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Abstract

This article presents anomaly detection algorithms for marine robots based on their trajectories under the influence of
unknown ocean flow. A learning algorithm identifies the flow field and estimates the through-water speed of a marine
robot. By comparing the through-water speed with a nominal speed range, the algorithm is able to detect anomalies
causing unusual speed changes. The identified ocean flow field is used to eliminate false alarms, where an abnormal
trajectory may be caused by unexpected flow. The convergence of the algorithms is justified through the theory of
adaptive control. The proposed strategy is robust to speed constraints and inaccurate flow modeling. Experimental results
are collected on an indoor testbed formed by the Georgia Tech Miniature Autonomous Blimp and Georgia Tech Wind
Measuring Robot, while simulation study is performed for ocean flow field. Data collected in both studies confirm the
effectiveness of the algorithms in identifying the through-water speed and the detection of speed anomalies while avoiding
false alarms.
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Introduction we develop a learning algorithm that estimates the
through-water speed of the robot as well as the ambient
flow velocity. The robot speed estimate is then used to
determine whether or not robot motion is abnormal. Anom-
aly occurs when the robot speed estimate is out of the range
in normal operation. This approach complements the
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tical problem because marine robots are often used in dis-
tant and hostile environments such as the deep sea and the
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marine creatures and biofouling may harm robot sensors
and thrusters." Monitoring sensors have been installed to
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dargaged propellers impair propulsive efficiency tq control Development, Dacjeon, South Korea
vehicle speed. These faults could be detected with rota- 2School of Electrical and Computer Engineering, Georgia Institute of
tional speed sensors installed at the propellers; however,  Technology, Atlanta, GA, USA
ires increased hardware comp]exity and 3Skidway Institute of Oceanography, Savannah, GA, USA
.- p dfeclement | ;l]?;rlfiﬁzz kt;nexpected external distur- Corresponding author:

: Fumin Zhang, School of Electrical and Computer Engineering, Georgia

e e e omaly detection algorithms for marine |nstitute of Technology, Atlanta, GA 30332, USA.
heir trajectory data. Given a trajectory, Email: fumin@gatech.edu

'Department of Guidance and Control, Agency for Defense

@ ® Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/
open-access-at-sage).


https://orcid.org/0000-0002-5694-310X
https://orcid.org/0000-0002-5694-310X
https://orcid.org/0000-0003-0053-4224
https://orcid.org/0000-0003-0053-4224
https://orcid.org/0000-0001-6486-0948
https://orcid.org/0000-0001-6486-0948
mailto:fumin@gatech.edu
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1729881421999268
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881421999268&domain=pdf&date_stamp=2021-03-19

International Journal of Advanced Robotic Systems

existing methods that detect faults of individual compo-
nents based on sensor measurements. The use of trajectory
data in our work follows similar motivations as previous
works in surveillance applications (e.g. see the literature®).
Our work uses underwater trajectory data of marine robots
while the previous work™® uses car trajectory data and
surface trajectory data of marine vessels. The major differ-
ence is the type of speed information used for anomaly
detection; the former is through-water speed and the latter
is ground speed.

Related work

Recent studies on ground and marine robots proposed
approaches to identify abnormal robot motion.”* An anom-
aly or fault is defined as an unacceptable deviation of at
least one characteristic property of a variable from an
acceptable behavior.” We assume that normal behaviors
occur far more frequently than abnormal behaviors for the
data collected. If this assumption is not true, then such
techniques can produce incorrect detection results or false
alarms. '’

For marine robots, most fault detection algorithms have
been dealing with abnormal behaviors of the system com-
ponents that are the most vulnerable to faults.'' ' Blocked
propellers, leaking thrusters, and rotor failure are documen-
ted as frequently occurring faults.'* In 2015, a software
configuration error in an underwater glider disabled an
internal mass shifter that adjusts the vehicle’s trim, leading
the vehicle to sink to the seafloor and resulting in a tem-
porary loss.® Instead of detecting faults in an individual
component, robot motion can be used for anomaly detec-
tion. Raanan et al.'® use a threshold technique to prevent an
underwater glider from hitting the seafloor. The deviation
from expected robot motion in the vertical plane is detected
by monitoring stern plane angle, pitch angle, and depth
rate.

Serious performance degradation can result when ocean
flow speed is comparable to or exceeds the maximum
through-water speed of marine robots, as is the case for
underwater gliders.'® However, the abnormal motion
caused by ocean flow should not be misclassified as an
anomaly for the marine robot. Therefore, it is important
to identify the ambient ocean flow while estimating the
through-water speed. Measuring through-water speed of
marine robots is substantially difficult because of limited
hardware capability. The inertial measurement unit (IMU)
and the Doppler velocity log (DVL) can be combined to
measure through-water speed.!”” IMU error can be cor-
hich measures both vehicle velocity
d (bottom-tracking) and flow velocity
ehicle (water-tracking).'® However,
e poor when the marine robot does not
Ititude and heading angle. Alterna-
tively, acoustic positioning systems can estimate robot
speed using a short baseline or a long baseline systems,
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which utilize multiple beacons located at the seafloor or
the hull of a ship.'® However, this measured velocity is not
through-water velocity, but rather the ground velocity that
combines both through-water velocity and flow velocity,
which need to be further processed to determine whether
the vehicle is having a fault.

Controlled Lagrangian particle tracking (CLPT) is a
theoretical framework to analyze the interaction between
ocean flow and marine robot control.?® In contrast to pas-
sive Lagrangian methods, a marine robot is viewed as a
controlled Lagrangian particle in the sense that marine
robots are not freely advected by ocean flow. In the frame-
work of CLPT, the net motion of controlled Lagrangian
particles is determined by flow velocity and controlled
speed. Our work leverages the CLPT framework for
anomaly detection because it helps us to identify both the
through-water speed of marine robots and the ambient
flow. Using these information allows us to detect abnor-
mal motion while avoiding false alarms caused by unex-
pected flow.

Major contributions

We present a learning algorithm that can process the data
streams of the trajectory of a marine robot and the real-time
heading information. The algorithm will produce a real-
time estimate of the through-water speed of the robot and
the ambient flow field. Using the theory of adaptive control
and CLPT, we can prove theoretically that the algorithm
will drive the difference between the robot trajectory and
the learned trajectory to zero. In addition, the estimation
error of the through-water speed and the ambient flow field
also converges when a persistent exciting condition is sat-
isfied. Furthermore, the learning algorithm guarantees
bounded estimation error under bounded disturbances.
Therefore, the estimated through-water speed can be used
for anomaly detection, and the estimated ambient flow field
can be used to reduce false alarms.

It is generally very difficult to validate the proposed
algorithm on a marine robot that operates in the ocean due
to the high risk and high cost of losing a marine robot. To
address this challenge, we have developed an indoor
testbed that uses robotic blimps to emulate marine robots
and uses wind field to emulate ocean flow field. Similar to a
marine robot, the motion of a robotic blimp is influenced by
a wind field. The robotic blimps are carefully designed so
that faults that affect its through-air speed can be easily
generated. Our algorithm can then be evaluated on these
blimps. Furthermore, the wind field can be autonomously
measured by a mobile robot. The measured wind field is
then used to compare with the estimated wind field pro-
duced by our algorithm. It would be very difficult (if not
impossible) to perform these experiments in the ocean.
Experimental data have justified that the anomaly detection
approach works well on the testbed. Our experiments also
indicate that the algorithms can be applied to other
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applications such as unmanned aerial vehicles and autono- where
mous ground vehicles. 6, R
1 1
o [0 } =% (5)
Organization 2 2 0

The remainder of this article has been organized into the
following sections: in the second and the third sections, we
present vehicle motion model and controlled Lagrangian
localization error of marine robots. In the fourth and the
fifth sections, we describe an adaptive learning algorithm
and an anomaly detection algorithm for marine robots. In
the sixth and the seventh sections, we demonstrate mathe-
matical simulation and experimental results by developing
Georgia Tech Miniature Autonomous Blimp (GT-MAB)
and Georgia Tech Wind Measuring Robot (GT WMR). In
the eighth section, we provide conclusions and future work.

Models and problem setup

Let F: D x [0, co] — R? represents a spatially distributed
vector field for the ambient flow velocity, where D € R? is
the domain of interest. Furthermore, let W.(¢) = [cost.(7),
sin,(¢)]" be a unit vector that represents the direction
of movements of the robot, where ,(¢) is the heading
angle of the robot. Let V; be the through-water speed
of the robot. Then, the marine robot motion model is
approximated by

X = Fr(x, 1) + VW (1) (1)

where the subscript R for the flow F denotes an actual flow.
Fr and vy are assumed to be locally Lipschitz in
X = [x1, x| € D, where x is the true position of the
robots.

In practice situations, the through-water velocity can be
saturated because of control power constraints of robots.
We modify equation (1) as follows

x = Fr(x,t) + u¥.(¢) (2)

e
u =
Uo

The maximum through-water speed u is determined by
the hardware configuration of marine robots.

Assumption 1. During normal operation, V3 in equation
(1) is a constant.

The flow field can be represented by spatial and tem-
poral basis functions.”' We consider that spatial and tem-
hns are to be the combination of Gaussian
bns and tidal basis functions, respectively.
re integer, and # € R**Y be the unknown
ectively. Let ¢ : D x [0, oo] — R" be

where

if VR S Up
if Ve > ug

3)

The combined basis functions are

_ x|

' (x,t) =exp 2 cos(wit+v;), i=1,---,N (6)

where ¢; is the center, o; is the width, w; is the tidal
frequency, and v; tidal phase. Here, we assume that the
flow only contains tidal flow and biased flow, which
represents the combination of high and low frequency
components of flow. If w; equals zero, flow only has
spatial variability.

Assumption 2. We assume that the heading v, (¢) is
known for all time ¢, and the vehicle trajectory x(¢) can
be measured or estimated for all time ¢.

Remark 1. While the robot is moving in the flow field,
its true location may only be known occasionally. We can
estimate the trajectory of the robot through localization
algorithms. The localization algorithms incorporate the
known locations and the heading angle command as input
and produce estimated trajectories.

Given the knowledge of the trajectory x(¢), our first
goal is to estimate the parameter 6 that models the flow
field and the through-water speed V. Mathematically,
let

5(0:[51(’)} lfi(r) g r)]

£(0) &(1) &)

be our estimate of the parameter 6 and V' (¢) be our esti-
mate for Vg, we will design a learning algorithm to generate
&(r) and Vp(¢) such that £(¢#) — 6 and Vi (¢t) — Vg as
t — o0o. Our second goal is to use the information of &£(¢)
and V;(t) to determine whether the vehicle is working
properly or not.

Flow and speed estimation

Now, knowing &(¢) and V' (¢), we can compute an estimate
z(¢) for the robot trajectory by integrating the following
equation

z2=C)db(z,t) + V()P + B(r) (7)

where (3(¢) € R? is introduced as a learning injection para-
meter. We call e = x — z as the controlled Lagrangian loca-
lization error (CLLE). The CLLE models how much the
estimated trajectory is deviated from the identified trajec-
tory. A learning algorithm will then compute 3(¢), £(¢), and
V1(¢) so that the CLLE can be reduced.

We first derive the CLLE dynamics by subtracting equa-
tion (7) from equation (1) to obtain

e=xX—2z=00(x,1) = {()p(z,1) + (Ve — Vi(t))¥e — B(1)
(8)
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Note that the parameter 6 is unknown, so we cannot use
B(t) = 0p(x,t) — £(t)¢(z, t) directly. Instead, we design
the learning parameter injection as follows

B) = £ d(x, 1) = £()p(2,1) + Ke )

When we plug equation (9) into equation (8), CLLE
dynamics becomes

e=—Ke+ (0—£0)o(x, 1)+ (Ve — Vi (0)¥. (10)

We derive CLLE dynamics under control input con-
straints. Let éu = u — V' be the saturation term of
through-water velocity. We subtract equation (7) from the
combination of equations (2) and (3). CLLE dynamics
becomes

6= —Ke+ (60— £(0)b(x,0) + (Vg — Vi(t)) e + 5,
(11)

where ou can be viewed as an additional disturbance to
CLLE dynamics. We assume that éu is bounded by
Sumax- Then, since || ¥, ||= 1, the term éu'¥, is bounded
above as || u", ||< dumax- Equation (11) is used for the
proposed updating rules that ensure CLLE to be ultimately
bounded in spite of saturation of through-water velocity.
The learning algorithm updates parameters £(¢) and
V1 (¢) using CLLE dynamics so that CLLE converges to
zero. Let &, f,and e ® ¢ € R be column vectors. That is,

§0) = [61(0), -+, &Y (0), 6 (0), -+, & (0], 8(r) = [6}(0),
LV (0),04(0), -, 05 (1), and e®¢p=[ep, -,
eV erpl, e }T, where ® is the Kronecker product.

We design the updating rules for estimating the parameters
as follows

E(1) = 7e @ ¢(x, 1)
VL(I) = ﬁeT‘PC

(12)
(13)

where the parameter 7 is the parameter for learning rate,
which is a positive constant.

Anomaly detection

With the updating rules represented by equations (12) and
(13), we obtained the estimated flow velocity and through-
water speed simultaneously. The through-water speed esti-
mate is used for a critical measure that decides whether or
not abnormal vehicle motion occurs.

Assumption 3. We assume that the maximum V.
and minimum ¥V, through-water speed are known
beforehand.
er speed estimate is within the range
m and the minimum through-water
e that the robot is normally operated
notion. However, when the through-
is out of the normal range, we need
to check whether the flow estimate is accurate or not to
avoid false alarm.

We introduce the flow estimate Fj/ () as the esti-
mated flow when the vehicle is working in normal con-
ditions. Since we assume that anomaly only occurs
occasionally, we can let Fy,(f) = F.(¢) if the estimated
vehicle speed is within the normal range. When the
estimated vehicle speed is out of the normal range,
Fy(¢) can be generated from the prediction based on
the parameters obtained in normal conditions. In prac-
tice, there might be prior information, such as ocean
models, or measurements from other sensors, available
to help us generate the Fy,(¢) needed.

The prediction Fy,(¢) will be compared with the F; () to
judge whether flow estimation is accurate or not. Thus, we
define the flow estimation error || Fy(¢) — F(¢) || as the
difference between estimated flow velocity and modeled
flow velocity generated from available flow models (e.g.
literature®>*%). Let £ = max(]| F.(7)|l+¢j0,q) be the
maximum value of estimated flow speed until time ¢. Let
Fyr. = max(|| Fy1(7)|-¢f0,9) be the maximum value of
modeled flow speed until time #. We can compute a mea-
sure for the flow estimation error as

| Far (1) — Fu(2) |l

- 7L 14
PE 2max (F ., Fa) (14)

When we compare the maximum value of estimated
flow speed until time ¢ to that of modeled flow speed until
time ¢, we select the larger value between the two maxi-
mum values to avoid numerator near zero. The value 2 in
the denominator is a scale factor that makes the measure be
1 when the difference between estimated and modeled
flows is maximum.

Algorithm 2 uses pg and the through-water speed to
decide whether the robot is in normal condition or not. A
threshold 7, is selected to determine whether the error
measure pg is too large. If py is above the threshold, then
the through-water speed estimate of the robot should not be
trusted. If py is below the threshold, then the algorithm
checks whether the through-water speed is with the normal
range or not.

Theoretical justification

The algorithm given by equations (9), (12), and (13) can be
justified theoretically using adaptive control theory.>* In
particular, we can prove that the algorithm achieves error
convergence, parameter convergence, and robustness
against bounded uncertainties. Error convergence indicates
that the identified trajectory converges to the estimated
trajectory. Parameter convergence indicates that the esti-
mated flow field and through-water speed converge to the
assumed true values. Robustness indicates that the inaccu-
racy in these estimates is bounded if the uncertainties are
bounded. The related theorems and lemmas needed for the
proofs are provided in “Review of adaptive control”
section.
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Persistent excitation assumption
- ¢{ ¢11V ~ o --- 0 . XN <7 T (2N+1)x2
Let ¢, = 0 0 and ¢, = 5! v | be in RTY. Let w=[¢, ¢,, ¥] €R . We can con-
Lo @)
struct a matrix W (¢) € REVFDXCVHD g5 follows
$191 $107 0 0 1cosy,
it oY 0 0 gleosy
| A St 0 .0 gyoosy
wo=[ | o 0 el o) osiny, |dr (15)
t
0 - 0 $30 $3¢7  ysiny,
0 o0 6262 Gy sy,
| cosy.d costpep)  siniig, singgy 1

_ x|

where d)}(x, 7) = exp % cos(wit+v;), i=1---N,
j=1,2,and T > 0.

For parameter convergence, we need an assumption on
w as follows:

Assumption 4. The w is persistently exciting. In other

words, there exist positive k1, %, and T such that W (¢)
t+T

W ()W (7)dT > kI VL.

satisfies kol > J
t
This persistent excitation assumption is critical to prove

the convergence of parameters.”> When W (t) is singular,
the estimation errors of parameters may not converge to
zero. The persistent excitation condition requires that the
trajectories are traveled by the robot to spread over the area
of operation. This may not be easily satisfied in practice.
Hence, the parameters may not be accurately identified. We
will further address this condition in the simulation and
experiment sections.

Convergence proof

The convergence of CLLE using Lemma 4 is proved as
follows.
Theorem 1. Using equations (12) and (13), CLLE con-

verges to zero when time goes to infinity, that is, e(r) — 0

br a candidate Lyapunov function

1
gl

<MﬂmWwﬂm+<m—nmﬁ
(16)

The derivative of 7 is

/= —elKe+eT (0 — £(1)p(x, 1)

Ty _1; Y m g TR
+(VR—VL(t))<e Y. 7VL(t)> 7(9 &) &(x)

(17)

We know e (6 — £(1))p(x, 1) = (8 — (1)) e @ ¢(x, 1).
Then, using equations (12) and (13)

/ =—e'Ke<0

(18)

where 7~ is negative semidefinite and this implies that e,
(1), and V1 (¢) are bounded. In addition, the second-order
time derivative of 7 satisfies

/= —2e'Ke
= —2e K{(0—&)p(x,t) + (Vr — V.(t))¥. — Ke}
(19)

Because ¥, is bounded, 7~ is bounded, and hence, 7" is
uniformly continuous. By Lemma 4, lim, .o,7 (¢) = 0.
Since K is the diagonal matrix, e(r) — 0 as f — oc.

Even if CLLE convergence is shown, the learning algo-
rithm may not identify actual flow because multiple para-
meters that represent flow are identified from one type of
information, which is the estimated trajectory. Thus, we
prove parameter convergence to declare that the vehicle
motion is accurately identified.

Theorem 2. Under the same setting of Theorem 1, ()
and V() converge to 6 and Vj, respectively, that is,
&) — 6,and Vi(t) — Vg ast — oo.
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Proof. Let ny, n,, and 13 be (61 — &,(7)), (62 — &(1)),
and (Vg — V (1)), respectively. We rewrite equation (10)
using notations 7, 1,, and 7; as follows

e= él(xa Hm + ¢~52(X71)772 +W¥en; — Ke

We augment e, 7;, 1,, and 13 to new state variable X.
Then

(20)

X=40nX, Y=CX,
K ¢ ¢, Y. I 00 0
) = —ﬁ{bl 0 0 0 oo 00 00
—¥¢, 0 0 0 0000
-3¢, 0 0 0 0000
(21)

where 0 is the zero matrix with proper dimensions accord-
ing to the components of the first row matrix of 4. Our goal
is to show that the origin of X = 4(¢)X is uniformly asymp-
totically stable, which implies that £(¢) converges to 6, and
V1 (¢) converges to V' when time goes to infinity. By The-
orem 5, we need to show that P exists and (C,A4) is uni-
formly completely observable. Let

-1 -

—K! 0 0 0
2
0 L g 0 0
2y
P= | (22)
o
0 0 3 0
|
0 0 0 3

Let /1 be X PX.Then, /| =X"(4"P+P'A+P)X <
—vX'CTCX = —v | Y ||?, where P = 0. Thus, there exists a
symmetric matrix P(f) and positive constants ¢; and ¢, such
that ¢/ < P(f) < oI and A(1) " P(¢) + P(1)A(t) + P(t)+
vC(1)" C(t) < 0. Now, we will prove (C,A) is a uniformly
completely observable. Because it is difficult to prove the
observability of time varying system matrix 4, we will
instead show (C,4 + LC) is uniformly completely obser-
vable with some bounded matrix L called output injection

K 0 0 0

361 0 0 0f .
by Lemma 1. Let L= | _~ . Since Y. is

Yo, 0 0

¢ 0 0 0

sinusoidal function with exponen-
is bounded. Then, A+ LC =

X=4X=(4+LC)X — LY

Y =CX @)

Let n = [1,, 15, 73] . We have the following equation
corresponding to equation (23)

¢ =—Ke+w'n
n=0
Y=e

(24)

By Assumption 4, w is persistently exciting. Let
d(7) = J exp X"~ w(a)do be the output of equation (24)
t

given the input w. By Lemma 2, &(7) satisfies persistently
exciting conditions because w(o) is persistently exciting, and
the transfer function of equation (24), (slox2 +K) ™', is a
stable, minimum phase, proper rational transfer function.
Therefore, there exists constant p;, p,, To > 0 such that

t+To
pol > TLOJ o(1)®" (1)dT > p;I V¥t > 0. By applying
t

Lemma 1 to the system of equation (24), (C,4 + LC) is uni-
formly completely observable; hence, the system of equation
(21) is uniformly completely observable. Therefore, the origin
of X = A(t)X is uniformly asymptotically stable; that is,
X — 0 as ¢ — oo. This means that 11, M, and 75 go to zeros
individually. Thus, £(7) and V' (¢) converge to 6 and Vg,
respectively.

Input constraints

The marine robots have limited power to control their
motions. The control power is saturated by the maximum
capacity of hardware such as motors and thrusters. This
induces constraints to robot control in the ocean. Since
equation (11) includes one saturated term represented by
ou¥., which shows the discrepancy between input and
output of the saturator, we reject additional disturbance
éu?. from saturation in equation (11) using a scheme in
the literature.”® We generate additional signal es governed

by a differential equation as follows
es = —Kes + ou', (25)

Let € = e — e4 be the difference between CLLE and the
additional signal. When subtracting equation (25) from
equation (11), we have

€ =e—¢

= (0—-&(0)o(x, 1) + (Ve = Vi(t))¥e — Ke

To make ¢ go to zero, we replace the updating rules for

time-varying parameters ¢ and ¥ in equations (12) and

(26)

a pdfelement
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£ = 7e® (x, 1) (27)

0 V. =7e"¥P,

. Thus

(28)
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Algorithm |. Flow and speed estimation algorithm 1
o —— =g (et 0-97 -9+
Input: Vehicle trajectory x(¢), estimated position z(¢), T2
heading angle y.(¢), learning rate ¥, initial (30)

estimated parameter & (0), initial estimated speed
V1(0), constant sampling time 7, a diagonal
matrix with positive constant components K
Output: Estimated parameter & (7 + 1), estimated flow
E(t+1)p(z(t+1),+ 1), estimated speed
VL(I + 1)
1 repeat
2| e(t) =x(1) —z(z)
30| Bl) =809 (x(1),1) =S (1) (2(t),1) + Ke(r)
| E(+1) = E@) +Te() 2 9(x(0). 0T,
5 Z(t+1)=
a() + (EOO(0.0) +V0R() + BT,
6 | Vili+D) = Vilt)+Fe(t) ()T,
7 until 1=Ending Time is met

Algorithm 2. Anomaly detection algorithm

Input: Flow velocity estimate Fz(7), modeled flow
estimate Fy(r), false alarm factor 7y, controlled
speed estimate V(7), maximum speed Vinax,
minimum speed Viyin

Output: Anomaly detection flag

1 by, = max(FL(T) e (o)
2 Figy = maX(FM( )rel04))

3 pp = IFL(t)—Fu (1)]]
2max(Fme FMmW)

if pp > Yr then

‘ flag=2p> False Alarm

else if Vi.(t) > Vinax or Vi(t) < Vipin then

‘ flag= 1> Anomaly Detected
else

‘ flag=0p> No Anomaly Detected
10 end

RIS - L

The corresponding equations (lines 3 and 4) in Algo-
rithm 1 will also be changed to use the error signal € and e;

Theorem 3. Under the update rules (27) and (28), CLLE
is ultimately bounded

6umax
lim |[e(7) < —=

—00 q

(29)

where the positive constant ¢ < 1.

Proof. Let 7> =1e] K~ 'es. The derivative of 7 is
6u‘I’ Then, /» < —(1—gq) | es|*—
Oumax. When || es ||> ‘5”;““ given positive
» < —(1—q) || es]|*. This means /", is
|| e || < Pt

We will show e goes to zero when time goes infinity by
the following candidate Lyapunov function

By using equations (27) and (28), /'3 = —e'Ke < 0.

/"3 is negative semidefinite and this implies
that &, E, and V; are bounded. In addition,
/Sy =—2e"Ké = —2e"K{(0 — &)p(x,t) + (Vg — V1)¥.}.

Since e = e5 + €, e is bounded. This implies that x is
bounded. In addition, £ and ¥V, are bounded. Thus, 7”3 is
bounded, and then, 7" is uniformly continuous. By Lemma
4, lim,_ .7 3(¢) = 0. Since K is the diagonal matrix, € — 0
when t — oco; e — €5 when t — oo. Thus, CLLE is ulti-
mately bounded.

Inaccuracy in flow modeling

Although the spatial basis function well captures the spatial
variability of actual flows in a specific region, the function
still includes deterministic errors induced by the variability
out of the region. In this section, we address the robustness
of the proposed adaptive learning algorithm.

To show that the proposed algorithm is robust to dis-
turbance in the flows, we prove the boundedness of CLLE
when the actual flow model has unknown disturbances. We
assume Fg(x,#) = 04(x,t) + A, where || A || is bounded
by Amax € R. Then

& = (0—E)o(x.0)+ (V— Vi(t)¥. — Ke+ A

(31
The theorem of robustness is proved below.

Theorem 4. Under the same setting of Theorem 1 and
Fr(x,t) = 0¢(x,t) + A, CLLE is ultimately bounded
) 1

lim || (1) [1< 5 Anas (32)
where the positive constant v < Amin(K) and || A || is
bounded by Apax.

Proof. Let 74 be the Lyapunov function represented by
equation (16). Using equation (31), the derivate of 7 4 is

. 1.
u:_Jm+JA+wrwumT§nm—J%

(8- &) %é(r) —e®o(x1)

\ewl—‘

(33)
We plug the updating rules represented by equations
(12) and (13) into equation (33). Then
/4 =—e"Ke+el A
—/min(K)e"e +e"A < —dnin(K) || >+ [ e [[[| Al
~(min(K) —0) [l e[+ [ e[| Al —v ] e]?

IAINA
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Figure 1. (2) A trajectory under true flow is shown, and (b) the
identification error for a simulated trajectory using flow identifi-
cation is shown. The error is measured by the root-mean-square
error between true and simulated trajectories. The identification
error converges to 20 s and approaches close to 0 after 100 s.

When |[[e||>1| Al given positive constant
U < Amin(K), 74 < —(min(K) —v) || €||?, which means
74 is negative definite. Thus, CLLE is ultimately bounded.
The bound of CLLE is || e |< 1 || A ||max.

Simulations

This section describes simulation results for the anomaly
detection algorithms in the section of anomaly detection.

For the presentation of 2D ocean flow, ¢, is selected as the
true flow parameter along the horizontal direction and ¢, is
the true flow parameter along the vertical direction, where
i = 1, 2, 3. The three combined basis functions are composed
of center ¢;, width ¢;, harmonic frequency w;, and harmonic
phase v;, where i = 1,2, 3. Those harmonic periods are cho-
sen by major tidal components M,, N,, and S,. Harmonic
phases are zeros. For the anomaly detection algorithm, posi-
tive constant K in the learning parameter injection term is the
identity matrix. The learning rate 7 is 0.8. In the prevention
scheme of false alarm, the factor Y is 0.07.

Figure 1 shows trajectories of a marine robot when the
direction of the marine robot in the horizontal plane is con-
trolled by heading angle command ¥, = 7 ;. Every 20s, the
heading angle will increase 90°. In Figure 1, the simulated
true trajectory represented by the black line would follow
one square if there was no flow. However, because flow with
ariabilities affects vehicle motion, the
ultiple squares. The vehicle trajectory
excitation condition.

b F, which is £(¢)p(z(1),¢), is gener-
When x and x are all (0,0) at# = 0 in

1gure I, Algorithm 1 starts to update the flow estimate
with initial conditions of £(¢), as given in Table 1.

Table |I. Parameters for simulations.

Parameters i=1 i=2 i=3
True flow | 0.9 0.5 0.7
True flow 6, 0.8 0.5 0.9
Learned flow &) att =0 0.17 0.2 0.05
Learned flow &, att =0 0.07 0.1 0.1
Centers ¢; [0,0" [10,10]" [5,5]"
Width o; 5 5 5
Harmonic frequency w; 1242 h 12.66 h 12 h
Harmonic phase v; 0 0 0
(a)_¢°
w
%,
T
o1
g —True
14} Identified
% 50 100 150 200 250 300
Time [sec]
®)
o0
T 1
[
0 L . : .
0 50 100 150 200 250 300
Time [sec]

Figure 2. (a) True through-water speed and (b) flag.

Figure 2 shows simulation results of through-water
speed and anomaly detection. In Figure 2(a), two green
lines represent the upper and lower bound of normal
through-water speed, respectively. When actual through-
water speed is reduced to 0.5 m/s after 200 s due to abnor-
mal motion, the learning algorithm keeps tracking actual
through-water speed until 300 s.

The anomaly detection algorithm changes the value of
flag to indicate the status of the simulated robot. The flag
value is 2 within the first 10 s, which indicates that a false
alarm may happen due to the inaccuracy of identified flow
in the initial transient period. The flag value changes to 0
after 10 s because the flow identification error has
decreased significantly, as shown in Figure 3, and the iden-
tified through-water speed is within the normal range, as
shown in Figure 2(a). The flag value switches from 0 to 1 at
200 s because the identified through-water speed is out of
the normal range, while the flow identification error is
small in Figure 3.

Experiments and results

The verification of anomaly detection algorithms on
marine robots operating in the ocean typically requires sig-
nificant effort and resource. In addition, generating faults
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Figure 3. Identification error of flow parameters converges after
20 sec. After 100 s, the identification error converges close to
zero. (a) The identification error for the parameters modeling the
X-axis component of the flow is shown, and (b) the identification
error for the parameters modeling the Y-axis component of the
flow is shown.

on operational marine robots will induce risk of vehicle
loss. Therefore, there is a need for an indoor testbed so that
experiments can be carried under controlled conditions
with reduced cost and risk. For this purpose, we develop
the GT-MAB and the GT-WMR, which are used to collect
experimental data on anomaly detection proposed in this
article.

Indoor testbed development

The GT-MAB?’ has dynamics that are similar to the
dynamics of underwater vehicles.”* ' The lighter gas in
the GT-MAB induces buoyancy, which plays the same role
in restoring force and moment of the GT-MAB as under-
water vehicles. The GT-MAB is subjected to significant air
dynamic influences, which can be leveraged to emulate
flow influences on underwater vehicles.

To generate flow that affects the motion of the
GT-MAB, a Dyson fan is used as an artificial wind source.
The Dyson fan creates more consistent flows along the
direction of blowing wind than rotating fans that produce
inconsistent flows. Utilizing the GT-MAB and the Dyson
fan, we establish an indoor testbed shown in Figure 4.

Measuring flow generated from the Dyson fan is neces-
sary for algorithm verification. We develop a wind measur-
to measure the wind field of the indoor
GT-WMR collects low wind speed mea-
from 0 m/s to 4 m/s in all directions at
onomously. As shown in Figure 5, the
tes three wind speed sensors, each with
different range and accuracy, on an omnidirectional robot.
The GT-WMR autonomously moves along predetermined
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Figure 4. Indoor testbed: The yellow bulbs represent infrared
motion capture cameras. The blue square represents the Dyson
fan. The star represents the starting point of the GT-MAB. The
red line represents the trajectory of the GT-MAB. When the
GT-MAB is flying at the starting point, the GT-MAB motion is
disturbed by flow generated from the Dyson fan. Then, the
motion capture cameras collect the attitudes and trajectory of the
GT-MAB. GT-MAB: Georgia Tech Miniature Autonomous Blimp.

Figure 5. The GT-WMR contains two main components: an
omnidirectional robot called omnibot and three wind sensors.
The three wind sensors on a horizontal black frame are con-
nected to the omnibot. The black frame can be moved vertically
to measure wind speed at different heights. GT-WMR: Georgia
Tech Wind Measuring Robot.

waypoints, and then, the GT-WMR collects wind measure-
ments at an altitude, where wind sensors are fixed on the
omnidirectional robot. These wind measurements enable us
to identify the flow field of the Dyson fan.
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Figure 6. The path (blue) and waypoints (red) of the GT-WMR.
GT-WMR: Georgia Tech Wind Measuring Robot.
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Figure 7. Measured flow velocity at each waypoint.

GT-WMR data

To densely collect wind measurements in the indoor
testbed, we determine multiple waypoints that can generate
the GT-WMR path having a type of lawnmower pattern.
Figure 6 shows the waypoints and the GT-WMR’s path,
and Figure 7 shows measured wind velocity at each
waypoint.

R controlled by a waypoint controller
ne waypoint shown in Figure 6, the
e waypoint and changes its orientation
starting from 0° to 360°. The wind
ollect measurements for each of the
e direction where the wind speed is the
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Figure 8. Estimated (blue) and identified (red) trajectories
starting at no. 3 (black).

the GT-WMR moves to the next waypoint and repeats the
measurement process. The measured wind field is plotted
in Figure 7. The largest measurement of wind speed is
acquired near the wind source. In addition, the width of the
area with strong wind is around 0.2 m. This value is similar
to the diameter of the Dyson fan, which is 0.254 m. These
measurements are consistent with the Dyson fan.

GT-MAB data

We can measure the through-air speed of the GT-MAB,
where there is no wind, as 0.0185 m/s. When the Dyson
Fan is on, we use the adaptive learning algorithm to iden-
tify airflow along the GT-MAB trajectory using the adap-
tive learning algorithm. Comparing the wind speed
measurements with the GR-WMR data will validate the
learning algorithm.

For the adaptive learning algorithm, we design four
spatial basis functions composed of center ¢; and width
oi,wherei = 1,2,3,4. ¢y, ¢2, c3, and ¢4 are [1.5594,0.3] ",
[2.0594,0.3]", [2.5594,0.3] ", and [1.5594, —1.5] ", respec-
tively. o1, 02, 03, and o4 are all equal to 1. Time-varying
basis functions with harmonic frequencies and phases are
removed because of consistent flow from the Dyson fan.

When GT-MAB is operating in normal conditions, the
adaptive learning algorithm is applied to identify the flow
field. Figure 8 shows measured and identified trajectories
of the GT-MAB. At the individual starting point repre-
sented by one black square, we select one waypoint along
the Y-axis for the forward or backward motion of the
GT-MAB. The blue arrows, which represent wind identi-
fied by the adaptive learning algorithm, move away from
the wind source. The direction of an identified flow corre-
sponds to the wind direction generated from the wind
source. Figures 9 and 10 show measured and identified
trajectories of the GT-MAB from different starting posi-
tions. The magnitude of the blue arrows at the place closing



a pdfelement

Cho et al.

X-axis [m]

Figure 9. Estimated (blue) and identified (red) trajectories
starting at no. 12 (black).
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Figure 10. Estimated (blue) and identified (red) trajectories
starting at no. |5 (black).

to the wind source is larger than at other places; this ten-
dency corresponds to the fact that strong wind is generated
at positions close to the wind source.

Verifying the adaptive learning algorithm is significantly
difficult by simply comparing Figures 8 to 10 with Figure 7.
Although wind velocities are identified in the entire space of
the testbed, as shown in Figures 8 to 10, the accuracy of the
wind velocities is not consistent. Because using constant
heading angle command and constant spatial basis functions
does not satisfy persistent excitation condition in equation
eters for the identified flow may be inaccu-
But, nevertheless, this identification is nec-
y detection.

The Trial Version

e tlow estimate Fy, which is £(¢)p(z(¢), 1), is generated
by Algorithm 1. This algorithm updates £(¢) with its zero

(a)_D,E

o
=

o
o

Speed [m/s

Time [sec]

(b) . : . :

Time [sec]

Figure 1 1. (a, b) Identified through-air speed along the GT-MAB
trajectories. GT-MAB: Georgia Tech Miniature Autonomous
Blimp.
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Figure 12. CLLE along the X-axis (black), and CLLE along the
Y-axis (red). CLLE: controlled Lagrangian localization error.

initial condition. In addition, we use the flow field mea-
sured by the GT-WMR to generate Fy,(¢) for anomaly
detection algorithms. We intentionally introduced errors
in Fy,(¢) to hide the ground truth from the algorithm to test
its robustness.

To generate the anomaly, we intentionally disabled a
thruster on the GT-MAB to generate a fault and applied
the anomaly detection algorithms. The flow parameters are
identified by the learning algorithm at the same time. The
fault occurs at time ¢ = 4 s in Figure 11, which plots the
through-air speed (Figure 11(a)) and the flags generated by
the algorithm (Figure 11(b)). The normal speed range is
represented by two green lines. We see that after
t = 4.43 s, the through-air speed estimate escapes from the
range. Flag 0 is maintained until 4.43 s showing no anom-
aly is detected. Flag 1 indicates that anomaly occurs
because the through-air speed estimate is out of the
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Figure 13. Estimated (blue) and identified (red) trajectories with
the identified flow (blue arrow).

range. Figures 12 and 13 show CLLE and the GT-MAB
trajectory, respectively.

Conclusion

The main contribution of this article is two algorithms that
detect anomaly of marine robots without sensors monitor-
ing vehicle components: adaptive learning and anomaly
detection algorithms. Only using trajectory information,
the proposed strategy detects abnormal vehicle motion
under unknown ocean flow. It has the potential for mitigat-
ing abnormal vehicle motion with path-planning and con-
troller design of marine robots. The experimental results of
the GT-MAB and GT-WMR in an indoor testbed verify the
proposed strategy. Future work will extend the proposed
algorithms to the 3D space for reflecting upwelling flow
dynamics. Furthermore, we will incorporate the estimated
trajectory from acoustic localization into the proposed
algorithms.

Review of adaptive control

We review theorems and lemmas from the theory of adap-
tive control** that are needed for the proofs.

Let A(f) € R™", C(1),L(t) € R™!, X(¢) € R™!, and
Y(f) € R™! be matrices that satisfy the following equation

X(0) =A0X(0), Y0)=CT(0x()  (34)

Theorem 5. A necessary and sufficient condition for the
1 jcally stability of the equilibrium of
hat there exists a symmetric matrix
eil < P(t) < cyl and A(t)" P(1)+
(/)" C(f) < 0 are satisfied V¢ and
, where ¢; > 0, and ¢; > 0 and C(¢)

1S suc ),A(#)) is uniformly completely

observable.

Definition 1.°*** A vector signal u is persistently excit-
ing if there exist positive constants «1, K2, and T such that

t+T
Kol > J u(T)u' (t)dt > ki1 Vt.
t

Lemma 1. Assume that there exist constants v > 0,
k, > 0 such that for all 7y > 0, L(¢) satisfies the inequality

to+v
J | L(r) |Pdr < k,. Then, system (C(1),A() is a
to

uniformly completely observable if and only if
system (C(z), A(t) + L(£)C() ") is a uniformly completely
observable.

Lemma 2. If u:R"+—R" is persistently exciting,
uel,, u€l,, and H(s) is a stable, minimum phase,
proper rational transfer function, then u’ = H (s)u is persis-
tently exciting.

Lemma 3. Consider system Y, =A4.7, —chbTYz,
Y, =0, and Yo = CCTYI, where 4. is a stable matrix,
(C.,A.) is observable, and ¢ € L. If ¢, defined as

t+T
¢y 2C](s] — A.)"'B.¢ satisfies al < Tl_”Jt op(1)¢y (1) <

asl,Vt > 0 for constants oy, an, Ty > 0, then, the system
is uniformly completely observable.
Lemma 4.°*% If g is a real function of real variable ¢,

defined and uniformly continuous for ¢ > 0, and if the limit
t

of the integral J g(s)ds as ¢ tends to infinity exists and is a
0
finite number, then lim,_,.g(¢) = 0.
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