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The integration of Internet of Things (IoT)-enabled sensors and
building energy management systems (BEMS) into smart buildings offers a
platform for real-time monitoring of myriad factors that shape indoor air quality.
This study explores the application of building energy and smart thermostat data to Floor 2
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UFP source and loss processes. The data-driven framework was evaluated through gookier

a field campaign conducted in an occupied net-zero energy building—the Purdue
Retrofit Net-zero: Energy, Water, and Waste (ReNEWW) House. Indoor UFP
source events were identified through time-resolved electrical kitchen appliance
energy use profiles derived from BEMS data. This enabled determination of
kitchen appliance-resolved UFP source rates and time-averaged concentrations and
size distributions. BEMS and smart thermostat data were used to identify the operational mode and runtime profiles of the air
handling unit and energy recovery ventilator, from which UFP source and loss rates were estimated for each mode. The framework
demonstrates that equipment-level energy use data can be used to understand how occupant activities and building systems affect
indoor air quality.
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technology is becoming essential in the transition toward net-

Residential buildings are complex engineering systems. Their
design and operation plays a significant role in modulating our
exposure to air pollutants of indoor and outdoor origin since we
spend approximately 90% of our time indoors.' * Heating,
ventilation, and air conditioning (HVAC) systems are of
particular importance, as they often serve as the interface
between indoor and outdoor atmospheres and incorporate
various filtration technologies for pollutant removal.”~* Another
intrinsic element of residential building systems are occupants,
who interact intimately with their surrounding indoor environ-
ments. Occupant activities, such as cooking and cleaning, drive
profound changes in the composition of indoor air.””~"® Thus,
both HVAC systems and occupant activities need to be jointly
considered when evaluating indoor air pollutant source and loss
processes.

A holistic characterization of residential building systems is
necessary to understand the factors that affect indoor air
pollutant concentrations. Smart buildings that incorporate
Internet of Things (IoT)-enabled sensors and devices that are
integrated with cloud-based building energy management
systems (BEMS) can monitor HVAC systems and occupancy
in real time,"” ™%’ providing a foundation for data-driven indoor
air quality assessment and ventilation control. Smart building

© XXXX American Chemical Society

WACS Publications

zero energy buildings (NZEBs),”*** which integrate intelligent
management of energy-efficient HVAC systems, electrical
appliances, and lighting with on-site energy production.’”*®
However, indoor air quality field investigations in smart
buildings, NZEBs, and similarly designed high-performance/
passive homes are limited.'****~*!

Smart buildings and NZEBs are commonly retrofitted with
smart meters, current transducer (CT) sensors, smart thermo-
stats, and BEMS for real time monitoring of building- and
appliance-level energy consumption and use pro-
files."****>"*~* Such sensing and data management systems
offer exciting possibilities for evaluating how HVAC systems and
electrical appliances impact indoor air quality. Several studies
have used CT sensors and smart thermostats for evaluating
HVAC system runtime (fractional on—time).zo’%’A'S’46 However,
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Figure 1. Flow diagram illustrating how the ReNEWW House sensing platform is used for indoor UFP source event identification, evaluation of AHU
and ERV operational mode and runtime, and UFP source and loss processes attributed to electrical kitchen appliances and operation of the AHU and

ERV.

a comprehensive framework for using building energy and smart
device data to characterize indoor air pollutant dynamics in
smart homes is lacking.

The objective of this study is to develop and evaluate a data-
driven framework for characterizing indoor air pollutant source
and loss processes in a residential NZEB through the use of CT
sensors, a cloud-based BEMS, and smart thermostats. This study
takes a systems-level approach and considers both HVAC- and
occupant-associated processes that affect indoor air quality. The
framework is centered on evaluating indoor ultrafine particles
(UFPs, diameter <100 nm), which can penetrate deep into the
respiratory system and are associated with numerous adverse
toxicological and human health outcomes.”’ = The study
considers UFP source and loss processes associated with
occupant-initiated cooking with electrical kitchen appliances
and the operation of an energy-efficient HVAC system with an
energy recovery ventilator (ERV) for outdoor air intake.

Site Description: Residential Net-Zero Energy Build-
ing—Purdue ReNEWW House. The data-driven framework
for characterizing indoor UFP source and loss processes (Figure
1) was developed and evaluated through a one-month field
measurement campaign conducted in an occupied residential
NZEB—the Purdue Retrofit Net-zero: Energy, Water, and
Waste (ReNEWW) House (Figure S1). The ReNEWW House
islocated at Purdue University in West Lafayette, IN, U.S.A. The
three-story detached home (266 m? total conditioned area) was
built in 1928 and underwent a deep energy retrofit between
2014 and 2015, as described in detail elsewhere.?>>>**®! The
house was occupied by three adult residents during the
campaign. The ReNEWW House is partitioned into a below-
ground basement, which houses an air handling unit (AHU,
Figure S2) and ERV (Figure S3); floor 1, which includes an
open-concept kitchen equipped with all electrical appliances
(Figure S4), including an electric induction cooktop, oven,
toaster, microwave, and ductless range hood; and floor 2, which
includes three bedrooms. The directionality of airflows
associated with the AHU/ERV is as follows: the AHU delivers
damper-modulated supply air to the basement and floor 1;
return air is directed from floor 1 to the ERV (for exhaust to the
outdoors) and the AHU (for recirculation); and the ERV
delivers outdoor air to the AHU, where it mixes with return air
prior to in-duct filtration (via MERV 11 filter) and heating/

cooling. The AHU includes one blower, and the ERV includes
two blowers, one each for intake and exhaust.

ReNEWW House Sensing Platform for Collecting
Building Energy, Smart Thermostat, and UFP Data. The
Purdue ReNEWW House is equipped with a comprehensive
data monitoring system that incorporates an extensive array of
sensors and data acquisition (DAQ) units to monitor and record
energy consumption/production and indoor environmental
conditions throughout the home.*® Equipment-level energy
consumption is measured with 150-, 50-, and 20-A CT sensors at
a 1 min time resolution. The CT sensors and DAQs are
integrated with a cloud-based BEMS (SiteSage, Powerhouse
Dynamics Inc.). In this study, only energy consumption data for
the AHU, ERV, and electrical kitchen appliances were used.
WiFi-enabled smart thermostats (ecobee3 Lite, ecobee Inc.)
installed in the basement and on floor 1 are used to control the
AHU/ERV and monitor floor-level heating/cooling require-
ments via the set point and measured air temperature. Data is
managed via a web portal (ecobee HomelQ, ecobee Inc.).

Indoor particle number size distributions (cm™) were
measured continuously (24 h per day) with a scanning mobility
particle sizer (SMPS, electrical mobility diameter (D,,,) range:
10 to 300 nm) (Model 3910, TSI Inc.) and an optical particle
sizer (OPS, optical diameter (D,) range: 300 to 10 000 nm)
(Model 3330, TSI Inc.) at 1 min time resolution. Particle
number size distributions from D, = 150 to 300 nm were
estimated through spline interpolation due to operational
limitations of the SMPS.®>~% The SMPS and OPS were located
on floor 1 between the kitchen and the living room, with sample
inlets 1.5 m above the floor. Measured particle number size
distributions were translated to surface area (um* cm™) and
volume (um® cm™) size distributions assuming spherical
particles (dynamic shape factor: y = 1) and mass size
distributions (ug m™) using measured size-resolved effective
densities (p.4) for indoor particles in the ReNEWW House
(Figure S5), following the work of Wu and Boor (2020).°
Particle size distributions were then fit to multimodal log-normal
distribution functions.””*® Following completion of the one
month measurement campaign, outdoor particle number size
distributions were measured for 1 week with the SMPS, OPS,
and a silica gel diffusion dryer (Model 3062, TSI Inc.).

Framework for Integrating Building Energy and Smart
Thermostat Data with UFP Dynamics. As illustrated in
Figure 1, the data-driven framework utilizes the ReNEWW
House sensing platform to integrate CT sensors, a cloud-based
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BEMS, smart thermostats, and particle sensors (SMPS and OPS;
UFPs via SMPS only) to evaluate UFP source and loss
processes. First, the CT sensors and BEMS are used to identify
indoor UFP source events associated with the use of the
electrical kitchen appliances for cooking—electric induction
cooktop, oven, toaster, and microwave. Time-resolved use
profiles were determined for each kitchen appliance via the
BEMS data, enabling determination of the number and duration
of cooking-associated indoor UFP source events (Table 1).

Table 1. Indoor UFP Source Event Identification at the
Purdue ReNEWW House: Number and Duration of Indoor
UFP Source Events Associated with Electrical Kitchen
Appliances as Determined by BEMS Data“

source event duration [min]

total no.
indoor UFP identified  no. of events
source events with available for
identified with BEMS source rate
BEMS data data estimation  median minimum maximum
cooktop 24 17 10.5 3 26
oven 13% 10 29 16 49
toaster 48 21 S 4 9
microwave 55¢ 32 4.5 3 17
UFP events not 7 - - - -

associated with

electrical kitch-

en appliances
“Both the total number of events and those available for UFP source
rate estimation are listed. UFP events not associated with electrical
kitchen appliances were identified with UFP data when UFP
concentrations increased, but no kitchen appliances were active.
Source events are used to determine UFP source rates (S) and time-
averaged concentrations and size distributions for each electrical
kitchen appliance (S not estimated for the microwave due to low UFP
concentrations). ~Oven events that occurred within 1 h were
considered as a single event. “Microwave events that occurred within
10 min were considered as a single event.

Second, the CT sensors, BEMS, and smart thermostats were
used to identify the operational mode and runtime””*¥*%*¢ of
the AHU and ERV (Table 2); the AHU and ERV can act as both

Table 2. AHU and ERV Operational Modes at the Purdue
ReNEWW House as Determined by BEMS and Smart
Thermostat Data and the Number of Occurrences for Each
Mode from Which Total UFP Loss Rates (L) Were Estimated
during UFP Concentration Decays

Purdue ReNEWW House AHU and ERV no. for estimating UFP loss

operational mode rates (L
Mode 1: AHU Off, ERV Off 17
Mode 2: AHU On, ERV Off, Floor 1 Heating 14
On
Mode 3: AHU On, ERV On, Floor 1 Heating 29
Off
Mode 4: AHU On, ERV On, Floor 1 Heating 4
On

a source and loss for UFPs. Third, time-averaged UFP
concentrations and size distributions for each kitchen appliance
were characterized. This is done by incorporating the BEMS-
derived kitchen appliance use profiles with UFP data. Fourth, a
material balance model (eq 1) was developed to estimate UFP
source rates (S, h™") for each kitchen appliance and each AHU/
ERV operational mode and loss rates (L, h™') for each AHU/

ERV operational mode (Table 2), using the associated UFP
data.

AHU and ERV Operational Modes. Over the duration of
the measurement campaign, four operational modes for the
AHU and ERV were identified via the BEMS and smart
thermostat data: (1) AHU off, ERV off; (2) AHU on, ERV off,
floor 1 heating on; (3) AHU on, ERV on, floor 1 heating off; and
(4) AHU on, ERV on, floor 1 heating on (Table 2). During the
campaign, the AHU was found to only operate under the heating
mode (mean outdoor temperature of 44 °F (6.67 °C)), and the
ERV was found to operate on a preset cycle. It was observed that
the AHU can be turned on when either the basement or floor 1
calls for heating as determined by the two smart thermostats
(when measured temperature = set point temperature—0.5 °F
(0.28 °C)) or when the ERV operates according to its preset
cycle, which is independent of the floor-level heating require-
ments. When the AHU and ERV are both off, there is no call for
heating within the house by either smart thermostat. When the
AHU is on and the ERV is off, there must be a call for heating in
the basement or floor 1. When the AHU and ERV are both on,
the heating status was determined by the smart thermostat data
to differentiate between modes 3 and 4. Volumetric airflow rates
for the supply air (AHU to basement and AHU to floor 1) and
return air (floor 1 to AHU and floor 1 to ERV as exhaust) varied
among the four operational modes; they were measured with a
flow capture hood (Model 6200, TSI Inc.) across all supply and
return grilles and summarized in Table SI.

Estimating UFP Source and Loss Rates. A material
balance model was used to determine UFP source rates (S, h™")
for the electrical kitchen appliances, AHU, and ERV and total
UFP loss rates (L, h™") for the AHU and ERV. For simplicity, the
model treats floor 1 as a single-zone completely mixed flow
reactor (CMFR) with a volume of V = 256 m>. The SMPS was
positioned at a central location on floor 1 between the kitchen
and living room so as to prevent sampling in the cooking
emission plumes,69 thereby better representing a well-mixed
concentration. The model uses size-integrated UFP number
concentrations (N, D,, = 10 to 100 nm) to derive size-
integrated estimates of UFP S and L (for D,,, = 10 to 100 nm):

v (1)
Electrical kitchen appliance-resolved UFP source rates were
computed by rearranging eq 1 ag7073

N(t) - N(t) |

Sar =V
=1 (2)

where Sg;r is the time-averaged UFP source rate during an active
period of cooking with an electrical kitchen appliance as
determined by the BEMS data, N(t,) and N(t,) are the initial
and maximum UFP number concentrations (cm™>) during the
cooking period, t, and t, are the associated times (h) for each, N
is the average UFP number concentration (cm™®) from ¢, to t,,
and L is the UFP loss rate for the corresponding AHU/ERV
operational mode as determined by the BEMS and smart
thermostat data. Sg;r incorporates the additive effects of UFP
emissions due to the cooking process itself (e.g, frying,
baking)®”7*™*" and heated surfaces (e.g, cooktop burner,
toaster coils).*"* Coagulation is assumed to be negligible as
N <2 X 10* cm™ during the cooking events.*>** Table 1 lists the
number of events for which Sy was estimated for each
appliance.
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Figure 2. Indoor UFP source event identification at the Purdue ReNEWW House: time-resolved kitchen appliance use profiles derived from BEMS
data. Source events are used to determine UFP source rates (S) and time-averaged concentrations and size distributions for each electrical kitchen
appliance (excluding the hood).
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Figure 3. Purdue ReNEWW House AHU (a) time-resolved power consumption profile and (b) time-resolved runtime profile as determined by BEMS
data. The colorbar indicates the AHU power consumption in W (for (a)) and runtime percentage (for (b)). The AHU energy use data is used to
determine UFP source (S) and loss (L) rates for each AHU/ERV operational mode (Table 2).

UEFP loss rates for each of the four AHU/ERV operational
modes (Table 2) were obtained through least-squares regression
of the UFP number concentration decays”** following a BEMS-
identified cooking period. Table 2 lists the number of
occurrences for each mode from which UFP loss rates were
estimated during the concentration decays. L represents the
total rate of removal of UFPs and incorgorates the additive
effects of (i) deposition to indoor surfaces,”*** (ii) deposition
to AHU components (e.g, MERV 11 filter, heating/cooling
coils, ducts),”**° (iii) exhaust to the outdoors via the ERV, (iv)
exfiltration through the building envelope,”' ™ and (v)
interzonal air exchange.”® Thus, the apportionment of L
among processes (i)—(v) was not determined. The contribution
of the ductless range hood was not considered as it was only used
on several occasions (Figure 2).

Time-averaged UFP source rates for the AHU/ERV
(Sapu/Ery) Were computed during pseudo steady-state periods
(N ~ constant) when the electrical kitchen appliances were off
by rearranging eq 1 as

SaHu/ERV = LNV 3)

where N is the average UFP number concentration (cm™)
during a pseudo-steady-state period for a given AHU/ERV

operational mode as determined by the BEMS and smart
thermostat data and L is the UFP loss rate for that mode. UFP
source rates for modes 1 and 2 (AHU on/off, ERV off) and
modes 3 and 4 (AHU on, ERV on) were aggregated together.
Sanu/erv represents the total rate of UFP introduction to floor 1
of the ReNEWW House and includes the additive effects of (i)
intake of outdoor UFPs to the AHU via the ERV, (ii) infiltration
through the building envelope,”' = and (iii) interzonal air
exchange with the basement.”* Sy; accounted for all UFP
sources during a cooking event, including emissions from
cooking itself and sources from the operation of the AHU/ERV.
As Spnu/erv <K Srr (Figure 9), Sgir can be considered to be the
approximate emission rate for the cooking events.

The following sections present elements of the data-driven
framework for linking building energy, smart thermostat, and
particle data for characterizing indoor UFP source and loss
processes in a residential NZEB (Figure 1). First, BEMS-derived
electrical kitchen appliance use profiles are presented, which are
used for indoor UFP source event identification. Second, AHU/
ERV power consumption and runtime profiles are introduced.
Third, electrical kitchen appliance-resolved UFP concentrations

https://doi.org/10.1021/acsestengg.1c00002
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Figure 4. Purdue ReNEWW House ERV (a) time-resolved power consumption profile and (b) time-resolved runtime profile as determined by BEMS
data. The colorbar indicates the ERV power consumption in W (for (a)) and runtime percentage (for (b)). The ERV energy use data is used to
determine UFP source (S) and loss (L) rates for each AHU/ERV operational mode (Table 2).

and size distributions are discussed. Fourth, UFP source and loss
rates estimated for each electrical kitchen appliance and AHU/
ERV operational mode are presented.

Electrical Kitchen Appliance Use Profiles Derived from
BEMS Data. The data-driven framework uses CT sensors and a
cloud-based BEMS to determine when and for how long each
electrical kitchen appliance is being used by the occupants of the
ReNEWW House. Table 1 summarizes the number and
duration of indoor UFP source events associated with the
cooktop, oven, toaster, and microwave. It was found that
cooking was the primary indoor UFP source as it accounted for
140 of 147 observed UFP source events in the ReNEWW House
during the one month campaign. The unassigned 7 UFP source
events where measured UFP number concentrations suddenly
increased may be associated with the undocumented use of
indoor combustion sources (e.g., candles),* ozonolysis-
initiated secondary organic aerosol formation due to use of
scented cleaning products and air fresheners,""*>*>~"" and
portable humidifiers,'*°~'** among others.

The microwave (n = 55 events) and toaster (n = 48 events)
were the most frequently used appliances; however, their
median event durations, 4.5 and S min, respectively, were
comparatively low relative to the cooktop (10.5 min, n = 24
events) and oven (29 min, n = 13 events). This is important as
the net number of UFPs emitted ( / Sxir dt) depends on the
duration of the source event. Figure 2 illustrates the BEMS-
derived temporal use profiles of the kitchen appliances. The
majority of the cooking events occurred from 11:00 to 14:00 and
18:00 to 21:00, likely corresponding to meal preparation for
lunch and dinner, respectively. Only one cooking event (toaster)
was identified via the BEMS data from 00:00 to 10:00, and few
events were found to occur between 21:00 and 00:00. The use
profiles for the cooktop, oven, toaster, and microwave were fairly
consistent during the campaign; however, the ductless range
hood was used infrequently. The use of BEMS data to identify
when occupant-initiated cooking events are occurring is of value
as cooking is an important indoor particle source,'”' %7477

and this approach precludes the use of detailed occupant activity
surveys, 103104

AHU/ERV Power Consumption and Runtime Profiles
Derived from BEMS Data. The CT sensors and cloud-based
BEMS enabled determination of diurnal power consumption
and runtime profiles for the AHU (Figure 3) and ERV (Figure
4). The colorbars in Figures 3a and 4a indicate the power draw
(W) of the AHU and ERYV, respectively, and provide a useful
visualization tool for identifying the temporality of the AHU/
ERV operational mode (Table 2). In Figure 3a, blue (0 W)
indicates when the AHU and ERV are both off (mode 1), green-
red (250—400 W) indicates when the AHU is on (modes 2—4),
green (250—300 W) indicates when the AHU and ERV are on
with floor 1 heating off (mode 3), and orange-red (325—400 W)
indicates when the AHU is on with floor 1 heating on (modes 2
and 4). Mode 2 can be differentiated from mode 4 by identifying
periods when the ERV is off (blue in Figure 4a) but the AHU
remains on (red—orange in Figure 3a).

The ERV operates following a preset cycle that repeats
continually throughout the day, aside from a few fluctuations in
the CT sensor output. The operation of the AHU is more
variable. Between 01:00 and 07:00, the smart thermostat data
did not show a call for heating and the AHU/ERV operational
mode oscillated between modes 1 and 3. Heating on floor 1 is
often called for between 08:30 and 12:00, with modes 2 and 4
common. The is due in part to the temperature set point of the
floor 1 smart thermostat, which increased from 66 °F (18.9 °C)
to 70 °F (21.1 °C) at 08:30 (it remained at 70 °F (21.1 °C) until
01:00, when it changed back to 66 °F). From 12:00 to 00:00,
heating is called for less frequently and the AHU/ERV oscillate
between all four modes. Modes 2 and 4 became less common
during the later stages of the campaign as the outdoor air
temperature increased and the demand for heating was reduced.

The diurnal hourly runtime (eq 4, the percentage of time the
AHU/ERV were active in 1 h: 0 to 100%) profiles for the AHU
(Figure 3b) and ERV (Figure 4b) illustrate the likelihood of
each unit to be active at a certain point during the day:
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Figure 5. Mean and median diurnal runtime profiles for the Purdue ReNEWW House (a) AHU and (b) ERV.
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Mean and median runtime profiles for each are shown in
Figure S. Here, the runtime is determined directly via the CT
sensors and BEMS data®”*® (in contrast to indirect
approaches'®) and is calculated in hourly increments. The
mean AHU runtime was the highest during the late morning,
reaching 75% at around 10:00, and the lowest during the early
morning, at around 36% from 02:00 to 07:00. The dramatic
increase in the AHU runtime at 08:30 was due to the change in
the floor 1 temperature set point. The AHU runtime was the
lowest toward the end of the campaign due to a reduction in
heating needs. The mean ERV runtime was 37% throughout the
day; this was the same runtime as the AHU from 02:00 to 07:00
as modes 1 and 3 were active. Thus, for the ReNEWW House,
the AHU runtime is governed by indoor air temperature
oscillations and heating needs determined by the smart
thermostats and the preset ERV cycle.

The runtime is a useful, but seldom measured, parameter for
indoor air quality field campaigns that is valuable for inferring
UFP source and loss processes associated with the highly
variable duty cycles of residential HVAC systems.””*>**'%° The
24 h median AHU runtime at the ReNEWW House (36.7%) is
within the range of median HVAC system runtimes for
residences in heating-dominated climates during the heating
season (35—45%), while Ion§er than runtimes in cooling-
dominated climates (20—27%).”° However, the AHU runtime is
higher than that for a residence in Toronto, Canada (0—-30%)*°
with an outdoor air temperature of around 10 °C, due to the
operation of the ERV which triggered the operation of the AHU
when there was no call for heating (mode 3).

Linking BEMS, Smart Thermostat, and UFP Data
During Indoor UFP Source Events. The integration of
BEMS, smart thermostat, and UFP data collected in real time at
the ReNEWW House can be seen in Figure 6, which shows an
example indoor UFP source event for the electric induction
cooktop (additional examples for other appliances are provided
in Figures S18—524). Shortly following the stepwise increase in
the time-resolved cooktop power consumption profile (BEMS
data, Figure 6a), the size-integrated UFP number concentration
(Dem = 10 to 100 nm) sharply increases from background levels
(N<10°cm™) to N~ 1to 2 X 10* cm™ (SMPS data, Figure
6¢). The short delay (<S5 min) between the activation of the
cooktop as indicated by the BEMS data and initiation of the UFP
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Figure 6. Example of an indoor UFP source event and associated UFP
concentration elevation and decay at the Purdue ReNEWW House: (a)
time-resolved power consumption profiles for the cooktop, AHU, and
ERV as determined by BEMS data; (b) floor 1 set point and measured
air temperatures and heating status as determined by smart thermostat
data; (c) size-integrated UFP number concentration (10 to 100 nm)
and PM,  mass concentration (10 to 2500 nm, using size-resolved pg
for cooking aerosol from Figure S5) the time series; (d) particle number
size distribution (dN/ dlogD,, cm™3) time series from 10 to 10 000 nm;
and (e) particle mass size distribution (dM/ dlogD,, ug m™) time series
from 10 to 10 000 nm (using size-resolved p,¢ for cooking aerosol from
Figure SS). The particle diameter (DP) is defined as the electrical
mobility diameter (D,,,) from 10 to 300 nm (measured with SMPS)
and optical diameter (D,) from 300 to 10000 nm (measured with
OPS). D,,, = 150 to 300 nm was estimated through spline interpolation
(indicated with dashed black lines).

concentration elevation was commonly observed. The delay is
due in part to the time it takes for the cooking apparatus (e.g.,
pan, pot) and cooked items (e.g, oil, meat, vegetables) to reach
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Figure 7. Size-integrated UFP number concentrations (10 to 100 nm) for indoor UFP source events identified for each electrical kitchen appliance as
determined by BEMS data. UFP number concentrations during background periods in which no known indoor source was active at the Purdue
ReNEWW House are shown for comparison. Box plots represent the interquartile range, whiskers represent the Sth and 95th percentiles, and markers
represent outliers. Box plots include UFP number concentrations measured from the beginning of the source event until the UFP number
concentration reached its maximum. n refers to source events when only one electrical kitchen appliance was active (Table 1).
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Figure 8. Median particle size distributions (10 to 10000 nm) for indoor UFP source events identified for each electrical kitchen appliance as
determined by BEMS data. The median particle size distributions include those measured from the beginning of the source event until the UFP
number concentration reached its max1mum From left to right: particle number size distributions (dN/ dlogDP, cm™), particle surface area size
distributions (dS/ dlogD,, um? cm™3, assummg spheres), particle volume size distributions (dV/ dlogD,, um® cm™, assuming spheres), and particle
mass size distributions (dM/ dlogD,, ug m™~ 3, using size-resolved p.q for the cooking aerosol from Figure SS5). Particle diameter (Dp) is defined as the
electrical mobility diameter (D,,,) from 10 to 300 nm (measured with SMPS) and optical diameter (D,) from 300 to 10 000 nm (measured with OPS).
D,,,, = 150 to 300 nm was estimated through spline interpolation (indicated with dashed black lines).

demonstrate that the majority of the particles produced (on a
number basis) are in the UFP regime.

The UFP number concentration follows a near exponential
decay after the cooking event (Figure 6¢). It is this period that is
used to estimate the total UFP loss rates (L) for each AHU/ERV
operational mode. Figure 6a shows the power consumption
profiles for the AHU and ERV taken from the BEMS data. Figure
6b shows the floor 1 heating status (on/off) and set point and

temperatures sufficient for UFP production to occur (typically
>100 °C), as documented in prior studies on heated cooking
surfaces®”®” and oils.”””® The maximum UFP number
concentration is reached about 15 min after the cooktop is
turned on. The period from the initial rise in UFP
concentrations to the maximum concentration is used to

compute the time-averaged UFP source rate (Sg;r) following

eq 2. The particle number and mass size distributions (Figure
6d,e) exhibit similar temporal trends during the source event, as
does the size-integrated particle mass concentration (PM,,
Dem(o) = 10 to 2500 nm). The number size distributions

measured air temperatures reported by the floor 1 smart
thermostat. During the UFP decay, multiple AHU/ERV
operational modes can be observed. From ~21:00 to 21:20,
both the AHU and the ERV are active, while floor 1 heating is off
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10 to 100 nm) for the operational modes of the AHU and ERV as determined by BEMS data. For (a), AHU On/Off, ERV Off incorporates modes 1

and 2 and AHU On, ERV On incorporates modes 3 and 4 (Table 2).

(mode 3). From ~21:20 to 21:40, the AHU is on, the ERV is off,
and floor 1 heating is on (mode 2—measured temperature falls
0.5 °F (0.28 °C) below the set point at ~21:20). From ~21:40
to 21:55, both the AHU and the ERV are off and heating is off
(mode 1—measured temperature reaches the set point at
~21:40). As the AHU/ERV transitions from mode 1 to mode 3
at ~21:55, a slightly sharper decay is observed in the UFP data
(Figure 6c), suggesting enhanced UFP removal associated with
the operation of the AHU/ERV. Mode 4 was not observed
during this period.

Electrical Kitchen Appliance-Resolved UFP Concen-
trations and Size Distributions. Electrical kitchen appliance-
resolved UFP concentrations and size distributions are
presented in Figures 7 and 8, respectively. UFP concentrations
and size distributions were aggregated across all BEMS-

identified source events for which each appliance was active
alone (Table 1). Figure 7 includes size-integrated UFP number
concentrations (N, D, = 10 to 100 nm), and Figure 8 includes
measured number size distributions (Dem(o) =10 to 10 000 nm)
and their translation to surface area, volume, and mass.
Multimodal log-normal fitting parameters are provided in
Table S2 and Figures S8—S11 (appliance-resolved) and Table
S3 and Figures S13—S17 (time-of-day-resolved). UFP number
concentrations for background periods at the Purdue ReNEWW
House during which no cooking occurred are shown for
comparison in Figure 7 (median N = 9.5 X 10> cm™).

The CT sensors and cloud-based BEMS provided a basis to
partition the indoor UFP concentration and size distribution
data set among different appliances. Such an approach can be
useful for indoor UFP source apportionment'® and can be
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extended to real time measurements of other pollutants
produced b?l cooking processes, such as volatile organic
compounds. »'*”'®® The oven produced the highest UFP
levels, with a median N = 6.4 X 10° cm™>, followed by the toaster
and cooktop. A few source events for the oven and cooktop
produced time-averaged N > 10* cm ™. The microwave was not
found to be a strong UFP emitter, elevating concentrations only
slightly above background levels.

Variations in the magnitude of the particle number size
distributions (Figures 8 and S7) were consistent with that
observed for the UFP concentrations. For all appliances, UFPs
dominated number size distributions. Across the entire
campaign, UFPs (D,,, = 10 to 100 nm) were found to contribute
80 to 94% (median of 86%) to total particle number
concentrations (Dep(,) = 10 to 10 000 nm) (Figure S6). The
prominent mode for the number size distributions was between
D, ~ 30 and 40 nm across the appliances, smaller than that
observed during background periods (D, ~ 70 nm). Surface
area size distributions for the appliances were dominated by
particles from D, ~ 50 to 300 nm, whereas volume and mass
size distributions were dominated by coarse mode particles (D,
> 2500 nm). The latter was likely produced due to both cooking
emissions and floor dust resuspension.”" "

Indoor UFP number concentrations at the ReNEWW House
during cooking (N ~ 10° to 10* cm™) and background (N ~ 10*
to 10° cm™?) periods are generally lower than those reported in
prior studies (e.g., N ~ 10° to 10°
cm_3).l LI%16,74=76,79,106109=18 1ndoor UFP concentrations
are context and location specific and depend on the dynamic
relationship between S and L (eq 1). Notably, enhanced UFP
removal at the Purdue ReNEWW House associated with the
AHU and ERV (Figure 10b) may explain the lower UFP number
concentrations, as does the positioning of the SMPS at a central
location on floor 1 away from cooking emission plumes. Only
one prior study''* has reported on indoor UFPs in selected high-
performance homes using electrical kitchen appliances with
similar ventilation/infiltration attributes as the ReNEWW
House. UFP concentrations during use of electric induction
cooktops were similar to those reported here (N ~ 10° cm™)
and much less than those measured during the use of gas and
electric resistance burners (N ~ 10° cm™).5#100111119

UFP Source Rates for Each Electrical Kitchen
Appliance and AHU/ERV Operational Mode. The integra-
tion of BEMS, smart thermostat, and UFP data enable the
estimation of size-integrated UFP source rates (S, D, = 10 to
100 nm) for the electrical kitchen appliances and AHU/ERV.
Figure 9 presents UFP source rates for the cooktop, oven,
toaster, and merged AHU/ERV modes 1-2 (AHU on/off, ERV
off) and 3—4 (AHU on, ERV on). Kernel density functions for
each are provided in Figure 10a. Source rates were not estimated
for the microwave since UFP concentrations increased margin-
ally above the background (Figure 7). The UFP source rates are
a generalizable output as they contextualize the measured UFP
number concentrations (N) for the physical attributes of the
indoor environment (L, V) in which they are measured (eq
1)."*” Thus, the use of the BEMS data to identify when different
UFP sources are active and assign source rates during those
periods is of value in better understanding the factors that
increase UFP concentrations in smart homes.

UEFP source rates for the electrical kitchen appliances were in
the range of Sy ~ 10" to 10" h™". Source rates for the cooktop
were the highest (median Sg;p = 3.14 X 10"* h™") and exceeded
10'* h™" for several cooking events. Source rates for the toaster

and oven were similar to one another, with median Sg; = 1.05 X
10" h™" and Sg;p = 7.55 X 10'* h ™, respectively. Several cooking
events for each resulted in Sg;p ~ 10'* h™. The Kernel density
functions for the appliance-resolved UFP source rates illustrate
the variability in the rate at which UFPs are emitted among the
number of events identified with the BEMS data (Table 2). This
variation is important to capture given the range of cooking
temperatures, styles, and food types that can occur in a home
with three occupants.

The estimated UFP source rates for the electrical kitchen
appliances are generally consistent with those reported for
cooking activities in prior studies (variable size ranges). Hussein
et al. (2006)'° reported a source rate of 3.6 x 10'> h™! for
cooking activities in a home in Prague, Czech Republic; He et al.
(2004)""” reported median source rates of 4.4 X 10> h™!, 4.1 x
10" h7', and 7.6 X 10" h™' for stoves (gas and electric),
toasting, and an oven, respectively, across 15 homes in Brisbane,
Australia; Rim et al. (2016)** reported source rates of 1.08 to
1.68 X 10 h™! for a heated electric resistance burner (no
cooking and D,,, down to 2 nm); and Zhao et al. (2020)"*!
reported source rates for a range of cooking activities that were
generally in the range of 1 to S X 10" h™" across 40 homes in
Germany.

UFP source rates for the AHU/ERV were significantly less
than that for the electrical kitchen appliances, ranging from
Sanusery ~ 10" to 10> h™". The UFP source rate was greater
when the ERV was on (modes 3—4, median Sxyy/pry = 3.73 X
10" h™') compared to when it was off (modes 1—2, median
Sanusery = 8.51 X 10" h™). The latter is strongly influenced by
outdoor UFP penetration through the envelope of the
ReNEWW House®”' ™ (penetration factors were not
calculated here). The ERV serves as an important interface
between the indoor and outdoor atmospheres and continually
draws in outdoor UFPs during its operation. As the outdoor air is
directed from the ERV to the AHU, some UFPs are removed via
deposition to AHU components (e.g., MERV 11 filter, heating/
cooling coils, ducts) ;88990 K swever, it is evident some fraction is
still introduced to the occupied space.

While the AHU on/ERV on source rate (modes 3—4) was
lower than that for cooking, the ERV is active much more
frequently during the day (Figures 4 and S, mean runtime of
37%) compared to the electrical kitchen appliances (Figure 2).
The ERV can be viewed as a cyclical source of outdoor UFPs.
This is important as the outdoor UFP number concentrations
were typically higher than those measured indoors, especially
during the weekdays, with indoor/outdoor (I/O) ratios often
between 0.2 to 0.8 (Figure S6). For example, over a 24 h period,
the ERV can deliver approximately 3.31 X 10'* UFPs indoors (S
of 3.73 X 10" h™! X 0.37 runtime fraction X 24 h; assuming ERV
contribution > AHU/infiltration). A typical cooktop event of 10
min (Table 1) would produce about 5.23 X 10'2 UFPs (S of 3.14
X 10" h™' X 0.167 h). Therefore, it is necessary to consider the
role of ERVs in modulating indoor UFP levels in energy-efficient
homes such as NZEBs, where they are becoming more
common.’”” BEMS data is thus important in determining
when and for how long the ERV acts as a UFP source.

UFP Loss Rates for Each AHU/ERV Operational Mode.
Size-integrated total UFP loss rates (L, D,,, = 10 to 100 nm) for
each for the four AHU/ERV operational modes (Table 2) are
presented in Figure 10b as Kernel density functions. UFP loss
rates are derived from the UFP number concentration decays
following a source event and use the BEMS and smart
thermostat data to partition the UFP data among the different
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operational modes. The loss rates should be viewed as estimates
of the overall rate of UFP removal from floor 1 of the ReNEWW
House and are not apportioned by the various physical removal
processes.

UFP loss rates vary among the four AHU/ERV operational
modes, ranging from <0.5 to >4 h7%. The width of the Kernel
density functions reveal the variability in L for a given mode,
demonstrating the probabilistic nature of UFP removal in
homes. They are higher when the AHU and ERV are on (modes
2—4) compared to when they are both off (mode 1). During the
latter, UFP sinks include indoor surface deposition,z’gs_ 71122
exfiltration,””" and interzonal air exchange’ (assuming
coagulation to be negligible for N < 2 x 10* cm™3).5>** The
mode 1 median L = 1.18 h™! is consistent with prior estimates of
size-integrated UFP loss rates for surface deposition by Wallace
et al. (2013)* (median L = 0.9 h™!) and Stephens and Siegel
(2012)°" (median L = 1.01 h™!). Accelerated rates of UFP
removal were periodically observed for mode 1 (L > 1.5 h™").
This may be due to temperature- and pressure-dependent
variations in exfiltration and interzonal air exchanzc:{e;()l’123
changing indoor airflow conditions, which affect the turbulent
diffusion of UFPs to surfaces; " and enhanced thermophoretic
deposition of UFPs to cooler surfaces for cooking emission
plumes with higher temperatures.'**

The enhanced UFP removal associated with airflow through
the AHU and ERV (modes 2—4) can be attributed to particle
deposition to AHU components and ERV exhaust. UFP loss
rates were similar among modes 2—4 and were generally in the
range of L = 2.5 to 4 h™! with median loss rates of L =3.33 h™" for
mode 2, L = 3.54 h™! for mode 3, and L = 3.30 h™! for mode 4.
The ERV was likely responsible for the increase in L between
modes 3 and 4 with mode 2 as the ratio of the ERV exhaust
airflow rate to the floor 1 volume being 0.14 to 0.15 h™" (Table
S1). The similar Kernel density functions for L among modes 2—
4 suggest that the particle deposition to AHU components (e.g,,
MERV 11 filter, heating/cooling coils, ducts)***”° is respon-
sible for the majority of the UFP removal. A similar trend was
observed by Stephens and Siegel (2013),° whereby the
activation of a residential HVAC system with a MERV 11 filter
increased UFP loss rates by 1.3 to 1.7 h™! beyond the HVAC off
condition.

The net number of UFPs removed in a given period of time
(/LNV dt) is dependent on the duration over which the loss
processes are active. Therefore, the effectiveness of the AHU/
ERV in removing indoor UFPs is a function of not only their loss
rates but also their respective runtimes (Figures 3—5). The AHU
runtime is a significant factor in governing the effectiveness of an
in-duct filter in removing indoor particles.” Thus, BEMS-derived
AHU/ERV runtimes are necessary for predicating indoor UFP
number concentrations under different ventilation scenarios.

Our study has several limitations. First, the spatial distribution in
UFP concentrations throughout the ReNEWW House was not
characterized with simultaneous sampling by multiple UFP
sensors in different zones (e.g., basement, floor 1, outdoor air).
Second, only overall UFP source and loss rates were reported
and interzonal airflows under variable thermal and AHU/ERV
operational conditions were not measured via tracer gas
techniques given the complexity of conducting such measure-
ments in occupied residences.”* Thus, the contribution of
variable interzonal airflows to UFP source and loss rates is
unknown. Third, the analysis of UFP source rates was only

focused on electrical kitchen appliances and the AHU/ERV. We
were not able to identify nonelectrical sources with the BEMS
data. However, the framework can be expanded to include other
sensors (e.g., carbon dioxide sensors, motion sensors, window
sensors, etc.) to better characterize indoor activities and their
impact on UFP dynamics.

This study introduced a new data-driven framework for using
building energy and smart thermostat data to characterize the
dynamics of sub-100 nm UFPs in an occupied net-zero energy
home equipped with a comprehensive sensing and data
management system. The framework provides a basis for
automated detection of indoor air pollution source events
associated with the use of electrical kitchen appliances for
cooking. As illustrated in this study, residential HVAC systems
(AHUs/ERVs) serve as both a source and a sink for UFPs. CT
sensors, BEMS, and smart thermostats can be used together to
evaluate the transient operational modes and runtimes of HVAC
systems. This enables assessment of how HVAC systems
modulate indoor air pollutant concentrations. The approach
presented here can inform smart ventilation control strat-
egies'”'”?" that can be used to regulate the operation of AHUs
and ERVs based on outdoor pollution levels and the activation
of indoor sources. Such strategies are needed given the growing
awareness of the complexity of indoor air physics and
chemistry”'** and the impact of UFPs on human health and
well-being, 5¥54565950

This study demonstrates the importance of applying a
systems-level approach to indoor air quality field measurements
as building systems and occupant activities are responsible for
driving significant changes in indoor particle concentrations.
The ReNEWW House BEMS can tell us the real time status of
the HVAC system and if an occupant is cooking and use this
collective information to explain fluctuations in indoor UFP
levels. Lastly, the framework can be used to predict UFP
concentrations under different scenarios by coupling the
estimated UFP source and loss rates with the energy use profiles
for the electrical kitchen appliances and AHU/ERV.
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