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Abstract—This paper focuses on the problem of online
parameter estimation in an electrochemical Li-ion battery
model. Online parameter estimation is necessary to account
for model mismatch, environmental disturbances, and cycle-
induced aging in Li-ion battery models. Sensitivity analysis
can improve parameter estimation by identifying which data
the parameters are most sensitive to. However, computing
parameter sensitivity in full-order electrochemical models is
typically intractable for online applications. Using a reduced-
order model can lower the computational burden and, as we
demonstrate, approximates well the sensitivity of the higher-
order model. To provide further insight into the parameter
estimation challenge, we analyze the effect that identifying
parameters according to voltage RMSE data has on internal
state errors. We perform a simulation study which demonstrates
that parameter estimation approaches based on this paradigm
are not sufficient for safe battery operation or other control
objectives that require accurate estimates of these states.

I. INTRODUCTION

Batteries are an essential technology for applications
ranging from mobile electronics to electrified transportation.
Battery management systems (BMS) enable these applica-
tions by monitoring the battery’s condition and facilitating
charging and discharging according to the system demands.
Throughout operation, a critical role of the BMS is to
accurately estimate and update the model states and parame-
ters. Lack of identifiability in electrochemical models makes
parameter estimation a fundamentally challenging problem
[1], [2]. Further complicating the problem, battery cycling
naturally causes performance degradation which manifests
as changing model parameter values. Typically, existing
research address these issues by exploring novel modeling
and/or parameter estimation schemes [3], [4], [5].

In other applications [6], [7] and more recently the battery
modeling and controls community [8], [9], [2] researchers
have explicitly considered the information content, i.e. the
parameter sensitivity, for parameter estimation. While sev-
eral works have explored sensitivity analysis for optimal
experiment design (OED) and offline model parameterization
[10], [11], [12], here we focus on the less-explored online
parameter estimation problem. As [8] first illustrated, sensi-
tivity analysis can enhance online parameter estimation by
screening incoming data and only using data subsets that
maximize parameter sensitivity.
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One practical challenge of evaluating the sensitivity in
electrochemical battery models is computational complexity.
The complexity grows intractable for full-order electrochem-
ical battery models, which have hundreds or thousands of
states and are highly nonlinear in the parameters. Further-
more, many applications such as electric vehicle operation
generate too much data to compute all of the sensitivity
content. Limited work has attempted to address this fun-
damental limitation. Reference [9] addresses this problem
and lowers computational burden by deriving analytic sen-
sitivity expressions for a given set of parameters in a single
particle model (SPM). The work showed good agreement
between analytic and numerical sensitivity results. However,
the approach requires deriving sensitivity expressions by-
hand for each parameter. Additionally, approximating and
discretizing these expressions for implementation may limit
their accuracy.

Using a reduced-order electrochemical model to compute
sensitivity information and then estimate parameters in the
full-order model is an attractive alternative because several
well-studied options exist, such as the SPM, SPM with
electrolyte dynamics (SPMe), and other variants. Further-
more, sensitivity calculations via automatic differentiation
for reduced-order models can be sufficiently fast for some
online applications. As we will show, using a reduced-order
electrochemical model can approximate the sensitivity of the
higher-order model across a wide range of inputs.

Sensitivity-based approaches have been shown to improve
parameter estimation in terms of reduced voltage RMSE and
improved identification speed. However, minimal work has
explored the effect of parameter estimation using voltage
RMSE on internal state estimation. Accurate internal state
estimates are critical in applications such as fast charging.
To study this problem, we perform an analysis on a pa-
rameter estimation approach that (1) leverages the reduced-
order electrochemical models to perform efficient sensitivity
computations for selecting the optimal data for parameter
estimation; and (2) uses the subset of optimal data to estimate
parameters in the full-order model. We demonstrate that
fitting solely to voltage sacrifices safety. We summarize our
key contributions next.

Key contributions of the work presented here include:
(1) Analysis of using reduced-sensitivity equations to fit
parameters of the full-order model and (2) increased un-
derstanding of parameter estimation and safety trade-offs
in electrochemical models by highlighting that minimizing
measured voltage error does not minimize internal state error.

The rest of the paper is organized as follows. Section
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IT describes the electrochemical battery model equations.
Section III explains sensitivity analysis and the connection
with the parameter estimation framework we define. Section
IV details the model-to-model comparison setup used to
evaluate the validity of our approach. In Section V we present
our simulation results and interpret our findings. Finally, in
Section VI we summarize and detail possible future research
directions.

II. ELECTROCHEMICAL BATTERY MODEL

In this section, we describe the electrochemical battery
models of relevance to this work. To balance accuracy and
computational tractability, our framework uses the Single
Particle Model with Electrolyte & Thermal (SPMeT) dy-
namics as developed in [13], [14] to compute sensitivity
trajectories; for greater modeling fidelity, we simulate and
continually update the parameters in the “full-order” Doyle-
Fuller-Newman (DFN) model. The derivation and theoretical
underpinning of these models are well studied and commonly
used. For the sake of brevity, we provide a brief summary of
the SPMeT equations here. We refer the reader to [15] for
the DFN model equations and derivation.

V(t)

Anode Separator

o>

Li*
e

Cathode

:‘:

0 Li0sepLser L+ 0+

Electrolyte
o
o

3
j )
=

i s

Fig. 1: SPMe visual representation [14]. This view details
a cross section of a typical Li-ion cell, consisting of three
sections from left to right: anode, separator, cathode. The
model considers dynamics for two phases of material: solid
and electrolyte. Collapsing the spatial dimension x used in
the DFN, the solid phase evolves only in the r dimension.
The electrolyte states evolve in the x dimension.

The SPMeT consists of four sets of equations:

1) Two linear spherical diffusion PDEs (positive & neg-
ative electrode) modeling each electrode’s solid con-
centration dynamics:

oct 10 oct
=S (rt) = = — | DFr2 == (rt 1

8t(r7) 7,237,[57“ 87’(r’ ﬂ M

2) A quasilinear diffusion equation (across three domains:
cathode, separator, anode) modeling the electrolyte
concentration dynamics:
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3) A nonlinear output function mapping boundary values
of solid concentration, electrolyte concentration, and
current to terminal voltage:
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4) Core & surface temperature ODEs:
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The seven state variables x are lithium concentration in the
solid ¢ (r,t) (two), lithium concentration in the electrolyte
Cii’sep ) (z,t) (three), and the core and surface temperatures
T.(t), Ts(t) (two). Voltage V (t) represents the lone measured
output y.

III. SENSITIVITY-BASED DATA SELECTION AND
PARAMETER ESTIMATION FRAMEWORK

This section lays out the general theory for the sensitivity
analysis that underpins much of this work and explains the
framework used for parameter estimation. The methodology
is described visually in Figure 2.

A. Sensitivity Analysis & Data Selection

Sensitivity represents a fundamental property related to
the information quality of signals. For signals that generate
high parameter sensitivity, it can be shown that parameter
estimates converge exponentially fast [16]. The method we
present here directly evaluates the local sensitivity of the
model input-output data to improve parameter estimation.
As demonstrated in previous work [11] and by reference
[8], data selection based on sensitivity content can improve
parameter estimation accuracy and speed. Selecting data with
higher sensitivity content enhances parameter estimation by
better conditioning the Hessian of the objective function. We
leverage that insight here to reduce the number of data sets
used in estimating the parameters, selecting only the most
informative input-output profiles and disregarding the rest.
We describe the basic formulation of our framework below.
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Fig. 2: Sensitivity-based data selection for parameter estima-
tion methodology.

From the SPMeT equations presented in Section II, we can
formulate an ordinary differential system of equation (ODEs)
with the following form:

X = f(X7 u, 0)5 X(to) = Xo, (7)
y= h(x,u,@), (8)
where x = [;t, ckser T.T)", y = V(t), and 8 =

(R, ke ty, R Ry ]. Now, taking partial derivatives, de-
fine the following sensitivity variables:
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where Sy, Sy correspond to the sensitivity matrices for the
states and output respectively. In each matrix, the (i)

element is defined as the partial derivative of the i-th state
to the j-th parameter:

Sx = Sy (9)

dzi(1)

(1) = 10
With these variables, we now define an additional ODE

system for the sensitivity equations:
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To facilitate efficient and accurate Jacobian calculations
during implementation, we use the CasADi automatic dif-
ferentiation software [17]. The corresponding battery model
and sensitivity ODEs are simulated within the CasADi
framework using the IDAS solver developed and managed
by SUNDIALS [18].

375

B. Parameter Selection

In [11], the Doyle-Fuller-Newman (DFN) is used to cal-
culate parameter sensitivities for a library of inputs. The pa-
rameters are then ranked according to their orthonormalized
sensitivity, where sensitivity is computed as S; Sy for each
parameter. According to this sensitivity metric, we qualita-
tively picked an assortment of 6 parameters present in both
the SPMeT and DFN that span the orthonormalized sensitiv-
ity spectrum. We chose some parameters ranked with “High”
(S;Sy > 10e —2), “Medium” (10e —4 < SgSy < 10e—2),
and “Low” sensitivity (S; Sy < 10e — 4) magnitudes. Note
that because the model is nonlinear in the parameters, there
are no theoretical guarantees of parameter identifiability.
However, higher sensitivity magnitudes indicate a higher
chance of recovering the true parameter values from the
available input data.

C. Parameter Estimation: Nonlinear Least Squares

After screening and selecting the optimal voltage response
data according to sensitivity content, we formulate a nonlin-
ear least squares problem to simultaneously estimate the 6
selected parameters:

mlnllee E ’

where M is the number of 1nput profiles selected in a batch
of battery data, y; is the experimentally measured voltage,
and §;(t; 6) is the model’s predicted voltage.

IV. SIMULATION APPROACH

The parameter estimation framework is evaluated with a
“model-to-model” comparison. The full-order DFN model is
used to generate truth data. We simulate 5 “batches” of data,
meant to represent 5 weeks of electric vehicle operation.
Each batch contains 6 drive cycle data sets. Each drive
cycle (DC1, DC2, LA92, SC04, UDDS, US06) represents
a different driving scenario in terms of duration, distance,
starts/stops, average and max currents, etc. In each successive
batch, the true parameter values are manually perturbed by -
5% in order to emulate aging. We estimate the 6 selected
parameters from the DFN model with the initial guess
perturbed from the truth model’s parameters by 30% (see
Table I), to imitate uncertainty in our initial parameter guess.

For each batch, the parameter estimation framework com-
putes the sensitivity trajectories for all 6 drive cycles using
the reduced-order SPMeT model. Then, it selects the 3
drive cycles with the highest sensitivity content. Here, we
arbitrarily defined a data budget of 3 drive cycles. Next,
the framework simultaneously estimates the 6 selected pa-
rameters in the full-order model using these cycles. In this
study, the 3 selected drive cycles (LA92, SC04, UDDS) are
the same over the 5 batches; hereafter, we refer to this set
collectively as the training data set. We further validate our
parameter estimation performance by using the parameter
values identified in each batch to simulate a validation data
set—the 3 drive cycles not used for parameter estimation
(DC1, DC2, US06)—and compare to the truth model.
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V. RESULTS & DISCUSSION
A. Sensitivity Computation Comparison

We evaluate the ability of the reduced sensitivity equations
to approximate the sensitivity trajectories of the higher-
order DFN model by performing a correlation analysis.
Figure 3(a) plots the SPMeT and DFN normalized sensitivity
value pairs (x: SPMeT, y: DFN). Each data point indicates
the normalized sensitivity for a given parameter and drive
cycle. The correlation coefficient R = 0.996 indicates that
the sensitivity computed between the SPMeT and DFN is
highly correlated for this study. Furthermore, as indicated by
the marker coloring, the sensitivity for each parameter and
relative sensitivity ranking of all the parameters is consistent
across both models.

The high degree of correlation suggests that the SPMeT
can be used to approximate sensitivity for the higher-order
DFN model. We emphasize that we cannot claim this level
of correlation holds for all combinations of parameter values
and inputs. Given the local, not global nature of the sensi-
tivity calculations, it is possible that the correlation does not
hold away from the nominal parameter value.

To better understand whether the correlation holds beyond
this simulation study, we performed the same analysis across
560 different input profiles. The current input types include
charging/discharging/both for pulse, sinusoid, and constant
current profiles (see [11] for more details). The resulting
correlation trend is shown in Figure 3(b). The correlation
coefficient R = 0.842 indicates that the correlation between
the two models still holds but more weakly than for the
previous simulation study. This result suggests that reduced
sensitivity equations should work well, but there may be
cases where the approximation deviates.

Of practical consideration, the computational time for
simulating each model’s sensitivity varies dramatically. For
this simulation study, where the sensitivity trajectories for
6 parameters and 6 drive cycles were computed on a high-
performance parallel computing resource, the wallclock time
for the SPMeT was 53 seconds; the wallclock time for
the DFN was 3.6 hours. This discrepancy highlights the
potential value of being able to approximate a higher-order
battery model’s sensitivity with a lower-order model. Further-
more, the full-order model becomes increasingly intractable
for more complex scenarios, given that the computational
time scales non-linearly with the number of parameters and
length/number of inputs being considered.

B. Parameter Estimation Performance

Final estimated parameter values are reported in Table I
alongside the initial guess. The parameter estimation perfor-
mance is evaluated according to the following metrics: (1)
voltage root-mean-square-error (RMSE) and (2) internal state
RMSE.

1) Voltage RMSE: Voltage RMSEs are plotted for the
training and validation data sets in Figure 4. Each subfigure
contains two curves: the red and blue curves denote the
RMSE before and after (respectively) the parameters are
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TABLE I: SPMeT / DEN Model Parameters

Parameter Description Value gllllt;:; \F/:lljcla
o e s | s
o Volu(rzi;:;:)ction 0.30 0.39 0.25
te Trarll\?lflfI:Irfnce 0.38 0.49 0.45
R} FilrFCi;ij;gnce 1.0E-4 | 1.3E-4 | 1.8E-4
Ry Filrrzges(i;;)ance 5.0E-4 | 6.5E-4 | 2.9E-4

optimized to reduce the RMSE. As can be seen, both models
reduce voltage RMSE (from red curve to blue curve) below 1
mV and maintain a 1 mV voltage RMSE across the duration
of the 5 batches. Note that the most significant accuracy
improvement comes after batch 1, where the initial parameter
guesses are offset by 30%. These results are to be expected
since the parameter estimation optimization problem defines
a cost function which explicitly minimizes voltage RMSE.

2) Internal State Errors: Note that we fit the parameters to
minimize voltage error. As a result, we should not necessarily
expect the internal state error to also be minimized. This
turns out to be the case for both the training set and the
validation set. Figure 5 illustrates the internal state mismatch
between the models for several states of interest. Each state’s
RMSE is normalized by the max absolute value of the
DEN truth model. The internal state error increases with
each batch, despite re-fitting parameters to voltage for each
batch. Importantly, many of these states are related to safety
endpoints. The side reaction overpotential, 7,, for example,
is critical for estimating the onset of lithium plating [19].

In Figure 6, we illustrate the relationship between the
objective function and state error (here electrolyte concen-
tration at the current collector) as a function of 2 parameters,
by simulating the DFN for 20 discrete values. We see that
the trough of local minima in the objective function (a) do
not correspond to local minima in the state error (b). Thus,
we can see graphically that even in a simpler 2-parameter
case, the parameters may converge to values that lead to low
voltage estimation error value and non-zero state estimation
error. Given that this issue already manifests when varying
2 parameters, the problem can only worsen when more
parameters are identified.

VI. CONCLUSION

This paper analyzes the problem of online parameter
estimation in an electrochemical Li-ion battery model. The
first key conclusion from this work is that the lower-order
SPMeT approximates sensitivity well for the DFN. This
finding is useful for online parameter estimation, where it has
been shown that sensitivity data can be leveraged to improve
identification performance. The second key conclusion from
this work is that estimating parameters in electrochemical
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Fig. 3: (a) DFN vs. SPMeT normalized sensitivity values. Each marker indicates the normalized sensitivity g—g; computed
for each one of the six drive cycles and a given parameter. The six different marker colors correspond to the six parameters
of interest in this simulation study. R = 0.996 indicates that the local sensitivities between the models are highly
correlated. (b) The same DFN-SPMeT correlation analysis across 560 varying input profiles. The current input types include
charging/discharging/both for pulses, sinusoids, constant current profiles. R = 0.842 indicates that the correlation holds well
across a wider range of inputs but more weakly than in the drive-cycle simulation study.
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Fig. 4: Voltage RMSE before and after parameter identification for (a) training data (b) validation data. In both data sets,
voltage RMSE is reduced to below 1 mV and is maintained below 1 mV across the 5 batches.
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Fig. 6: Surface plots of voltage RMSE (a) and internal state RMSE (b) as 2 DFN parameters are varied from a nominal
truth value. The troughs of points within a small tolerance of the minimum have been marked in red. The parameters were

discretized over 20 possible values each.

models based on an objective function that only considers
voltage error can lead to inaccurate state predictions. This
finding motivates the need for a modeling and estimation
approach that simultaneously reduces voltage error while
regulating internal state error. Ongoing work is focused on
finding a tractable solution to this problem.
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