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of marine robots

Sungjin Cho1 , Fumin Zhang2 and Catherine R Edwards3

Abstract
This article presents anomaly detection algorithms for marine robots based on their trajectories under the influence of
unknown ocean flow. A learning algorithm identifies the flow field and estimates the through-water speed of a marine
robot. By comparing the through-water speed with a nominal speed range, the algorithm is able to detect anomalies
causing unusual speed changes. The identified ocean flow field is used to eliminate false alarms, where an abnormal
trajectory may be caused by unexpected flow. The convergence of the algorithms is justified through the theory of
adaptive control. The proposed strategy is robust to speed constraints and inaccurate flow modeling. Experimental results
are collected on an indoor testbed formed by the Georgia Tech Miniature Autonomous Blimp and Georgia Tech Wind
Measuring Robot, while simulation study is performed for ocean flow field. Data collected in both studies confirm the
effectiveness of the algorithms in identifying the through-water speed and the detection of speed anomalies while avoiding
false alarms.
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Introduction

Anomaly detection for marine robots is an important prac-

tical problem because marine robots are often used in dis-

tant and hostile environments such as the deep sea and the

polar oceans. During long-range or long-period missions,

marine creatures and biofouling may harm robot sensors

and thrusters.1 Monitoring sensors have been installed to

evaluate components vulnerable to faults.2 For example,

damaged propellers impair propulsive efficiency to control

vehicle speed. These faults could be detected with rota-

tional speed sensors installed at the propellers; however,

this approach requires increased hardware complexity and

cost,3 and it may not detect unexpected external distur-

bances (e.g. white shark attack).

We propose anomaly detection algorithms for marine

robots based on their trajectory data. Given a trajectory,

we develop a learning algorithm that estimates the

through-water speed of the robot as well as the ambient

flow velocity. The robot speed estimate is then used to

determine whether or not robot motion is abnormal. Anom-

aly occurs when the robot speed estimate is out of the range

in normal operation. This approach complements the
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existing methods that detect faults of individual compo-

nents based on sensor measurements. The use of trajectory

data in our work follows similar motivations as previous

works in surveillance applications (e.g. see the literature4).

Our work uses underwater trajectory data of marine robots

while the previous work5,6 uses car trajectory data and

surface trajectory data of marine vessels. The major differ-

ence is the type of speed information used for anomaly

detection; the former is through-water speed and the latter

is ground speed.

Related work

Recent studies on ground and marine robots proposed

approaches to identify abnormal robot motion.7,8 An anom-

aly or fault is defined as an unacceptable deviation of at

least one characteristic property of a variable from an

acceptable behavior.9 We assume that normal behaviors

occur far more frequently than abnormal behaviors for the

data collected. If this assumption is not true, then such

techniques can produce incorrect detection results or false

alarms.10

For marine robots, most fault detection algorithms have

been dealing with abnormal behaviors of the system com-

ponents that are the most vulnerable to faults.11–13 Blocked

propellers, leaking thrusters, and rotor failure are documen-

ted as frequently occurring faults.14 In 2015, a software

configuration error in an underwater glider disabled an

internal mass shifter that adjusts the vehicle’s trim, leading

the vehicle to sink to the seafloor and resulting in a tem-

porary loss.8 Instead of detecting faults in an individual

component, robot motion can be used for anomaly detec-

tion. Raanan et al.15 use a threshold technique to prevent an

underwater glider from hitting the seafloor. The deviation

from expected robot motion in the vertical plane is detected

by monitoring stern plane angle, pitch angle, and depth

rate.

Serious performance degradation can result when ocean

flow speed is comparable to or exceeds the maximum

through-water speed of marine robots, as is the case for

underwater gliders.16 However, the abnormal motion

caused by ocean flow should not be misclassified as an

anomaly for the marine robot. Therefore, it is important

to identify the ambient ocean flow while estimating the

through-water speed. Measuring through-water speed of

marine robots is substantially difficult because of limited

hardware capability. The inertial measurement unit (IMU)

and the Doppler velocity log (DVL) can be combined to

measure through-water speed.17 IMU error can be cor-

rected by the DVL, which measures both vehicle velocity

with respect to ground (bottom-tracking) and flow velocity

with respect to the vehicle (water-tracking).18 However,

DVL accuracy can be poor when the marine robot does not

maintain constant altitude and heading angle. Alterna-

tively, acoustic positioning systems can estimate robot

speed using a short baseline or a long baseline systems,

which utilize multiple beacons located at the seafloor or

the hull of a ship.19 However, this measured velocity is not

through-water velocity, but rather the ground velocity that

combines both through-water velocity and flow velocity,

which need to be further processed to determine whether

the vehicle is having a fault.

Controlled Lagrangian particle tracking (CLPT) is a

theoretical framework to analyze the interaction between

ocean flow and marine robot control.20 In contrast to pas-

sive Lagrangian methods, a marine robot is viewed as a

controlled Lagrangian particle in the sense that marine

robots are not freely advected by ocean flow. In the frame-

work of CLPT, the net motion of controlled Lagrangian

particles is determined by flow velocity and controlled

speed. Our work leverages the CLPT framework for

anomaly detection because it helps us to identify both the

through-water speed of marine robots and the ambient

flow. Using these information allows us to detect abnor-

mal motion while avoiding false alarms caused by unex-

pected flow.

Major contributions

We present a learning algorithm that can process the data

streams of the trajectory of a marine robot and the real-time

heading information. The algorithm will produce a real-

time estimate of the through-water speed of the robot and

the ambient flow field. Using the theory of adaptive control

and CLPT, we can prove theoretically that the algorithm

will drive the difference between the robot trajectory and

the learned trajectory to zero. In addition, the estimation

error of the through-water speed and the ambient flow field

also converges when a persistent exciting condition is sat-

isfied. Furthermore, the learning algorithm guarantees

bounded estimation error under bounded disturbances.

Therefore, the estimated through-water speed can be used

for anomaly detection, and the estimated ambient flow field

can be used to reduce false alarms.

It is generally very difficult to validate the proposed

algorithm on a marine robot that operates in the ocean due

to the high risk and high cost of losing a marine robot. To

address this challenge, we have developed an indoor

testbed that uses robotic blimps to emulate marine robots

and uses wind field to emulate ocean flow field. Similar to a

marine robot, the motion of a robotic blimp is influenced by

a wind field. The robotic blimps are carefully designed so

that faults that affect its through-air speed can be easily

generated. Our algorithm can then be evaluated on these

blimps. Furthermore, the wind field can be autonomously

measured by a mobile robot. The measured wind field is

then used to compare with the estimated wind field pro-

duced by our algorithm. It would be very difficult (if not

impossible) to perform these experiments in the ocean.

Experimental data have justified that the anomaly detection

approach works well on the testbed. Our experiments also

indicate that the algorithms can be applied to other
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applications such as unmanned aerial vehicles and autono-

mous ground vehicles.

Organization

The remainder of this article has been organized into the

following sections: in the second and the third sections, we

present vehicle motion model and controlled Lagrangian

localization error of marine robots. In the fourth and the

fifth sections, we describe an adaptive learning algorithm

and an anomaly detection algorithm for marine robots. In

the sixth and the seventh sections, we demonstrate mathe-

matical simulation and experimental results by developing

Georgia Tech Miniature Autonomous Blimp (GT-MAB)

and Georgia Tech Wind Measuring Robot (GT WMR). In

the eighth section, we provide conclusions and future work.

Models and problem setup

Let F: D� ½0; 1� ! R2 represents a spatially distributed

vector field for the ambient flow velocity, where D 2 R2 is

the domain of interest. Furthermore, let CcðtÞ ¼ ½cos cðtÞ;
sin cðtÞ�> be a unit vector that represents the direction

of movements of the robot, where  cðtÞ is the heading

angle of the robot. Let VR be the through-water speed

of the robot. Then, the marine robot motion model is

approximated by

_x ¼ FRðx; tÞ þ V RCcðtÞ ð1Þ

where the subscript R for the flow F denotes an actual flow.

FR and vR are assumed to be locally Lipschitz in

x ¼ ½x1; x2�> 2 D, where x is the true position of the

robots.

In practice situations, the through-water velocity can be

saturated because of control power constraints of robots.

We modify equation (1) as follows

_x ¼ FRðx; tÞ þ uCcðtÞ ð2Þ

where

u ¼
V R if V R � u0

u0 if V R > u0

�
ð3Þ

The maximum through-water speed u0 is determined by

the hardware configuration of marine robots.

Assumption 1. During normal operation, VR in equation

(1) is a constant.

The flow field can be represented by spatial and tem-

poral basis functions.21 We consider that spatial and tem-

poral basis functions are to be the combination of Gaussian

radial basis functions and tidal basis functions, respectively.

Let N be a positive integer, and q 2 R2�N be the unknown

parameters, respectively. Let � : D� ½0; 1� ! RN be

½�1ðx; tÞ; � � ��N ðx; tÞ�
>

FRðx; tÞ ¼ q�ðx; tÞ ð4Þ

where

q ¼
q1

q2

� �
¼ q1

1 � � � qN
1

q1
2 � � � qN

2

" #
ð5Þ

The combined basis functions are

�iðx; tÞ ¼ exp
�kx�cik

2si cosð!it þ uiÞ; i ¼ 1; � � � ;N ð6Þ

where ci is the center, si is the width, !i is the tidal

frequency, and ui tidal phase. Here, we assume that the

flow only contains tidal flow and biased flow, which

represents the combination of high and low frequency

components of flow. If !i equals zero, flow only has

spatial variability.

Assumption 2. We assume that the heading  cðtÞ is

known for all time t, and the vehicle trajectory xðtÞ can

be measured or estimated for all time t.

Remark 1. While the robot is moving in the flow field,

its true location may only be known occasionally. We can

estimate the trajectory of the robot through localization

algorithms. The localization algorithms incorporate the

known locations and the heading angle command as input

and produce estimated trajectories.

Given the knowledge of the trajectory xðtÞ, our first

goal is to estimate the parameter q that models the flow

field and the through-water speed VR. Mathematically,

let

xðtÞ ¼
x1ðtÞ
x2ðtÞ

� �
¼ x1

1ðtÞ � � � xN
1 ðtÞ

x1
2ðtÞ � � � xN

2 ðtÞ

" #

be our estimate of the parameter q and V LðtÞ be our esti-

mate for VR, we will design a learning algorithm to generate

xðtÞ and V LðtÞ such that xðtÞ ! q and V LðtÞ ! V R as

t!1. Our second goal is to use the information of xðtÞ
and V LðtÞ to determine whether the vehicle is working

properly or not.

Flow and speed estimation

Now, knowing xðtÞ and V LðtÞ, we can compute an estimate

zðtÞ for the robot trajectory by integrating the following

equation

_z ¼ xðtÞ�ðz; tÞ þ V LðtÞCc þ bðtÞ ð7Þ

where bðtÞ 2 R2 is introduced as a learning injection para-

meter. We call e ¼ x� z as the controlled Lagrangian loca-

lization error (CLLE). The CLLE models how much the

estimated trajectory is deviated from the identified trajec-

tory. A learning algorithm will then compute bðtÞ, xðtÞ, and

V LðtÞ so that the CLLE can be reduced.

We first derive the CLLE dynamics by subtracting equa-

tion (7) from equation (1) to obtain

_e ¼ _x� _z ¼ q�ðx; tÞ � xðtÞ�ðz; tÞ þ V R � V LðtÞð ÞCc � bðtÞ
ð8Þ
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Note that the parameter q is unknown, so we cannot use

bðtÞ ¼ q�ðx; tÞ � xðtÞ�ðz; tÞ directly. Instead, we design

the learning parameter injection as follows

bðtÞ ¼ xðtÞ�ðx; tÞ � xðtÞ�ðz; tÞ þ Ke ð9Þ

When we plug equation (9) into equation (8), CLLE

dynamics becomes

_e ¼ �Keþ q� xðtÞð Þ�ðx; tÞ þ V R � V LðtÞð ÞCc ð10Þ

We derive CLLE dynamics under control input con-

straints. Let du ¼ u� V R be the saturation term of

through-water velocity. We subtract equation (7) from the

combination of equations (2) and (3). CLLE dynamics

becomes

_e ¼ �Keþ q� xðtÞð Þ�ðx; tÞ þ V R � V LðtÞð ÞCc þ duCc

ð11Þ

where du can be viewed as an additional disturbance to

CLLE dynamics. We assume that du is bounded by

dumax. Then, since k Cc k¼ 1, the term duCc is bounded

above as k duCc k� dumax. Equation (11) is used for the

proposed updating rules that ensure CLLE to be ultimately

bounded in spite of saturation of through-water velocity.

The learning algorithm updates parameters xðtÞ and

V LðtÞ using CLLE dynamics so that CLLE converges to

zero. Let �x, �q, and e� � 2 R2N be column vectors. That is,
�xðtÞ ¼ ½x1

1ðtÞ; � � � ; xN
1 ðtÞ; x1

2ðtÞ; � � � ; xN
2 ðtÞ�

>
, �qðtÞ ¼ ½q1

1ðtÞ;
� � � ; qN

1 ðtÞ; q1
2ðtÞ; � � � ; qN

2 ðtÞ�
>

, and e� � ¼ ½e1�
1; � � � ;

e1�
N ; e2�

1; � � � ; e2�
N �>, where� is the Kronecker product.

We design the updating rules for estimating the parameters

as follows

_�xðtÞ ¼ �ge� �ðx; tÞ ð12Þ

_V LðtÞ ¼ �ge>Cc ð13Þ

where the parameter �g is the parameter for learning rate,

which is a positive constant.

Anomaly detection

With the updating rules represented by equations (12) and

(13), we obtained the estimated flow velocity and through-

water speed simultaneously. The through-water speed esti-

mate is used for a critical measure that decides whether or

not abnormal vehicle motion occurs.

Assumption 3. We assume that the maximum V max

and minimum V min through-water speed are known

beforehand.

If the through-water speed estimate is within the range

between the maximum and the minimum through-water

speeds, we determine that the robot is normally operated

without abnormal motion. However, when the through-

water speed estimate is out of the normal range, we need

to check whether the flow estimate is accurate or not to

avoid false alarm.

We introduce the flow estimate FM ðtÞ as the esti-

mated flow when the vehicle is working in normal con-

ditions. Since we assume that anomaly only occurs

occasionally, we can let FM ðtÞ ¼ FLðtÞ if the estimated

vehicle speed is within the normal range. When the

estimated vehicle speed is out of the normal range,

FM ðtÞ can be generated from the prediction based on

the parameters obtained in normal conditions. In prac-

tice, there might be prior information, such as ocean

models, or measurements from other sensors, available

to help us generate the FM ðtÞ needed.

The prediction FM ðtÞ will be compared with the FLðtÞ to

judge whether flow estimation is accurate or not. Thus, we

define the flow estimation error k FM ðtÞ � FLðtÞ k as the

difference between estimated flow velocity and modeled

flow velocity generated from available flow models (e.g.

literature22,23). Let F̂ Lmax
¼ maxðk FLðtÞkt2½0;t�Þ be the

maximum value of estimated flow speed until time t. Let

F̂ M max
¼ maxðk FM ðtÞkt2½0;t�Þ be the maximum value of

modeled flow speed until time t. We can compute a mea-

sure for the flow estimation error as

pE ¼
k FM ðtÞ � FLðtÞ k

2max F̂ Lmax
; F̂ M max

� � ð14Þ

When we compare the maximum value of estimated

flow speed until time t to that of modeled flow speed until

time t, we select the larger value between the two maxi-

mum values to avoid numerator near zero. The value 2 in

the denominator is a scale factor that makes the measure be

1 when the difference between estimated and modeled

flows is maximum.

Algorithm 2 uses pE and the through-water speed to

decide whether the robot is in normal condition or not. A

threshold gf is selected to determine whether the error

measure pE is too large. If pE is above the threshold, then

the through-water speed estimate of the robot should not be

trusted. If pE is below the threshold, then the algorithm

checks whether the through-water speed is with the normal

range or not.

Theoretical justification

The algorithm given by equations (9), (12), and (13) can be

justified theoretically using adaptive control theory.24 In

particular, we can prove that the algorithm achieves error

convergence, parameter convergence, and robustness

against bounded uncertainties. Error convergence indicates

that the identified trajectory converges to the estimated

trajectory. Parameter convergence indicates that the esti-

mated flow field and through-water speed converge to the

assumed true values. Robustness indicates that the inaccu-

racy in these estimates is bounded if the uncertainties are

bounded. The related theorems and lemmas needed for the

proofs are provided in “Review of adaptive control”

section.
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Persistent excitation assumption

Let ~�1 ¼
�1

1 � � � �N
1

0 � � � 0

" #
and ~�2 ¼

0 � � � 0

�1
2 � � � �N

2

� �
be in R2�N . Let w ¼ ½~�1; ~�2; Cc�> 2 Rð2Nþ1Þ�2. We can con-

struct a matrix WðtÞ 2 Rð2Nþ1Þ�ð2Nþ1Þ as follows

WðtÞ ¼
ðtþT

t

�1
1�

1
1 � � � �1

1�
N
1 0 � � � 0 �1

1cos c

�2
1�

1
1 � � � �2

1�
N
1 0 � � � 0 �2

1cos c

..

. ..
. ..

. ..
. ..

. ..
. ..

.

�N
1 �

1
1 � � � �N

1 �
N
1 0 � � � 0 �N

1 cos c

0 � � � 0 �1
2�

1
2 � � � �1

2�
N
2 �1

2sin c

0 � � � 0 �2
2�

1
2 � � � �2

2�
N
2 �2

2sin c

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 � � � 0 �N
2 �

1
2 � � � �N

2 �
N
2 �N

2 sin c

cos c�
1
1 � � � cos c�

N
1 sin c�

1
2 � � � sin c�

N
2 1

2
666666666666666666666664

3
777777777777777777777775

dt ð15Þ

where �i
jðx; tÞ ¼ exp

�kx�cik
2si cosð!it þ uiÞ; i ¼ 1 � � �N ;

j ¼ 1; 2; and T > 0.

For parameter convergence, we need an assumption on

w as follows:

Assumption 4. The w is persistently exciting. In other

words, there exist positive k1, k2, and T such that WðtÞ

satisfies k2I �
ðtþT

t

W ðtÞW>ðtÞdt � k1I 8t.

This persistent excitation assumption is critical to prove

the convergence of parameters.25 When W ðtÞ is singular,

the estimation errors of parameters may not converge to

zero. The persistent excitation condition requires that the

trajectories are traveled by the robot to spread over the area

of operation. This may not be easily satisfied in practice.

Hence, the parameters may not be accurately identified. We

will further address this condition in the simulation and

experiment sections.

Convergence proof

The convergence of CLLE using Lemma 4 is proved as

follows.

Theorem 1. Using equations (12) and (13), CLLE con-

verges to zero when time goes to infinity, that is, eðtÞ !~0
as t!1.

Proof. Consider a candidate Lyapunov function

V ¼ 1

2
e>eþ 1

�g
�q� �xðtÞ
� �> �q� �xðtÞ

� �
þ 1

�g
V R � V LðtÞð Þ2

0
@

1
A

ð16Þ

The derivative of V is

_V ¼ �eT Keþ e> q� xðtÞð Þ�ðx; tÞ

þ V R � V LðtÞð Þ e>Cc �
1

�g
_V LðtÞ

0
@

1
A� 1

�g
�q� �xðtÞ
� �> _�xðtÞ

ð17Þ

We know e> q� xðtÞð Þ�ðx; tÞ ¼ �q� �xðtÞ
� �>

e� �ðx; tÞ.
Then, using equations (12) and (13)

_V ¼ �e>Ke � 0 ð18Þ

where _V is negative semidefinite and this implies that e,

xðtÞ, and V LðtÞ are bounded. In addition, the second-order

time derivative of V satisfies

€V ¼ �2e>K _e

¼ �2e>Kf q� xðtÞð Þ�ðx; tÞ þ V R � V LðtÞð ÞCc � Keg
ð19Þ

Because Cc is bounded, €V is bounded, and hence, _V is

uniformly continuous. By Lemma 4, limt!1 _V ðtÞ ¼ 0.

Since K is the diagonal matrix, eðtÞ !~0 as t!1.

Even if CLLE convergence is shown, the learning algo-

rithm may not identify actual flow because multiple para-

meters that represent flow are identified from one type of

information, which is the estimated trajectory. Thus, we

prove parameter convergence to declare that the vehicle

motion is accurately identified.

Theorem 2. Under the same setting of Theorem 1, xðtÞ
and V LðtÞ converge to q and VR, respectively, that is,

xðtÞ ! q, and V LðtÞ ! V R as t!1.
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Proof. Let h1, h2, and h3 be q1 � x1ðtÞð Þ, q2 � x2ðtÞð Þ,
and V R � V LðtÞð Þ, respectively. We rewrite equation (10)

using notations h1, h2, and h3 as follows

_e ¼ ~�1ðx; tÞh1 þ ~�2ðx; tÞh2 þCch3 � Ke ð20Þ

We augment e, h1, h2, and h3 to new state variable X.

Then

_X ¼ AðtÞX ; Y ¼ CX ;

AðtÞ ¼

�K ~�1
~�2 Cc

��g~�1 0 0 0

��g~�2 0 0 0

��gC>c 0 0 0

2
666664

3
777775; C ¼

I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775

ð21Þ

where 0 is the zero matrix with proper dimensions accord-

ing to the components of the first row matrix of A. Our goal

is to show that the origin of _X ¼ AðtÞX is uniformly asymp-

totically stable, which implies that �xðtÞ converges to �q, and

V LðtÞ converges to VR when time goes to infinity. By The-

orem 5, we need to show that P exists and ðC;AÞ is uni-

formly completely observable. Let

P ¼

1

2
K�1 0 0 0

0
1

2�g
K�1 0 0

0 0
1

2�g
K�1 0

0 0 0
1

2�g
K�1

2
666666666666664

3
777777777777775

: ð22Þ

Let V 1 be X>PX . Then, _V 1 ¼ X>ðA>Pþ P>Aþ _PÞX �
�nX>C>CX ¼ �n k Y k2, where _P ¼ 0. Thus, there exists a

symmetric matrix P(t) and positive constants c1 and c2 such

that c1I � PðtÞ � c2I and AðtÞ>PðtÞ þ PðtÞAðtÞ þ _PðtÞþ
nCðtÞ>CðtÞ � 0. Now, we will prove ðC;AÞ is a uniformly

completely observable. Because it is difficult to prove the

observability of time varying system matrix A, we will

instead show ðC;Aþ LCÞ is uniformly completely obser-

vable with some bounded matrix L called output injection

by Lemma 1. Let L ¼

K 0 0 0

�g~�1 0 0 0

�g~�2 0 0 0

�gC>c 0 0 0

2
6664

3
7775. Since Cc is

bounded, and ~� is a sinusoidal function with exponen-

tial magnitude, L is bounded. Then, Aþ LC ¼
0 ~�1

~�2 Cc

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775. Thus

_X ¼ AX ¼ ðAþ LCÞX � LY

Y ¼ CX
ð23Þ

Let η ¼ ½h1; h2; h3�>. We have the following equation

corresponding to equation (23)

_e ¼ �Keþ w>η
_η ¼ 0

Y ¼ e

ð24Þ

By Assumption 4, w is persistently exciting. Let

FðtÞ ¼
ðt

t

exp�Kðt�sÞwðsÞds be the output of equation (24)

given the input w. By Lemma 2, FðtÞ satisfies persistently

exciting conditions because wðsÞ is persistently exciting, and

the transfer function of equation (24), ðsI 2�2 þ KÞ�1
, is a

stable, minimum phase, proper rational transfer function.

Therefore, there exists constant r1, r2, T 0 > 0 such that

r2I � 1
T 0

ðtþT 0

t

FðtÞF>ðtÞdt � r1I 8t � 0. By applying

Lemma 1 to the system of equation (24), ðC;Aþ LCÞ is uni-

formly completely observable; hence, the system of equation

(21) is uniformly completely observable. Therefore, the origin

of _X ¼ AðtÞX is uniformly asymptotically stable; that is,

X !~0 as t!1. This means that h1, h2, and h3 go to zeros

individually. Thus, �xðtÞ and V LðtÞ converge to �q and VR,

respectively.

Input constraints

The marine robots have limited power to control their

motions. The control power is saturated by the maximum

capacity of hardware such as motors and thrusters. This

induces constraints to robot control in the ocean. Since

equation (11) includes one saturated term represented by

duCc, which shows the discrepancy between input and

output of the saturator, we reject additional disturbance

duCc from saturation in equation (11) using a scheme in

the literature.26 We generate additional signal ed governed

by a differential equation as follows

_ed ¼ �Ked þ duCc ð25Þ

Let ε ¼ e� ed be the difference between CLLE and the

additional signal. When subtracting equation (25) from

equation (11), we have

_ε ¼ _e� _ed

¼ q� xðtÞð Þ�ðx; tÞ þ ðV R � V LðtÞÞCc � Kε
ð26Þ

To make e go to zero, we replace the updating rules for

time-varying parameters �x and VL in equations (12) and

(13) by the following two equations

_�x ¼ �gε� �ðx; tÞ ð27Þ

_V L ¼ �gε>Cc ð28Þ
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The corresponding equations (lines 3 and 4) in Algo-

rithm 1 will also be changed to use the error signal e and ed
Theorem 3. Under the update rules (27) and (28), CLLE

is ultimately bounded

lim
t!1
k eðtÞ k� dumax

q
ð29Þ

where the positive constant q < 1.

Proof. Let V 2 ¼ 1
2

e>d K�1ed . The derivative of V 2 is

_V 2 ¼ �e>d ed þ e>d duCc. Then, _V 2 � �ð1� qÞ k ed k2�
q k ed k2þ k ed k dumax. When k ed k� dumax

q
given positive

constant q < 1, _V 2 � �ð1� qÞ k ed k2. This means _V 2 is

not positive. Thus, k ed k� dumax

q
.

We will show e goes to zero when time goes infinity by

the following candidate Lyapunov function

V 3 ¼
1

2
ε>εþ 1

g
�q� �x
� �> �q� �x

� �
þ 1

�g
V R � V Lð Þ2

� �
ð30Þ

By using equations (27) and (28), _V 3 ¼ �ε>Kε � 0.
_V 3 is negative semidefinite and this implies

that ε, �x, and VL are bounded. In addition,
€V 3 ¼ �2ε>K _ε ¼ �2ε>Kf q� xð Þ�ðx; tÞ þ ðV R � V LÞCcg.

Since e ¼ ed þ ε, e is bounded. This implies that x is

bounded. In addition, x and VL are bounded. Thus, €V 3 is

bounded, and then, _V 3 is uniformly continuous. By Lemma

4, limt!1 _V 3ðtÞ ¼ 0. Since K is the diagonal matrix, ε!~0
when t!1; e! ed when t!1. Thus, CLLE is ulti-

mately bounded.

Inaccuracy in flow modeling

Although the spatial basis function well captures the spatial

variability of actual flows in a specific region, the function

still includes deterministic errors induced by the variability

out of the region. In this section, we address the robustness

of the proposed adaptive learning algorithm.

To show that the proposed algorithm is robust to dis-

turbance in the flows, we prove the boundedness of CLLE

when the actual flow model has unknown disturbances. We

assume FRðx; tÞ ¼ q�ðx; tÞ þD, where k D k is bounded

by Dmax 2 R. Then

_e ¼ q� xðtÞð Þ�ðx; tÞ þ ðV R � V LðtÞÞCc � KeþD
ð31Þ

The theorem of robustness is proved below.

Theorem 4. Under the same setting of Theorem 1 and

FRðx; tÞ ¼ q�ðx; tÞ þD, CLLE is ultimately bounded

lim
t!1
k eðtÞ k� 1

u
Dmax ð32Þ

where the positive constant u < lminðKÞ and k D k is

bounded by Dmax.

Proof. Let V 4 be the Lyapunov function represented by

equation (16). Using equation (31), the derivate of V 4 is

_V 4 ¼ �eT Keþ e>Dþ V R � V LðtÞð Þ> 1

�g
_V LðtÞ � e>Cc

0
@

1
A

þ 1

�g
�q� �xðtÞ
� � 1

�g
_�xðtÞ � e� �ðx; tÞ

0
@

1
A

ð33Þ

We plug the updating rules represented by equations

(12) and (13) into equation (33). Then

_V 4 ¼ �eT Keþ e>D
� �lminðKÞe>eþ e>D � �lminðKÞ k ek2þ k e kk D k
� � lminðKÞ � uð Þ k e k2þ k e kk D k �u k e k2

Algorithm 1. Flow and speed estimation algorithm

Algorithm 2. Anomaly detection algorithm
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When k e k� 1
u k D k given positive constant

u < lminðKÞ, _V 4 � � lminðKÞ � uð Þ k e k2, which means
_V 4 is negative definite. Thus, CLLE is ultimately bounded.

The bound of CLLE is k e k� 1
u k D kmax.

Simulations

This section describes simulation results for the anomaly

detection algorithms in the section of anomaly detection.

For the presentation of 2D ocean flow, qi
1 is selected as the

true flow parameter along the horizontal direction and qi
2 is

the true flow parameter along the vertical direction, where

i ¼ 1; 2; 3. The three combined basis functions are composed

of center ci, width si, harmonic frequency !i, and harmonic

phase ni, where i ¼ 1; 2; 3. Those harmonic periods are cho-

sen by major tidal components M2, N2, and S2. Harmonic

phases are zeros. For the anomaly detection algorithm, posi-

tive constant K in the learning parameter injection term is the

identity matrix. The learning rate �g is 0.8. In the prevention

scheme of false alarm, the factor gf is 0.07.

Figure 1 shows trajectories of a marine robot when the

direction of the marine robot in the horizontal plane is con-

trolled by heading angle commandCc ¼ p
2

t
20

. Every 20 s, the

heading angle will increase 90	. In Figure 1, the simulated

true trajectory represented by the black line would follow

one square if there was no flow. However, because flow with

spatial and temporal variabilities affects vehicle motion, the

true trajectory has multiple squares. The vehicle trajectory

satisfies the persistent excitation condition.

The flow estimate FL, which is xðtÞ�ðzðtÞ; tÞ, is gener-

ated by Algorithm 1. When x and x are all (0,0) at t ¼ 0 in

Figure 1, Algorithm 1 starts to update the flow estimate

with initial conditions of xðtÞ, as given in Table 1.

Figure 2 shows simulation results of through-water

speed and anomaly detection. In Figure 2(a), two green

lines represent the upper and lower bound of normal

through-water speed, respectively. When actual through-

water speed is reduced to 0.5 m/s after 200 s due to abnor-

mal motion, the learning algorithm keeps tracking actual

through-water speed until 300 s.

The anomaly detection algorithm changes the value of

flag to indicate the status of the simulated robot. The flag

value is 2 within the first 10 s, which indicates that a false

alarm may happen due to the inaccuracy of identified flow

in the initial transient period. The flag value changes to 0

after 10 s because the flow identification error has

decreased significantly, as shown in Figure 3, and the iden-

tified through-water speed is within the normal range, as

shown in Figure 2(a). The flag value switches from 0 to 1 at

200 s because the identified through-water speed is out of

the normal range, while the flow identification error is

small in Figure 3.

Experiments and results

The verification of anomaly detection algorithms on

marine robots operating in the ocean typically requires sig-

nificant effort and resource. In addition, generating faults

Figure 1. (a) A trajectory under true flow is shown, and (b) the
identification error for a simulated trajectory using flow identifi-
cation is shown. The error is measured by the root-mean-square
error between true and simulated trajectories. The identification
error converges to 20 s and approaches close to 0 after 100 s.

Table 1. Parameters for simulations.

Parameters i ¼ 1 i ¼ 2 i ¼ 3

True flow qi
1 0.9 0.5 0.7

True flow qi
2 0.8 0.5 0.9

Learned flow xi
1 at t ¼ 0 0.17 0.2 0.05

Learned flow xi
2 at t ¼ 0 0.07 0.1 0.1

Centers ci ½0; 0�> ½10; 10�> ½5; 5�>
Width si 5 5 5
Harmonic frequency !i 12.42 h 12.66 h 12 h
Harmonic phase n i 0 0 0

Figure 2. (a) True through-water speed and (b) flag.
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on operational marine robots will induce risk of vehicle

loss. Therefore, there is a need for an indoor testbed so that

experiments can be carried under controlled conditions

with reduced cost and risk. For this purpose, we develop

the GT-MAB and the GT-WMR, which are used to collect

experimental data on anomaly detection proposed in this

article.

Indoor testbed development

The GT-MAB27 has dynamics that are similar to the

dynamics of underwater vehicles.28–31 The lighter gas in

the GT-MAB induces buoyancy, which plays the same role

in restoring force and moment of the GT-MAB as under-

water vehicles. The GT-MAB is subjected to significant air

dynamic influences, which can be leveraged to emulate

flow influences on underwater vehicles.

To generate flow that affects the motion of the

GT-MAB, a Dyson fan is used as an artificial wind source.

The Dyson fan creates more consistent flows along the

direction of blowing wind than rotating fans that produce

inconsistent flows. Utilizing the GT-MAB and the Dyson

fan, we establish an indoor testbed shown in Figure 4.

Measuring flow generated from the Dyson fan is neces-

sary for algorithm verification. We develop a wind measur-

ing robot (WMR) to measure the wind field of the indoor

environment. The GT-WMR collects low wind speed mea-

surements ranged from 0 m/s to 4 m/s in all directions at

each location autonomously. As shown in Figure 5, the

GT-WMR integrates three wind speed sensors, each with

different range and accuracy, on an omnidirectional robot.

The GT-WMR autonomously moves along predetermined

waypoints, and then, the GT-WMR collects wind measure-

ments at an altitude, where wind sensors are fixed on the

omnidirectional robot. These wind measurements enable us

to identify the flow field of the Dyson fan.

Figure 4. Indoor testbed: The yellow bulbs represent infrared
motion capture cameras. The blue square represents the Dyson
fan. The star represents the starting point of the GT-MAB. The
red line represents the trajectory of the GT-MAB. When the
GT-MAB is flying at the starting point, the GT-MAB motion is
disturbed by flow generated from the Dyson fan. Then, the
motion capture cameras collect the attitudes and trajectory of the
GT-MAB. GT-MAB: Georgia Tech Miniature Autonomous Blimp.

Figure 5. The GT-WMR contains two main components: an
omnidirectional robot called omnibot and three wind sensors.
The three wind sensors on a horizontal black frame are con-
nected to the omnibot. The black frame can be moved vertically
to measure wind speed at different heights. GT-WMR: Georgia
Tech Wind Measuring Robot.

Figure 3. Identification error of flow parameters converges after
20 sec. After 100 s, the identification error converges close to
zero. (a) The identification error for the parameters modeling the
X-axis component of the flow is shown, and (b) the identification
error for the parameters modeling the Y-axis component of the
flow is shown.
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GT-WMR data

To densely collect wind measurements in the indoor

testbed, we determine multiple waypoints that can generate

the GT-WMR path having a type of lawnmower pattern.

Figure 6 shows the waypoints and the GT-WMR’s path,

and Figure 7 shows measured wind velocity at each

waypoint.

When the GT-WMR controlled by a waypoint controller

accurately reaches one waypoint shown in Figure 6, the

GT-WMR stays at the waypoint and changes its orientation

with 30	 increment starting from 0	 to 360	. The wind

speed sensors will collect measurements for each of the

orientations. The direction where the wind speed is the

maximum is chosen as the direction of the wind. Then,

the GT-WMR moves to the next waypoint and repeats the

measurement process. The measured wind field is plotted

in Figure 7. The largest measurement of wind speed is

acquired near the wind source. In addition, the width of the

area with strong wind is around 0.2 m. This value is similar

to the diameter of the Dyson fan, which is 0.254 m. These

measurements are consistent with the Dyson fan.

GT-MAB data

We can measure the through-air speed of the GT-MAB,

where there is no wind, as 0.0185 m/s. When the Dyson

Fan is on, we use the adaptive learning algorithm to iden-

tify airflow along the GT-MAB trajectory using the adap-

tive learning algorithm. Comparing the wind speed

measurements with the GR-WMR data will validate the

learning algorithm.

For the adaptive learning algorithm, we design four

spatial basis functions composed of center ci and width

si, where i ¼ 1; 2; 3; 4. c1, c2, c3, and c4 are ½1:5594; 0:3�>,

½2:0594; 0:3�>, ½2:5594; 0:3�>, and ½1:5594;�1:5�>, respec-

tively. s1, s2, s3, and s4 are all equal to 1. Time-varying

basis functions with harmonic frequencies and phases are

removed because of consistent flow from the Dyson fan.

When GT-MAB is operating in normal conditions, the

adaptive learning algorithm is applied to identify the flow

field. Figure 8 shows measured and identified trajectories

of the GT-MAB. At the individual starting point repre-

sented by one black square, we select one waypoint along

the Y-axis for the forward or backward motion of the

GT-MAB. The blue arrows, which represent wind identi-

fied by the adaptive learning algorithm, move away from

the wind source. The direction of an identified flow corre-

sponds to the wind direction generated from the wind

source. Figures 9 and 10 show measured and identified

trajectories of the GT-MAB from different starting posi-

tions. The magnitude of the blue arrows at the place closing

Figure 7. Measured flow velocity at each waypoint.

Figure 8. Estimated (blue) and identified (red) trajectories
starting at no. 3 (black).

Figure 6. The path (blue) and waypoints (red) of the GT-WMR.
GT-WMR: Georgia Tech Wind Measuring Robot.
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to the wind source is larger than at other places; this ten-

dency corresponds to the fact that strong wind is generated

at positions close to the wind source.

Verifying the adaptive learning algorithm is significantly

difficult by simply comparing Figures 8 to 10 with Figure 7.

Although wind velocities are identified in the entire space of

the testbed, as shown in Figures 8 to 10, the accuracy of the

wind velocities is not consistent. Because using constant

heading angle command and constant spatial basis functions

does not satisfy persistent excitation condition in equation

(15), flow parameters for the identified flow may be inaccu-

rately identified. But, nevertheless, this identification is nec-

essary for anomaly detection.

Anomaly detection

The flow estimate FL, which is xðtÞ�ðzðtÞ; tÞ, is generated

by Algorithm 1. This algorithm updates xðtÞ with its zero

initial condition. In addition, we use the flow field mea-

sured by the GT-WMR to generate FM ðtÞ for anomaly

detection algorithms. We intentionally introduced errors

in FM ðtÞ to hide the ground truth from the algorithm to test

its robustness.

To generate the anomaly, we intentionally disabled a

thruster on the GT-MAB to generate a fault and applied

the anomaly detection algorithms. The flow parameters are

identified by the learning algorithm at the same time. The

fault occurs at time t ¼ 4 s in Figure 11, which plots the

through-air speed (Figure 11(a)) and the flags generated by

the algorithm (Figure 11(b)). The normal speed range is

represented by two green lines. We see that after

t ¼ 4:43 s, the through-air speed estimate escapes from the

range. Flag 0 is maintained until 4.43 s showing no anom-

aly is detected. Flag 1 indicates that anomaly occurs

because the through-air speed estimate is out of the

Figure 11. (a, b) Identified through-air speed along the GT-MAB
trajectories. GT-MAB: Georgia Tech Miniature Autonomous
Blimp.

Figure 12. CLLE along the X-axis (black), and CLLE along the
Y-axis (red). CLLE: controlled Lagrangian localization error.

Figure 9. Estimated (blue) and identified (red) trajectories
starting at no. 12 (black).

Figure 10. Estimated (blue) and identified (red) trajectories
starting at no. 15 (black).
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range. Figures 12 and 13 show CLLE and the GT-MAB

trajectory, respectively.

Conclusion

The main contribution of this article is two algorithms that

detect anomaly of marine robots without sensors monitor-

ing vehicle components: adaptive learning and anomaly

detection algorithms. Only using trajectory information,

the proposed strategy detects abnormal vehicle motion

under unknown ocean flow. It has the potential for mitigat-

ing abnormal vehicle motion with path-planning and con-

troller design of marine robots. The experimental results of

the GT-MAB and GT-WMR in an indoor testbed verify the

proposed strategy. Future work will extend the proposed

algorithms to the 3D space for reflecting upwelling flow

dynamics. Furthermore, we will incorporate the estimated

trajectory from acoustic localization into the proposed

algorithms.

Review of adaptive control

We review theorems and lemmas from the theory of adap-

tive control24 that are needed for the proofs.

Let AðtÞ 2 Rn�n, CðtÞ; LðtÞ 2 Rn�l, X ðtÞ 2 Rn�1, and

Y ðtÞ 2 Rl�1 be matrices that satisfy the following equation

_X ðtÞ ¼ AðtÞX ðtÞ; Y ðtÞ ¼ C>ðtÞX ðtÞ ð34Þ

Theorem 5. A necessary and sufficient condition for the

uniformly asymptotically stability of the equilibrium of
_X ðtÞ ¼ AðtÞX ðtÞ is that there exists a symmetric matrix

P(t) such that both c1I � PðtÞ � c2I and AðtÞ>PðtÞþ
PðtÞAðtÞ þ _PðtÞ þ nCðtÞ>CðtÞ � 0 are satisfied 8t and

some constant n > 0, where c1 > 0, and c2 > 0 and CðtÞ
is such that ðCðtÞ;AðtÞÞ is uniformly completely

observable.

Definition 1.32,33 A vector signal u is persistently excit-

ing if there exist positive constants k1, k2, and T such that

k2I �
ðtþT

t

uðtÞu>ðtÞdt � k1I 8t.

Lemma 1. Assume that there exist constants n > 0;
kn � 0 such that for all t0 � 0, LðtÞ satisfies the inequalityðt0þn

t0

k LðtÞ k2dt � kn. Then, system ðCðtÞ;AðtÞÞ is a

uniformly completely observable if and only if

system ðCðtÞ;AðtÞ þ LðtÞCðtÞ>Þ is a uniformly completely

observable.

Lemma 2. If u : Rþ ] Rn is persistently exciting,

u 2 L1, _u 2 L1, and HðsÞ is a stable, minimum phase,

proper rational transfer function, then u 0 ¼ HðsÞu is persis-

tently exciting.

Lemma 3. Consider system _Y 1 ¼ AcY 1 � Bc�
>Y 2,

_Y 2 ¼ 0, and y0 ¼ C>c Y 1, where Ac is a stable matrix,

ðCc;AcÞ is observable, and � 2 L1. If �f defined as

�f bC>c ðsI � AcÞ�1
Bc� satisfies a1I � 1

T 0

ðtþT 0

t

�f ðtÞ�>f ðtÞ �

a2I ; 8t � 0 for constants a1;a2; T 0 > 0, then, the system

is uniformly completely observable.

Lemma 4.34,35 If g is a real function of real variable t,

defined and uniformly continuous for t � 0, and if the limit

of the integral

ðt

0

gðsÞds as t tends to infinity exists and is a

finite number, then limt!1gðtÞ ¼ 0.
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