

Index Terms—molecular dynamics, molecular simulations, Monte Carlo simu-
lations, object-oriented

Introduction

Molecular simulation has been an important technique for study-
ing the equilibrium properties of molecular systems since the
1950s. The two most common methods for this purpose are
molecular dynamics and Monte Carlo simulations [MRR "], [AW].
Molecular dynamics (MD) is the application of Newton’s laws of
motion to molecular system, while Monte Carlo (MC) methods
employ a Markov chain to sample from equilibrium configura-
tions. Since their inception these tools have been used to study
numerous systems, examples include colloids [DEG], metallic
glasses [FIE], and proteins [DZK ], among others.

Today many software packages exist for these purposes.
LAMMPS [Pli], GROMACS [BvdSvD], [AMS™], OpenMM
[ESCT], ESPResSo [WWST], [GTK"] and Amber [SCW],
[CCD"] are a few examples of popular MD packages, while
Cassandra [SMM™'] and MCCCS Towhee [Mar] provide MC
simulation capabilities. Implementations on high performance
GPUs [SMAG], parallel architectures [NBB "], and the greater
accessibility of computational power have tremendously improved
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the length [BCR™] and time [SDS™] scales of simulations from
those conducted in the mid 1900s. The flexibility and generality
of such tools has dramatically increased the usage of molecular
simulations, which has in turn led to demands for even more
customizable software packages that can be tailored to very spe-
cific simulation requirements. Different tools have taken different
approaches to enabling this, such as the text-file scripting in
LAMMPS, the command line interface provided by GROMACS,
and the Python, C++, C, and Fortran bindings of OpenMM.
Recently, programs that have used other interfaces have also added
Python bindings such as LAMMPS and GROMACS.

In the development of these tools, the requirements for the
software to enable good science became more obvious. Having
computational research that is Transferable, Reproducible, Usable
(by others), and Extensible (TRUE) [TGM™"] is necessary for
fully realizing the potential of computational molecular science.
HOOMD-blue is part of the MoSDeF project which seeks to
bring these traits to the wider computational molecular science
community through packages like mbuild [KSJ™] and foyer
[KST™] which are Python packages that generalize generating
initial particle configurations and force fields respectively across
a variety of simulation back ends [CG], [TGM"]. This effort
in increased TRUEness is one of many motivating factors for
HOOMD-blue version 3.0.

HOOMD-blue [ALT], [GNA'], [AGG], an MD and MC
simulations engine with a C++ back end, provides to use a Python
API facilitated through pybind11 [JRM]. The package is open-
source under the 3-clause BSD license, and the code is hosted
on GitHub (https://github.com/glotzerlab’/hoomd-blue). HOOMD-
blue was initially released in 2008 as the first fully GPU-enabled
MD simulation engine using NVIDIA GPUs through CUDA.
Since its initial release, HOOMD-blue has remained under active
development, adding numerous features over the years that have
increased its range of applicability, including adding support for
domain decomposition (dividing the simulation box among MPI
ranks) in 2014 and recent developments that enable support for
AMD in addition to NVIDIA GPUs.

Despite its great flexibility, the package’s API still has certain
key limitations. In particular, since its inception HOOMD-blue
has been designed around some maintenance of global state.
The original releases of HOOMD-blue provided Python scripting
capabilities based on an imperative programming model, but it
required that these scripts be run through HOOMD-blue’s mod-
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ified interpreter that was responsible for managing this global
state. Version 2.0 relaxed this restriction, allowing the use of
HOOMD-blue within ordinary Python scripts and introducing the
SimulationContext object to encapsulate the global state
to some degree, thereby allowing multiple largely independent
simulations to coexist in a single script. However, this object
remained largely opaque to the user, in many ways still behav-
ing like a pseudo-global state, and version 2.0 otherwise made
minimal modifications to the HOOMD-blue Python API, which
was largely inspired by and reminiscent of the structure of other
simulation software, particularly LAMMPS.

In this paper, we describe the upcoming 3.0 release of
HOOMD-blue, which is a complete redesign of the API from the
ground up to present a more transparent and Pythonic interface
for users. Version 3.0 aspires to match the intuitive APIs provided
by other Python packages like SciPy [VGO™], NumPy [vdWCV],
scikit-learn [PVG™], and matplotlib [Hun], while simultaneously
adding seamless interfaces by which such packages may be in-
tegrated into simulation scripts using HOOMD-blue. Global state
has been completely removed, instead replaced by a highly object-
oriented model that gives users explicit and complete control
over all aspects of simulation configuration. Where possible, the
new version also provides performant, Pythonic interfaces to data
stored by the C++ back end. Over the next few sections, we will
use examples of HOOMD-blue’s version 3.0 API (which is still
in development at the time of writing) to highlight the improved
extensibility, flexibility, and ease of use of the new HOOMD-blue
APL

General API Design

Rather than beginning with abstract descriptions, we will introduce
the new API by example. The script below illustrates a standard
MD simulation of a Lennard-Jones fluid using the version 3.0
API. Each of the elements of this script is introduced throughout
the rest of this section. We also show a rendering of the particle
configuration in Figure (1).

import hoomd

import hoomd.md
import numpy as np

device = hoomd.device.Auto ()
sim = hoomd.Simulation (device)

# Place particles on simple cubic lattice.
N_per_side = 14

N = N_per_side *x 3

L = 20

xs = np.linspace (0, 0.9, N_per_side)
X, y, z = np.meshgrid(xs, xs, xs)
coords = np.array (
(x.ravel(), y.ravel(), z.ravel())).T

# One way to define an initial system state is
# by defining a snapshot and using it to

# initialize the system state.

snap = hoomd.Snapshot ()
snap.particles.N = N
snap.configuration.box =
snap.particles.position[:] =
snap.particles.types = ['A']

hoomd.Box.cube (L)
(coords - 0.5) %= L

sim.create_state_from_snapshot (snap)

# Create integrator and forces

integrator = hoomd.md.Integrator (dt=0.005)

langevin = hoomd.md.methods.Langevin (
hoomd.filter.All (), kT=1., seed=42)

Fig. 1: A rendering of the Lennard-Jones fluid simulation script
output. Particles are colored by the Lennard-Jones potential energy
that is logged using the HOOMD-blue Logger and GSD class
objects. Figure is rendered in OVITO [Stu] using the Tachyon [Sto]
renderer.

integrator.methods.append (langevin)

nlist = hoomd.md.nlist.Cell ()
1j = hoomd.md.pair.LJ(nlist, r_cut=2.5)
lj.params[ ('A"', "A'")] = dict(

sigma=1., epsilon=1.)
integrator.forces.append(1l7)

# Set up output

gsd = hoomd.output.GSD('trajectory.gsd',
log = hoomd.logging.Logger ()

log += 13
gsd.log =

trigger=100)

log

sim.operations.integrator = integrator
sim.operations.analyzers.append (gsd)
sim.run(100000)

Simulation, Device, State, Operations

Each simulation in HOOMD-blue is now controlled through three
main objects which are joined together by the Simulation
class: the Device, State, and Operations classes. Figure (2)
shows this relationship with some core attributes/methods for each
class. Each Simulation object holds the requisite information
to run a full molecular dynamics or Monte Carlo simulation,
thereby circumventing any need for global state information. The
Device class denotes whether a simulation should be run on
CPUs or GPUs and the number of cores/GPUs it should run on. In
addition, the device manages custom memory tracebacks, profiler
configurations, and the MPI communicator among other things.
The State class stores the system data (e.g. particle positions,
orientations, velocities, the system box). As shown in our example,
the state can be initialized from a snapshot, after which the data
can be accessed and modified in two ways. One option is for
users to operate on a new Snapshot object, which exposes
NumPy arrays that store a copy of the system data. To construct
a snapshot, all system data distributed across MPI ranks must be
gathered and combined by the root rank. Setting the state using the
snapshot API requires assigning a modified snapshot to the system
state (i.e. all system data is reset upon setting). The advantages
to this approach come from the ease of use of working with a
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. . run()
/ Simulation — timestep
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snapshot integrator \ -
cpu_local snapshot updaters ﬁgmmgg;ﬁgtor
gpu_local snapshot analyzers e
particle types tuners :
bond types computes notice_level

Fig. 2: Diagram of core objects with some attributes and methods.
Classes are in bold and orange; attributes and methods are blue.
Figure is made using Graphviz [EGK™ ], [GKNV/].

single object containing the complete description of the state. The
following snippet showcases how this approach can be used to set
the z position of all particles to zero.

snap = sim.state.snapshot
# snapshot only stores data on rank 0
if snap.exists:
# set all z positions to 0
snap.particles.position[:, 2] = 0

sim.state.snapshot = snap

The other API for accessing State data is via a zero-copy,
rank-local access to the state’s data on either the GPU or CPU.
On the CPU, we expose the buffers as numpy.ndarray-like
objects through provided hooks such as _ array_ufunc___
and __array_interface_ . Similarly, on the GPU we mock
much of the CuPy [zot] ndarray class if it is installed; however,
at present the CuPy package provides fewer hooks, so our inte-
gration is more limited. Whether or not CuPy is installed, we use
version 2 of the __cuda_array_interface__ protocol for
GPU access (compatibility with our GPU buffers in Python there-
fore depends on the support of version 2 of this protocol). This
provides support for libraries such as Numba’s [LPS] GPU just-in-
time compiler and PyTorch [PGM"]. We chose to mock NumPy-
like interfaces rather than expose ndarray objects directly out
of consideration for memory safety. To ensure data integrity, we
restrict the data to only be accessible within a specific context
manager. This approach is much faster than using the snapshot
API because it uses HOOMD-blue’s data buffers directly, but
the nature of providing zero-copy access requires that users deal
directly with the domain decomposition since only data for a MPI
rank’s local simulation box is stored by a given rank. The example
below modifies the previous example to instead use the zero-copy
APL

with sim.state.cpu_local_snapshot as data:
data.particles.position[:, 2] = 0

CuPy is installed
with sim.state.gpu_local_snapshot as data:
data.particles.position[:, 2] = 0

# assumes

The last of the three classes, Operations, holds the different
operations that will act on the simulation state. Broadly, these
consist of 3 categories: updaters, which modify simulation state;
analyzers, which observe system state; and tuners, which tune the
hyperparameters of other operations for performance. Although
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updaters and analyzers existed in version 2.x (tuners are a version
3.0 split from updaters), these operations have undergone a sig-
nificant API overhaul for version 3.0 to support one of the more
far-reaching changes to HOOMD-blue: the deferred initialization
model.

Operations in HOOMD-blue are generally implemented as
two classes, a user-facing Python object and an internal C++
object which we denote as the action of the operation. On creation,
these C++ objects typically require a Device and a C++ State
in order to, for instance, initialize appropriately sized arrays.
Unfortunately this requirement restricts the order in which objects
may be created since devices and states must exist first. This
restriction could create potential confusion for users who forget
this ordering and would also limit the composability of modular
simulation components by preventing, for instance, the creation
of a simple force field without the prior existence of a Device
and a State. To circumvent these difficulties, the new API has
moved to a deferred initialization model in which C++ objects are
not created until the corresponding Python objects are attached to
a Simulation, a model we discuss in greater detail below.

Deferred C++ Initialization

The core logic for the deferred initialization model is imple-
mented in the _Operation class, which is the base class for
all operations in Python. This class contains the machinery for
attaching/detaching operations to/from their C++ counterparts, and
it defines the user interface for setting and modifying operation-
specific parameters while guaranteeing that such parameters are
synchronized with attached C++ objects as appropriate. Rather
than handling these concerns directly, the _Operation class
manages parameters using specially defined classes that handle
the synchronization of attributes between Python and C++: the
ParameterDict and TypeParameterDict classes. In addi-
tion to providing transparent dict-like APIs for the automatically
synchronized setting of parameters, these classes also provide
strict validation of input types, ensuring that user inputs are
validated regardless of whether or not operations are attached to a
simulation.

Each class supports validation of their keys, and they can be
used to define the structure and validation of arbitrarily nested
dictionaries, lists, and tuples. Likewise, both support default
values, but to a varying degree due to their differing purposes.
ParameterDict acts as a dictionary with additional validation
logic. However, the TypeParameterDict represents a dictio-
nary in which each entry is validated by the entire defined schema.
This distinction occurs often in simulation contexts as simulations
with multiple types of particles, bonds, angles, etc. must specify
certain parameters for each type. In practice this distinction means
that the TypeParameterDict class supports default specifi-
cation with arbitrary nesting, while the ParameterDict has
defaults but these are equivalent to object attribute defaults. An
example TypeParameterDict initialization and use of both
classes can be seen below.

# Specification of Sphere's shape TypeParameterDict
TypeParameterDict (

diameter=float,

ignore_statistics=False,

orientable=False,
len_keys=1)

from hoomd.hpmc.integrate import Sphere
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sphere = Sphere (seed=42)

# Set nselect parameter using ParameterDict
sphere.nselect = 2

# Set shape for type 'A' using TypeParameterDict
sphere.shape['A'] = {'diameter': 1.}

# Set shape for types 'B', 'C', and 'D'
sphere.shape[['B', 'C', 'D']] = {'diameter': 0.5}
The specification defined above sets defaults for
ignore_statistics and orientable (the purpose

of these is outside the scope of the paper), but requires the setting
of the diameter for each type.

To store lists of operations that must be attached to a simu-
lation, the analogous SyncedList class transparently handles
attaching of operations.

import hoomd

ops = hoomd.Operations ()
gsd = hoomd.output.GSD ('example.gsd")
# Append to the SyncedList ops.analyzers

ops.analyzers.append (gsd)

These classes also have the ancillary benefit of improving error
messaging and handling. An example error message for trying to
set sigma for A-A interactions in the Lennard-Jones pair potential
to a string (i.e. 1j.params[ ('A', 'A')] = {'sigma':
'foo', 'epsilon': 1.} would provide the error message,
TypeConversionError: For types [CA’, A’)], error
In key sigma: Value foo of type <class ’str’> cannot be
converted using OnlyType(float). Raised error: value foo
not convertible into type <class "float’>.

Previously, the equivalent error would be "TypeError: must be
real number, not str", the error would not be raised until running
the simulation, and the line setting sigma would not be in the stack
trace given.

Logging and Accessing Data

Logging simulation data for analysis is a critical feature of molec-
ular simulation software packages. Up to now, HOOMD-blue
has supported logging through an analyzer interface that simply
accepted a list of quantities to log, where the set of valid quantities
was based on what objects had been created at any point and
stored to the global state. The creation of the base _Operation
class has allowed us to simultaneously simplify and increase the
flexibility of our logging infrastructure. The Loggable metaclass
of _Operation allows all subclasses to expose their loggable
quantities by marking Python properties or methods to query.

The actual task of logging data is accomplished by the
Logger class, which provides an interface for logging most
HOOMD-blue objects and custom user quantities. In the example
script from the General API Design section above, we show that
the Logger can add an operation’s loggable quantities using
the += operator. The utility of this class lies in its intermediate
representation of the data. Using the HOOMD-blue namespace as
the basis for distinguishing between quantities, the Logge r maps
logged quantities into a nested dictionary. For example, logging
the Lennard-Jones pair potentials total energy would produce this
dictionary by a Logger object { 'md': {'pair': {'LJ':
{'energy': (-1.4, 'scalar')}}}} where 'scalar’
is a flag to make processing the logged output easier. In real
use cases, the dictionary would likely be filled with many other
quantities.

Version 3.0 of HOOMD-blue uses properties extensively to
expose object data such as the total potential energy of all pair

potentials, the trial move acceptance rate in MC integrators, and
thermodynamic variables like temperature or pressure, all of which
can be used directly or stored through the logging interface. To
support storing these properties, the logging is quite general and
supports scalars, strings, arrays, and even generic Python objects.
By separating the data collection from the writing to files, and by
providing such a flexible intermediate representation, HOOMD-
blue can now support a range of back ends for logging; moreover,
it offers users the flexibility to define their own. For instance,
while logging data to text files or standard out is supported out
of the box, other back ends like MongoDB, Pandas [McK], and
Python pickles can now be implemented on top of the existing
logging infrastructure. Consistent with the new approach to log-
ging, HOOMD-blue version 3.0 makes simulation output an opt-in
feature even for common outputs like performance and thermody-
namic quantities. In addition to this improved flexibility in storage
possibilities, for HOOMD-blue version 3.0 we have exposed more
of an object’s data than had previously been available through
adding new properties to objects. For example, pair potentials now
expose per-particle potential energies at any given time (this data
is used to color Figure (1)).

In conjunction with the deferred initialization model, the new
logging infrastructure also allows us to more easily export an
object’s state (not to be confused with the simulation state). Due to
the switch to deferred initialization, all operation state information
is now stored directly in Python, so we have made object state a
loggable quantity. All operations also provide a from_state
factory method that can reconstruct the object from the state,
dramatically increasing the restartability of simulations since the
state of each object can be saved at the end of a given run and read
at the start of the next.

from hoomd.hpmc.integrate import Sphere

sphere = Sphere.from_state('example.gsd', frame=-1)

This code block would create a Sphere object with the parame-
ters stored from the last frame of the gsd file example.gsd.

User Customization

A major improvement in HOOMD-blue version 3 is the ease with
which users can customize their simulations in previously impos-
sible ways. The changes that enable this improvement generally
come in two flavors, the generalization of existing concepts in
HOOMD-blue and the introduction of a completely new Action
class that enables the user to inject arbitrary actions into the
simulation loop. In this section, we first discuss how concepts like
periods and groups have been generalized from previous iterations
of HOOMD-blue and then show how users can inject completely
novel routines to actually modify the behavior of simulations.

Triggers

In HOOMD-blue version 2.x, everything that was not run on
every timestep had a period and phase associated with it. The
timesteps the operation was run on could then be determined by
the expression, timestep % period - phase == 0. In
our refactoring and development, we recognized that this concept
could be made much more general and consequently more flexible.
Objects do not have to be run on a periodic timescale; they just
need some indication of when to run. In other words, the opera-

tions needed to be triggered. The Trigger class encapsulates this
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concept, providing a uniform way of specifying when an object
should run without limiting options. Trigger objects return a
Boolean value when called with a timestep (i.e. they are functors).
Each operation that requires triggering is now associated with a
corresponding Trigger instance which informs the simulation
when the operation should run. The previous behavior is now
available through the Periodic class in the hoomd.trigger
module. However, this approach enables much more sophisticated
logic through composition of multiple triggers such as Before
and After which return True before or after a given timestep
with the And, Or, and Not subclasses that function as logical
operators on the return value of the composed Triggers.

In addition to the flexibility the Trigger class provides by
abstracting out the concept of triggering an operation, we use
pybindll to easily allow subclasses of the Trigger class in
Python. This allows users to create their own triggers in pure
Python that will execute in HOOMD-blue’s C++ back end. An
example of such a subclass that reimplements the functionality of
HOOMD-blue version 2.x can be seen below.

from hoomd.trigger import Trigger

class CustomTrigger (Trigger) :
def _ init__ (self, period, phase=0):
super () .__init__ ()
self.period = period
self.phase = phase

def call__ (self,

o

timestep %
return v

timestep) :
self.period - self.phase ==

v =

User-defined subclasses of Trigger are not restricted to simple
algorithms or even stateless ones; they can implement arbitrarily
complex Python code as demonstrated in the Large Examples
section’s first code snippet.

Variants

Variant objects are used in HOOMD-blue to specify
quantities like temperature, pressure, and box size which
can vary over time. Similar to Trigger, we generalized
our ability to linearly interpolate values across timesteps
(hoomd.variant.linear_interp in HOOMD-blue ver-
sion 2.x) to a base class Variant which generalizes the concept
of functions in the semi-infinite domain of timesteps ¢ € Za’ .
This allows sinusoidal cycling, non-uniform ramps, and other
behaviors. Like Trigger, Variant can be a direct subclass
of the C++ class. An example of a sinusoidal cycling variant is
shown below.

from math import sin
from hoomd.variant import Variant

class SinVariant (Variant) :
def __init__ (self, frequency, amplitude,
phase=0, center=0):
super () .__init__ ()
self.frequency = frequency
self.amplitude = amplitude
self.phase = phase
self.center = center
def _ _call__(self, timestep):
tmp = self.frequency * timestep
tmp = sin(tmp + self.phase)
return self.amplitude » tmp + self.center

def _min(self):
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return self.center - self.amplitude

def _max(self):
return self.center + self.amplitude

ParticleFilters

Unlike Trigger orVariant,ParticleFilter isnota gen-
eralization of an existing concept but the splitting of one class into
two. However, this split is also targeted at increasing flexibility and
extensibility. In HOOMD-blue version 2.x, the ParticleGroup
class and subclasses served to provide a subset of particles within
a simulation for file output, application of thermodynamic integra-
tors, and other purposes. The class hosted both the logic for storing
the subset of particles and filtering them out from the system.
After the refactoring, ParticleGroup is only responsible for
the logic to store and perform some basic operations on a set
of particle tags (a means of identifying individual particles), while
the new class ParticleFilter implements the selection logic.
This choice makes ParticleFilter objects lightweight and
provides a means of implementing a State instance-specific
cache of ParticleGroup objects. The latter ensures that we
do not create multiples of the same ParticleGroup which can
occupy large amounts of memory. The caching also allows the
creation of many of the same ParticleFilter object without
needing to worry about memory constraints.

ParticleFilter can be subclassed (like Trigger and
Variant), but only through the CustomParticleFilter
class. This is necessary to prevent some internal details from
leaking to the user. An example of a CustomParticleFilter
that selects only particles with positive charge is given below.

from hoomd.filter import CustomParticleFilter
class PositiveCharge (CustomParticleFilter):
def _ init_ (self, state):

super () .__init__ (state)

def _ hash__ (self):
return hash(self. class

def _ _eqg (self, other):
return type(self) == type (other)

def find_tags(self, state):
with state.cpu_local_snapshot as data:
mask = data.particles.charge > 0
return data.particles.tag[mask]

Custom Actions

In HOOMD-blue, we distinguish between the objects that perform
an action on the simulation state (called Actions) and their con-
taining objects that deal with setting state and the user interface
(called Operations). Through composition, HOOMD-blue offers
the ability to create custom actions in Python and wrap them
in our _CustomOperation subclasses (divided on the type
of action performed) allowing the execution of the action in the
Simulation run loop. The feature makes user created actions
behave indistinguishably from native C++ actions. Through cus-
tom actions, users can modify state, tune hyperparameters for
performance, or observe parts of the simulation. In addition,
we are adding a signal for Actions to send that would stop a
Simulation.run call. This would allow actions to stop the
simulation when they complete, which could be useful for tasks
like tuning MC trial move sizes. With respect to performance,
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with zero copy access to the data on the CPU or GPU, custom
actions can also achieve high performance using standard Python
libraries like NumPy, SciPy, Numba, CuPy and others. Below we
show an example of an Action that switches particles of type
initial_type to type f£inal_type with a specified rate
each time it is run. This action could be refined to implement
a reactive MC move reminiscent of [GSJ] or to have a variable
switch rate. These exercises are left to the reader.

import hoomd

from hoomd. filter import (
Intersection, All, Type)

from hoomd.custom import Action

class SwapType (Action):
def _ init__ (self, initial_type,
final_type, rate, filter=All()):
self.final type = final_ type
self.rate = rate
self.filter = Intersection/(
[Type (initial_type), filter])
def act(self, timestep):
state = self._state
final_type_id = state.particle_types.index(
self.final_type)
tags = self.filter (state)
with state.cpu_local_snapshot as snap:
tags = np.intersectld(
tags, snap.particles.tag,
part = data.particles
filtered_index = part.rtags[tags]

True)

N_swaps = int (len(tags) * self.rate)
mask = np.random.choice (filtered_index,
N_swaps,

replace=False)

part.typeid[mask] = final_type_id

Conclusion

With modern simulation analysis packages such as freud [RDH "],
MDTraj [MBH "], and MDAnalysis [GLB"], [MDWB], initial-
ization tools such as mbuild and foyer, and visualization packages
like OVITO and plato [SD] using Python APIs, HOOMD-blue,
built from the ground up with Python in mind, fits in seamlessly.
Version 3.0 improves upon this and presents a Pythonic API that
encourages customization. Through enabling Python subclassing
of C++ classes, introducing custom actions, and exposing data in
zero-copy arrays/buffers, we allow HOOMD-blue users to utilize
the full potential of Python and the scientific Python community.
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Appendix

In the appendix, we will provide more substantial applications of
features new to HOOMD-blue.

Trigger that detects nucleation

This example demonstrates a Trigger that returns true when
a threshold Qg Steinhardt order parameter [SNR] (as calculated
by freud) is reached. Such a Trigger could be used for BCC
nucleation detection which could trigger a decrease in cooling
rate, a more frequent output of simulation trajectories, or any other
desired action. Also, in this example we showcase the use of the
zero-copy rank-local data access. This example also requires the
use of ghost particles, which are a subset of particles bordering a
MPI rank’s local box. Ghost particles are known by a rank, but
the rank is not responsible for updating them. In this case, ghost
particles are required for computing the Qg value for particles near
the edges of the current rank’s local simulation box.

import numpy as np

import freud

from mpidpy import MPI

from hoomd.trigger import Trigger

class Q6Trigger (Trigger) :

def _ init_ (self, simulation, threshold,
mpi_comm=None) :
super () .__init__ ()
self.threshold = threshold

self.state = simulation.state
simulation.device.num_ranks
if nr > 1 and mpi_comm is None:
raise RuntimeError ()
elif nr > 1:
self.comm = mpi_comm
else:
self.comm = None
self.g6 = freud.order.Steinhardt (1=6)

nr =

def _ call_(self, timestep):
with self.state.cpu_local_snapshot as data:
part = data.particles
box = data.box
aabb_box = freud.locality.AABBQuery (
box, part.positions_with_ghosts)
nlist = aabb_box.query (
part.position,
{'num_neighbors': 12,
'exclude_1ii': True})
np.nanmean (self.g6.compute (
(box, part.positions_with_ghosts),
nlist) .particle_order)
if self.comm:
return self.comm.allreduce (
Q6 >= self.threshold,
op=MPI.LOR)

Q6 =

else:

return Q6 >= self.threshold

Pandas Logger Back-end

Here we highlight the ability to use the Logger class to create a
Pandas back end for simulation data. It will store the scalar and
string quantities in a single pandas.DataFrame object while
each array-like object is stored in a separate DataFrame object.
All DataFrame objects are stored in a single dictionary.

import pandas as pd

from hoomd.custom import Action

from hoomd.util import (
dict_flatten, dict_filter, dict_map)

def is_flag(flags):
def func(v):

return v[1l]

return func

in flags
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def not_none (v) :

return v([0]

is not None

def hnd_2D_arrays(v) :

if v[1l] in ['scalar', 'string', 'state'l]:
return v
elif len(v[0].shape) == 2:
return
str(i): col
for i, col in enumerate(v[0].T)}

class DataFrameBackEnd (Action) :

def

def

__init_ (self,
self.logger =

logger) :
logger

act (self,
log_dict =
is_scalar =

timestep) :
self.logger.log()

is_flag(['scalar', 'string'])

sc = dict_flatten(dict_map(dict_filter(
log_dict,
lambda x: not_none(x) and is_scalar(x)),
lambda x: x[0]))

rem = dict_flatten(dict_map(dict_filter(
log_dict,
lambda x: not_none (x) \

and not is_scalar (x)),
hnd_2D_arrays))

if not hasattr(self,
self.data = {
'scalar': pd.DataFrame (
columns=[
'.".join (k)
'array': {
'.".join (k) : pd.DataFrame ()
for k in rem}}

'data'):

for k in sc]),

sdf = pd.DataFrame (
{'".'".join(k): v for k, v in sc.items()},
index=[timestep])
rdf = {'.'.Jjoin(k): pd.DataFrame (
v, columns=[timestep]).T

for k,v in rem.items ()}
data = self.data
data['scalar'] = data['scalar'].append (sdf)
datal['array'] = {

k: v.append(rdf[k])

for k, v in data['array'].items ()}
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