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Abstract

Biodiversity is a complex, yet essential, concept for undergraduate students in ecol-
ogy and other natural sciences to grasp. As beginner scientists, students must learn
to recognize, describe, and interpret patterns of biodiversity across various spatial
scales and understand their relationships with ecological processes and human influ-
ences. It is also increasingly important for undergraduate programs in ecology and
related disciplines to provide students with experiences working with large ecologi-
cal datasets to develop students’ data science skills and their ability to consider how
ecological processes that operate at broader spatial scales (macroscale) affect local
ecosystems. To support the goals of improving student understanding of macroscale
ecology and biodiversity at multiple spatial scales, we formed an interdisciplinary
team that included grant personnel, scientists, and faculty from ecology and spa-
tial sciences to design a flexible learning activity to teach macroscale biodiversity
concepts using large datasets from the National Ecological Observatory Network
(NEON). We piloted this learning activity in six courses enrolling a total of 109 stu-
dents, ranging from midlevel ecology and GIS/remote sensing courses, to upper-level
conservation biology. Using our classroom experiences and a pre/postassessment
framework, we evaluated whether our learning activity resulted in increased stu-
dent understanding of macroscale ecology and biodiversity concepts and increased
familiarity with analysis techniques, software programs, and large spatio-ecological
datasets. Overall, results suggest that our learning activity improved student un-
derstanding of biological diversity, biodiversity metrics, and patterns of biodiversity
across several spatial scales. Participating faculty reflected on what went well and
what would benefit from changes, and we offer suggestions for implementation of
the learning activity based on this feedback. This learning activity introduced stu-

dents to macroscale ecology and built student skills in working with big data (i.e.,
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1 | INTRODUCTION

It is essential that undergraduate students in ecology and other nat-
ural sciences develop a solid understanding of the concept of bio-
logical diversity. The Earth is undergoing a biodiversity crisis, with
loss of species occurring at an unprecedented rate, largely from
human impacts (IPBES, 2019; Ceballos et al., 2015), and under-
standing patterns and drivers of biodiversity is vital to developing
potential solutions (Luque et al., 2018; Brooks et al., 2008; Medail
& Quezel, 1999). Although biodiversity is a complex concept with
multiple levels of organization, species diversity is the most typical
way biodiversity is measured and assessed. However, species diver-
sity can be difficult to comprehend because it can be measured in
multiple ways (e.g., species richness, diversity indices), and several
different metrics are used by scientists to interpret the distribution
of biological diversity and how humans influence biodiversity pat-
terns (Colwell, 2009; Hughes et al., 2008; Loreau, 2010; Petchey &
Gaston, 2002; Tscharntke et al., 2012; Zimmermann et al., 2010).

Successfully teaching biodiversity metrics presents several chal-
lenges (Navarro-Perez & Tidball, 2012). Species biodiversity is typically
assessed at three spatial scales: local (alpha diversity), change in spe-
cies composition across habitats within a region (beta diversity), and
regional or landscape scale (gamma diversity, Angeler & Drakare, 2013;
Loreau, 2010; Magurran, 2004; Tuomisto, 2010). Beta diversity is per-
haps the most confusing of these three metrics because definitions of
beta diversity vary (e.g., turnover in species, changes in species com-
position) and beta diversity metrics can appear disconnected from the
definitions (Loreau, 2010; ShengBin et al., 2010). In fact, experts in the
field debate methods for measuring beta diversity and their interpre-
tation (Tuomisto, 2010). Furthermore, spatial scale is intrinsic to un-
derstanding beta diversity, and traditional biology programs often lack
explicit instruction in spatial reasoning such as is gained from course-
work in geography or geographic information systems (GIS) (Steinberg
& Steinberg, 2015; Tilman & Kareiva, 2018).

Scale is fundamental to several disciplines, but defined in dif-
ferent ways, making it another challenging concept to teach (Cheek
et al., 2017). Scale can be used to address space and/or time, or
taught as a magnitude of a dimension or relationship between two
objects or events. Because of the difficulties associated with teach-
ing concepts related to scale, it may rarely be included as a topic in
biology courses. In fact, Cheek et al. (2017) found only three studies
that examined teaching and learning of scale in biology and ecology
classrooms, indicating that more research is needed in this area.

It is increasingly important for undergraduate programs in ecology
and related disciplines to teach students how to analyze large eco-

logical datasets (Langen et al., 2014). Although there are challenges

large datasets) and performing basic quantitative analyses, skills that are essential for

the next generation of ecologists.

big data, biodiversity metrics, quantitative skills, scaling, teaching, undergraduate education

to incorporating big data into the undergraduate classroom (Langen
et al., 2014), such as managing student frustration, there are many
benefits. Skills and experience gained from participating in projects
that use big data will help prepare a generation of ecologists to collab-
orate with colleagues from multiple disciplines (e.g., climate science,
remote sensing) to solve global-scale problems (Carey et al., 2019;
Shiklomanov et al., 2019). Analysis of large datasets can help students
understand how broad-scale (macroscale) ecological processes affect
local ecosystems (Carey et al., 2020; Heffernan et al., 2014), while gain-
ing competence in big data management and analysis methods that
are essential for future scientists in the field (Hampton et al., 2017).
Using real, open-access data collected at multiple spatial scales
through observatory networks (e.g., National Ecological Observatory
Network (NEON), Long-term Ecological Research (LTER) sites, Critical
Zone Observatories (CZOs)) can involve students in authentic science
(Styers, 2018) as they engage with large datasets to understand biodi-
versity at multiple spatial scales.

To support the goals of improving student big data skills and their
understanding of macroscale ecology and biodiversity at multiple spa-
tial scales, we formed an interdisciplinary team to design a learning ac-
tivity to teach macroscale concepts related to biodiversity using NEON
data. Scientists and faculty from various fields (e.g., ecology, remote
sensing, geography) who are associated with the Ecological Research
as Education Network (EREN, erenweb.org) worked cooperatively to
design and test a learning activity with sufficient flexibility to be incor-
porated into a variety of courses (e.g., ecology, conservation biology,
GIS, remote sensing) across a range of student skill levels. We piloted
this learning activity in six courses enrolling a total of 109 students,
ranging from midlevel ecology and GIS/remote sensing courses to
upper-level conservation biology. While the majority of students were
STEM majors, students had a diverse set of specialties within STEM
and different background knowledge, ranging from environmental
studies or natural resource management to biology. Our goal was to
determine how to best use our learning activity to improve student
understanding of macroscale ecology and biodiversity concepts, un-
derstanding of NEON’s large spatio-ecological datasets, and skills in
data management and use of software programs (e.g., spreadsheets,

GIS, statistical software).

2 | METHODS
2.1 | Classroom learning activity development

Our team included grant personnel, NEON scientists, and EREN fac-

ulty from primarily undergraduate institutions (PUls) specializing in
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both ecology and spatial sciences, all of which facilitated important
knowledge sharing (Figure 1). This interdisciplinary team approach
had several benefits, including providing support to faculty who may
be less familiar with spatial tools and big data and adding important
skills in spatial reasoning and ecological concepts to more traditional
GIS classes (Bearman et al., 2016). The team approach brought some
challenges as well—for example, the computing systems and com-
puting support at our different colleges vary broadly, so we had to
develop multiple versions of some of the course materials—but the
benefits in making complex learning activities more accessible out-
weighed the drawbacks.

A workshop was designed and organized by Dr. Jessica Mitchell
(University of Montana) and funded as part of an NSF-sponsored
research project, which the participants titled the Joint EREN-
NEON project (Pl: Jessica Mitchell; NSF Grant No. 1916896). The
workshop agenda and timeline, and classroom teaching and learn-

ing activity materials are available for download at https://drive.

Step 1: PRE-WORKSHOP

Designed and organized workshop content

Grant
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google.com/drive/folders/1CinmrXQ-KCVgbtR6YLFNVd5_VgV8X
AoY?usp=sharing. After introductions and overviews of EREN,
NEON, biodiversity, and the NSF-sponsored research project, par-
ticipants were led through an exercise using plant presence and
percent cover (PPPC) field data from the NEON Harvard Forest site
(HARV) to calculate alpha and beta diversity. A NEON scientist famil-
iar with the internal R scripts for downloading and organizing NEON
data was available for questions and assistance (Lunch et al., 2020).
The R code and workflow provided (see Figure 2) allowed partici-
pants to easily access the NEON data and prepare it for use in the
dry run of the learning activity. The R code was tweaked on-site
based on real-time feedback and is now available on NEON'’s online
data portal for anyone to use. The first day of the workshop ended
with participants developing learning objectives for the classroom
learning activity (Table 1).

On the second day of the workshop, participants completed bio-

diversity calculations for six additional NEON field sites, all located

Personnel Pulled together team

\ Grant NEON EREN
Personnel Scientists Faculty
Step 2: WORKSHOP
* Presented grant concepts to team
Grant —
Personnel .

Led team through exercise working with NEON data using HARV site
Shared slides with EREN faculty to use in teaching materials

Presented NEON concepts and sampling design to team
Wrote R code for accessing NEON data
Wrote step-by-step R code for learning activity

~ .
) NE.ON. |
Scientists
\

Ecologists (E)

| Spatial Scientists (SS) |

EREN
Faculty

Developed learning objectives (E, SS)

Processed data for 6 additional sites (E, SS)
Developed learning activity (E, SS)

Created maps and figures for activity documents (SS)
Prepared presentation slides for teaching (E, SS)
Developed student assessment tool (E)

Developed faculty assessment tool (E, SS)

Step 3: POST-WORKSHOP

* Lead institution application and approval

Learning
Activity
Implementation:

/ | Institutional Review Board (IRB) approval |---

* Other participating institutions approval

* Delegated analysis and manuscript
preparation tasks

\ * Learning activity refinement
¢ Final materials uploaded to
document sharing site

* Instructors modified and

EREN scientists

* Archived data and learning activity
documents

* Prepared manuscript for publication

* Coordinated with Grant Personnel and NEON

Data sent to IRB lead
for de-identifying
and collating

implemented activity in
individual classes

for archiving data, finalizing learning activity
documents, and revising final manuscript

FIGURE 1 Conceptual diagram of the process for developing our classroom learning activity. Grant personnel designed and organized
the workshop and pulled together the team of scientists. The workshop was conducted over two and a half days, in which a majority of the
learning activity and associated materials were developed. The remaining work was completed over the following three weeks, and then, IRB
review for the assessment of student learning was initiated. The learning activity was implemented in six different classrooms during the fall

2018 semester
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Specify:
¢ Data Product

Acquisition of

* Download from :
- ===| + Date and location
NEON portal + Documentation

Organize in R:
===| *« Package: neonUtilities
¢ Function: stackByTable()

Data ready for learning

NEON data

* Access through  |jmm
NEON API

Access and Organize in R:

\ .| © Package: neonUtilities

* Function: loadByProduct()

* Specify: Data Product, date and location

activity directions and code

FIGURE 2 Conceptual diagram of the process for getting started with NEON data. Primary methods for accessing NEON organismal data
include (1) download from the NEON Data Portal and (2) programmatic access from within the NEON application programming interface
(API). Data via the manual download occurs at the NEON Data Portal (https://data.neonscience.org/data-products/explore), requires a
NEON data product name and/or number (e.g., “Plant presence and percent cover,” DP1.10058.001), date and location (state, NEON domain,
or site), specification on inclusion of documentation such as protocol that guided data collection, and selection of the “basic” (primary
measurements) or “expanded” package (related data and samples). These data download as a compressed folder with a nested by month and
location folder structure. These are best organized programmatically with a NEON-developed function (stackByTable()) in the neonUstilities
package for the R programming language. Accessing the NEON data programmatically is accomplished through the NEON API also in R with
the neonUtilities package. The function loadByProduct() requires the same data product, date range, location, documentation, and package
specifications. The neonUtilities package is available via GitHub (https://github.com/NEONScience), a code hosting platform for version
control and collaboration. Detailed instructions for the download of NEON data can be found in the NEON tutorials library (https://www.
neonscience.org/resources/learning-hub/tutorials/download-explore-neon-data)

TABLE 1 Learning objectives for the learning activity and minimum concepts covered by each faculty member that implemented the

activity for the three topics covered in the activity

Topic Learning objectives

Minimum concepts

Biodiversity metrics

Spatial scale

NEON

1. Differentiate alpha, beta, and gamma diversity.

2. Recall the strengths and weaknesses of diversity metrics.

3. Calculate plant field diversity metrics (alpha, beta, and gamma
diversity) for NEON plots/sites.

1. Describe the concept of multiple spatial scales in ecology.

2. Describe how ecological data collected at one scale can be “scaled up”
or “scaled down” to describe ecological patterns.

3. Recognize the benefits of analyzing diversity metrics at multiple spatial
scales.

4. Describe macroscale, differentiating it from other scales of inquiry.

5. Describe the nested plot sampling method for generating species-area
curves.

6. Plot and interpret species-area curves.

1. Summarize how the objectives of the National Ecological Observatory
Network (NEON) support macroscale science

Alpha diversity
Beta diversity
Gamma diversity

Macrosystems

Macroscale

Scaling up and scaling down

Value of analyzing multiple spatial
scales when applying biodiversity
metrics for conservation

Nested plot sampling

Species-area curves

Mission of NEON
Application to macroscale science

in the eastern deciduous forest biome. In total, there were two sites
each from the Northeast (D0O1) and Mid-Atlantic (D02) NEON do-
mains and three sites from the Appalachians and Cumberland Plateau
domain (DO7). In addition to calculating alpha and beta diversity, par-
ticipants calculated and compared gamma diversity for each of the
seven sites. Faculty then used the afternoon to collectively develop
the classroom learning activity, teaching materials, and assessment
tools according to the agreed-upon learning objectives. The final day
of the workshop was used to perform a test run through the learn-
ing activity, develop a timeline for implementation, data sharing, and
management, and discuss future collaborative opportunities.
Workshop participants developed a set of work assignments
with deadlines to be completed over the three weeks following the
workshop (Figure 1), so the learning activity could be implemented in

classrooms in the fall 2018 semester. The workload was distributed

among the workshop participants and included tasks such as devel-
oping student instructions for data manipulation and analysis, final-
izing GIS/remote sensing figure overlays, completing biodiversity
and NEON PowerPoint teaching slides, writing R code for merging
NEON data, creating Excel files with PPPC data, and producing the
final student and faculty assessment tools. All draft products were
submitted to a document sharing site and were reviewed by all fac-
ulty. Once the learning activity products were finalized, they were
submitted with an application for IRB review for the project assess-
ment work focusing on student learning (WCU Project Approval #s
1309846-1 and 1309846-2). Finally, participants developed a plan
for data management and writing of the manuscript.

Given the wide range of faculty expertise and institutional char-
acteristics, it was important to our team that individual instructors

be permitted to adjust the learning activity to the needs of their
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own classrooms, an approach that mirrors how most instructors
use teaching modules. In addition to being realistic, this approach
has four advantages: (a) It acknowledges that students across class-
rooms and colleges have different backgrounds and learning needs;
(b) it allows individual instructors to adapt the learning activity
based on their own backgrounds and their specific course learning
outcomes; (c) it allows individual instructors to adjust the learning
activity to fit within the time allocated for the activity; and (d) it
promotes more in-depth reflection among instructors about the
best ways to adjust the activity to enhance student learning in dif-

ferent settings.

2.2 | Description of learning activity

The learning activity begins by introducing students to the NEON
data portal (https://data.neonscience.org/data-products/explore)
for general exploration and then practice downloading a PPPC
field dataset (DP1.10058.001) collected under the Terrestrial
Observation System (TOS) for the HARV example site. Students are
introduced to the format of NEON field data and the nested plot
structure of PPPC sampling design. The exercise includes instruc-
tions for either downloading and stacking multiple NEON data files
using the “neonUtilities” and “stackByTable()” R code packages or
for accessing the data through the NEON API using the “neonUtili-
ties” and “loadByProduct()” R code packages (Figure 2). The exercise
also includes an explanation of vegetation variables and biodiver-
sity metrics, and step-by-step instructions for manually manipulat-
ing Excel spreadsheets to calculate biodiversity indices using Pivot
Tables. Workshop participants from the PUI institutions under-
stood the importance of creating versions of the activity with dif-
ferent entry points due to the differing skill sets of our students,
software available at our institutions, and the wide range of classes
that we teach in any given year. We also wanted to ensure that we
created a learning activity that could be adapted for a wide variety
of classrooms, ranging from introductory ecology or environmental
science courses, to upper-level GIS, remote sensing, or conservation
biology courses. Therefore, in addition to creating instructions that
assumed students would be starting by downloading the data from
the NEON portal, workshop participants also created Excel files for
each of the seven NEON sites, both with and without alpha diversity
already calculated. To help instructors in both ecology and spatial
science classes link site-level data with macroscale data, workshop
participants also compiled the available spatial data into plot-level
and site-level shapefiles that could be linked to the Excel files using

a common attribute.
2.3 | Projectimplementation and assessment data
compilation

Of the ten faculty who participated in the workshop, six imple-

mented the learning activity in their classrooms in fall 2018. These
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faculty used the learning activity in a variety of majors courses at the
sophomore to senior (i.e., 200-400) level (i.e., Plant Communities
and Ecosystems, Ecosystem Ecology, Conservation Biology, Ecology,
Advanced GIS, and Introduction to Remote Sensing). While all of the
participating faculty agreed to present certain minimum concepts
developed as part of this learning activity (see below; Table 1), the
degree of detail in which concepts were covered varied consider-
ably, as did the amount of ancillary material, activities, and software
used (Table 2). For example, one of the classes went into greater de-
tail about nested plot designs by including field activities focused
on these methods. Other classes implemented additional geospatial
analysis activities in ArcGIS and/or used the learning activity within
the context of a larger class project.

Regardless of the context within which the learning activity was
introduced, there was a set of standardized material presented by
each faculty member that included an IRB-required recruitment
flyer and subsequent consent form, the student preassessment test
and survey, lecture material on macrosystems biology and the NEON
project, the classroom learning activity, and the postassessment test
and survey. Although the order in which each of these steps was
implemented was set, the time period over which they occurred was
not. The timing of pre/postassessments relative to the use of the
learning activity ranged from a minimum of 7 days to a maximum
of 12 days, with a mean of 9 days. To provide a unified structural
framework across all classrooms, all faculty used the same “mini-
mum concepts list,” which included concepts related to biodiversity
metrics, spatial scaling, and NEON (Table 1). The assessment tools
were focused on this list, and therefore, all students took the same
assessment.

The student pre- and postassessment tools (hereafter referred
to as pretest and post-test) were identical. They were created in
Google Forms and administered in class online. The tests com-
prised 10 multiple-choice questions (Table 3; supplemental ma-
terial) testing student understanding of concepts related to the
activity learning objectives and 13 questions in which students
ranked (1-5; very poor, poor, moderate, good, and very good, re-
spectively) their perceived knowledge of various concepts (alpha
diversity, beta diversity, gamma diversity, macrosystems, mac-
roscale, scaling up/down, species-area curves, nested plots, and
NEON as an organization) and their perceived skills in Excel, R,
and ArcGIS. The majority of students in all courses completed and
answered all questions in the pretest and post-test, and students
that did not complete both tests were not included in the analy-
ses. In some courses, these assessments were graded, while some
were not graded, and others offered “points” for completion re-
gardless of the correctness of their answers. The authors recognize
this disparity could introduce bias into the dataset, but believe the
students’ answers are relevant. After the semester was completed
and course grades had been submitted, nonconsenting responses
were removed from the class datasets and personal identifying in-
formation was removed from all remaining student pre- and post-
test responses in the master dataset provided to the full faculty

team.
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TABLE 3 Topics, concepts, and the level of Bloom's Taxonomy for pre/post-test assessment questions for the classroom learning activity

Question # Topic
1 Biodiversity metrics
2 Biodiversity metrics
3 Biodiversity metrics
4 Spatial scale
5 Spatial scale
6 Spatial scale
7 Spatial scale
8 Spatial scale
9 Spatial scale

10 NEON

Lastly, participating faculty completed the faculty project as-
sessment survey and consent form. The purpose of this survey was
to collect information about which EREN-NEON learning activities
each faculty member used in their courses; how much time was
spent on lecture, laboratory, and homework; what software pro-
grams were used; and information about the course itself (e.g., name,

level, and prerequisites).

2.4 | Statistical analyses

We analyzed differences in overall student performance on the pre-
test and post-test using a Wilcoxon signed-rank test with continu-
ity corrections. We compared student performance on the pretest
and post-test for individual questions using McNemar's tests with
continuity corrections using the gmodels package in R (Warnes
et al., 2015). We analyzed differences in students’ self-reported un-
derstanding of concepts and data skills (using Excel, R, and ArcGIS)
on the pretest and post-test using Wilcoxon signed-rank tests with
continuity corrections. Two courses did not cover the NEON nested
plot sampling design (either in lecture or lab), so students in these
courses were not included in the analysis for understanding of the
nested plot concept. All other concepts were covered in all courses.
Five courses used Excel, one course used R, and three courses used
ArcGIS (Table 2); students were included in skills analyses only for
the programs they used. Wilcoxon's signed-rank tests were con-
ducted in R version 3.4.1 (R Core Team 2017). For all Wilcoxon's
signed-rank tests, we determined the standardized test statistic (z)
using IBM SPSS Statistics version 24.0 (IBM Corp 2016) and calcu-
lated Pearson's correlation coefficient (r) as a measure of effect size
following Field (2009).

3 | RESULTS

We present results from the analysis of our student assess-
ment data as a “proof of concept” that the learning activity we

developed was effective. Due to the diversity of our classroom

Concept(s) Bloom's level
Alpha, beta, and gamma diversity Remember
Alpha and gamma diversity Understand
Alpha, beta, and gamma diversity Apply
Value of analyzing multiple spatial scales Understand
Scaling up and scaling down Understand
Scaling up Understand
Nested plot sampling Understand
Macroscale Apply
Species-area curve Apply
Application to macroscale science Apply

settings, we focused our assessment on broad concepts. Overall,
we found gains in student understanding of macroscale ecology
and biodiversity concepts, NEON'’s datasets, and skills in data
management and use of software programs (spreadsheets, GIS,
statistical software), thus meeting the goals of our collaborative
effort.

3.1 | Evaluation of student learning

Students’ scores were significantly higher on the post-test
(mean = 53.94%, Mdn = 50%, IQR = 30) than on the pretest
(mean = 43.58%, Mdn = 40%, IQR = 20) across all courses com-
bined (N = 109; 85 nonzero differences: V, = 3,064.5, p <.001,
r = 0.37). Student performance was significantly better on the
post-test than the pretest on one question about biodiversity
(Q1; v = 16.57,df = 1, p < .001), one question about scaling (Q7;
;(2 =17.52, df = 1, p < .001), and the question about NEON (Q10;
;(2 =13.78,df = 1, p < .001). Student performance did not signifi-
cantly differ between the pretest and post-test for the other seven
questions (Figure 3).

Students’ self-reported understanding of all concepts increased
significantly after completing the learning activity (Table 4). For
most concepts, students reported a “poor” (level 2) median under-
standing of concepts prior to the learning activity and a “moderate”
(level 3) median understanding after completing the learning activ-
ity. However, students reported a median “moderate” understanding
of species-area curves both before and after the learning activity.
Students reported the largest increase in understanding of nested
plots and NEON (Table 4).

For students that used R and ArcGlIS, their self-reported skills
using these programs increased significantly after completing the
learning activity (Table 4). Only 41% of responding students re-
ported a change in their perceived knowledge of Excel (41 nonzero
differences). Although there was no change in the median perceived
knowledge of Excel between the pretest and post-test, there was a
borderline significant increase in individual students’ self-reported
ability to use Excel (Table 4).
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3.2 | Evaluation of approaches to
teaching the activity

After piloting the learning activity in a wide variety of courses, the
participating faculty met to reflect on what went well across our
classes and what we would change in the future. We compiled our
notes from this discussion into broad suggested strategies for imple-
mentation of our learning activity.

e Given the conceptual challenges presented by biodiversity and
scaling concepts, the highest gains in learning are likely to occur
when students are given sufficient class time to fully develop their
understanding.

e Delivering the material over more than one class period helped
students better digest the material (as opposed to being over-
loaded with new material all at once).

e In classes that had a field component, introducing the concepts of
nested plots and measuring vegetation in nested plots in the field
before the learning activity helped enhance the ability of students
to understand how the NEON data were gathered as well as bio-
diversity and scaling concepts.

e The timing of the pre- and post-tests could be important to stu-
dent performance (e.g., Anderson et al., 2020). For example, it is
likely better to avoid giving the postassessment tool immediately
after spending several hours in class on the learning activity when
students are drained.

o |f administering the pre- and post-tests online, it may improve
student performance to encourage them to use scrap paper so

they can write notes or perform calculations to flesh out their

answers. Completing the higher-level quantitative and conceptual
questions on the assessment may be difficult for many students
without using scrap paper.

o When administering the skills portion of the assessment tool, we
recommend revising it to ask about specific skills to obtain more
fine-grained information about self-reported student learning.
For example, instead of asking “On a scale of 1 to 5, please rate
your ability to use Excel,” as we did in our generalized assessment
tool, ask “...please rate your ability to calculate a mean in Excel” or
“... please rate your ability to use Pivot Tables,” an Excel function
that was unknown to most students prior to the learning activity

and that many students struggled with during the activity.

While some of these observations may seem obvious, we believe
their thoughtful implementation would result in improved learning

and assessment.

4 | DISCUSSION

Our learning activity improved student understanding of biological
diversity, biodiversity metrics, and patterns of biodiversity across
several spatial scales—concepts that can be challenging for under-
graduates (Navarro-Perez & Tidball, 2012). The learning activity
introduced students to macroscale ecology and built student skills
in working with large datasets and performing basic quantitative
analyses, skills that are essential for the next generation of ecolo-
gists (Bauerle et al., 2011; Austin, 2018). Our pre- and post-test re-
sults demonstrated statistically significant student knowledge gains
in biodiversity and scaling concepts, as well as self-reported techni-
cal skills gains in using R and ArcGlIS. Students also gained a strong
awareness of NEON's support of macroscale science.

4.1 | Developing large dataset learning activities

We have several broad recommendations for others to consider
when creating similar learning activities to share widely with the
larger teaching community. It is important to make the learning ac-
tivity easily adaptable to individual classrooms (Gould et al., 2014;
O'Reilly et al., 2017). To achieve this goal, we suggest providing guid-
ance on various entry points into and exit points out of the exercise,
background information in a form that can be easily modified (e.g.,
slides with notes) for different types of courses, and recommenda-
tions on how to implement the activities. Providing teaching ma-
terials with varying entry points not only allows for their adoption
across a wide variety of courses, but also improves accessibility for
faculty who may have varying degrees of comfort working with large
datasets, NEON data, or certain software programs (e.g., R, ArcGIS;
Bonner et al., 2017; O'Reilly et al., 2017). For example, in classes
that focus on learning R, instructors can use the resources provided
by NEON to download and organize the data prior to use, while in

classes that may instead focus on learning Excel, instructors can use
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the instructions for creating and working with Pivot Tables. Likewise,
in traditional ecology courses the focus may be on the results of the
biodiversity analyses, while in a GIS or remote sensing class, the
focus may instead be on the relationships between biodiversity and
broader-scale environmental variables.

Regardless of the focus or entry point, all documents should be in
formats that are easily edited, which will make it simpler for instruc-
tors to adapt and modify the learning activities to fit their classes. In
learning activities that involve lengthy descriptions of steps to take,
students may get “lost” trying to follow the steps and forget the point
of that part of the learning activity (Gould et al., 2014; O'Reilly et al.,
2017). An annotated, but brief, outline and summary of major and
minor steps and what each step involves and accomplishes should
help this issue. It is important, however, to provide the amount of
step-by-step details necessary for students to achieve the specific
learning outcomes for each project and/or course.

The expertise of both NEON staff scientists and PUI faculty was
essential to developing this learning activity. NEON staff scientists
provided invaluable guidance on downloading, managing, cleaning,
and analyzing NEON data. Faculty experience in teaching difficult
ecological and quantitative concepts to undergraduates helped guide
the team toward a simpler, more accessible activity, with multiple
entry and exit points. This collaboration highlights the importance of
funding collaborative projects and workshops such as this, both to
help interested faculty feel more comfortable using NEON data and
to help NEON scientists understand the ways that their data are being
utilized (Gould et al., 2014). After this workshop, many of the PUI fac-
ulty participants went on to work with additional NEON datasets in
their research and other collaborative teaching projects, demonstrat-

ing the compounding nature of these investments in faculty training.

4.2 | Incorporating large datasets into
undergraduate classrooms

Conducting classroom learning activities that use large datasets col-
lected over broad spatial scales may address the challenge of teach-
ing certain complex concepts, but these activities can be difficult for
instructors to both develop and implement in the classroom (O'Reilly
et al., 2017). Designing, teaching, and implementing data-intensive
activities are time-consuming, both in preparation and instructional
time. Using data collected and archived from real-world projects,
such as NEON data, is often messy and can require significant pro-
cessing time to clean the data (e.g., finding and correcting missing
values, selecting a subset of the data variables). This time can be
spent by the faculty member in preparation for the activity, or by
the students during class instructional time. Careful decisions are
needed to determine how curated data should be before students
use it and how to scaffold assignments to reduce student frustration
and create a slightly more gradual learning curve (Langen et al. 2014;
Kjelvik and Schultheis, 2019). We did not assess the costs/benefits
of these various approaches in this project, but more work is needed

to find the optimal point where the benefits of working with real data

are outweighed by the costs in the form of class time used for data
processing, student frustration, and lack of student engagement.
The significant time investment required to produce large data-
set learning activities can be exacerbated by faculty unfamiliarity
with large datasets. Some faculty may not be comfortable with some
of the newer methods or software (e.g., R) that may be required or
recommended for authentic data analysis (Farrell & Carey, 2018;
Hampton et al., 2017). The faculty participants in this project were
enthusiastic about utilizing NEON data in our teaching, but we found
that these data, although extremely rich, were not always accessible
in a way that facilitated their use and adoption into our undergradu-
ate classrooms (Hernandez et al., 2012; Strasser & Hampton, 2012).
Our collaboration with NEON staff and scientists was extremely
fruitful, and helped to soften the learning curve for this project,
but we would not have been able to develop this activity without
their direct help. Our experience highlights both the need for addi-
tional training and mentorship opportunities for PUI faculty (Bonner
et al., 2017) and the need for open-access data repositories such
as NEON to consider ways to improve accessibility for faculty ex-
periencing technology constraints. For example, not all faculty are
comfortable with how to download and run an R or Python code to
compile data from the NEON portal, so although it is extremely help-
ful to have those tools, they may not be enough to provide access to
NEON data for many PUI faculty (Auker & Barthelmess, 2020).
Some faculty also experience constraints to using large datasets
in their teaching at the institutional level. College campuses have
varying abilities to support processing of large datasets, as well as
to purchase and support various types of software. Having all stu-
dents running R code simultaneously can sometimes slow classroom
internet performance, leading to additional student frustration. Lack
of faculty confidence or experience in the tools being used (Farrell
& Carey, 2018) combined with inconsistent technology support at
smaller colleges present a formidable barrier to the implementation

of these activities, even if they are well-designed and easy to follow.

5 | CONCLUSIONS

We successfully used nested plot NEON vegetation data to develop
a flexible learning activity to teach macroscale concepts related to
biodiversity to undergraduates in a variety of courses. Learning ac-
tivities that use authentic field data and multiscalar analysis methods
can facilitate undergraduate understanding of macroscale ecology
and allow students to begin to understand biodiversity at multiple
spatial scales, preparing them to solve pressing global-scale, in-
terdisciplinary environmental problems such as biodiversity loss.
However, significant support may be needed for faculty to adopt

such learning activities en masse.
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