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Measurements of airborne particles in buildings with low-cost optical particle counters (OPCs) are often inac-
curate and subject to uncertainties. This study introduces a methodology to improve the performance of low-cost
OPCs in measuring indoor particles through machine learning. A two-month field measurement campaign was
conducted in an occupied net-zero energy house. The studied OPCs (OPC-N2, Alphasense Ltd.) report size
fractionated concentrations from 0.38 to 17.5 pm. Co-located reference instrumentation included a scanning
mobility particle sizer (SMPS: 0.01-0.30 pm) and an optical particle sizer (OPS: 0.30-10 pm). The machine
learning field calibration method applies Gaussian Process Regression (GPR) and includes two components: (1.)
correction of the size-resolved OPC counting efficiency from 0.38 to 10 pm and (2.) prediction of volume size
distributions (mass proxy) below the 0.38 pm detection limit of the OPC. The field calibration method is
applicable to OPCs that report size fractionated concentrations. In (1.), a GPR function was used to correct the
size-resolved counting efficiency of the OPCs between 0.38 and 10 pm using the OPS as reference. In (2.), a
second GPR function was used to predict the volume size distribution below 0.38 pm using the SMPS/OPS as
reference. This was done given the significant contribution of sub-0.38 pm particles to volume concentrations in
the accumulation mode. The machine learning field calibration method resulted in a significant improvement in
the accuracy of size-integrated volume concentrations (PV, 5, PVyg) reported by the OPCs as compared to the
SMPS/OPS. Improvements were seen in the Pearson coefficient (before correction: 0.59-0.83; after correction:
0.98-0.99); coefficient of determination (before correction: 0.35-0.69; after correction: 0.97-0.98); and mean
absolute percentage error (before correction: 35-69%; after correction: 19-25%).

1. Introduction

Airborne particles are an important contributor to indoor air pollu-
tion [1,2]. Epidemiological studies have shown that prolonged exposure
to elevated particle concentrations can adversely affect respiratory and
cardiovascular health [3-8]. Since people spend approximately 90% of
their time indoors, it is important to characterize indoor exposure to
particles of indoor and outdoor origin through routine particle moni-
toring in buildings [6,9]. However, traditional particle monitoring
equipment is expensive, has a large footprint, and often requires
external pumps [10-12]. Thus, widespread deployment of such instru-
mentation in buildings remains a challenge. Recent advances in sensor
technology has driven the emergence of a new particle monitoring
paradigm based largely on low-cost optical particle counters (OPCs) for
real-time measurement of accumulation (Dp: 0.10-2.5 pm) and coarse

(Dp: 2.5-10 pm) mode particles [11,13,14].

Rai et al. [13] defined a low-cost air quality sensor as one that costs
significantly less than the development cost of a sophisticated
laboratory-grade instrument. Such sensors have low operating and
manufacturing costs and are often associated with short response times
for pollutant detection [15]. However, the data provided by low-cost
OPCs is often prone to error and standard evaluation criteria are lack-
ing [16]. As a result, recent research has focused on evaluating the
performance of low-cost OPCs; a brief summary is provided in Table 1
[4,7,12,17-30]. A notable limitation of low-cost OPCs is that they often
have a low detection efficiency for particles that are smaller than 0.30
pm in diameter [31,32]. This is because sub-0.30 pm particles do not
scatter enough light to be detected by most photodetectors [32]. For
example, one study found the detection efficiency for a low-cost OPC to
be 0.04% at D = 0.10 pm [33]. Poor detection of sub-0.30 pm particles
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Table 1
Summary of selected studies evaluating low-cost OPCs.

Building and Environment 190 (2021) 107457

Study Low-Cost OPC(s) Evaluated

Reference Instrument(s) Used

Summary of Results

Northcross et al. Dylos 1700 (Dylos Corp.) (modified by
[7] the authors)

DustTrak 8520 (TSI Inc.)

Holstius et al.
[22]

PPD42NS (Shinyei Tech. Co.)

Gao et al. [23] PPD42NS (Shinyei Tech. Co.) APS 3321 (TSI Inc.)

Jovasevié-
Stojanovi¢
et al. [24]
Steinle et al. [25]

Dylos 1700 (Dylos Corp.)
GmbH)

Dylos 1700 (Dylos Corp.)

Alvardo et al.
[26]

GP2Y10 (Sharp), DMS501A (Samyoung
Elec. Co.)

DustTrak 8520 (TSI Inc.)

Zikova et al. [12] DMS501A (SamyoungElec. Co.)

Crilley et al. [11] OPC-N2 (Alphasense Ltd.)

Han et al. [28] Dylos 1700 (Dylos Corp.)

Badura et al. [4] SDS011 (Nova Fitness), ZHO3A
(Winsen), PMS7003 (Plantower), OPC-
N2 (Alphasense Ltd.)

Liu et al. [17] SDS011 (Nova Fitness)

Magi et al. [18]

PA-II (Purple Air)

Bai et al. [19] PPD42NS (Shinyei Tech. Co.)

BAM 1020 (Met One Instruments Inc.),
DustTrak 8530 (TSI Inc.), PAS 1.108 (GRIMM
GmbH), Dylos 1700 (Dylos Corp.)

OPS 3330 (TSI Inc.), PAS 1.108 (GRIMM

TEOM-FDMS (Thermo Fisher Scientific)

PAS 1.109 (GRIMM GmbH)
TEOM-FDMS (Thermo Fisher Scientific),

PAS 1.108 (GRIMM GmbH)

Mini-LAS 11-R (GRIMM GmbH)

TEOM 1400a (Thermo Fisher Scientific)

TEOM 1405 (Thermo Fisher Scientific)

BAM 1022 (Met One Instruments Inc.)

BAM 1020 (Met One Instruments Inc.)

Different particle types were added into an experimental chamber
and the performance of the Dylos and DustTrak were compared. R?
of 0.99 was reported for PSL spheres and (NH,4)»SO,4. Wood smoke
reported R? of 0.97-0.98 and ambient particle sampling reported R?
of 0.81-0.99.

Ata 1 hscale, the R? reported ranged from 0.55 to 0.60, 0.87-0.92,
0.90-0.94, and 0.64-0.80 for comparison against BAM, Dylos, PAS
1.108, and DustTrak, respectively. Improvements were observed for
24 h scale. Linear corrections explained 60% variance in 1 h and
72% variance in 24 h data.

The performance of the Shinyei PPD42NS against the APS was
evaluated with PSL spheres and ASHRAE Test Dust. For
concentrations less than 50 pg m 3, a linear model captured the
sensor response, and for higher concentrations, a non-linear
function captured the same.

The Dylos reported R? values between 0.88 and 0.99 for indoor air
sampling. The outdoor air evaluations reported lower R? values,
ranging from 0.74 to 0.84.

The performance of the Dylos was validated against the TEOM at
ambient monitoring sites. The R? values reported were 0.9 and 0.7
at rural and urban sites, respectively.

The R? for the Sharp GP2Y10 against the DustTrak ranged from 0.92
to 0.98. However, the Samyoung DSM501A showed relatively
lower values of R? (approx. 0.5).

The DMS501A reported R? values ranging from 0.07 to 0.29 for 1
min data. When the sampling interval in the study was increased,
higher R? values were observed (0.15-0.46).

The R? values for PM, 5 ranged from 0.7 to 0.74 and 0.71-0.74 for
evaluation against TEOM and PAS 1.108, respectively. For PMj,
the values ranged from 0.64 to 0.67 and 0.66-0.72. Linear
corrections were applied for RH < 85%, and k-Kohler corrections
were applied for RH > 85%.

The R? for overall correlation between the Dylos and the Mini-LAS
was 0.78. The concentration values reported by both were closer
when the RH < 60%, compared to elevated RH.

The R? values ranged from 0.79 to 0.90, 0.70-0.89, 0.80-0.93, and
0.43-0.69 for SDS011, ZHO3A, PMS7003, and OPC-N2,
respectively. Overestimation in the sensors were observed for RH >
80%.

The R? values reported for SDS011 against the TEOM were
0.55-0.71. When the RH > 80%, it negatively impacted the OPC’s
response. The inclusion of RH and temperature in the calibration
increased the R? values.

The reported R? for comparison of the PA-II against the BAM was
0.54. A multiple linear regression model was used to correct the
sensor. The results showed a 27-57% improvement in the accuracy
of the sensor.

The PPD42NS was evaluated against BAM for long-term outdoor
use. R? values ranged from 0.71 to 0.84.

is also common in optical-based reference particle instruments, which
are commonly used to evaluate the performance of low-cost OPCs [7,20,
26]. The sole use of optical-based references offers limited potential to
characterize the performance of low-cost OPCs in measuring particles
below D, = 0.30 pm.

Low detection efficiency for D, < 0.30 um by both low-cost OPCs and
optical-based references is a concern as the dominant peak for indoor
and urban particle volume and mass size distributions is often observed
in the accumulation mode [34,35]. As reported by previous studies
[34-38], sub-0.30 um particles can contribute meaningfully to volume
and mass concentrations in the accumulation mode. The measurement
of size-integrated particle volume (PVys5, PV, prn3 cm™®) and mass
(PMy 5, PM, }g m~>) concentrations must account for the sub-0.30 pm
fraction. Holstius et al. [22] evaluated a low-cost OPC in reporting PM» 5
against both optical (0.30 pm < D, < 2.5 pm) and non-optical (D, < 2.5
pm) references. High R? values (0.64-0.95) were found for comparison
to optical references, whereas lower R? values (0.55-0.60) were

observed for comparison to non-optical references. Evaluation of
low-cost OPCs with optical-based reference instruments with lower
detection limits of D, = 0.30 pm limits the range of assessment to D}, =
0.30-10 Hm; hence, evaluating PVQ‘3_2‘5/PMO‘3_2‘5 or PV0.3_10/PM0.3_10,
and not the true PV, 5/PM, 5 or PVio/PMjg, respectively. In order to
develop improved calibration methods for low-cost OPCs in reporting
PV55/PMss or PVyio/PMj, it is desirable to use a combination of
reference instruments that can measure the full accumulation and coarse
modes, from D, = 0.10-10 pm.

Calibration techniques for low-cost OPCs have been improved
through application of machine learning algorithms. Researchers have
used multiple linear regression models [17,18] and reported improve-
ment in the performance of low-cost OPCs. While these studies report an
improvement in the OPC’s performance, the calibration function often
introduces a parametric assumption of linear dependency between the
OPC and the reference instrument. This may not hold true in many
practical applications. Thus, non-parametric machine learning
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Fig. 1. (left) Overview of indoor particle measurements at the Purdue ReNEWW House with SMPS, OPS, and low-cost OPCs and (right) illustration of two-component

machine learning field calibration method for low-cost OPCs.

algorithms may be preferred. Si et al. [39] used two non-parametric
machine learning algorithms, XGBoost and feedforward neural
network, to calibrate a low-cost OPC for ambient air quality monitoring.
Several other studies have documented the use of non-parametric ma-
chine learning algorithms to develop calibration models for low-cost
OPCs [4,40-42]. A disadvantage of these calibration models, however,
is that the calibration functions developed are applied directly to
size-integrated concentrations (e.g. PMys) in order to obtain the cor-
rected value. Such calibrations tend to lose essential size-resolved par-
ticle information after calibration [43].

Therefore, the literature lacks a robust calibration regime that could
improve the performance of low-cost OPCs in forecasting size-integrated
concentrations, while retaining basic particle information. In this re-
gard, the current study integrates knowledge of basic particle size dis-
tribution functions and machine learning algorithms to establish a new
field calibration methodology. Two machine-learning, non-parametric
Gaussian Process Regression (GPR) functions were developed that
worked towards addressing the measurement limitations of low-cost
OPCs used in indoor environments. One of the developed GPR func-
tions corrected the counting efficiency of particles from D, = 0.38-10
pm, while the other predicted the volume size distribution of accumu-
lation mode particles below the detection limit of the sensor (D, = 0.38
pm). To the best of the authors’ knowledge, no such methodology exists
in the literature. The developed machine learning field calibration
method was applied to a two-month measurement campaign conducted
in an occupied net-zero energy building — the Purdue Retrofit Net-zero:
Energy, Water, and Waste (ReNEWW) House. The paper first presents an
overview of the OPCs, reference instruments, field campaign, and the
calibration methods, followed by a detailed assessment of how the
machine learning calibration approach improves the performance of
low-cost OPCs in measuring indoor particles from Dp = 0.10-10 pm.

2. Materials and methods
2.1. Particle instrumentation and indoor air field measurements

2.1.1. Description of low-cost OPC

The low-cost OPC examined in this study (OPC-N2, Alphasense Ltd.)
operates under the principle of light scattering for particle detection and
counting [44]. A detailed description of the examined OPC can be found
at [11,20]. The OPC provides particle counts in 16 discrete size frac-
tions, or bins, from D, = 0.38-17.5 pm. These number concentration
outputs are directly converted into size-integrated mass concentrations

(PM2 5, PM1) using an on-board factory calibration in compliance with
European Standard EN481 [44].

The 16 bins of the OPC were defined as (Dpintower t0 Dpinupper):
0.38-0.54 pm, 0.54-0.78 pm, 0.78-1.05 pm, 1.05-1.34 pm, 1.34-1.59
pm, 1.59-2.07 pm, 2.07-3 pm, 3-4 pm, 4-5 pm, 5-6.5 pm, 6.5-8 pm,
8-10 pm, 10-12 pm, 12-14 pm, 14-16 pm, and 16-17.5 pm. The mean
diameters for each bin (Dpinmean) Were: 0.46 pm, 0.66 pm, 0.915 pm,
1.195 pm, 1.465 pm, 1.83 pm, 2.535 pm, 3.5 pm, 4.5 pm, 5.75 pm, 7.25
pm, 9 pm, 11 pm, 13 pm, 15 pm, and 16.75 pm, respectively. To
download the collected data, the serial peripheral interface (SPI) of the
OPC was used to connect it to a single-board computer (SBC) (Raspberry
Pi 3 Model B+, Raspberry Pi Fdn.) [45]. A Python code was written
using the “py-opc” library [46] to log the output of the OPC into a text
file in real-time. Three OPCs were used throughout the field measure-
ment campaign in this study. However, one of the OPCs encountered
periodic issues with data storage and output and was excluded from the
analysis. The remaining two OPCs are referred to as OPC 1 and OPC 2.

2.1.2. Reference particle instrumentation

Reference particle instrumentation included an optical particle sizer
(OPS) (Model 3330, TSI Inc.) and a scanning mobility particle sizer
(SMPS) (Model 3938NL88, TSI Inc.) with a Kr-85 bi-polar charger (370
MBq, Model 3077 A, TSI Inc.), a long Differential Mobility Analyzer
(long-DMA, Model 3081, TSI Inc.), and a water-based Condensation
Particle Counter (wCPC, Model 3788, TSI Inc.) (Fig. 1). The OPS is a
particle spectrometer that measures particle number size distributions
from Dp, = 0.30-10 pm in optical equivalent diameter [47]. The OPS bin
widths were adjusted to match the bin widths of the OPC across its
detection range. As the OPS is based on optical size classification, the
raw particle data requires correction for the refractive index (RI) of the
sample particle population. The default RI for the OPS is 1.5-0i. As the
field measurements were conducted in a residential indoor environ-
ment, three particle categories were considered based on emission ac-
tivities logged by the residents: background (no documented indoor
sources, particles primarily of outdoor origin), candle emissions, and
cooking emissions; the latter two were found to be the most common
sub-micron indoor particle sources during the measurement period. The
RI values used to correct the raw OPS data for each category are:
1.53-0.008i for background [48], 1.55-0.09i for candle emissions [49],
and 1.53-0.1i for cooking emissions [50]. The SMPS operates based on
electrical mobility size classification with single particle counting
[51-53] and measured particle number size distributions from D, =
0.01-0.30 pm in electrical mobility diameter.
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Fig. 2. Comparison of PV, 5 and PV;( concentration time-series reported by OPC 1 (both calculated and firmware) with PV, 5 and PV;, concentration time-series
reported by the reference instruments (OPS and SMPS). The Purdue ReNEWW House remained unoccupied for parts of Thanksgiving vacation (November 21 to
24, 2018) and the entirety of winter break (December 15, 2018 to January 05, 2019; OPS and SMPS not used). Data for all instruments was not recorded from
November 25 to 26, 2018 due to data logging and power outrage issues and from December 08 to 15, 2018 for OPC 2 due to a data logging issue.

Table 2

Statistical summary of the comparison of calculated and firmware PV, 5 and PV, concentrations reported by OPC 1 and OPC 2 with the reference instruments (OPS and

SMPS) during occupied periods at the Purdue ReNEWW House.

Concentration Type Slope r R? MAPE (%) p-value

OPC 1 OPC 2 OPC1 OPC 2 OPC1 OPC 2 OPC 1 OPC 2 OPC 1 OPC 2
Calculated PV, 5 0.124 0.123 0.79 0.79 0.63 0.64 79.81 78.97 3.76E-32 6.20E-25
Calculated PV, 0.229 0.211 0.77 0.78 0.59 0.60 67.67 67.59 5.64E-24 2.50E-25
Firmware PV, 5 0.511 0.502 0.77 0.77 0.60 0.59 41.37 40.02 2.53E-03 2.67E-03
Firmware PV, 0.437 0.447 0.75 0.75 0.57 0.56 47.50 52.53 4.59E-12 3.21E-20

2.1.3. Indoor field measurement site: Purdue ReNEWW House

To develop and evaluate the machine learning field calibration
method, the OPCs were co-located with the reference OPS and SMPS
(Fig. 1) in an occupied net-zero energy residence, the Purdue ReNEWW
House, located at Purdue University in West Lafayette, Indiana [54,55].
The indoor particle measurements were conducted from November 15,
2018 to January 24, 2019. During this period, the house was occupied
by three adult residents, aside from parts of Thanksgiving vacation
(November 21 to 24, 2018) and the entirety of winter break (December
15, 2018 to January 05, 2019). The OPCs, OPS, and SMPS were posi-
tioned on a table adjacent to the kitchen, a location agreed upon with the
residents, with sample inlets 1 m above the floor. The OPS and SMPS

were not operational during the winter break period. Indoor combustion
(via candle) and cooking events (via electric induction cooktop) were
documented. Supplemental measurements of the indoor air tempera-
ture, relative humidity, and operational status of the heating, ventila-
tion, and air conditioning (HVAC) system were made. The HVAC system
included an air handling unit (AHU) with a MERV 11 filter and an en-
ergy recovery ventilator (ERV), the latter of which delivered outdoor air
to the AHU. The AHU/ERV remained operational during the occupied
and unoccupied periods.
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2.2. Data processing

The machine learning field calibration method is focused on
improving the performance of the OPCs in reporting size-integrated
particle volume concentrations (PVs 5, PVig) across the full accumula-
tion and coarse modes. Particle volume was selected over particle mass
as the latter requires information on size-resolved particle effective
density functions [34], which are poorly characterized for indoor par-
ticles from Dp = 0.10-10 pm. Particle volume and mass size distributions
are generally similar in shape [34]. Before implementation of the cali-
bration method described in Section 2.3, the wuncalibrated
size-integrated particle volume concentrations determined by the OPCs
(OPC 1, OPC 2) were compared to the reference OPS and SMPS data.
Two approaches were used to determine the uncalibrated volume con-
centrations as measured by the OPCs. The first evaluation is based on the
PV, 5 and PVj calculated manually using the raw number concentration
output from the OPCs. The second evaluation is based on the direct
output (firmware) of PV, 5 and PVjo from the OPCs. While both ap-
proaches were used to evaluate the uncalibrated performance of the
OPCs, only the raw number concentration output, and not the firmware
output, was used in the machine learning field calibration method.

To calculate the PV manually for the first approach, the raw bin
number concentration from the OPC is first converted to a bin volume
concentration using Equation 1:

4V =2 % (Doian)” X N )
where dV is the bin volume concentration (pm3 cm’B), dN is the raw bin

number concentration measured by the OPC (cm™), and Dy mean iS the
mean diameter of the bin (um), given by Equation 2:

Dyinjower + Dpinupper
Db[n,mean = % (2)
where Dpin jower a0d Dpin ypper are the lower and upper cutoffs for each bin
(pm), respectively. Dyin mean> Dbin jowers aNd Dpin ypper are defined in Section
2.1.1. After the discrete bin volume concentrations are obtained, they
are normalized by the bin width as dlogD, = log (D”"‘ﬂ) Finally, the

Dhintower

size-integrated PV is computed via Equation 3:

PV = / av x dlogD,
o dlogD, o85» 3
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Fig. 6. Comparison of reference particle volume size distributions as measured by the OPS and SMPS with the estimated particle volume size distributions obtained
by the OPCs following implementation of the machine learning calibration method. The top two distributions are from OPC 1 and the bottom distribution is taken
from OPC 2. The red line represents the counting efficiency correction with the first GPR function and the blue line represents the sub-0.38 pm volume prediction
with the second GPR function. The randomly selected volume distributions are determined for 30 min windows on January 22, 2019 at 23:30 (top left), January 20,
2019 at 16:00 (top right), and January 16, 2019 at 10:00 (bottom). (For interpretation of the references to colour in this figure legend, the reader is referred to the

Web version of this article.)

Two assumptions were made in this approach. First, the particles are
assumed to be spheres with a dynamic shape factor (y) of y = 1; thisis a
common assumption when size-resolved variations in y are not known
[56]. Second, all particles in a bin are assumed to have the same
diameter, equal to Dpinmean; this assumption helps to transform the
discrete bin volume distributions into continuous volume distributions
and is valid as the width of the bins are small. The uncalibrated PV 5 and
PVyp were calculated through integration of the continuous volume
distributions (dV/dlogD,) from the lower OPC cutoff of 0.38 pm-2.5 pm
and 10 pm, respectively. The uncalibrated PVy 5 and PVyo determined
through this approach are henceforth referred to as “calculated PVs 5
and PVyo.”

For the second approach, the firmware PV, 5 and PV are obtained
using the processed firmware PMy 5 and PM;( outputs, respectively,
from the OPC. To convert the firmware PM to PV, the particle effective

density assumed by the manufacturer of the low-cost OPC, 1.65 g cm™>
[44] (consistent with [34]), is used following [57]:
P Mfirmware
PVirmware = —=——— 4
% 1.65g cm™ )

The uncalibrated PV, 5 and PVyq calculated through this approach
are henceforth referred to as “firmware PV, 5 and PV7.”

To establish the reference dataset, particle volume concentrations
were calculated from the number concentrations measured by the OPS
and SMPS following Equation 1. The data from the OPS and SMPS were
merged to create a continuous volume distribution (dV/ dlogD,) from D,
=0.01-10 pm. As previously noted, the SMPS data from D, = 0.01-0.30
pm is defined by an electrical mobility diameter and the OPS data from

Dp = 0.30-10 pym is defined by an optical equivalent diameter. The
merged OPS and SMPS data were integrated following Equation 3 to
derive size-integrated particle volume concentrations as PVs 5: 0.01-2.5
pm and PV7o: 0.01-10 pm. The D, = 0.01-0.10 pm fraction contributed
negligibly to volume concentrations, however, it was included for cor-
rectness. The time-series data from the OPCs, OPS, and SMPS were
processed using a moving-average method with a 30 min window and a
step size of 2 min.

2.3. Machine learning field calibration method

The development of the non-parametric, size-resolved machine
learning field calibration method is motivated by the limitations of
particle detection and sizing with low-cost OPCs. Two such limitations
were identified. First, the low-cost OPCs are marked with errors while
counting the number of particles within its detection range of D, =
0.38-17.5 pm. Second, they are restricted to a lower limit of detection of
Dp = 0.38 pm due to insufficient scattering of incident light. The OPC
cannot see these small particles, which can contribute significantly to
particle volume and mass in the accumulation mode. Thus, to address
these limitations and account for the missing sub-0.38 pm particles, the
field calibration method includes two components (Fig. 1): (1.) correc-
tion of the size-resolved counting efficiency of the OPC from D, =
0.38-10 pm (upper limit set by OPS range of detection) and (2.) pre-
diction of particle volume size distributions (dV/dlogD,) below D, =
0.38 pm. Both (1.) and (2.) are carried out using a non-parametric ma-
chine learning algorithm, Gaussian Process Regression (GPR). In (1.), a
GPR function is used to correct the raw particle counts of the OPCs from
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Fig. 7. Comparison of reference particle volume size distribution time-series as measured by the OPS and SMPS with the estimated particle volume size distribution
time-series obtained by OPC 1 and OPC 2 following implementation of the machine learning calibration method for the testing set.

Dp = 0.38-10 pm using the OPS as reference. In (2.), a second GPR
function is used to predict the particle volume size distribution below D,
= 0.38 pm using the available data in the OPC’s detection range with the
OPS and SMPS as reference.

2.3.1. Correction of OPC size-resolved counting efficiencies

The size-resolved particle counting efficiency is represented as the
mean ratio of the bin volume concentration of the OPC to the corre-
sponding bin volume concentration of the OPS. Mathematically it is
expressed via Equation (5) as:

n

1
Counting efficiency==">
ounting ejfjicrency 0 1

Bin volume concentrationopc

()

Bin volume concentrationops

A value greater than 1 indicates an overestimation of particle counts
and less than 1 indicates an underestimation of particle counts. Low-cost
OPCs are commonly associated with errors in size-resolved counting
efficiency [11,20]. This results in an inaccurate estimation of
size-integrated volume concentrations. Thus, to correct this, a GPR
correction model is proposed. In this model, the bin concentrations of
the OPC are corrected against the corresponding bin concentrations of
the OPS.

GPR is a non-parametric Bayesian approach to regression problems
[58]. Let there be n set of observations Y for n set of inputs X, where Y =
{1, Y2 ¥3 ... Yn}, and X = {x3, X2, X3 ... X}. The regression finds a
function f(x) such that:

Ja) D)
f(xz) ~ ()’2) 6)
) (32)

GPR constructs this function f(x) using a Gaussian Process (GP) in
such a way that the distribution connecting outputs of any two or more
points in its domain will form a multivariate joint Gaussian distribution
[59]. This is done using a mean (x(x)) and covariance function (k(x,
x’)). Mathematically, f(x) in GPR can be written as Equation 7:

f(x) ~ GP(,M(X),/C(LX,)) )

where p(x) is the mean function which gives the expected value at input
x. The prior mean (function before the prediction) is often set to zero in
order to avoid complicated calculations [60]. Next, the covariance
function k(x,x’) models the association between the function values at
different input points x and x’. This function is usually termed the kernel
of the GP [61]. The choice of a suitable kernel is based on assumptions
such as smoothness and probable data patterns. A typical assumption is
that the correlation between two points decreases with the distance
between them. This means that closer points should behave more
similarly than distant points. One of the principal kernels to meet this
assumption is the radial base function kernel [60], which takes the form
of Equation 8:

)2

k(x,x ) =0/ » (€))

where o5 and [ are the hyper-parameters, optimized according to the
data, which determines the smoothness of the GPR model. By definition
of GPR, the observations Y and the function f(x) form a multivariate
joint normal distribution. This distribution takes the form of Equation 9
[60]:

<Y) NN(O, (K(X,-,X,-) +a1 K(X;,X,) )) 9

f KX, X) K(X,.X,)

Here, X; is the set of observed input values, Y; are the corresponding
output values, and X, is the set of inputs where a prediction is to be
made. K(X; X;) is the covariance matrix for all observed points. This is
calculated using the covariance function as given in Equation 10 [59,

60]:
k(xp,x)) k(x1,x;)

K(X;, X)) = : : (10)

k(x;,x1) k(xi, x;)

In Equation 9, ¢ is the variance of the error and I is the identity
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Fig. 8. Comparison of the corrected PV, 5 and PV;, concentration time-series reported by OPC 1 and OPC 2 with PV, 5 and PV;, concentration time-series reported by

the reference instruments (OPS and SMPS) during the testing set.

matrix. K(Xp, X;,) is the covariance matrix for inputs where a prediction
is to be made. K(X;, Xp) is the covariance matrix between the observed
input points and the points where a prediction is to be made. K(X,, X;) is
the covariance matrix between the points where a prediction is to be
made and the observed input points. All these matrices are calculated in
a similar manner as shown in Equation 10.

The best estimate of a prediction for a point x in the set X, is the mean
of the posterior joint distribution at x [59], given by Equation 11 [60,
62]:

Predicted value at x=K(X, X;) [K(X[,X,-) + ()'21] - Y; (11D

This is the theory for prediction using GPR. For correcting the size-
resolved counting efficiencies of the OPCs, their 30 min averaged raw
bin volume concentrations formed the input set, and the corresponding
30 min averaged reference bin volume concentrations from the OPS
constituted the output set. As stated before, both the OPCs and OPS had
the same bin widths. The GP function mapping these two sets formed the
corrective function.

One point to note here is that the indoor air temperature and relative
humidity are not included in this corrective function. The temperature
was excluded because it remained stable during the two-month mea-
surement period at the ReNEWW House (mean: 19.3 °C, median: 19.8
°C, stdev: 1.7 °C). Similarly, the relative humidity at the ReNEWW
House remained below 50% (mean: 42.0%, median: 41.7%, stdev:

6.8%). Hygroscopic growth of particles is often negligible at relative
humidities below 85% [11], hence, the relative humidity was excluded
as it was not expected to influence the performance of the OPCs as is
common for outdoor measurements at elevated relative humidities.

2.3.2. Prediction of particle volume size distributions below the lower
detection limit of the OPC

The particle volume size distribution can be expressed mathemati-
cally as a multi-modal lognormal distribution function [57]:

dav "
= e 2log? (c;) 12)
dlogD, Z ()" log(ci)

Ai (log Dp—log b,)z

where A; is the volume concentration (pm3 cm’3), b; is geometric mean
diameter (um), and c; is the geometric standard deviation (—) for each
mode (i); and Dj, is the particle diameter (um), here the Dyjn mean for each
bin. In general, there exists two dominant modes (or peaks) for particle
volume size distributions for indoor and urban air [57]: one mode in the
Dp = 0.10-2.5 pm fraction (termed the accumulation mode) and one
mode in the D, = 2.5-10 pm fraction (termed the coarse mode). As the
OPCs have a lower limit of detection of D, = 0.38 pm, they cannot
resolve the full extent of the accumulation mode. A second GPR function
was developed to predict the particle volume size distribution below the
Dp, = 0.38 um detection limit of the OPC using its calibrated
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Fig. 9. Comparison of diurnal profiles in the mean corrected PV, 5 and PVjq
concentrations as reported by OPC 1 and OPC 2 with those reported by the
reference instruments (OPS and SMPS) during the testing set.

concentration data (following Section 2.3.1) above D, = 0.38 ym.

Reference particle volume size distributions as measured by the OPS
and SMPS were used to develop the second GPR function. The OPS and
SMPS data were fit to the multi-modal lognormal distribution function
based on a nonlinear least-squares curve fitting function in MATLAB
(The MathWorks, Inc.). The fitting provided the scalar parameters A;, b;,
¢; for the accumulation and coarse modes. A GPR training architecture
was created whereby the OPS and SMPS reference volume concentra-
tions for D, > 0.38 ym formed the input set and the corresponding
accumulation mode scalar fitting parameters for the fitted curve formed
the output set. This architecture was then trained for mapping the vol-
ume concentration with the accumulation mode scalar parameters. The
formed GP function predicts the scalar fitting parameters for the accu-
mulation mode of the particle volume size distribution using the
measured volume concentration data for D, > 0.38 ym.

Once the training was completed, the calibrated bin volume con-
centrations for the OPCs (following Section 2.3.1) were fed into it as
input, the output of which were the scalar fitting parameters for the
accumulation mode. The fitting parameters were used to draw the sub-
0.38 pm fraction of the particle volume size distribution curve for the

Table 3
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OPCs. This created a continuous particle volume size distribution across
the accumulation and coarse modes, from D, = 0.10-10 pm. The D, =
0.01-0.10 pm (termed the Aitken mode) was included for completeness,
however, it is present as the tail of the volume size distribution. The
particle volume size distribution was integrated following Equation 3 to
derive calibrated and size-integrated particle volume concentrations
(PVy5, PVq) for each OPC (OPC 1, OPC 2). The calibrated PV, 5 and
PVyg calculated through this approach are henceforth referred to as
“corrected PV, 5 and PVqq.”

The computation and optimization of the GPR functions for correc-
tion of the size-resolved counting efficiency of the OPC and prediction of
particle volume size distributions below D, = 0.38 pm was executed in
the regression learner toolbox in MATLAB. For training and testing the
GPR functions, the collected data from the measurement campaign at
the ReNEWW House was divided into two sets: a training set and a
testing set. The two GPR functions were built using the data from the
training set, which consisted of approximately 6 weeks of data. Once the
correction functions were trained, they were evaluated on the testing set
over one week.

2.4. Evaluation metrics for OPC performance

Two features used to evaluate the performance of low-cost sensors
are accuracy and precision. Precision is calculated for a set of similar test
sensors and accuracy is computed between a test sensor and a reference
instrument. There are several metrics to quantify them. The coefficient
of variation (CV) is an indicator of precision among a set of similar
sensors [11]. It is calculated using Equation 13 as:

cv="2
u

13)

where o is the standard deviation and y is the mean of the intra-OPCs’
observation for each 30 min time-averaged interval. The average CV for
both the calculated and firmware PV, 5 and PV; as reported by OPC 1
and OPC 2 was determined. This quantity represents the variation in the
measurements given by OPC 1 and OPC 2. According to the U.S. Envi-
ronmental Protection Agency (EPA), CV values up to 10% are acceptable
[20]. This threshold for CV is mentioned in CFR Part 58-Ambient Air
Quality Surveillance (Subchapter C) [33].

For accuracy evaluation, the calculated, firmware, and corrected
PVy 5 and PVj( from the two OPCs were compared against the reference
values from the OPS and SMPS. For each comparison, statistical mea-
sures, such as the Pearson coefficient (r), coefficient of determination
(R?), and the slope between the OPC values and OPS/SMPS values were
determined. The U.S. EPA recommends a r > 0.97 and a slope of 1 + 0.1
[20] between the test sensor and the reference instrument. The U.S. EPA
criteria is often used to evaluate low-cost OPCs [11,20,33]. R?is another
statistical measure reflecting the proportion of variance between two
variables. Thus, values closer to 1 are desirable.

This study uses another evaluation metric for sensor accuracy, the
mean absolute percentage error (MAPE) [63]. MAPE is calculated using
Equation 14 as:

Statistical summary of the comparison of calculated and firmware (uncalibrated) and corrected PV, 5 and PV, concentrations reported by OPC 1 and OPC 2 with the

reference instruments (OPS and SMPS) during the testing set.

Concentration Type Slope r R? MAPE (%) p-value
OPC1 OPC 2 OPC 1 OPC 2 OPC 1 OPC 2 OPC 1 OPC 2 OPC 1 OPC 2

Calculated PV, 5 0.081 0.086 0.66 0.67 0.44 0.44 57.3 57.1 1.34E-05 1.21E-05
Calculated PV;q 0.172 0.171 0.64 0.65 0.41 0.42 66.3 69.2 2.40E-06 3.20E-06
Firmware PV, 5 0.308 0.331 0.59 0.60 0.35 0.36 37.7 35.4 1.79E-02 9.10E-03
Firmware PV;o 0.654 0.683 0.83 0.83 0.69 0.69 60.5 63.3 2.82E-06 2.66E-06
Corrected PV, 5 0.982 0.984 0.99 0.99 0.98 0.98 23.4 25.1 6.50E-01 3.20E-01
Corrected PV;o 0.978 0.966 0.99 0.98 0.98 0.97 19.2 20.6 8.20E-01 6.40E-01
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reported by the reference instruments (OPS and SMPS) during the testing set.

1 < |PV, — PV,
MAPE = ( Z |0”COPS/SM’"‘|> % 100 14)
na

PVops/sups

MAPE values reflect the overall bias of the OPCs. MAPE was calcu-
lated for the PV, 5 and PV;q obtained from OPC 1 and OPC 2 and the
reference instruments. Lower MAPE values indicate better sensor
output.

A statistical test, a paired t-test, was also performed in this evalua-
tion. A paired t-test is a statistical analysis used to evaluate the signifi-
cance of the difference between two separate measurements of the same
subject [64]. Here, this test is used to assess the difference between the
PV, 5 and PV given by the two OPCs and the reference instruments. To
conduct this test, the difference between the two observations in each
pair is first calculated. Thereafter, the mean and the standard deviation
of the difference is estimated. A t-statistic is then determined using
Equation 15:

mean of the difference

t — statistic = (15)

standard deviation of the difference

Finally, corresponding to the value of the t-statistic, using the t-dis-
tribution table, enables determination of the p-value for the paired t-test.
The null hypothesis of the paired t-test assumes that the statistic follows
a t-distribution. If the p-value of the paired t-test is less than 0.05, it is
concluded that the mean difference between the paired observations is
significantly different [65]. The measurements are therefore only
acceptable if the p-value for t-testing between the OPCs and reference
instruments is greater than 0.05.

3. Results and discussion

The following sections present the performance evaluation of the
low-cost OPCs prior to, and after, implementation of the machine
learning field calibration method for the two-month measurement
campaign at the Purdue ReNEWW House. First, the uncalibrated per-
formance of the low-cost OPCs is compared against the reference in-
struments (OPS and SMPS). The assessment for the same is discussed as
per the criteria mentioned in CFR Part 58-Ambient Air Quality Sur-
veillance (Subchapter C) [33]. Thereafter, the results of the two

10

components of the field calibration method are discussed. Finally, the
cumulative results of the proposed calibration method are compared
with the reference measurements in the test dataset to determine if the
low-cost OPCs met the U.S. EPA’s criteria after the field calibration.

3.1. Performance evaluation of the OPC prior to field calibration

Fig. 2 illustrates the comparison between the uncalibrated PV, 5 and
PVjg (calculated and firmware) time-series as measured by OPC 1 with
the PV, 5 and PV; time-series as measured by the reference instruments
(OPS and SMPS) for the entirety of the measurement campaign at the
ReNEWW House. For the occupied sampling periods at the ReNEWW
House, the uncalibrated OPCs’ calculated mean PV, 5 concentrations
were: 0.52 pm® em ™ for OPC 1 and 0.54 pm® cm™ for OPC 2. For the
same duration and time-averaging window, the mean PV; 5 as measured
by the OPS/SMPS was 2.65 pm® cm 3. This suggests an underestimation
in PV, 5 as calculated using the raw number concentrations from both
OPCs. Similar findings were observed for the calculated PViy. The un-
derestimations in calculated PV concentrations are attributed to limi-
tations in particle detection and sizing by the low-cost OPCs, including
errors in counting efficiency across their detection range and lack of
accounting for the volume contribution of sub-0.38 pm particles. The
proprietary self-calibration in the OPC firmware used to report the
firmware PM outputs [20] resulted in an improvement over the calcu-
lated PV values when compared to the reference instruments. The mean
firmware PV, 5 concentrations were: OPC 1: 1.91 pm3 cm 2 and OPC 2:
2.02 pm® cm 3. Despite the improvements over the calculated PV
values, the firmware outputs also underestimated the size-integrated
volume concentrations when compared to the reference values (Fig. 2).

For the unoccupied sampling periods at the ReNEWW House, mean
calculated PV values were: OPC 1 PV, 5: 0.23 pm3 cm’3, OPC 2 PV 5:
0.22 pm® em~3; OPC 1 PVyo: 0.71 pm® em ™3, OPC 2 PVyy: 0.68 pm®
cm 3. The mean firmware PV values were: OPC 1 PV55: 0.85 pm3 cm’3,
OPC 2 PV, 5: 0.81 pm® cm™3; OPC 1 PVyg: 1.98 pm® em ™3, OPC 2 PV
2.12 pm® cm 3. These values were significantly less (p-value < 0.05)
than the corresponding mean PV concentrations during the occupied
periods. This is due in part to a greater prevalence of human-associated
indoor sources of accumulation and coarse mode particles during
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Fig. 11. Variation of MAPE for PV, s (top) and PV;, (bottom) concentrations
with varying size of the training dataset.

occupied periods [66]. As the AHU/ERV remained operational during
the unoccupied periods, the measured particles are likely of outdoor
origin as outdoor air was continually introduced into the AHU by the
ERV. Despite issues in the accuracy of the uncalibrated OPCs in
reporting PV concentrations, they were capable of detecting changes in
concentrations due to variations in house occupancy patterns and
associated emission events.

To quantify the difference in PV concentrations reported by the two
uncalibrated OPCs (OPC 1 and OPC 2) with each other, and the reference
instruments (OPS and SMPS), the precision and accuracy metrics dis-
cussed in Section 2.4 were estimated. Each accuracy metric was calcu-
lated for the PV concentration data and for the period when the
ReNEWW House was occupied. Firstly, the CV values for both OPC
outputs were estimated to evaluate the variability in measurements
between OPC 1 and OPC 2. The mean CV values for the calculated and
firmware PV, 5 concentrations were 4.82% and 4.07%, respectively. For
PV;0, the mean CV values for the calculated and firmware concentra-
tions were 4.94% and 8.73%, respectively. For all comparisons, the CV
values were within the limits recommended by the U.S. EPA (<10%).
This indicates that both OPCs were consistent with respect to each other
in terms of output PV concentrations.

Accuracy metrics, including r, R2, slope, MAPE, and p-values of the t-
test, for comparing the OPCs with the reference instruments (OPS and
SMPS) were calculated for the uncalibrated PV, 5 and PV;q (calculated
and firmware). Table 2 summarizes the results. The slope and r values,
relative to the reference concentrations, obtained for both calculated
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and firmware PV values given by both OPCs did not meet the U.S. EPA’s
performance criteria. The MAPE for the calculated PV5 5 relative to the
reference PV, 5 was observed to be 79.81% for OPC 1 and 78.97% for
OPC 2. For the calculated PV;q, the MAPE was found to be 67.67% for
OPC 1 and 67.59% for OPC 2. Such high values in MAPE suggest high
bias in the sensors’ output. In addition, lower R? values were observed
(Table 2). The p-values for the t-tests were less than 0.05. Therefore, at
95% confidence, it is statistically concluded that the calculated data
given by both OPCs differed significantly from the reference concen-
trations measured by the OPS and SMPS. The performance metrics for
the firmware PV outputs by both OPCs were better than the PV outputs
calculated using the raw number concentrations (Table 2). However,
despite the proprietary self-calibration in the firmware, the error values
remained as high as 40-50% and there still exists a statistical
disagreement between the firmware values and the reference
concentrations.

Despite pronounced differences in the PV concentrations reported by
the uncalibrated OPCs and the OPS/SMPS, they tend to follow a similar
pattern over time (Fig. 2). In order to better characterize this, the
average diurnal variation in the PV concentrations during occupied
periods at the ReNEWW House were determined for the two OPCs and
OPS/SMPS (Fig. 3). A consistent numerical difference in PV concentra-
tions given by the OPCs and the reference instruments can be observed.
However, the shape of the diurnal trend is consistent, suggesting the
uncalibrated OPCs are capable of detecting changes in accumulation and
coarse mode particle concentrations due to variations in resident ac-
tivity patterns. Lower PV levels are observed during the evening hours
(21:00 to 06:00) due to a lower prevalence of indoor particle sources. PV
concentrations gradually increase during the day due in part to human-
associated indoor particle sources. Diurnal variations in outdoor PV
concentrations are also a contributing factor, due to outdoor air delivery
to the AHU by the ERV, however, outdoor particles were not measured
during the campaign. Such observations are consistent with prior mea-
surements of diurnal trends in indoor particle concentrations [66,67].
Another observation from Fig. 3 is that the diurnal trends reported by
both OPCs agree well with respect to each other (for both calculated and
firmware PV values). This corroborates the low CV values obtained.

3.2. Performance evaluation of the OPC after field calibration

3.2.1. Correction of OPC size-resolved counting efficiencies

The first component of the machine learning field calibration method
is correction of the size-resolved counting efficiency of the OPCs from
Dp = 0.38-10 pm through use of a GPR function with the OPS as
reference (Section 2.3.1). Once the GPR function was trained during the
training set, the raw bin volume concentration data from the testing set
was corrected using the developed function. Fig. 4 shows the compari-
son in the mean size-resolved counting efficiencies for both OPCs before
(raw) and after (corrected) calibration. The counting efficiency is re-
ported for the mean particle diameter of each bin, Dpiymeqn. The raw
counting efficiencies are calculated for the entire measurement
campaign (training and testing sets), while the corrected counting effi-
ciencies are calculated for the testing set. Raw and corrected size-
resolved counting efficiencies were similar for OPC 1 and OPC 2.

Before correction with the trained GPR function, counting effi-
ciencies for Dp < 0.80 um were less than unity for OPC 1 and OPC 2,
suggesting that sub-0.80 pm PV concentrations were under-estimated by
both OPCs. The counting efficiency reached a maxima at D, = 1.195 pm.
For particles in the range of D, = 0.80-1.6 pm, the OPCs over-estimate
the raw particle counts. Above D, = 1.6 pm, the OPCs begin to under-
estimate again, reaching a minimum value at D, = 1.83 pm. However,
the counting efficiency values begin the improve with an increase in
particle size above Dp = 2.0 pm. Therefore, it is evident that prior to
correction, there are periodic size fractions where raw counts were
under- and over-estimated when compared to the reference instrument
(OPS). This inconsistency in size-resolved particle detection is one of the
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key reasons for the poor performance of the OPCs described in Section
3.1. Following correction with the trained GPR function, a substantial
improvement in the size-resolved counting efficiencies of both OPCs can
be seen (Fig. 4). Values near unity were found for all OPC bins,
demonstrating that the proposed correction scheme was effective in
improving the particle detection efficiency of both OPCs from D, =
0.38-10 pm.

3.2.2. Prediction of particle volume size distributions below the lower
detection limit of the OPC

Following correction of the size-resolved counting efficiency of both
OPCs with the first GPR function, the corrected PV concentrations from
Dp = 0.38-10 pm were used in the second GPR function to obtain esti-
mates of the sub-0.38 pm particle volume size distributions (Section
2.3.2). As previously noted, sub-0.38 pm particles can contribute
meaningfully to particle volume concentrations in the accumulation
mode [34,35]. To confirm this observation, the contribution of sub-0.38
pm particles to indoor PV, 5 and PVyo as measured with the OPS and
SMPS at the ReNEWW House were calculated for the entire field
campaign (Fig. 5). The average contribution of sub-0.38 pm particles to
PV, 5 and PVjo were found to be approximately 40 and 27%, respec-
tively. Therefore, the uncalibrated PV> 5 and PV reported by the OPCs
in Section 3.1 do not account for a significant fraction of the indoor
particle volume. Accounting for the missing sub-0.38 pm particle vol-
ume is a critical element in improving the performance of OPCs in
reporting PV, 5 and PVq.

Application of the trained GPR function for predicting the particle
volume size distribution below D, = 0.38 um is illustrated in Fig. 6.
Three example volume distributions from Dp = 0.01-10 pm as measured
during the testing set are shown. For D, > 0.38 pm, the red curve in-
dicates the corrected OPC data using the first GPR function (for counting
efficiency). For Dp < 0.38 pm, the blue curve indicates the predicted OPC
data using the second GPR function (missing sub-0.38 pm particle vol-
ume). The second GPR function enables prediction of volume size dis-
tributions below D, = 0.10 pm, however, Aitken mode particles
contributed negligibly to volume concentrations (Fig. 6).

Fig. 7 illustrates the reference particle volume size distribution time-
series as measured by the OPS and SMPS and the calibrated particle
volume size distribution time-series as reported by OPC 1 and OPC 2
after implementation of the two GPR functions for the entirety of the
testing set (January 15 to 23, 2019). It is evident that the correction
functions result in good agreement between the calibrated OPC distri-
butions and the reference distributions between D, = 0.01-10 pm.
Notably, the non-parametric, size-resolved machine learning field cali-
bration method enables for an effective OPC measurement range beyond
its traditional detection range. Fig. 7 demonstrates that the calibrated
OPCs can reliably capture temporal variations in the shape and magni-
tude of the indoor dV/dlogD, at the ReNEWW House. The diurnal trend
in indoor particle volume distributions as measured by the OPCs and
OPS/SMPS is similar to that observed for the size-integrated volume
concentrations in Fig. 3. Values for dV/dlogD, in the coarse mode are
especially pronounced during the day and peak during evening hours,
due in part to human activity-driven emissions [68]. The use of a candle
on the evening of January 19 resulted in a spike in particle concentra-
tions across all size fractions (Fig. 7), similar to prior studies [69,70].

3.2.3. Evaluation of the field calibration method

The corrected OPC particle volume size distributions during the
testing set (Fig. 7) were integrated following Equation 3 to obtain cor-
rected size-integrated volume concentrations (PVs 5 and PVip). A com-
parison in the corrected PV, 5 and PV time-series as measured by OPC
1 and OPC 2 with the reference instruments is shown in Fig. 8. It is
evident that after the calibration, the agreement in PV, 5 and PVjg as
measured by the two OPCs with the OPS/SMPS has substantially
improved. The mean corrected PV5 5 and PV, were 2.64 pm3 em ™2 and
6.43 pm® cm™ for OPC 1, and 2.31 pm® cm ™ and 6.21 pm® cm ™3 for

12

Building and Environment 190 (2021) 107457

OPC 2, respectively. The mean reference PVs 5 and PV, were 2.97 pm3
cm™2 and 6.69 pm® cm 3, respectively. The corrected values were close
to the reference concentrations. Diurnal variations in the corrected PV 5
and PV as reported by OPC 1 and OPC 2 during the testing set in shown
in Fig. 9. The diurnal trend is similar to that observed in Fig. 3, however,
the corrected output from the two OPCs more closely follows the
reference values in both shape and magnitude.

To quantify the performance of the calibration methodology, the
accuracy metrics, r, Rz, slope, MAPE, and p-values of the t-test, between
the corrected OPC PV and reference PV concentrations for the testing set
were calculated (Table 3). To evaluate the level of improvement ach-
ieved after the field calibration was applied, the accuracy metrics were
also evaluated for the uncalibrated calculated and firmware PV con-
centrations reported by both OPCs during the testing set (Table 3).
Before correction, high MAPE (57.1-69.2%) and low R? (0.41-0.44)
values were observed for both OPCs for calculated PV, 5 and PV;y. Ther
and the slope values did not meet the U.S. EPA’s criteria. In addition, the
p-values showed a statistical difference between the calculated PV
concentrations by both OPCs and the reference concentrations. The
firmware PV,5 and PVjq before correction agreed better with the
reference instruments (MAPE: 35.4-63.3%; R% 0.35 to 0.69), however,
the values still failed to meet the U.S. EPA’s recommended values for r
and slope. In addition, it was observed that the firmware PV, 5 values
had a greater number of outliers than the firmware PV; values. For the
same reason, the firmware PV, 5 were reported with low r, R? and slope
values (linear dependency decreased due to more outliers). Neverthe-
less, the overall improvements in the MAPE values for the firmware
PV, 5 was greater than that of the firmware PVy.

The corrected PV concentrations for both OPCs after implementation
of the field calibration methodology showed a significant reduction in
MAPE (19.2-25.1%) as compared to the uncalibrated OPC data. High R?
values were also obtained (>0.97). The r and the slope values for the
corrected PV concentrations met the U.S. EPA’s criteria. The p-values for
the t-tests between the corrected OPC PV concentrations and the refer-
ence concentrations are >0.05. This indicates that after the corrections
were applied to the OPC data, there was no statistical evidence of sig-
nificant disparities between the OPC and reference PV,5 and PVjg
concentrations.

Correlation plots for the calculated and firmware (uncalibrated) and
corrected PV, 5 and PV concentrations as reported by OPC 1 and OPC 2
against the reference PV, 5 and PV;( concentrations as measured by the
OPS/SMPS for the testing set are shown in Fig. 10. Points nearest to the
1:1 line are considered as an acceptable measurement. The calculated
and firmware (uncalibrated) PV, 5 and PV for OPC 1 and OPC 2 deviate
significantly from the 1:1 line. The firmware PV values are hetero-
scedastic and the calculated PV values consistently underestimate the
reference PV concentrations. Conversely, the corrected PV values are
homoscedastic and close to the 1:1 line, thus supporting the results given
in Table 3. The results presented in Figs. 6-10 and Table 3 demonstrate
that the machine learning field calibration method was successful in
addressing the limitations in particle detection and sizing of the OPCs,
improving their performance in measuring accumulation and coarse
mode particles in residential indoor environments.

3.2.4. Training dataset size sensitivity on model results

Being a data-driven approach, the developed field calibration
methodology may depend on the size of the training dataset. This is
because a larger dataset can better model the uncertainties and in-
teractions between the predicted and response variables. However, as
the training data size increases, the complexity of the model also in-
creases. Therefore, to understand the effect of the training dataset size
on the performance of the developed field calibration model, it was
evaluated by varying the size of the training dataset. 8 sets of training
datasets were formed with 3, 3.5, 4, 4.5, 5, 5.5, 6 and 6.5 weeks of
training data, respectively. The remaining data in each set (out of seven
weeks of data) formed the testing data. In each of the developed sets, the
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correction functions were developed using the data from the training set,
and the MAPE was calculated applying the corrective functions in the
testing set (as discussed in equation 14). Fig. 11 presents the results of
the MAPE values obtained for different sizes of training dataset (PVy 5
and PV]Q).

As expected, the errors in the calibration model have reduced with an
increase in the size of the training datasets for both of the size integrated
concentrations. However, when the training sets were smaller, the
reduction was steeper. The reduction of errors was negligible after six
weeks of training data, suggesting reasonable sensor drift capture after
this timeframe.

3.2.5. Advantages and limitations of the field calibration method

There are several advantages of using this field calibration method
for low-cost OPCs for indoor air measurement. First, the correction
functions used are non-parametric, hence, they are expected to perform
better than parametric regression models. For example, Holstius et al.
[22] used a linear regression model for a low-cost OPC and achieved a
maximum R? value of 0.72. In another study, Magi et al. [18] used a
multiple linear regression model and achieved a R? of 0.60. The use of
GPR models in this study resulted in R? values in the range of 0.97-0.98.
This signifies that the developed correction model can explain up to
97-98% of variation in the data. The use of a GPR model throughout the
correction is inspired by the fact that it is a non-parametric machine
learning regression model. Thus, any prior information about the rela-
tionship between concentration values from the OPCs and the reference
instruments is not needed, making the correction function free from any
prior assumptions. Other non-parametric machine learning models are
available that can do the same; however, GPR has the advantage of being
simple and learning better from the data [71].

Another advantage of using this field calibration method is that it
enables the user to obtain an estimated particle volume size distribution
across a wide size range (Dp = 0.01-10 pm) using a single low-cost OPC.
It is important to know the full extent of the volume size distribution
prior to calculating size-integrated volume concentrations. This is
especially true for the accumulation mode, where sub-0.38 pm particles
contribute significantly to indoor particle volume concentrations
(Fig. 5). Interestingly, the manual for the OPC (OPC-N2, Alphasense
Ltd.) states: “The OPC-N2 calculations of particle mass assume a negli-
gible contribution from particles below approximately 0.38 pm” [44].

There are several limitations of the field calibration method. First,
the results presented in this study are expressed in terms of particle
volume and not mass. Although the two are typically analogs to one
another, PM is much more commonly used by the air quality research
community. Integration of measured size-resolved particle effective
densities are needed to expand the calibration method from PV to PM.
Another limitation is that the method is limited to sampling of particles
in conditioned indoor environments, similar to the ReNEWW House. The
method cannot be applied to outdoor particle measurement with the
OPCs as air temperature and relative humidity should be included in the
corrective functions. Furthermore, the proposed field calibration
method is data driven. Therefore, a large training dataset (at least 5.5-6
weeks of training data) is required to effectively develop the correction
GPR functions as discussed in the study. Lastly, due to its data-driven
nature, the developed corrective functions are site-specific. Changing
the indoor field site, or a significant change in particle sources, would
require retraining of the functions. However, it may be noted that, as
suggested by Wang et al. [15], low-cost OPCs are sensitive to particle
sources. Therefore, it is advisable to periodically calibrate the sensors
whenever particle source changes are expected. The current study aimed
to provide a novel calibration regime that could possibly be used by the
manufacturers or end-users of OPCs, similar to the Alphasense OPC-N2.
The advantage of using this methodology is that it would improve the
low-cost OPC’s performance in forecasting size integrated concentra-
tions and enable the OPC to forecast reliable size distributions even
below its detection range.

Building and Environment 190 (2021) 107457
4. Conclusion

This study discussed the development of a machine learning field
calibration method to improve the accuracy of low-cost OPCs in
measuring accumulation and coarse mode particles in residential
buildings. The evaluated low-cost OPC was co-located with two refer-
ence instruments (OPS and SMPS) in a net-zero energy house. The ma-
chine learning field calibration method addressed measurement
limitations of OPCs by developing two GPR functions. First, errors in the
size-resolved counting efficiencies of the OPCs from D, = 0.38-10 pm
were corrected using a GPR function. Then, a second GPR function was
used to predict the volume size distribution below the D, = 0.38 ym
detection limit of the OPCs. The final corrected OPC-based size-inte-
grated volume concentrations (PVy 5 and PVjg) exhibited a significant
improvement in several accuracy metrics (RZ, MAPE) over the uncali-
brated data. The r and the slope values for the corrected OPC data
relative to the reference data were within the limits prescribed by the U.
S. EPA. In addition, statistical tests proved insignificant differences be-
tween the calibrated OPCs and reference instruments. This suggests that
the proposed methodology was successful in correcting the low-cost
OPCs for forecasting reliable size-integrated particle volume concen-
trations in indoor environments. Furthermore, the proposed field cali-
bration method enabled the low-cost OPC to estimate particle volume
size distribution across a wide size range, with size distributions com-
parable to those measured by the OPS and SMPS.
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