
1.  Introduction
Lakes and drained lake basins (DLBs) combined are estimated to cover up to ∼80% of the western Arctic 
Coastal Plain of Alaska (∼30,000 km2) (Grosse et al., 2013; Hinkel et al., 2005; Jones & Arp, 2015). There are 
a variety of lake types in the Arctic, but the most common are thermokarst lakes in lowland regions with 
ice-rich permafrost (Grosse et al., 2013; Kling, 2009) that form due to permafrost thaw and surface subsid-
ence. Deeper lakes developed in permafrost terrain are often underlain by layers or bodies of perennially 
unfrozen ground below the lake bed known as a talik (van Everdingen, 1998). Arctic lakes can persist for 
thousands of years, but, due to ongoing margin expansion and other landscape changes, they eventually 
drain laterally to create a mosaic of extant lakes and DLBs (Hinkel et al. 2007; Mackay, 1992).

Arctic lake drainage can occur through a variety of processes, and where and when lake drainage occurs 
influences landscape succession and permafrost aggradation (refreezing of the talik). Remote-sensing anal-
ysis of historical imagery of the western Arctic Coastal Plain of Alaska identified that 1–2 lakes larger than 
10 ha have partially (>25% area reduction) or completely drained per year between 1955 and 2017 (Hinkel 
et al., 2007; Jones & Arp 2015; Jones et al., 2020), and 1,900 lakes are prone to drainage in the future (Jones 
et al., 2020). The mechanisms that lead to lake drainage include bank overtopping (Jones & Arp, 2015), 
headward stream erosion (Jones et al., 2020), ice-wedge degradation (including the formation of gullies) 
(Mackay,  1988, 1992), river channel migration (Jones et  al.,  2020), anthropogenic disturbance (Hinkel 
et al., 2007), and lake expansion towards a topographic low point (Brewer et al., 1993; Hopkins, 1949; Jones 
et al., 2011; Marsh et al., 2009; Walker, 1978; Weller & Derksen, 1979). Lake drainage is not always complete 
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and a smaller remnant lake may persist for hundreds of years and, sometimes, eventually drain completely. 
Processes occurring in the basin following lake drainage include permafrost aggradation, basin floor frost 
heave (Liu et al., 2014), ice-wedge and segregated ground ice formation (Jorgenson & Shur, 2007; Mack-
ay, 1981, 1997, 1999; Roy-Léveillée & Burn, 2016), vegetation succession, and peat accumulation (Bockheim 
et al., 2004; Hinkel et al., 2003). Postdrainage processes have implications for permafrost dynamics (Kaver-
in et al., 2018; Mackay, 1997; Mackay & Burn, 2002a, 2002b), the global carbon cycle (Fuchs et al., 2019; 
van Huissteden et al., 2011), hydrology (Arp et al., 2019), vegetation productivity (Koch et al., 2018; Lara 
et al., 2018; Zona et al., 2010), and hazards assessment (Arp et al., 2020).

Lakes can serve as one of the few nonclimatic thawing agents in continuous permafrost terrain. In a lake, if 
the water column does not typically freeze to lake bottom (floating ice) during winter, permafrost will thaw 
below the lake to form a talik. Because taliks can extend to depths of hundreds of meters through the per-
mafrost (Mackay, 1997), direct measurements are challenging and, to our knowledge, there are only a few 
borehole studies that investigated sublake taliks (e.g., Brewer, 1958; Brewer et al., 1993; Burn & Smith, 1990; 
Heslop et al., 2015; Mackay, 1997; Roy-Léveillée & Burn, 2017). Thermal modeling indicates that a lake 
talik thickness between 28 and 53 m will form over 3,000 years in the Arctic Coastal Plain of Alaska given 
lakebed temperatures between 1 and 3 °C (Ling & Zhang, 2003). The timing of talik refreeze depends on a 
combination of factors including the climate, talik thickness, lithology, and temperature of the surrounding 
permafrost (Ling & Zhang, 2004). In general, remnant taliks are estimated to refreeze over several decades 
through a combination of top-down and bottom-up permafrost aggradation (Ling & Zhang, 2004; Mack-
ay, 1992). Ling and Zhang's  (2004) thermal modeling indicates that following lake drainage, a talik can 
refreeze in 40–157 years, where top-down refreezing can be 6–8 times faster than bottom-up. Other thermal 
modeling results suggest that under future warmer climate scenarios, the number of floating ice lakes un-
derlain by taliks may increase on the Arctic Coastal Plain of Alaska (Matell et al., 2013). Considering the 
broad diversity of DLB locations, sizes, and ages, and the scarcity of direct measurements of taliks, we are 
motivated to acquire a better understanding of where taliks exist below DLBs and the rates of talik refreez-
ing given regional climatic conditions over the last several decades.

DLBs are a viable target for geophysical observations. Variations in geophysical properties depend on many 
parameters including lithology, porosity, ice content, unfrozen pore water content, pore water salinity, pore 
pressure, and temperature (Minsley et al., 2015; Yoshikawa et al., 2006). Thawed sediments are assumed to 
have electrical resistivities lower than frozen sediments due to the lower resistivity of liquid water compared 
to ice (Ross et al., 2007). In Arctic coastal environments, both thawed and frozen sediments can present 
low electrical resistivities due to saline pore water (Creighton et  al.  2018; Keating et  al.,  2018;Overduin 
et al., 2012; Ross et al., 2007) that may make the discrimination of frozen, unfrozen or partially unfrozen 
pore water ambiguous. Electrical and electromagnetic methods, such as the electrical resistivity tomogra-
phy (ERT) and transient electromagnetic (TEM), respectively, measure a physical property that is indirectly 
related to the presence of water; i.e., the measured electrical resistivity of the subsurface layers represents 
the bulk resistivity of the sediments or rocks plus the frozen or unfrozen pore water (Minsley et al., 2015), 
which can complicate interpretation. Surface nuclear magnetic resonance (NMR) is the only noninvasive 
geophysical method that can directly detect unfrozen water as it measures the response of hydrogen protons 
on liquid water (Behroozmand et al., 2015; Walsh, 2008). However, surface NMR has a limitation to detect 
water in very small pore spaces or partially unfrozen pore water, which can produce a signal too short to be 
measured.

Electrical and electromagnetic geophysical methods have been used to image taliks in permafrost areas 
based on the electrical resistivity distribution of the subsurface (Creighton et al., 2018; Minsley et al., 2012, 
2015; Yoshikawa et al., 2006; Yoshikawa & Hinzman, 2003; You et al., 2017). Surface NMR can be used 
in combination with electrical resistivity measurements to support the interpretation of frozen versus 
unfrozen pore water on permafrost environments (Creighton et al., 2018; Keating et al., 2018; Parsekian 
et  al.,  2013,  2019). Parsekian et  al.  (2013) combined measurements and synthetic forward modeling to 
demonstrate that surface NMR can detect different types of thawed layers in permafrost. For example, 
Creighton et al. (2018) and Parsekian et al. (2019) used surface NMR and TEM methods to identify taliks 
below thermokarst lakes on the Arctic Coastal Plain of Alaska. Recent studies in the Arctic have combined 
surface NMR and ground-penetrating radar (GPR) to estimate glacial water in an ice sheet firn in Greenland 
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(Legchenko et al., 2018), and identify frozen and thawed sediments below 
river aufeis (icings) on floodplain of the North Slope of Alaska (Terry 
et al., 2020).

Other geophysical methods have been used to successfully image taliks. 
For example, Schwamborn et al. (2002) used seismic reflection to deter-
mine a talik thickness of 95 m below a thermokarst lake in continuous 
permafrost of Siberia. However, to our knowledge, it is the only published 
study that used seismic reflection to image a lake talik. GPR and ERT 
were combined to image a shallow (<25 m depth) open talik (talik that 
penetrates permafrost completely) below a thermokarst lake in the dis-
continuous permafrost zone of Alaska (Yoshikawa & Hinzman,  2003) 
and Qinghai-Tibet Plateau, China (You et al., 2017), which can connect 
lakes to the subpermafrost groundwater. Another relevant example is the 
study by Yoshikawa et al. (2006) that combined seven different geophys-
ical surveys, including GPR, ERT, seismic refraction, very low frequen-
cy electromagnetic, surface NMR, airborne and ground-based TEM, to 
investigate their abilities to distinguish permafrost, massive ground ice, 
and talik, at three pingos in the discontinuous permafrost zone of Alaska. 
Their results suggest that, depending on the depth of investigation, GPR 
and ERT are the most useful methods for detecting massive ground ice. 
However, the ERT electrodes require a good ground contact, which is dif-
ficult in frozen ground.

Despite the importance of lake taliks for carbon and water cycling in the 
Arctic, there are still significant observational knowledge gaps related to 
talik formation and the refreezing rate after lake drainage. Understand-
ing how a talik refreezes after lake drainage may help to predict its con-
tribution to the permafrost carbon feedback. Given the ubiquity of lakes 
and DLBs in the Arctic Coastal Plain of Alaska and the paucity of in-
formation about postdrainage permafrost aggradation, we aim to answer 

the following questions: (1) What is the rate of permafrost aggradation below DLBs with variable drainage 
histories? (2) What is the geophysical character of a talik and how does it change through the refreezing pro-
cess? To answer these questions and test our predictions of talik refreezing following lake drainage, we used 
surface NMR and TEM measurements in conjunction with talik refreeze modeling to investigate permafrost 
aggradation beneath DLBs on the western Arctic Coastal Plain of Alaska (Figure 1). To our knowledge, 
there are very few geophysical measurements of DLB taliks, and there are none using surface NMR alone 
or combined with TEM. The combination of these two noninvasive geophysical methods is ideal to achieve 
our objective to distinguish frozen versus thawed subsurface layers.

2.  Study Sites
We investigated eight DLBs and two primary surface sites (terrain that has not been eroded) in the Te-
shekpuk and Inigok regions on the Arctic Coastal Plain of Alaska (Figure 1), all within the continuous 
permafrost zone. Based on surface characteristics including relief and vegetation, primary surface sites 
are assumed to have not experienced lake formation and drainage since at least the beginning of the Hol-
ocene (Brown, 1965; Kanevskiy et al., 2013), and they were used here as experimental control sites and for 
comparison with DLB measurements. To aid our geophysical survey interpretations, one borehole in each 
region was used to infer lithology, resistivity, and temperature logs (Clow, 2014; Gryc, 1988).

The Teshekpuk region has low topographic relief and predominantly Holocene ice-rich silty soils (Grosse 
et al., 2013; Kanevskiy et al., 2013), where DLBs occupy about 62% of the landscape and lakes 23% (Jones 
& Arp,  2015). At the Drew Point borehole (70.880°, −153.904°), the permafrost thickness is ∼320  m 
(Clow, 2014), the average permafrost temperature is ∼−5 °C (Clow, 2014), and the average temperature at 
1.2 m depth was −8.0 °C between 1999 and 2010 (Farquharson et al., 2016).
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Figure 1.  Study site locations in the (a) Teshekpuk and (b) Inigok regions 
on the western Arctic Coastal Plain of Alaska. The dotted line on the map 
of the state of Alaska (a) shows the south boundary of the Arctic Coastal 
Plain. DLB, drained lake basin; PS, primary surface; BH, borehole.
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The Inigok region is characterized by late Pleistocene and early Holocene deposits of aeolian sand (Carter 
et al., 1981; Galloway & Carter, 1993) and relatively low ground ice content (Kanevskiy et al., 2013). At the 
Inigok North borehole (70.265°, −152.766°), the permafrost thickness is ∼286 m and the average permafrost 
temperature is ∼−5 °C (Clow, 2014). At another borehole site in the region (69.990°, −153.094°), the aver-
age temperature at 1.2 m depth was −5.9 °C between 1999 and 2010 (Farquharson et al., 2016). One of the 
DLBs in the Inigok region contains a pingo, which is associated with permafrost aggradation consisting of 
an ice-cored mound formed from closed system freezing of pore water in the talik following lake drainage, 
and upward deformation of the frozen overburden (Mackay, 1973, 1998).

The coordinates around the center and the drainage history for the studied DLBs are shown in Table 1. 
The drainage periods were determined based on historical aerial imagery (Jones et al., 2020), where the 
oldest photos are from 1949. The mechanisms and degrees of drainage (partial or complete) were inferred 
based on either historical aerial imagery or field observations (Jones et al., 2020). Peatball Bluff (70.708°, 
−153.972°) and Inigok Camp (70.003°, −153.085°) are the primary surface sites (underlain by marine silt 
and aeolian sand deposits, respectively) (Figure 1).

3.  Methods
We used surface nuclear magnetic resonance (NMR) and transient electromagnetic (TEM) measurements 
in conjunction with talik refreeze modeling to investigate remnant taliks beneath DLBs on the western 
Arctic Coastal Plain of Alaska. Both surface NMR and TEM measurements consisted of a one-dimensional 
investigation of subsurface geophysical properties. The measurements were performed around the center 
of each DLB (coordinates in Table 1).

3.1.  Transient Electromagnetic

The TEM method uses a transmitter wire loop on the Earth's surface to produce an electromagnetic field 
that interacts with the subsurface and measures the decay of the induced electromagnetic field through 
time with a receiver wire loop. The measured induced field is inverted to estimate a vertical subsurface dis-
tribution of electrical resistivity. Geophysical inversion is an optimization process that uses the field data to 
estimate the subsurface distribution of a physical property (Aster et al., 2018).

The TEM depth of investigation (DOI) is partially controlled by the transmitter loop area and the subsurface 
resistivity structure, where the more resistive the substrate, the deeper the DOI (Christiansen et al., 2006). 
Electromagnetic noise sources were not present at our remote study sites. A full explanation of the underly-
ing physical principles of the TEM method can be found in Fitterman and Stewart (1986) and Christiansen 
et al. (2006).
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Region DLB Latitude (°) Longitude (°) Elevation (m)

Drainage

Period Mechanism Degree

Teshekpuk Derksen 70.732 −153.821 1 1966–1972 Lake expansion Partial

Imakruak 70.776 −153.989 1 1955–1966 Bank overtopping Partial then complete

Bean 70.741 −153.637 2 1955–1966 Bank overtopping Partial then complete

Schmutz 70.731 −153.852 3 1975–1976 Bank overtopping Complete

Inigok Three Creatures 69.942 −153.028 48 Before 1949 Bank overtopping Partial

Deep 69.991 −153.271 45 Before 1949 River meandering Partial

Pingo 70.167 −153.642 43 Before 1949 Bank overtopping Complete

Blustery 69.947 −152.782 50 Before 1949 Bank overtopping Complete

Table 1 
Drained Lake Basins (DLBs) Coordinates, Elevation, and Drainage Period, Mechanisms, and Degrees (in Relation to the Entire DLB)
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TEM data were acquired with the ABEM WalkTEM instrument (Guideline Geo, Stockholm, Sweden) at 
six sites in the Teshekpuk region and at four sites in the Inigok region in April of 2016, 2017, and 2019 
(Figure 1 and Table 2), when the ground is snow covered and near-surface ground temperatures are at their 
annual minimum. All soundings used a nested central loop configuration that consisted of three loops: (1) 
a circular transmitter loop with an area of 1,600 m2 (single turn 160 m long wire), (2) a square receiver loop 
with an effective area of 200 m2 (40 m long wire, 10 m × 10 m with two turns internally), and 3) a second 
square receiver loop with an effective area of 5 m2 (40 m long wire, 0.5 m × 0.5 m with 20 turns internally).

The TEM raw data were processed and inverted with the SPIA software (AGS, Aarhus, Denmark). First, 
each dataset was preprocessed by removing unreliable early and late time gates to increase the signal-to-
noise ratio (SNR). Next, the data were inverted to estimate the electrical resistivities of the subsurface. The 
inversion is based on a one-dimensional vertical resistivity constraint using a smooth model with 20 layers 
of fixed thicknesses. The data residual (δ) for all the inversion model results varied between 0.4 and 0.9 
(Table 2). For all TEM acquisitions, the DOI was deeper than 100 m.

We used the modified Archie Equation (Archie, 1942; Ruffet et al., 1995) to estimate volumetric water con-
tent (VWC) using the TEM resistivities:

1 Φ
m

w s

m
 (1)

where  is the bulk resistivity measured with TEM, w  the pore water resistivity, s  the surface resistivity 
(related to surface conduction effect), Φ  the porosity, and m  the cementation exponent. Assuming a full 
saturation, Φ VWC , the equation (1) becomes:

1/m

CalcVWCC (2)
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Region Site

Surface NMR TEM

Year ∅ (m) tP (ms) fL (Hz) SNR (–) DOI (m) Year δ

Teshekpuk Derksen 2016 90 20 2446.6 30 50 2016 0.4

Imakruak 2016 90 10, 20 2446.4 10, 3 35, 45 2016 0.4

Peatball Bluff 2016 90 20 2446.9 3 50 2017 0.6

Bean – – – – – – 2019 0.5

Schmutz – – – – – – 2019 0.9

Drew Point – – – – – – 2016 0.9

Inigok Three Creatures 2015 75 20, 40 2445.2 30, 23 45, 50 2016 0.6

Deep 2015 75 20 2447.9 3 45 2019 0.7

Inigok Camp 2015 75 20 2445.5 3 50 2016 0.6

Pingo – – – – – – 2019 0.5

Blustery 2015 75 20 2445.6 3 50 – –

Note. ∅, loop diameter; tP, excitation pulse duration; fL, Larmor frequency of hydrogen; SNR, signal-to-noise ratio; DOI, depth of investigation; δ, data residual 
for the inversion model results. Peatball Bluff and Inigok Camp (bold) are nonlake affected control sites, and Drew Point (bold) is a borehole site.

Table 2 
Geophysical Surveys Summary
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3.2. Surface Nuclear Magnetic Resonance

Surface NMR is the only noninvasive surface-based geophysical method that directly detects unfrozen water 
belowground. It uses a wire loop on the Earth's surface to produce an electromagnetic excitation of subsur-
face hydrogen protons in unfrozen water aligned at equilibrium with the geomagnetic field. Subsequently, 
the resonating magnetic field generated when the protons relax back to the alignment with the geomagnetic 
field is measured with the same loop. The excitation pulse frequency is tuned to the Larmor frequency (fL) of 
hydrogen. The fL is defined locally for each measurement and it is the product of the geomagnetic field total 
intensity and the hydrogen gyromagnetic ratio. In this work, all surface NMR measurements are related to 
unfrozen water because the relaxation time of ice is too short to be detected with surface NMR. Moreover, 
surface NMR has an inherent limitation in its ability to detect water in very small pore spaces, such as in 
claystone, or partially unfrozen pore water, which results in relaxation times too short to be measurable.

The free induction decay (FID) is the most common surface NMR pulse sequence, which uses a single ex-
citation pulse. The pulse moment is the amplitude and duration of the transmitted excitation pulse. Longer 
pulse moments can increase the DOI but limit the ability to resolve short relaxation times. The surface NMR 
DOI is partially controlled by the loop diameter (∅), the excitation pulse duration (tP), and the subsurface 
electrical properties. Electrically conductive materials attenuate the signal, decreasing the DOI. Moreover, 
the surface NMR measurements may be affected by gradients in the geomagnetic field, which can induce 
the protons to oscillate at a slightly different fL. The Geophysical Institute of the University of Alaska has 
several stations across the state to monitor the geomagnetic field activity and, based on their publicly avail-
able archive (https://www.gi.alaska.edu/monitors/magnetometer/archive), there were no significant gradi-
ents on the geomagnetic field during the surface NMR data acquisitions. Therefore, spatial gradients can be 
neglected (Parsekian et al., 2019). Magnetic field gradients as a function of depth are unknown but assumed 
to be small given that the sedimentary geologic substrate has a low magnetic mineral content at our study 
sites (Gryc, 1988).

The exponential relaxation of hydrogen protons is inverted to estimate the vertical distribution of volumet-
ric water content (VWC) that is related to the signal amplitude, and the relaxation pulse duration (

2
T

2
), 

which is proportional to the mean pore size (Hertrich, 2008). More details about the surface NMR method 
can be found in Walsh (2008) and Behroozmand et al. (2015).

The surface NMR FID data were acquired with the GMR instrument (Vista Clara, Mukilteo, WA, USA) at 
four sites in the Inigok region in April 2015 and at three sites in the Teshekpuk region in April 2016, with 75 
and 90 m circle loop diameters (∅), respectively (Table 2). The instrument dead time (interval between the 
end of the excitation pulse and the start of data recording) is 5.5 ms. Due to the lack of nearby electromag-
netic noise sources, it was not necessary to use noise canceling loops. We used a tP of 20 ms for most of the 
sites, except for Imakruak Basin where 10 ms was used to increase the SNR, and for Three Creatures Basin 
where 40 ms was measured to compare with 20 ms. The data were acquired with either 4 or 8 stacks. Before 
each acquisition, we used a Geometrics G816 magnetometer to determine the geomagnetic field magnitude 
at five locations within each loop to estimate the fL (Table 2). After each measurement started, we checked 
the peak of the spectrum to ensure that we were transmitting within <0.5 Hz of on-resonance (Grombacher 
& Knight, 2015; Walbrecker et al., 2011). The geomagnetic field inclination values were calculated with the 
NOAA IGRF model based on the location of each surface NMR measurement and, in general, were about 
80.8° at the Teshekpuk region and 80.4° at the Inigok region.

The surface NMR raw data were processed and inverted with the GMR processing software (Vista Clara, 
Mukilteo, WA, USA; Walsh, 2008). First, each dataset was processed using a 200 Hz bandpass filter result-
ing in dead times between 15.7 and 15.9 ms. Bad stacks were discarded resulting in either 2 or 8 stacks per 
site. Then the data were inverted using both single-exponential and multiexponential fitting algorithms 
(Walsh, 2008). We inverted the data considering the relaxation during and after the excitation pulse (Grom-
bacher et al., 2017; Walbrecker et al., 2009). The inversion kernels were calculated using the local geomag-
netic field magnitude and inclination angle. For all sites except Blustery Basin, we also acquired TEM data 
and the measured subsurface average resistivity  (Table 3) was used in the surface NMR inversion (Parse-
kian et al., 2013). The DOI and the depth uncertainties were based on resolution matrices (Müller-Petke & 
Yaramanci, 2008) estimated during the inversion using singular value decomposition, which considers the 
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regularization parameters (signal amplitude and noise level) and the measurement configuration (∅, , 
and pulse moments). The maximum DOI was 50 m (Table 2). The GMR software does not provide the data 
residual for the inversion model results. However, we have high confidence that our results are consistent 
because previous works have used the same surface NMR equipment on the North Slope of Alaska (Creight-
on et al., 2018; Parsekian et al., 2019; Terry et al., 2020) and the same processing software (Terry et al., 2020).

3.3. Talik Refreeze Modeling

We modeled top-down talik refreezing and permafrost aggradation beneath DLBs using the Geophysical 
Institute Permafrost Laboratory version 2 (GIPL2) model (Jafarov et  al.,  2012; Marchenko et  al.,  2008). 
This model estimates the transient subsurface temperature based on one-dimensional heat conduction and 
phase change. It includes the thermal effect of snow and the subsurface is divided into layers with differ-
ent porosities and thermal properties (frozen and thawed heat capacities and thermal conductivities). The 
sediments and sedimentary rocks are assumed to be fully saturated, therefore, the volumetric porosity is as-
sumed to the same as the frozen or unfrozen volumetric water content. GIPL2 has been successfully applied 
to model permafrost temperature in Alaska (Arp et al., 2016; Jafarov et al., 2012; Nicolsky et al., 2009, 2017; 
Romanovsky et al., 2007).

We chose the Derksen and Imakruak DLBs at the Teshekpuk region for the talik refreeze modeling because 
we have evidence of when they drained based on historical aerial imagery (Jones et  al.,  2020), and the 
geophysical results suggest the presence of remnant taliks for both basins. Derksen basin drained partially 
between 1966 and 1972, therefore the shallow water temperature was considered in the model as the upper 
boundary condition. Imakruak basin drained partially between 1955 and 1966, and then completely drained 
in 1999. In this case, we considered surface temperatures to be influenced by shallow water between 1960 
and 1999 and air temperature and snow on the ground as a climatic forcing after 1999.

Daily mean air temperature and snow depth model inputs were based on publicly available (http://climate.
gi.alaska.edu/acis_data) historical data from Utqiaġvik (formerly known as Barrow), located about 120 km 
northwest of the Teshekpuk region. For partial drainage, we estimated the shallow water temperature us-
ing a linear regression based on the observed water temperature measurements for Derksen Basin for the 
years 2007–2009 (Arp et al., 2016) and the daily mean air temperature records. We assumed an initial talik 
thickness of 70 m with a temperature of 4 °C from the surface to 50 m depth and 0 °C between 50 and 70 m 
depth, and −2 °C at 80 m depth. For the bottom boundary condition, we assumed a constant temperature 
gradient of 1 °C per 100 m, which is consistent with the permafrost thickness ∼320 m estimated at Drew 
Point borehole (Clow, 2014; Figure 1). Because we do not know exactly when the lake drained, our simula-
tions started on July first, which is a reasonable time for a lake drainage to occur on the Arctic Coastal Plain 
of Alaska due to the timing of snow and lake ice melt (Jones & Arp, 2015). Moreover, we assumed thermal 
equilibrium in the ground temperature regime right before lake drainage, which is a reasonable assumption 
considering that the lakes would have formed thousands of years before drainage (Bockheim et al., 2004; 
Hinkel et al., 2003).

The subsurface properties were defined based on the lithologic description from the Drew Point borehole 
(Gryc, 1988) and field observations made from shallow (<1 m) permafrost cores. We assumed a surficial 
layer of lake sediments with 3 m thickness and porosity of 0.50. We also assumed a porosity of 0.20 for the 
sandstone (below 24 m depth) based on the values reported for sandstone of the Colville Group on the Umi-
at region on the North Slope of Alaska (Fox et al., 1979). Because the unconsolidated sediments (between 
3 and 24 m depth) are formed of varied sediment textures, including sand, silt, and clay with different pro-
portions within this layer, we performed a sensitivity analysis by varying the porosity of the unconsolidated 
sediments layer between 0.30 and 0.50 (Manger, 1963). We also performed a sensitivity analysis by varying 
the thermal properties according to the range of values reported in existing literature (Nicolsky et al., 2017; 
Roy-Léveillée & Burn, 2017): thawed thermal conductivity (Kt) between 0.9 and 1.6 W m−1 °C−1, frozen 
thermal conductivity (Kf) between 1.5 and 2.4 W m−1 °C−1, thawed heat capacity (Ct) between 3.10 × 106 
and 3.27 × 106 J m−3 °C−1, and frozen heat capacity (Cf) between 1.50 × 106 and 2.17 × 106 J m−3 °C−1. The 
lake sediments, unconsolidated sediments, and sandstone layers were assumed to have the same thermal 
properties.
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Figure 2.  Three categories of surface nuclear magnetic resonance (NMR) signal detection: (a) very low signal-to-noise ratio (SNR) (3:1) with limited or no 
evidence of exponential relaxation; (b) low SNR (10:1) with evidence of exponential relaxation between 0.5 and 2.0 A·s on the pulse moment axis and 0 and 
50 ms in time; and (c) high SNR (30:1) with evidence of exponential relaxation. For each category, the left panel shows the stacked signal amplitude (nV) as a 
function of pulse moment (A·s), which is a proxy for depth, the right top panel is the average signal amplitude (nV) as a function of time (ms), which reflects 
the total water content, and the right bottom panel is the signal frequency spectrum. FFT, fast Fourier transform.
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4.  Results and Interpretation
4.1.  Geophysical Surveys

The surface NMR data quality was divided into three categories of signal detection (Figure 2): (1) very low 
SNR (∼3:1) with limited or no evidence of NMR relaxation and no peak on the Larmor frequency of water 
in the spectrum (Figure 2a), therefore, we interpret this as no liquid water detected; (2) low SNR (∼10:1) 
with evidence of exponential relaxation and an identifiable low peak at the Larmor frequency of water (Fig-
ure 2b), indicating the presence of low, but real liquid VWC, and insufficient information to quantitatively 
interpret VWC distribution with depth; and (3) high SNR (∼30:1) with strong evidence of exponential re-
laxation and clear peak on Larmor frequency of water (Figure 2c), indicating ample subsurface liquid water 
and sufficient information to interpret VWC distribution with depth. It is worth noting again that surface 
NMR may not detect water held in very small pore spaces or partially unfrozen pore water, which may lead 
to very short relaxation times.
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Figure 3.  Surface nuclear magnetic resonance (NMR) excitation pulse duration (tP) comparison of Imakruak Basin (a) 10 ms versus (b) 20 ms, and Three 
Creatures Basin (c) 20 ms versus (d) 40 ms. For each example, the left panel is the average signal amplitude (nV) as a function of time (ms), and the right panel 
is the signal frequency spectrum. FFT, fast Fourier transform; SNR, signal-to-noise ratio.
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Figure 3 shows a comparison of different surface NMR excitation pulse duration (tP) for Imakruak Basin 
10 ms (Figure 3a) versus 20 ms (Figure 3b), and Three Creatures Basin 20 ms (Figure 3c) versus 40 ms (Fig-
ure 3d). The left panels show the NMR signal time-series and that a higher average signal amplitude leads 
to a higher SNR since our study sites present low noise levels. The right panels show the signal frequency 
spectrum, where a peak on the Larmor frequency is observed when the SNR is at least 10:1 (Figures 3a, 3c, 
and 3d), and no peak when the SNR is very low (Figure 3b). This comparison shows that in general, a short-
er tP can lead to a higher SNR. Longer tP can reach deeper DOI, however, it can result in lower SNR due to 
shorter relaxation times being obscured by the transmitting pulse.

We interpret the presence of remnant taliks based on either unfrozen water content estimated with surface 
NMR or TEM resistivities in DLBs compared to measurements on primary surface sites and borehole resis-
tivity logs. For each study region, we have borehole lithologic descriptions (Figures 4a and 5a) to help with 
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Figure 4.  Teshekpuk region borehole log data, transient electromagnetic (TEM) inverted resistivities, and surface nuclear 
magnetic resonance (NMR) inverted volumetric water content (VWC). (a, b) Drew Point borehole lithologic description 
and resistivity log (Gryc, 1988) along with TEM resistivities; (c, d) Peatball Bluff; (e) Bean Basin; (f) Schmutz Basin; (g, 
h) Imakruak Basin; and (i, j) Derksen Basin. US = unconsolidated sediments, and SS = sandstone of the Colville Group. 
DOI, depth of investigation; SE, single-exponential relaxation; MEA, multiexponential relaxation after excitation pulse; 
MED, multiexponential relaxation during and after excitation pulse. The gray shading zone on the resistivity profiles 
represents the ± standard deviations and the vertical line at 10 Ωm [log10(10) = 1] represents the interpreted minimum 
resistivity for permafrost. The horizontal lines (e–j) represent the interpreted depth to the top of talik.
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the interpretations. We assume that borehole sites (Figures 4b and 5b) and primary surface sites (Figures 4c 
and 5c) represent permafrost with zero or very low liquid water content, and interpret that permafrost resis-
tivity is >10 Ωm. At the Drew Point borehole, the TEM resistivity sounding is compared with the resistivity 
log (Figure 4b) and both datasets reveal consistent results >10 Ωm.

At Peatball Bluff, even though we observed a thin zone with resistivities <10 Ωm between 5 and 10 m depth 
(2 and −3 m elevation, Figure 4c), the surface NMR result (Figure 4d) corresponds to signal category 1, i.e., 
no liquid water was detected. At Bean (Figure 4e) and Schmutz (Figure 4f) basins, only TEM measurements 
were collected and we observed resistivities <10 Ωm from ∼15 and 45 m depth (−13 and −42 m elevation), 
respectively, which suggest the presence of a remnant talik. For Imakruak Basin, the results show evidence 
of a remnant talik from ∼22 m depth (−21 m elevation), where we observed a resistivity <10 Ωm (Figure 4g) 
and VWC of 0.015 m3 m−3 (Figure 4h) that corresponds to NMR signal category 2. For Derksen Basin, we 
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Figure 5.  Inigok region borehole log data, transient electromagnetic (TEM) inverted resistivities, and surface 
nuclear magnetic resonance (NMR) inverted volumetric water content (VWC). (a, b) Inigok North borehole lithologic 
description and resistivity log (Gryc, 1988); (c, d) Inigok Camp; (e) Blustery Basin; (f, g) Deep Basin; (h, i) Three 
Creatures Basin; and (j) Pingo Basin. US = unconsolidated sediments, and SS = sandstone of the Colville Group. DOI, 
depth of investigation; SE, single-exponential relaxation; MEA, multiexponential relaxation after excitation pulse; 
MED, multiexponential relaxation during and after excitation pulse. The gray shading zone on the resistivity profiles 
represents the ± standard deviations and the vertical line at 10 Ωm [log10(10) = 1] represents the interpreted minimum 
resistivity for permafrost. The horizontal black lines (f–j) represent the interpreted depth to the top of talik.
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interpret a remnant talik from ∼9 m depth (−8 m elevation) based on 
observed resistivity <10 Ωm (Figure 4i) and VWC of 0.098 m3 m−3 (Fig-
ure 4j) corresponding to signal category 3.

At Inigok Camp, the resistivities were >10 Ωm (Figure 5c), suggesting 
only permafrost down to the depth of investigation (>100 m). Addition-
ally, even though the surface NMR result (Figure 5d) presents a maxi-
mum VWC of 0.055 m3 m−3, it shows an irregular distribution with depth 
and signal category 1. Therefore, we suspect that these VWC values are 
spurious due to the very low SNR and no peak on the Larmor frequency 
of water. At Blustery Basin, only a surface NMR measurement was con-
ducted, and it has a signal category 1. Although we observed a maximum 
VWC of 0.035 m3 m−3 (Figure 5e), we interpret that no liquid water was 
detected, suggesting that the remnant talik beneath Blustery is possibly 
completely refrozen. For Deep Basin, we observed resistivity <10  Ωm 
(Figure 5f) below ∼25 m depth (20 m elevation), suggesting the possibil-
ity of a remnant talik. However, this basin has an NMR signal category 
1 (Figure 5g), suggesting that no liquid water was detected. We suspect 
that the pore water is partially frozen, which generated a signal that is be-
low the limit of the surface NMR detection. Perhaps only TEM was able 
to distinguish the partially unfrozen pore water. For Three Creatures Ba-

sin, we interpret a remnant talik from ∼22 m depth (26 m elevation) based on observed resistivity <10 Ωm 
(Figure 5h) and VWC of 0.118 m3 m−3 (Figure 5i) corresponding to signal category 3. Lastly, at Pingo Basin 
(Figure 5j), only a TEM measurement was conducted and we observed resistivities <10 Ωm below ∼40 m 
depth (3 m elevation), suggesting a remnant talik at this depth.

For Derksen (Figures 4i and 4j) and Three Creatures (Figures 5h and 5i) basins, the surface NMR results 
present a significant VWC shallower than the transition where the resistivity is <10 Ωm, which suggests 
that the depth to the top of talik may be shallower than interpreted. However, since both surface NMR 
and TEM methods present some uncertainty in depth, our interpretation is based on both results and we 
assumed the depth to the top of talik where the resistivity transition was observed. On the other hand, it is 
also possible that, due to differences in porosity and salinity in Derksen and Three Creatures basins, they 
may have a higher resistivity threshold for the frozen-unfrozen transition compared to the primary surface 
sites (Peatball Bluff and Inigok Camp) and the borehole sites (Drew Point and Inigok North). If we had TEM 
and surface NMR data for more DLBs, we could potentially calibrate a new resistivity threshold.

For Inigok Camp (Figure 5d) and Blustery Basin (Figure 5e), although the surface NMR results present a 
significant VWC (0.055 m3 m−3 and 0.035 m3 m−3, respectively), we presume that those VWC values are not 
real because both sites have a signal category 1, i.e., a very low SNR and no peak on the Larmor frequency 
of water. Moreover, the inversion artifacts observed for Inigok Camp (Figure 5d) and Blustery Basin (Fig-
ure 5e) results can be attributed to some instrument noise during the data acquisition. Deep Basin also 
presents a surface NMR signal with category 1 (Figure 4g) and no water was detected, therefore, our inter-
pretation for this basin relied on the TEM results only (Figure 4f). Finally, although Imakruak Basin result 
presents a very low VWC (0.015 m3 m−3, Figure 4g), we know that this water signal is real because it has a 
visible peak on the Larmor frequency (Figures 2b and 3a).

Table 3 includes a summary of the DLBs geophysical results, including TEM average linear resistivity ( ) 
until ∼80 m depth, surface NMR VWCMAX, and signal category. Table 3 also includes the interpreted depth 
to the top of taliks (Figures 4 and 5) and estimations of top-down talik refreezing rates, which are calculated 
based on the depth to the top of talik (m) and the years between the drainage period inferred from histori-
cal aerial imagery (Table 1) and the geophysical data acquisition (Table 2). It is possible to observe that, in 
general, a complete lake drainage results in a faster refreezing rate.

Figure 6 presents the surface NMR relaxation time results (
2

T
2

) for Derksen (Figure 6a) and Three Crea-
tures (Figure 6b) basins. These two basins are the only ones that revealed a sufficiently high SNR to inter-
pret 2

T
2 . We have highlighted the zones (gray shading) where 

2
T

2
 results may be interpreted corresponding 
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Figure 6. Surface nuclear magnetic resonance (NMR) relaxation pulse 
duration (

2
T

2
) for (a) Derksen and (b) Three Creatures basins. 

2
T

2
 is 

proportional to the pore size and it is only reliable where water was 
detected in the gray shaded zones. VWCMAX, maximum volumetric water 
content; DOI, depth of investigation.
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to depths where water was detected. By comparing to the lithologic profiles (Figures 4a and 5a), the top light 
gray zone corresponds to the unconsolidated sediments layer, which has a maximum VWC of 0.098 and 
0.118 m3 m−3, and average 

2
T

2
 of 68 and 60 ms for Derksen and Three Creatures basins, respectively. The 

lower darker gray zone probably corresponds to the sandstone layer, which has a maximum VWC of 0.009 
and 0.035 m3 m−3, and average 2

T
2  of 64 and 79 ms for Derksen and Three Creatures basins, respectively. 

Compared to the sandstone, the unconsolidated sediments have a higher VWC and a lower difference on the 
average 2

T
2  between the two basins. The sandstone has a smaller average pore size than the unconsolidated 

sediments, therefore, we would expect a lower 
2

T
2

 for the sandstone. However, the sandstone average 2
T

2  is 
slightly higher than the unconsolidated sediments. This can be attributed to the low VWC of the sandstone, 
which leads to higher uncertainty on 

2
T

2
 inversion results.

For the three signal categories defined in Figure 2, we plotted surface NMR inverted VWC versus TEM in-
verted resistivities (Figure 7), limited to coincident observations within the surface NMR DOI (maximum 
50 m depth). The plotted surface NMR VWC is the average value among the single-exponential (SE), multi-
exponential after excitation pulse (MEA), and multiexponential during and after excitation pulse (MED) in-
version results (Figures 4 and 5) for a given depth and the uncertainty was estimated based on the minimum 
and maximum VWC. We used equation (2) to estimate VWC with the TEM resistivities, where  is the 
measured TEM resistivities and m  was assumed as 1.3, which is a typical value for unconsolidated sands 
(Archie, 1942). Relatively high pore water salinity (Collett & Bird, 1988) and low clay content (Black, 1964) 
were observed for late Quaternary sediments on the Arctic Coastal Plain of Alaska, therefore, the surface 
conductivity effect may be very low (Ruffet et al., 1995). Based on the surface conductivity for sandstones 
with low clay content between 13.6 × 10−4 and 32.6 × 10−4 S m−1 (or 735.3 and 306.7 Ωm) reported by 
Walker et al. (2014) and Glover (2016), we assumed s  of 700 Ωm. Due to the high salinity, the pore water 
controls the bulk resistivity, and it can be up to ten times more conductive than the bulk resistivity (Glover 
et al., 1994). Therefore, because the lowest measured bulk resistivity is ∼3 Ωm, we assumed w  of 0.3 Ωm. 
The corresponding root mean square errors (RMSE) are shown in Figure 7. Despite our limited information 
to determine m and s , these plots show a weak relationship between the inverted VWC and resistivities. 
This may be explained in part due to the difficulty of calibrating an accurate electrical transform model 
that applies to pore spaces that may be filled both with solid (ice) and brine liquid phase. The low VWC 
associated with resistivities <10 Ωm may be related to water in very small pore spaces or partially unfrozen 
pore water. Ice formation expels dissolved solids and, consequently, the remaining unfrozen pore water can 
present higher salinity, which results in lower resistivities. As previously mentioned, water in very small 
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Region DLB  (Ωm)
VWCMAX 
(m3 m−3)

NMR signal 
category1 Drainage degree2 Talik top depth 

(m)3
Drainage time 

(years)4
Refreezing 

rate (m/year)5

Teshekpuk Derksen 9 0.098 3 Partial 9 44–50 0.18–0.20

Imakruak 14 0.015 2 Partial then Complete 22 50–61 0.36–0.44

Bean 11 – – Partial then Complete 15 56–64 0.23–0.28

Schmutz 34 – – Complete 45 43–44 1.02–1.05

Inigok Three Creatures 28 0.118 3 Partial then Complete 22 >67 <0.33

Deep 9 0.025 1 Partial then Complete 25 >70 <0.36

Pingo 115 – – Complete 40 >66 <0.61

Blustery – 0.035 1 Complete – >70 –

Note. DLB, drained lake basin; , average resistivity until ∼80 m depth; VWCMAX, maximum volumetric liquid water content. 1Figure 2; 2Drainage degree at the 
location where the geophysical data was acquired; 3Approximate depth to the top of talik around the center of each DLB, interpreted based on the geophysical 
results (Figures 4 and 5); 4Years between the drainage period (Table 1) and the geophysical data acquisition (Table 2); 5Top-down talik refreezing rates, which is 
the 3talik top depth (m) divided by the 4drainage time (years). No talik was detected below Blustery Basin, which is interpreted as refrozen.

Table 3 
Geophysical Results and Interpretation
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pore spaces or partially unfrozen pore water can be a limitation for surface NMR detection, which are char-
acterized by relaxation times too short to be measured.

4.2.  Thermal Modeling

Figure 8 presents the top-down thermal modeling results of permafrost aggradation and talik refreeze com-
pared to the depth to the top of the talik interpreted from the geophysical data. We plotted the −2°C, −1°C, 
and 0 °C isotherms for unconsolidated sediments with an average VWC of 0.40 and average thermal prop-
erties values for all layers (Kt = 1.25 W m−1 °C−1, Kf = 1.95 W m−1 °C−1, Ct = 3.185 × 106 J m−3 °C−1, and 
Cf = 1.835 × 106 J m−3 °C−1). The gray shaded zones represent the possible range of the depth to the top of 
the talik (0 °C isotherm) by varying the VWC of the unconsolidated sediments between 0.30 and 0.50. The 
darker gray zone was estimated using average thermal properties values, and the lighter gray zone was esti-
mated by varying the thermal properties (Kt = 0.9–1.6 W m−1 °C−1, Kf = 1.5–2.4 W m−1 °C−1, Ct = 3.10 × 106 
to 3.27 × 106 J m−3 °C−1, and Cf = 1.50 × 106 to 2.17 × 106 J m−3 °C−1). For Derksen Basin (Figure 4a), the 
results do not change within the discretization of the model (1 m layer thickness between 5 and 16 m depth) 
when varying the thermal properties values. A higher VWC results in a shallower refreezing depth due to 
the thermal properties of frozen or unfrozen water (Romanovsky & Osterkamp, 2000). In terms of thermal 
properties, a combination of lower thermal conductivity and higher heat capacity results in shallower re-
freezing depth.

For Derksen Basin (Figure 8a), the geophysical results suggest the depth to the top of the talik was 8.4–9.6 
m in 2016, which is within the range of possible depths of 8–11 m obtained from modeling. For Imakruak 
Basin (Figure 8b), the geophysical results suggest the depth to the top of the talik was 19–25 m in 2016, and 
20–38 m for the model results. It is possible to observe in Figure 8b that the talik refroze at a faster rate after 
complete drainage occurred in 1999. The model and geophysical results are in agreement and provide two 
lines of evidence of a remnant talik for Derksen and Imakruak basins.

For Imakruak, the −2 and −1 °C isotherms reach deeper depths and have a similar trend as the 0 °C iso-
therm. On the other hand, for Derksen, the −2 and −1 °C isotherms are shallower and were influenced by 
the warmer conditions between around 1980 and 2005.

5.  Discussion
5.1.  Drainage Age and Remnant Talik

Based on historical aerial imagery (Jones et al., 2020), we have evidence that DLBs in the Teshekpuk region 
drained after 1949, which is the year of the oldest available imagery, and the DLBs in the Inigok region 
drained before 1949. The results suggest the presence of a remnant talik for all the studied DLBs in the Te-
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Figure 7.  Transient electromagnetic (TEM) inverted resistivities versus surface nuclear magnetic resonance (NMR) inverted volumetric water content (VWC) 
(black dots) for the three categories of signal detection defined in Figure 2: (a) category 1 (Deep Basin), (b) category 2 (Imakruak Basin), and (c) category 3 
(Derksen and Three Creatures basins). Error bars indicate the ± mean uncertainty for each method. The gray curves represent the VWC calculated with the 
modified Archie equation (2) (Ruffet et al., 1995). RMSE, root mean square error.
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shekpuk region (Derksen, Imakruak, Bean, and Schmutz), which is consist-
ent with their recent drainage. For the DLBs in the Inigok region, the results 
suggest the presence of a talik beneath Three Creatures, Deep, and Pingo 
basins, and no talik was detected at Blustery Basin. Based on the hypoth-
esized talik refreezing time on the order of decades (Ling & Zhang, 2004; 
Mackay, 1992), our geophysical results suggest that: (i) Three Creatures Ba-
sin probably drained shortly before 1949 because the surface NMR result 
showed a relatively high VWC, similar to Derksen Basin; (ii) Deep Basin 
drained somewhat before Three Creatures Basin since our results suggest a 
deeper top of remnant talik and low VWC was detected with surface NMR 
(Table 3); (iii) Pingo Basin probably drained before Deep Basin because the 
results suggest a deeper top of remnant talik; and (iv) Blustery is the oldest 
basin and probably drained hundreds of years before present since our re-
sults suggest that its talik is probably completely refrozen. Three Creatures 
and Deep basins drained partially and then completely where the geophys-
ical data were acquired, and Pingo and Blustery basins drained completely 
(Table  3). The drainage degree plays a role on the top of talik refreezing 
depth and can be a confounding factor in the interpretation of the drainage 
timing. Other surface characteristics can help to constrain it, such as ice-
wedge formation and vegetation succession, and also radiocarbon dating of 
the lowermost organics in the postdrainage sediments (Hinkel et al., 2003).

5.2.  Geophysical Detection of Taliks

Based on borehole resistivity logs and TEM results on primary surface sites, 
we interpret that permafrost resistivity is >10 Ωm in our study sites. This in-
terpretation is consistent with the minimum permafrost resistivity observed 
by Collet and Bird (1993) based on 156 borehole logs from the Prudhoe Bay 
and Kuparuk River oil fields, and by Overduin et al. (2012) based on elec-
trical resistivity measurements around Utqiaġvik, all in the Arctic Coastal 
Plain of Alaska. Compared to surface NMR and other geophysical methods 
(e.g., GPR and ERT), TEM soundings can achieve deeper DOI (>100 m in 
our case). Minsley et al. (2012) used airborne frequency domain EM to im-
age taliks in discontinuous permafrost at the Yukon Flats, Alaska, reaching 
depths of ∼100 m. Their results show higher resistivities compared to our 
results due to differences in equipment and lithology. Creighton et al. (2018) 
used TEM surveys to determine the talik thickness below Peatball Lake in 
the Teshekpuk region, suggesting that during the 1,400  years of the lake 
lifespan (based on radiocarbon dating), Peatball Lakes's talik reached ∼91 m 
depth. They also investigated the sensitivity of TEM to measure talik thick-
ness based on forward modeling and inversion of synthetic data, showing 
that TEM can detect a talik thickness up to 130 m depth at Peatball Lake. 
Our results do not show clear evidence of the deepest extent of the remnant 
talik. However, the TEM resistivities increase to values close to 10 Ωm below 
∼65 m depth for Derksen (−64 m elevation), Bean (−63 m elevation), and 
Pingo basins (−22 m elevation), and >10 Ωm ∼ 60 m depth (−57 m eleva-
tion) for Schmutz Basin, which may be related to the depth of the base of 
the talik and permafrost interface. The resistivity profile for Schmutz Basin 
(Figure 4f) present values close to 10 Ωm between −9 and −18 m elevation, 

which may be related to partially unfrozen pore water. However, we are cautious about interpreting it as 
evidence for a closed talik because it is right at the resistivity threshold for permafrost.

Our surface NMR measurements have a shallow DOI (<50 m) due to the low subsurface resistivity and the 
high geomagnetic field inclination on our study sites (>80°) (Parsekian et al., 2019). The surface NMR result 
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Figure 8.  Top-down talik refreeze modeling results for (a) Derksen and 
(b) Imakruak basins, estimated with the GIPL2 (Geophysical Institute 
Permafrost Laboratory version 2) model. The curves represent the 
−2, −1, and 0 °C isotherms for unconsolidated sediments (Figure 4a) 
with average volumetric water content (VWC) of 0.40 and average 
thermal properties values (Kt = 1.25 W m−1 °C−1, Kf = 1.95 W m−1 °C−1, 
Ct = 3.185 × 106 J m−3 °C−1, and Cf = 1.835 × 106 J m−3 °C−1). The 
gray shaded zones represent the range of possible 0 °C isotherms 
assuming unconsolidated sediments with VWC between 0.30 and 0.50. 
The darker gray zone was estimated using average thermal properties 
values, and the lighter gray zone was estimated by varying the thermal 
properties (Kt = 0.9 to 0.6 W m−1 °C−1, Kf = 1.5–2.4 W m−1 °C−1, 
Ct = 3 × 10 × 106 to 3.27 × 106 J m−3 °C−1, and Cf = 1.50 × 106 to 
2.17 × 106 J m−3 °C−1). For Derksen Basin (a), the results do not change 
within the precision of the model when varying the thermal properties 
values. The shading was included only for 0 °C isotherm to preserve the 
clarity of the figure. The black dots are the depth to the top of the talik 
based on the geophysical results and the error bars indicate the ± mean 
uncertainty estimated with surface nuclear magnetic resonance (NMR) 
inverted resolution matrices.
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at Blustery Basin suggests that the remnant talik is possibly completely refrozen. A TEM survey at this site 
would help to confirm whether this is the case. The results for Imakruak (Figure 4h), Derksen (Figure 4j), 
and Three Creatures (Figure 5i) are similar to the expected result simulated for a closed talik by Parsekian 
et al. (2013), which corroborates our interpretation of a remnant talik for those DLBs. The results for the pri-
mary surface sites, Peatball Bluff (Figure 4d) and Inigok Camp (Figure 5d), and Blustery Basin (Figure 5e) 
are similar to their simulated result for permafrost not impacted by lake development at the surface. Terry 
et al. (2020) used surface NMR to detect a talik with VWC ∼0.10 m3 m−3 beneath the Kuparuk River aufeis 
on the North Slope of Alaska, similar to our observed values for the remnant taliks below Derksen and 
Three Creatures basins, and they also observed VWC < 0.03 m3 m−3 for permafrost, which is similar to our 
primary surface sites and Blustery Basin results.

The analysis of our surface NMR dataset shows its advantages and limitations to detect unfrozen water 
found in remnant taliks beneath DLBs. The relaxation pulse duration (

2
T

2
) for the category 3 results (Fig-

ure 6) show that the unconsolidated sediments present a consistent average 
2

T
2

 values (60–68 ms) due to 
its relatively high VWC (0.098–0.118 m3 m−3), while the sandstone layer demonstrate a wider range of 2

T
2  

values (64–79 ms) and low VWC (0.009–0.035 m3 m−3). The sandstone layer may have smaller pore sizes 
than the unconsolidated sediments, which can result in short relaxation times likely below the surface NMR 
detection limit. However, our sandstone 

2
T

2
 values are consistent with previously observed ranges between 

64 ms (Hein et al., 2017) and 80 ms (Legchenko et al., 2002). Yet, the observed resistivities of <10 Ωm for the 
sandstone layer support the interpretation that its pore water is probably partially or completely unfrozen. 
The plotted surface NMR VWC versus TEM resistivities compared to the calculated VWC using the Archie 
Equation (Figure 7), highlight the unambiguous ability of surface NMR to detect unfrozen water when the 
SNR is sufficiently high (>10:1). The high RMSE values (0.070–0.082 m3 m−3) can be explained because the 
VWC was low (0.009–0.035 m3 m−3) in the sandstone layer (below 25–30 m depth), but the TEM resistivities 
were also low (3–6 Ωm), leading to a high VWC (>0.100 m3 m−3) calculated with the equation (2). Moreo-
ver, the parameter m  can be sufficiently different for the unconsolidated sediments and sandstone layers 
(Archie, 1942), and our generalized values do not fit both well.

In general, geophysical methods, including electrical, electromagnetic, and seismic, present limitations to 
distinguish between frozen and unfrozen materials in permafrost environments (Yoshikawa et al., 2006), 
mainly when pore water salinity plays an important role (Ross et al., 2007). Our results show that surface 
NMR and TEM are a valuable combination to detect remnant taliks below DLBs. Both methods enabled 
relatively rapid measurements (<1 h each) even under Arctic climatic conditions.

5.3. Geophysical Properties of Partially Refrozen Materials

In general, the permafrost in our study sites has low resistivity due to the relatively high concentration of 
salt deposited during marine transgressive events through the geologic history of the Arctic Coastal Plain of 
Alaska (Brigham-Grette & Hopkins, 1995; Dinter et al., 1990; Gryc, 1988). Salinity and pressure can depress 
the freezing point of water, and permafrost contains partially unfrozen pore water at temperatures below 
0 °C (Gryc, 1988; Kleinberg & Griffin 2005; Keating et al., 2018; Mackay, 1997), which enables electrolytic 
conduction (Ross et al., 2007; Yoshikawa et al., 2006). The temperature logs from Drew Point and Inigok 
North boreholes showed temperatures <−5 °C down to 100 m depth (Clow, 2014). Collett and Bird (1988) 
observed a maximum pore water salinity of 19 ppt and pressure of 22 kPa/m down to 1,500 m depth in 
boreholes at the Prudhoe Bay and Kuparuk River oil fields and suggested that the freezing point depression 
is no more than ∼2 °C. Thus, the freezing point depression due to salinity or pore pressure may be negligible 
for subsurface material with temperatures <−2 °C. However, it can be an important factor for a remnant 
talik that is still undergoing refreezing with temperatures >−2 °C and, consequently, may contain partially 
unfrozen pore water. Figure 8a shows how dynamic the −2 and −1 °C isotherms can be during the talik 
refreezing process after lake drainage. Furthermore, Figure 8b shows that the depth to the top of a talik can 
be shallower if the freezing point depression is 2 °C. Recent studies based on laboratory measurements of 
the resistivity response during freezing of porous media showed that above 0 °C, the bulk resistivity is con-
trolled by the pore water resistivity which increases with decreasing temperature, and below 0 °C, the bulk 
resistivity depends on the unfrozen water content and its resistivity (Herring et al., 2019; Ming et al., 2020). 
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This evidence suggests that TEM measurements can detect partially unfrozen saline pore water in remnant 
taliks, since electrical current can flow through very small pore spaces.

Kleinberg & Griffin  (2005) conducted NMR measurements in cores up to 428  m depth from the Arctic 
Coastal Plain of Alaska, to estimate the unfrozen water content in sediments with temperatures below 
0 °C. Their results show that sediments with total porosity of ∼0.37 can have liquid water-filled porosity 
of 0.04–0.14 at −3 °C and 

2
T

2
 <5 ms. Because the surface NMR instrument dead time is 5.5 ms and 

2
T

2
  

2
T

2
 (Behroozmand et al., 2015), the partially unfrozen pore water signal may relax too fast to be detected by 

surface NMR, which is consistent with our observations.

5.4. Thermal Modeling

The top-down thermal modeling of permafrost aggradation and talik refreeze provides a second line of evi-
dence, complementary to our geophysical observational data, that a remnant talik is present below Derksen 
and Imakruak basins (Figure 8). Historical aerial imagery shows that Imakruak drained a decade earlier 
than Derksen, and the results suggest that the top of the talik at Imakruak is about two times deeper (Fig-
ure 8). Considering that both basins are in the Teshekpuk region, i.e., they have a similar climate history and 
lithology, this difference can be attributed to the fact that Derksen drained partially and Imakruak drained 
completely in 1999. To enable an objective comparison, the modeling was done independently of the geo-
physical results. Even considering the best information available in our thermal model, it still depends on 
some assumptions such as: (1) estimates of the volumetric water content, (2) constant volumetric water 
content through time, and (3) similar climate record as at Utqiaġvik, located ∼120 km northwest. When all 
other variables remain constant, the modeling results show that a lower volumetric water content results in 
a deeper talik due to the influence of frozen or unfrozen water content on thermal conductivity and latent 
heat effects (Romanovsky & Osterkamp, 2000).

Our modeling results suggest that after 40 years since lake drainage, the depth to the top of the talik is 
8–11 m for Derksen Basin, and 16–26 m for Imakruak. Ling and Zhang's (2004) thermal modeling of talik 
refreeze after a complete lake drainage on the Arctic Coastal Plain of Alaska suggest a top-down refreeze of 
23–25 m in 40 years, which is consistent with our results considering that Derksen Basin drained partially 
and Imakruak Basin drained completely only after 30 years of the simulation period.

Even though the TEM resistivity and surface NMR VWC measurements are sensitive to unfrozen VWC, 
not necessarily to temperature, and a significant amount of pore water can be partially unfrozen between 
−2 and 0 °C (Romanovsky & Osterkamp, 2000), our model results still agree very well with the geophysical 
results. For Imakruak (Figure 8b), the −2 °C isotherm is around the same depth as the resistivity is <10 Ωm 
(Figure 4g) and the detected VWC is very low for this basin (Figure 4h), indicating that the pore water is 
mostly frozen. For Derksen Basin (Figure 8a), the −2 °C isotherm was at ∼4.5 m depth in 2016, therefore, 
it is possible that there is some unfrozen VWC between 4.5 and 9 m depth that was not detected by the ge-
ophysical measurements.

Our observations show that a remnant talik refreezing below young DLBs are easier to interpret and model, 
but it is more challenging in old DLBs, suggesting more complexity than predicted by numerical simula-
tions (Ling & Zhang, 2004) because some processes are very difficult to account for in the thermal modeling. 
For example, talik evolution depends on the lake ice regime because a talik develops when the lake water is 
deeper than the winter ice thickness (floating ice) and, throughout its lifespan, a lake can have different ice 
regimes depending on the climate conditions (Arp et al., 2016). Pore water salinity is also a difficult param-
eter to be considered and it is an important component of the permafrost on the Arctic coastal plains that 
influences permafrost degradation and aggradation (MacKay, 1997; Mackay & Burn 2002a, 2002b). Future 
modeling efforts of permafrost dynamics should consider incorporating these components and associated 
geophysical constraints.
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5.5.  Implications of Permafrost Aggradation Dynamics After Lake Drainage

Our geophysical observations and thermal modeling results may provide useful information to predict 
future evolution of permafrost aggradation beneath DLBs across the Arctic. Lake drainage in the Arctic 
has a significant influence on permafrost dynamics (Hopkins, 1949) and developing techniques to better 
understand talik refreeze rates is critical to our understanding of Arctic landscape dynamics. For exam-
ple, if lake drainage frequency increases in the region, it could result in more active permafrost aggrada-
tion, which would likely decrease the emissions of permafrost carbon to the atmosphere (van Huissteden 
et al., 2011). On the other hand, if lake drainage frequency decreases, lake talik development could increase 
and probably lead to an increase in permafrost carbon emissions (Walter et al., 2007). Lake drainage fre-
quency is already increasing in the boundary between discontinuous and continuous permafrost zones 
(Lantz & Turner, 2015; Nitze et al., 2018), and may increase in continuous permafrost zone in the future 
(Jones et al., 2020). Future warmer and wetter conditions in the Arctic (Bintanja & Selten, 2014) may stimu-
late the mechanisms leading to lake drainage, including lake expansion (Arp et al., 2011), bank overtopping 
(Jones & Arp 2015), and ice-wedge degradation (Liljedahl et al., 2016), and also increase the impacts on the 
water availability (Arp et al., 2019), tundra habitat, vegetation productivity (Lara et al., 2018), and snow-
dam outburst floods (Arp et al., 2020).

6.  Conclusions
Geophysical methods provide a nondestructive and indirect way to investigate taliks in permafrost regions. 
This study provides new observations of permafrost aggradation below DLBs in the continuous permafrost 
zone of Alaska by combining geophysical measurements and thermal modeling to independently determine 
the depth to the top of remnant taliks. Our results show evidence of remnant taliks below several DLBs that 
have drained before and after 1949 (oldest aerial imagery). Partially unfrozen pore water represents a limi-
tation for surface NMR detection due to the very short water signal and only TEM was able to detect thaw 
in small pores because electrical current can flow as long as there is continuity in the pore-filling fluid. Both 
geophysical and thermal modeling results showed a talik refreezing rate consistent with previous modeling 
results on the western Arctic Coastal Plain of Alaska. Complete lake drainage results in faster permafrost 
aggradation rates than a partial drainage due to the thermal properties of remnant lake water in the basin. 
Our findings may help to constrain talik refreezing models and provide valuable information to predict 
future impacts of climate warming on permafrost aggradation after lake drainage and subsequently both 
water and carbon cycling in the Arctic.

Data Availablity Statement
The data used in this research are publicly available at the NSF Arctic Data Center: https://doi.org/10.18739/
A21N7XN1V, https://doi.org/10.18739/A20V89J16, and https://doi.org/10.18739/A2K35MF33.
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