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Sensors used to monitor indoor environmental conditions and utility consumption can result in well-defined
working and living spaces. Real-time spatiotemporal occupancy detection techniques used to track humans in-
doors paired with these data can be used to better understand the role of occupants on indoor air quality and
building energy consumption. This study introduces a novel occupancy sensing technique whereby a chair-based
temperature sensor array is used to detect the presence of occupants seated in a living laboratory open-plan
office. Seat surface temperatures were tracked for twenty individuals over seven months using K-type thermo-
couples with battery-powered dataloggers secured to office chairs in known locations. The temperature differ-
ential between the occupant and seat surface enables for rapid conduction and thus detection of one’s seated
presence. Seat surface temperature time-series were converted to binary seated occupancy for each chair and
totaled to achieve a spatial map of room seated occupancy with a time resolution of 15 s. Trends in spatio-
temporal seated occupancy profiles in the office were evaluated for seven months using the novel technique. This
highly localized form of occupancy detection offers several advantages compared to delocalized sensing tech-
niques, including visualization of spatial occupancy patterns over time; determination of individual seated oc-
cupancy histories visualized in the form of “occupancy barcodes; ” quantification of total seated hours per
occupant in different spatial zones across varying time-scales; and characterization of diurnal and weekly trends
in seated occupancy probabilities categorized by an occupant’s relative level of presence.

1. Introduction
1.1. Motivation for occupancy detection in buildings

Building design and operation intending to maximize occupant
performance must more rigorously explore the complex relationships
that exist when occupants interact with their built surroundings. An
important element underlying this aim is the evaluation of human oc-
cupancy patterns in buildings. Occupancy detection enables for assess-
ment of human behavior and activity patterns. Such assessments can be
used to better understand how people influence indoor air quality and
building energy consumption. Integration of occupancy sensors with
building automation systems offers a basis to provide personalized
heating and cooling to improve occupant comfort and productivity
[1-3]. Occupancy data can enable building systems to more accurately
address ventilation and energy needs throughout the day. Establishing

scalable systems for detecting human occupancy provides a foundation
for optimizing indoor environmental quality and energy usage expen-
ditures through smart control of heating, ventilation, air conditioning,
and lighting (HVAC&L) systems.

Humans continually emanate bioeffluents and dissipate heat and
moisture, thereby having a measurable impact on indoor environments.
Monitoring occupancy patterns in buildings can help to better under-
stand how people alter the microbial and chemical composition of in-
door air. Concentrations of human-associated species are often
correlated with occupancy levels and tend to scale with the number of
occupants in an indoor space for a fixed ventilation rate [4-7]. People
continually shed bacteria and fungi from their skin and clothing and
stir-up settled dust from indoor surfaces via resuspension as they move
around [6,8-11]. Occupants are the primary source of carbon dioxide
(COy) indoors. CO4 is a major constituent of exhaled breath and the most
common surrogate for occupancy. In addition to CO,, the human body
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releases hundreds of volatile organic compounds (VOCs) via exhaled
breath, skin secretions, squalene ozonolysis, and personal care products
[12-20]. Measured species concentrations can be integrated with oc-
cupancy data to determine emission or generation rates per person in
order to quantify the impact of humans on indoor air quality [17,21,22].
Occupancy monitoring offers a basis for improved population exposure
assessment for indoor air species that can adversely affect respiratory
and cardiovascular health, impair cognitive function and decision
making, and cause fatigue, headache, and sleepiness [23-26].

Given the prominent role humans play in altering the composition of
indoor air, real-time occupancy detection is an important element in
mechanical ventilation control strategies for buildings. Ventilation
standards, such as ANSI/ASHRAE Standard 62.1-2019, outline the
volumetric flow rate of filtered outdoor air per person that must be
delivered to an occupied space to maintain acceptable concentrations of
indoor air species [27]. In indoor spaces where occupancy patterns are
temporally variant, such as open-plan offices, meeting rooms, common
areas, and classrooms, the outdoor air ventilation rate should be
dynamically modulated to prevent the accumulation of
human-associated CO,, VOCs, and particles. Demand controlled venti-
lation (DCV) is one technique that addresses the need for
occupant-driven outdoor air ventilation requirements in small- and
large-scale office buildings by introducing more filtered outdoor air into
a room when more people are present. In addition to affecting indoor air
quality, implementation of DCV offers benefits in regard to energy
savings [28], which have been found to range from 8 to 80%, depending
on the season, location, and worker schedules [29].

Occupancy-based control of HVAC&L systems in buildings can
enable for optimization of indoor environmental quality and energy
usage by considering worker needs and schedules rather than by
applying a one-size-fits-all timetable. Real-time occupancy sensing is
therefore an important element in achieving human-centered building
design and operation. Given the diversity of indoor environments and
complexity of human behavior patterns, predicted occupancy profiles do
not always align with actual occupancies. This can result in the heating,
cooling, and artificial illumination of vacant rooms [30,31], or
conversely, insufficient conditioning or ventilation of over-occupied
spaces. Live occupancy trends at the room- and building-scale offers
the potential for energy savings through more intelligent control over
HVAC&L operations [2,31-35]. Demand-driven control in smart build-
ings can be tailored to a specific indoor environment either through
real-time automation or short-term learning to predict occupancy pat-
terns and adjust setpoint schedules accordingly. In addition to HVAC&L
control, robust occupancy data is an important input for indoor air
quality and building energy models that consider the impact of people
on shaping their proximate indoor environments [36].

Smart control of HVAC&L systems that more deeply considers oc-
cupancy patterns and individual preferences necessitates development
and integration of occupancy sensing techniques that consider specific
environments and predict their end-use format. Wireless devices inter-
acting with each other and a central hub via the Internet of Things (IoT)
brings an interconnectedness between building control, sensors, and
room conditions that enables for optimal control based on immediate
occupant feedback [33,37,38]. Localized occupancy sensing platforms
that monitor an individual’s occupancy time-series can be integrated
with IoT-based building automation systems to achieve occupant-centric
indoor spaces.

Occupancy detection has applications beyond indoor environmental
quality and building energy use. Seated occupancy sensing can inform
time spent in sedentary activities indoors, such as working in front of a
computer. Sedentary activities have been estimated to require 30-50%
less energy than standing-related or more intense actions; and more time
spent seated can offset the benefits of routine exercise. In office envi-
ronments, studies have shown that workers sit longer than recom-
mended - for approximately 66-77% of their total work time [39-41] or
4-9 h per day. Extensive sitting is likely to continue outside of the
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workplace [42]. The act of continuous sitting itself has detrimental ef-
fects on metabolism and mortality [43]. People who spend more time
sitting are also those that spend less time active and tend to be older
[44]. Explorations of seated times for workplace interventions intended
to encourage physical activity during the workday often use
thigh-attached or inclination-based accelerometers [43-47] and
self-reporting techniques [42,48,49]. These studies advocate manage-
ment methods that encourage workers to perform certain tasks or
furniture modifications, such as using stand-up desks, to facilitate more
frequent standing and movements. Localized occupancy estimates
combined with information about individual needs and indoor envi-
ronmental quality can inform building design and operation to mediate
unwanted, unhealthy outcomes of occupant-office interactions.

1.2. Occupancy sensing techniques

Technological advancements resulting in smaller and more afford-
able sensors that measure concentrations of indoor air species, monitor
indoor environmental conditions, track movement, register images,
detect electronic devices, and assess seat parameters have allowed a
plethora of investigation into people and their effects on building
management. Methods used to understand the relationship between
occupants and the indoor environment ideally determine the count,
location, behavior, and timing of people in a given space, often using a
combination of sensors. Papers by Horr et al. (2016), Labeodan et al.
(2016), and Yang et al. (2016) have recently surveyed occupancy
sensing techniques for buildings [50-52]. Most sensing techniques can
accurately detect presence or room count to a high degree with the right
understanding of a room setup and using well-tuned algorithms to match
sensor output to occupant counts. Utilizing training data, machine
learning, or a combination of sensors often improves the accuracy of the
technique employed.

One of the most common forms of occupancy detection in buildings
is COq sensing. CO, sensors are frequently integrated with DCV [37,50,
53-61]. Complete mixing of CO; in an occupied space is often assumed
and steady-state CO» concentrations are commonly estimated using
constant CO, generation rates per person and constant outdoor air
concentrations [62]. While COy-based occupancy sensing has been
shown to estimate occupancy with accuracies ranging from 55 to 95%
[54], notable assumption flaws in using CO,-driven ventilation suggest a
need for improved occupancy sensing techniques. These uncertainties
include but are not limited to occupancy detection time delay [51];
sensor error in determination of accurate CO, concentrations; occu-
pancy mischaracterization due to sensor placement within a room [63];
variable outdoor air conditions; overgeneralizing outdated CO2 gener-
ation rates for different levels of physical activity [62]; health-based CO4
concentration thresholds [64]; and poor prediction of concentrations of
other human-associated species, such as VOCs and particles [39]. The U.
S. Department of Energy notes that CO2-based DCV introduces a period
of lag and an occupancy buffer where extra outdoor air is delivered to
unoccupied spaces [65]. CO5 is commonly measured at one location per
room, thereby preventing determination of spatial occupancy patterns
within the room. Modeling techniques to improve the accuracy of
CO9-based occupancy sensing have been proposed [60]. In addition to
CO,, concentrations of human-associated VOCs and particles can be
used to evaluate temporal occupancy patterns [9,10,17,21,58,66-68].

Occupancy sensing techniques relying on physical movement
include traditional usage of passive infrared (PIR) for light automation
and multiple sensors placed in doorways that count instances of pres-
ence and determine directionality to estimate total occupancy [54,58,
69-72]. Cameras have been used in a similar manner, however, they
may illicit questions of privacy [54,69,73,74]. Acoustics have been used
to infer occupancy, both by exploring the novel use of filtered
speech-based audio and by looking at general room noise [37,58,75,76].
Additional indoor environmental parameters that have been tested to
detect occupant presence include indoor air temperature and relative
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humidity and light [54,58,77].

Device-centered occupancy sensing assumes that people are contin-
ually “plugged in” to their electronics. Device detection methods are
based on the tracking of WiFi and Bluetooth signals via Media Access
Control (MAC) and Internet Protocol (IP) addresses. A spatial map of
electronic devices in an indoor space can be generated based on each
device’s distance from a grid of receivers correlated with signal strength
[35,73,77-79]. Once enabled, delocalized sensors can continuously
yield relatively accurate zone-based occupancy patterns over time,
however, they may not always identify exact placement in a building
due to variations in electronics and room environments [60,62,73,77]. A
similar exploration of literal human detection was proven to detect radio
wave emissions from people [80,81].

Seat- or chair-based occupancy determination enables for multi-
point tracking of occupants within an indoor space. Due to the sensi-
tivity of movement when one sits, chairs have been successfully outfitted
with sensors based on acceleration to monitor seated occupancy and to
identify seated activities [46,47]. Capacitance and micro-switch-based
pressure have also been used to note when an individual is present
with detection accuracy ranging from 80 to 100% depending on the
room and sensor setup [34,53,78,82-84]. Using arrays of these sensors
can help determine where a seated person is within a room, as well as an
individual’s posture or specific activities [85-89]. When individual lo-
cations are known at given times, the total seated occupancy can then be
calculated. While accurately detecting occupant presence, pressure
sensors may overestimate seated occupancy when inanimate, non-living
objects are placed in seats [90]. People may place blankets, backpacks,
and other items in car seats and classroom and office chairs; therefore,
using a sensor that is more adept to specifically sensing humans avoids
false-positives due to item storage. Occupant self-reporting has been
used to supplement chair-based sensor measurements and introduces
biases of occupancy timing by underreporting absences [91].

1.3. A chair-based temperature sensor array for spatiotemporal
occupancy detection in offices

This study investigates the use of a chair-based temperature sensor
array for spatiotemporal occupancy detection in open-plan offices. The
use of chair-based temperature sensors (e.g. thermocouples) to monitor
seated occupancy in buildings has not been previously explored to the
best of the authors’ knowledge. The temperature differential between a
seated person and seat cushion enables for rapid heat transfer via
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conduction and thus detection of one’s seated presence. Thermocouples
embedded in, or attached to, chair cushions are a viable option to
determine seated occupancy in indoor environments where people are
seated the majority of the time, such as offices, classrooms, theaters, and
public transportation. Russell et al. (2017) used arrays of thermocouples
embedded in seat cushions to detect seated postures, demonstrating a
thermocouple’s sensitivity to someone sitting, standing, and reposi-
tioning in one’s seat [86].

The primary objective of this study is to introduce a novel technique
for highly localized occupancy sensing in offices — a chair-based tem-
perature sensor array — and demonstrate the utility of the technique in
evaluating spatiotemporal seated occupancy profiles through a 7-month
measurement campaign in a living laboratory open-plan office. K-type
thermocouples were appended to the seat cushions of twenty office
chairs in known locations (Fig. 1). The paper first presents the meth-
odology for converting seat surface temperature time-series to binary
seated occupancy and then aggregating across the entire office to
determine the total seated occupancy in the room. The paper then dis-
cusses how the technique enables for detailed assessment of both spatial
and temporal seated occupancy patterns in the office over varying time-
scales.

2. Material and methods

2.1. Chair-based temperature sensing in a living laboratory open-plan

office

Occupancy measurements with the chair-based temperature sensor
array were conducted in the Herrick Living Laboratories of the Center
for High Performance Buildings at Purdue University in West Lafayette,
Indiana from February 10 to August 31, 2019. The Living Labs are four
nearly identical, side-by-side large open-plan office spaces for graduate
students with reconfigurable and precisely controlled envelope, light-
ing, and thermal systems. The chair-based temperature sensor array was
deployed in the Living Lab office that regularly contained the highest
number of occupants. The office contained 20 assigned desks and chairs
arranged as a grid of 4 rows with 5 desks each (Fig. 1) (L: 10.50 m, W:
9.9 m, H: 4.60 m). Each desk and chair were given a numeric ID of 1
through 20 to ensure desk-chair location continuity and to de-identify
data. It is assumed the same person was assigned a given desk-chair
pair for the entirety of the measurement campaign. Observations indi-
cated the occupants remained seated, aside from short periods of

\ Fig. 1. (left) photo of a Living Lab office

chair configured with a fabric-covered K-
type thermocouple connected to a battery-
powered datalogger and (right) illustration

Row 4 Desk 16 Desk 17 Desk 18

Desk 19 Desk 20

of the chair-based temperature sensor array
in the Living Lab open-plan office. Each seat

Row 3 Desk 11 Desk 12 Desk 13

Desk 14 Desk 15

surface temperature sensor node is shown in
red. The associated numeric ID (1-20) for the

given desk-chair pair location is listed, along
with the desk row number (1-4). (For inter-
pretation of the references to color in this

figure legend, the reader is referred to the

Web version of this article.)

apesed upis-elanod

Row 2 Desk 6 Desk 7 Desk 8

Desk 9 Desk 10

Row 1 Desk 1 Desk 2 Desk 3

Desk 4 Desk 5

Door




D.N. Wagner et al.

standing entry and exit and group discussions. As such, all results pre-
sented herein are referred to as “seated occupancy” for correctness.

The chair-based temperature sensor array was created by configuring
each chair with a K-type epoxy coated tip thermocouple (TC-PVC-K-24-
180, Omega Engineering Inc.) connected to a battery-powered data-
logger (EasyLog EL-USB-TC, Lascar Electronics Inc.). The thermocouple
was positioned at the middle of the upward-facing seat cushion and
attached to the cushion with double-sided fabric tape (Fig. 1). The cable
was directed to the rear of the chair and covered with fabric tape of the
same color as the cushion. The datalogger was attached to the bottom of
the chair cushion with Velcro to enable for repetitive removal for data
acquisition twice per week. Seat surface temperatures (in °C) for all 20
chairs were recorded with 15-s time resolution for the duration of the 7-
month occupancy measurement campaign, aside from a 1.5-week period
in mid-July 2019 (parts of weeks 29 and 30).

2.2. Determination of seated occupancy via seat surface temperature
profiles

Measured seat surface temperature time-series, Ty, (t), were used to
determine seated occupancy time-series with 15-s time resolution for
each chair within the spatial grid of the Living Lab office (Fig. 1). The
measured seat surface temperatures were compared to the median seat
surface temperature for each chair, T, calculated for a given data
acquisition period (3-4 days). Here, Ty, is treated as the background seat
surface temperature given that the chairs were occupied for approxi-
mately one-third or less of the total measurement period. The range of
T, was generally between 22 and 23 °C throughout the measurement
campaign.

Tm(t) was referenced to Ty, to enable for additional reduction of the
seat surface temperature time-series. This reduction step was done to

(a.) One-Day Measured Seat Surface Temperature
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facilitate occupancy determination whereby sudden increases in the seat
surface temperature above Ty,, often approaching and exceeding 30 °C,
were attributed to occupant seated presence due to heat transfer via
conduction from the person to the chair surface. Reduced seat surface
temperature time-series, T;(t), were computed as follows:

T, it Tp(1) < (Tm + 3°c)

e Ta(0), it Talt) > (T +3°C)

@

T,(t) was used to create a binary seated occupancy time-series, O;(t), for
each chair, with 0 indicating absence of the occupant and 1 indicating
seated presence of the occupant. During periods of stable seated occu-
pancy, T,(t) is often between 34 and 36 °C. Binary seated occupancy for
each chair was calculated with 15-s time resolution as follows:

0,if 7,(t) = T,

3

04(1) (2)

0, if O,(t) =

The third criteria accounts for sudden decreases in the seat surface
temperature when a person stands up following a period of seated oc-
cupancy (e.g. Fig. 2a at 17:00). During such conditions, T,(t) can remain
above T, u ntil the seat surface temperature decays to background.
Thus, Os(t) is corrected from 1 to 0 when T,(t+At) falls below 30 °C,
while remaining above T,,, where At is equal to one sampling interval of
15 s. Binary seated occupancy time-series for each chair within the
spatial grid of the Living Lab office were computed for the duration of
the 7-month occupancy measurement campaign. It is assumed that
seated occupants remained in direct contact with the thermocouple
during periods of seated occupancy and that people are the only heat

Fig. 2. Example of binary seated occupancy
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source in direct contact with the chair cushion. Periodic manual
reporting of binary seated occupancy was conducted to guide the criteria
established in Equations (1) and (2) and to verify the accuracy of the
occupancy determinations derived from the seat surface temperature
data.

The total seated occupancy in the Living Lab office, O; o (t), wWas
taken as the sum of the binary seated occupancies for each of the 20
chairs:

Seat 20

O:.wxal(t) = Z OS(I)

Seat 1

3)

3. Results

3.1. Spatial and temporal seated occupancy data analysis and
visualization

The chair-based temperature sensor array was deployed in the Living
Lab office for 7 months to evaluate the utility of the new occupancy
sensing technique in tracking seated occupancy patterns at varying
spatial scales (chair, row, room) and temporal scales (hour, day, week,
month). Regarding spatial occupancy monitoring in an open-plan office
environment, this highly localized form of occupancy detection pre-
sented several unique attributes compared to delocalized sensing tech-
niques, such as a single COy or door PIR sensor per office. First,
individual seated occupancy histories were calculated for each of the 20
desk-chair pairs for the duration of the measurement campaign. The
binary Os(t) time-series for each chair (0-1) were visualized in the form
of “occupancy barcodes” to provide a basis to identify long-term, month-
to-month trends in seated occupancy (Fig. 3). Second, the O(t) time-
series for each chair were integrated with respect to time, [ Os(t) dt, to
quantify the total seated hours per occupant in different spatial zones
(chair, row) across varying time-scales. As the desk-chair pairs were
assigned to 20 occupants and arranged in a grid of 4 rows with 5 desks
each (Fig. 1), this enables for creation of spatial maps of the total time
seated in each chair for each month and for the entirety of the mea-
surement campaign (Fig. 4).

Third, diurnal and weekly trends in the total seated occupancy,

Seat 16

Seat 18
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O;10ra1(t), Were characterized at the spatial-scale of the entire room.
Diurnal trends in O q(t) were aggregated to calculate mean and me-
dian characteristic seated occupancy profiles for the office for weekdays
(Monday to Friday) and weekends (Saturday and Sunday) (Fig. 6).
Fourth, as this technique tracks chair-specific seated occupancy patterns
in a shared, multi-user indoor workspace, individual occupancy trends
(Os(t)) can be compared to the combined whole (O; tq(t)). Each of the
20 chairs were ranked based the occupant’s relative level of seated
presence over the measurement campaign as follows: (1.) high: seated
occupancy greater than the 80th percentile, (2.) medium: seated occu-
pancy between 20th and 80th percentiles, and (3.) low: seated occu-
pancy less than the 20th percentile (Fig. 9). Diurnal and weekly seated
occupancy profiles were calculated for each of the three categories to
demonstrate how this sensing technique can be used to cluster occupants
based on relative time spent in the office.

3.2. Evaluation of binary seated occupancy determination via chair-based
temperature sensing

Binary seated occupancy time-series, Os(t), were calculated from
measured seat surface temperature time-series, Ti;(t), for each of the 20
chairs in the Living Lab office for the duration of the 7-month mea-
surement period. Fig. 2 shows measured (Tn(t)) and reduced (T;(t)) seat
surface temperature profiles and the corresponding Os(t) for one chair
over two time-scales (1 day and 4 days). Fig. 2 serves as an illustrative
example of the temporality in Ty (t) and T(t) and how T.(t) was con-
verted to Os(t). The blue band in Fig. 2b and d is bounded by T, and
Tm + 3°C, both of which are used to define the reduction from T (t) to

T.(t). For Tn(t) > (Tm + 3°C), both the measured and reduced tem-

peratures are identical, whereas for Tn(t) < (Tm + 3°C), the reduced

temperature transitions to Tp,.

It can be seen that the reduction from T;,(t) to T,(t) coverts back-
ground seat surface temperatures to a constant Ty, thereby aiding in
identification of seated periods when T,(t) > T, When an occupant sits
on the seat cushion of a chair, T (t) tends to rise logarithmically from T;,
to over 30 °C. During continued seated occupancy in the chair, temporal

1 1 HH 1 1 1 Seat 20
|
“ | ‘
0 0 . 0 0 :
FMAMJJA FMAMJ JA FMAMJJA A
MOY MOY Moy
at 12 Seat 13 Seat 14
1 1 “ 1 T 1
| |
O |11 . |
FMAMUJJA FMAMJ JA FMAMJ JA MJJA
MOY MOY
1 Sea 1 Seat 8 1
‘
, Il 1)
0 0 e =
FMAMJ JA FMAMJ JA A
MOY MOY
1 1 Seat 1 : ‘SeatB 1
)‘ ‘ I \ |
| Il 1 Il
0 | I |

FMAMUJJA
MOY

FMAMJJA
MOY

0
FMAMJ JA
MOY

0
FMAMJJA
Moy

0
FMAMUJJA
Moy

Fig. 3. Occupancy barcodes: chair-specific binary seated occupancy histories, Os(t), for each of the 20 desk-chair pairs from February 10 to August 31, 2019
visualized in the form of “occupancy barcodes.” Os(t) = O for seated absence and Os(t) = 1 for seated presence. MOY = month of the year.
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(a.) Mean Daily Seated Hours, March 2019 (b.) Total Seated Hours

1

N w e o
Time Seated (h)

-

Mean Daily Seated Hours, July 2019
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3.7 > | 4.4

-
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-

(e.) Mean Daily Seated Hours,
Feb 10 to Aug 31, 2019

w e

N
Time Seated (h)

-

fluctuations in T,(t) are minimal and temperatures generally remained
in the range of 34-36 °C. Standing initiates an exponential decay in T;(t)
back to Ty,. The temporal profiles of Ty,(t) and T,(t) shown in Fig. 2 are
representative of those measured throughout the occupancy sensing
campaign for all 20 chairs.

The sudden rise and decay in the seat surface temperature at the
beginning and end of a seated occupancy period, respectively, demon-
strates the temporal sensitivity in seated occupancy sensing with a chair-
based temperature sensor array. This is due in part to rapid heat transfer
via conduction between the occupant and chair-appended thermocouple
that occurs when one sits on the cushion. As shown in Fig. 2, the moment
when T,(t) > Tn, the Os(t) transitions step-wise from 0 (unoccupied
chair) to 1 (occupied chair). Similarly, it can be seen that Os(t) transi-
tions from 1 to 0 when T;(t) falls below 30 °C following the criteria
established in Equation (2).

The seated occupancy profiles shown in Fig. 2 illustrate the stability
of chair-based temperature sensing in monitoring continuous seated
occupancy over extended periods (e.g. > 1 h) and in detecting transient
periods of chair presence and absence. For example, in Fig. 2b between
16:00 and 19:00, two short unoccupied periods were observed to occur
between longer, occupied periods. Negligible lag and high time-
resolution suggest this approach can be suitable for integration with
DCV and other HVAC&L control strategies for open-plan workspaces
where prompt adjustments to the indoor environment are needed in
response to individual, chair-specific occupancy changes.

March 2019
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Fig. 4. Total seated hours, [O;(t) dt, for each desk-
chair pair location: (a.) mean daily seated hours for
weekdays in March 2019, (b.) total seated hours for
March 2019, (c.) mean daily seated hours for week-
days in July 2019, (d.) total seated hours for July
2019, (e.) mean daily seated hours for weekdays from
February 10 to August 31, 2019, and (f.) total seated
hours from February 10 to August 31, 2019. Time
seated (h) is denoted in each color bar. Values of zero
were used to replace values that were < 0.1 h for the
month. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web
version of this article.)
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3.3. Spatial seated occupancy trends determined via a chair-based
temperature sensor array

The chair-based temperature sensor array enabled for evaluation of
spatial seated occupancy trends in the Living Lab office over the 7-
month measurement campaign (Figs. 3 and 4, and S1-S5). The chair-
based temperature sensor array provides highly localized occupancy
detection by monitoring the seated presence of an occupant at a known
desk-chair pair location within the spatial grid of the open-plan office
illustrated in Fig. 1. Chair-specific binary seated occupancy time-series,
O;(t), and total seated hours over varying temporal scales, [ O(t) dt, are
presented in Figs. 3 and 4, respectively. Both Os(t) and [ Os(t) dt are
visualized in the same spatial grid as that of Fig. 1, with 4 rows of 5 seats
each. For example, seat 13 is lateral to seats 12 and 14, and is also
directly opposite to seat 18. Seats 5, 10, 15, and 20 are adjacent to a
double-skin facade, and seats 1 and 6 are proximal to the entrance of the
office space.

3.3.1. Occupancy barcodes: chair-specific binary seated occupancy
histories

To demonstrate a unique application of the chair-based temperature
sensor array, individual seated occupancy histories were calculated for
each of the 20 desk-chair pairs and visualized in Fig. 3 in the form of
“occupancy barcodes.” Each of the 20 sub-plots in Fig. 3 presents the
binary seated occupancy time-series, O;(t) (0-1), for each chair over 7
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months. Each parallel vertical line indicates the beginning or end of a
seated occupancy period, in the same manner as the Os(t) visualization
presented for a single chair in Fig. 2b and d.

The spatial grid of 20 individual seated occupancy barcodes provides
insights into month-to-month variations in chair-specific occupancy
patterns for the open-plan office. Denser collections of vertical lines
indicate more frequent seated presence at a given desk-chair pair loca-
tion. Thus, the barcodes offer a useful visual tool for analyzing long-
term, spatially-resolved fluctuations in seated occupancy for a shared
indoor workspace. Barcodes for seats 4, 6, 9, 16, 17, and 19 reveal a
pattern of frequent seated occupancy over 7 months. Conversely, barc-
odes for seats 3, 5, 13, and 14 display infrequent seated presence during
the measurement campaign. Selected seats exhibit pronounced month-
to-month variation in seated occupancy. For example, the barcode for
seat 15 displays low seated occupancy from February to April, with a
transition to more frequent seated occupancy between May and June.
Similarly, the barcode for seat 12 reveals a sudden drop in seated oc-
cupancy in May, with more regular occupancy in adjacent months. Finer
temporal gradients in seated occupancy can be observed in the barcodes.
A gradual shift in seated presence in the barcode for seat 8 can be seen
between April and May.

3.3.2. Spatial mapping of total seated hours per occupant

Integration of the chair-specific binary seated occupancy time-series,
O,(t), presented in the occupancy barcodes provides temporally-
resolved snapshots of total seated hours, [ Os(t) dt, for each desk-chair
pair location. Fig. 4 provides a spatial map of mean daily seated hours
for weekdays and total seated hours for March 2019 (Fig. 4a and b), July
2019 (Fig. 4c and d), and for the entirety of the 7-month occupancy
sensing campaign (Fig. 4e and f). Spatial maps for February, April, May,
June, and August 2019 are provided in Figs. S1-S5. Mean daily and total
seated hours for each desk-chair pair location are listed within each
square of the spatial grid of the Living Lab office. The relationship be-
tween the color of each desk-chair pair location and time seated is shown
in each color bar.

Spatial variations in time seated throughout the open-plan office can
be observed in Fig. 4 and S1-S5. Desk-chair pairs with high seated oc-
cupancy are readily identified. For example, in March 2019, seats 4 and
7 (yellow/light orange squares) are associated with mean daily seated
hours of 6.4 and 6.7 h, respectively, and total seated hours of 130 and
140 h, respectively; comparatively greater than other seats in the office.
Likewise, seats with low to no seated occupancy can be quickly deter-
mined. In July 2019, seats 1, 3, 5, 10, 13, and 14 (dark blue squares)
were found to have total monthly seated hours of less than 10 h.

The chair-based temperature sensor array offers a basis to monitor
changes in spatially-resolved office usage schedules for individual oc-
cupants. Spatial variability in seated hours exhibits some month-to-
month variation between February and August 2019 (Fig. 4 and S1-
S5). This can be evaluated in part by considering the month-to-month
variation in total seated hours for a given desk-chair pair. From
February to August 2019, seat 4 transitions month-to-month from 57 to
130 to 140 to 72 to 82 to 88 to 85 h; and seat 20 varies month-to-month
from 29 to 51 to 72 to 81 to 93 to 26 to 21 h.

The month-to-month variations in total seated hours presented in
Fig. 4 and S1-S5 are consistent with the binary seated occupancy time-
series shown in Fig. 3. The high density of vertical lines in the barc-
odes for seats 4, 6,9, 16, 17, and 19 are associated with a greater number
of total seated hours during the 7 month campaign: 660, 500, 480, 690,
440, and 430 h, respectively. Similarly, the infrequent seated occupancy
presented in the barcodes for seats 3, 5, 13, and 14 are associated with
the lowest number of total seated hours during the 7-month campaign:
77,130, 35, and 47 h, respectively. The month-to-month variations shed
light on differences in graduate student office attendance due to the
academic semester structure for the spring, incorporating the months of
February through mid-May 2019, and summer, incorporating the
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months of mid-May to mid-August 2019. In comparing March and July
2019 in Fig. 4, the open-plan office sees comparatively lower usage
during the summer semester than the spring semester, with 16 out 20
seats showing a drop in seated presence. Figs. S1-S5 suggest that similar
patterns in seated occupancy exist between the two semesters. Such
differences can be explained by considering semesterly changes in
course schedules, research activities, travel, and remote work. The
insight gained from such variation patterns gives a general picture of the
room usage throughout the year. Identifying these patterns in specific
contexts can aid commercial management and decision-making in
buildings to plan office space allocation and predict worker needs.
Modern employment situations that allow employees to work remotely
can save money by allocating a certain period of time for the offices to be
open.

For the Living Lab office, there does not appear to be a meaningful
relationship between seat location and seated occupancy frequency
(Fig. 3) and total time seated (Fig. 4). Rather, seated presence is likely to
depend on individual working schedules of the office occupants. In
addition, there does not appear to be clustering of high or low occupancy
seats adjacent to one another or along a given row or column of desks
within the open-plan office grid.

3.4. Temporal seated occupancy trends determined via a chair-based
temperature sensor array

The chair-based temperature sensor array enabled for evaluation of
temporal trends in the total seated occupancy of the Living Lab office,
O oal(t), Over the 7-month measurement campaign (Figs. 5-9). The
binary seated occupancies for each of the 20 desk-chair pairs were
summed to determine Og g (t) with 15-s time resolution. Diurnal
(Figs. 5-7) and weekly (Figs. 8-9) trends in Oj 4 (t) were characterized
to demonstrate the usefulness of chair-based temperature sensing in
monitoring occupancy profiles at the spatial-scale of the entire room.

The sampling period began towards the end of winter and continued
through the spring and summer. Although the office air temperature
profile remained relatively constant, the outdoor air temperatures var-
ied from about —12 °C to 27 °C during this period [92]. Occupant
clothes were not directly observed for the study; however, it can be
assumed that clothing styles would vary seasonally. To explore the effect
of seasonal clothing on the accuracy of the chair-based temperature
sensor array, the median seat surface temperature was calculated for
three occupants that showed similar relative occupancy levels
throughout February, May, and August. The median temperatures for
seats 9, 15, and 16 for occupied and unoccupied periods are shown in
Table 1. From the colder to warmer months, there is a slight increase in
occupied seat surface temperature, with less change in median tem-
perature for unoccupied periods. Is likely that students wore relatively
similar clothing while in the office, which may have varied with length
and thickness; however the measurements were consistent in being able
to detect seated presence across the seasons. This result confirms pilot
tests done to explore the threshold of sensing. Pilot tests showed that
adding layers and thick blankets to seats may delay the binary seated
occupancy detection, as the seat temperature would rise more slowly.

3.4.1. Diurnal seated occupancy profiles in an open-plan office

Day-to-day variations in the diurnal total seated occupancy
(Os torar (t)) profile for the Living Lab office over 7 months is shown in
Fig. 5. Each row illustrates the temporality in O s (t) (0.5 h average)
for a given day of the year (DOY, 2019). The relationship between the
color for a 0.5 h period and the total seated occupancy is shown in the
color bar. The temporal map in O; 4 (t) provides a basis to observe long-
term trends in room-aggregated seated presence for an open-plan office.
The white regions represent periods when seat surface temperature
measurements were not conducted.

The chair-based temperature sensor array captured daily fluctuations
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Fig. 5. Diurnal trends in the total seated occupancy, O; q(t), from February 10 to August 31, 2019. O; o (t) is denoted in the color bar. DOY = day of the year.
White regions represent periods when seat surface temperature measurements were not conducted. (For interpretation of the references to color in this figure legend,

the reader is referred to the Web version of this article.)

in the magnitude of the diurnal O (t) profile throughout the mea-
surement campaign (Fig. 5). From approximately DOY = 41 (February
10, 2019) to DOY = 90 (March 31, 2019) and from DOY = 138 (May 18,
2019) to DOY = 190 (July 09, 2019), O (t) periodically reaches a
maximum of 8-12 seated occupants (green/yellow/light orange bands)
between 12:00 and 16:00. Conversely, from April to mid-May 2019 and
in August 2019, the peak total seated occupancy in the afternoon was
often less than 6 (cyan bands). Day-to-day variations in the magnitude of
O oa1(t) Were less common in the late afternoon and evening (16:00 to
24:00) and during the early morning (00:00 to 10:00). During these
periods, Os o1 (t) generally remained below 2 (dark blue bands). Day-to-
day variations in Oj ¢ (t) shown in Fig. 5 are consistent with the tem-
poral variations in Og(t) observed in Fig. 3.

Similarities in the shape of the diurnal Osq(t) profile can be
observed in Fig. 5. Total seated occupancy in the Living Lab office nearly
always reached its peak between the hours of 12:00 to 16:00,

irrespective of the day of the week (weekday or weekend), week, or
month. This peak in Ogq(t) during the afternoon can be readily
observed by following the incremental increase in O; torqi(t) (transition in
color gradient) from morning to afternoon to evening. It can be seen that
the shape of the diurnal Oy (t) profile remains flat at, or close to,
0 (dark blue) during the non-traditional work periods in the late eve-
ning/early morning hours of 23:00 to 08:00. As illustrated in Fig. 5,
monitoring long-term trends in the diurnal O;q(t) profile with chair-
appended thermocouples provides a basis to understand how the
room-aggregated usage profiles of a collaborative open-plan office
environment change over varying time-scales.

Diurnal trends in Oj 4 (t) for each DOY were aggregated to calculate
mean and median characteristic seated occupancy profiles with 15-s
time resolution for the office for weekdays (Monday to Friday) and
weekends (Saturday and Sunday) during the spring (February 10 to
April 31, 2019) and summer (May 01 to August 31, 2019) academic
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Fig. 7. Weekday occupancy diversity factors: Living Lab seated occupancy di-
versity factor for a room capacity of 20 seats (left y-axis) and occupancy di-
versity factor following ASHRAE 90.1 (right y-axis, via [70]). For the Living Lab
diversity factor: the dashed blue lines indicate the mean, the solid black lines
indicate the median, and the yellow and green lines indicate the 25th and 75th
percentiles, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

semesters (Fig. 6). The dashed blue lines indicate the mean O; 4 (t), the
solid black lines indicate the median O; 1 (t), and the yellow and green
lines indicate the 25th and 75th percentiles, respectively. The charac-
teristic profiles in total seated occupancy are unique to the Living Lab
office, where graduate students follow flexible and course- and research-
dependent work schedules. Total seated occupancy trends observed for
this office confirm that different contexts can shift the times and mag-
nitudes that people are present in a such an indoor space.

The characteristic diurnal Oy 4 (t) profiles (both mean and median)
for weekdays (Fig. 6a and c) exhibit a trimodal shape, with a prominent
peak in room occupancy at around 16:00 and secondary peaks at around
12:00 and 20:00. The prominent peak varies between O ¢ (t) = 4 to 7
during the spring semester, with a mean and median of approximately

mester, with a mean and median of approximately O e (t) = 4-5. The
secondary peak at around 12:00 is preceded by a gradual buildup in total
seated occupancy at a rate of approximately 1 additional seated occu-
pant per hour. Between 12:00 and 13:00, O q(t) drops by about 1
during the spring semester and about 2 during the summer semester.
From 13:00 to 16:00, the totaled seated occupancy gradually grows to
the prominent peak, where it then follows a downward trend at a rate of
roughly 0.6 to 0.7 seated occupants per hour to near 0 at 24:00. How-
ever, a small bump in seated occupancy can be seen at 20:00. The
variation (25th to 75th percentile) in the weekday Oj s (t) is typically
+ 1 seated occupant about the median between 08:00 to 14:00 and
17:00 to 24:00, and +1 to 2 seated occupants about the median from
14:00 to 16:00. The temporal variation in O s (t) during the weekdays
is consistent with the day-to-day fluctuations in O (t) observed in
Fig. 5.

The characteristic diurnal Og 4 (t) profiles (both mean and median)
for weekends (Fig. 6b and d) exhibit a unimodal shape, with a prominent
peak at around 16:00. During the spring semester, the magnitude of the
prominent peak is approximately O; () = 2 and during the summer
semester, the magnitude tapers off to roughly Og a1 (t) = 1. It is evident
that the Living Lab office is consistently emptier during the weekends
compared to the weekdays.

3.4.2. Weekly seated occupancy profiles in an open-plan office

Weekly total seated occupancy (Os owqi(t)) profiles (Monday through
Sunday) for the Living Lab office over 7 months are shown in Fig. 8.
Similar to Fig. 5, each row illustrates the temporality in O s (t) (0.5 h
average) for a given week of the year (WOY, 2019). The relationship
between the color for a 0.5 h period and the total seated occupancy is
shown in the color bar. The white regions represent periods when seat
surface temperature measurements were not conducted. Fig. 8 offers an
alternative visualization of temporal trends in the total seated occu-
pancy as compared to Figs. 5 and 6 and provide a basis to observe of how
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Fig. 8. Weekly trends in the total seated occupancy, Oj o (t), from February 10 to August 31, 2019. O; s (t) is denoted in the color bar. WOY = week of the year.
White regions represent periods when seat surface temperature measurements were not conducted. (For interpretation of the references to color in this figure legend,

the reader is referred to the Web version of this article.)

occupancy changes with the day of the week.

Month-to-month and semesterly variations in the weekly Oj i (t)
profile can be seen in Fig. 8, mirroring those observed for Os(t) and |
O4(t) dtin Figs. 3, 4, and S1-S5. Bands of elevated total seated occupancy
(green/yellow/light orange) can be seen between Monday through
Friday. In general, periods when O;oqi(t) > 10 are less common on
Friday compared to Monday through Thursday. The diurnal trend in
O oral(t) for a given day of the week is relatively consistent during the 7-
month measurement campaign, however, some variability can be seen
on Saturday and Sunday due to the more inconsistent work schedules on
the weekends (see Fig. 6).

3.4.3. Categorization of seated occupancy by relative presence

As the chair-based temperature sensor array monitors seated occu-
pancy histories for each desk-chair pair, individual occupancy trends
(Os(t), Fig. 3) can be compared to the aggregated whole (Os t1a1(t), Figs. 5

10

and 8). While diurnal and weekly trends in Os soiqi(t) are most commonly
reported for office environments, such room-scale occupancy profiles do
not account for the unique seated occupancy schedules of each office
occupant. It is evident through the individual seated occupancy barc-
odes displayed in Fig. 3 that each desk-chair pair is occupied in varying
amounts, with some seats occupied significantly more (e.g. seats 16 and
17) than others (e.g. seats 13 and 14). As discussed in Section 3.1, each
chair was ranked as high, medium, or low according to the amount of
time they were employed relative to the other seats, where n = 4 desk-
chair pairs were ranked as high, n = 5 chairs were ranked as medium,
and n = 11 as low.

Fig. 9 presents the weekly profile (Monday through Sunday) in the
seated occupancy probability for each category of relative presence
(high: yellow, medium: cyan, and low: violet). The occupancy proba-
bility ranges from 0, where the likelihood of seated occupancy is null ata
particular time, to 1, where the likelihood of seated occupancy is certain
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Fig. 9. Weekly trends in the seated occupancy probability for each category of relative presence: high (top), medium (middle), and low (bottom). The occupancy
probability ranges from 0, where the likelihood of seated occupancy is null at a particular time, to 1, where the likelihood of seated occupancy is certain at a

particular time.

Table 1

Median seat surface temperatures for three desk-chair pairs during occupied and unoccupied periods.

Seat No. February Median (°C) May Median (°C) August Median (°C)
Occupied Unoccupied Occupied Unoccupied Occupied Unoccupied
9 33.1 21.9 35.5 23.5 35.5 23.5
15 33.6 22.2 34.0 22.0 34.0 22.5
16 31.9 22.5 34.0 22.0 34.0 22.0

at a particular time. Fig. 9 demonstrates how measuring chair-specific
seated occupancy with a chair-based temperature sensor array can be
used to cluster occupants based on relative time spent in the office,
providing an extra layer of information beyond aggregated Og ya(t)
profiles. The temporal profiles in Fig. 9 can be interpreted as the prob-
ability of a seat in one of the categories as being occupied at a certain
time, however a larger sample size or context-dependent measurements
would be needed to more accurately represent other settings.

Different diurnal and weekly seated occupancy trends emerge among
the three categories of seated presence. The weekday diurnal seat oc-
cupancy probabilities for the high occupancy desk-chair pairs show a
trimodal shape with three distinct peaks at approximately 12:00, 16:00,
and 20:00. The medium seats are primarily unimodal in shape during
the weekdays and the low seats have a less defined shape. The high
category seats have occupancy probabilities reaching and exceeding
0.50 during peak hours, whereas the medium category seats are likely to
be occupied less than 50% of the time during weekday afternoons. Low
category seats are much less likely to be occupied, with probabilities less
than 0.25.

All three categories show stronger seated presence during the
weekdays, especially Monday through Wednesday, followed by a
noticeable decrease on Thursday and Friday, and additional reduction
on the weekend. The seats in the low occupancy category are occupied
throughout the week in a seemingly unpredictable pattern, suggesting
irregular use patterns of the Living Lab office. Conversely, seats in the
high occupancy category follow a more recurrent office use schedule.
Weekday occupancy probability distributions shown by Peng et al.
(2017) yielded multi-person offices with notable bimodal distributions
and several personal offices with less predictable schedules [30], similar
to the low occupancy category for the Living Lab office. The offices
studied in Ref. [30] also showed higher variety than multi-person offices
for different days of the week.
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4. Discussion

4.1. Applications of spatial seated occupancy detection in an open-plan

office

Monitoring the seated presence of individual occupants with chair-
appended thermocouples, rather than the composite office population
as is done with delocalized occupancy sensing techniques (e.g. a single
CO-, or door PIR sensor per office), allows for the creation of a spatial
grid of office use schedules over varying time scales (Figs. 3 and 4). Such
spatial patterns can inform the regularity, or irregularity, of office oc-
cupancy among specific occupants or groups of occupants. Chair-
resolved seated occupancy data can identify hourly, daily, weekly, and
monthly trends in an individual’s use of a shared workspace. The high
degree of variability observed in both Os(t) and [ O;(t) dt among the 20
desk-chair pairs in the Living Lab office suggest the need for monitoring
individual occupancy trends in a modern open-plan office environment.

The creation of spatial maps of Os(t) and [ Os(t) dt enabled by the
deployment of a chair-based temperature sensor array provides a basis
to infer how chair-specific seated occupancy trends influence indoor
environmental quality in a collaborative open-plan office. Tracking the
historical presence of people seated in a room (Fig. 3) is useful for
studying the long-term impact of thermal comfort, lighting, ventilation,
and indoor air quality on productivity and health. Binary seated occu-
pancy time-series can be integrated with material balance models and
per person emission rates to estimate concentrations of human-
associated species, such as biological particles and VOCs. Individual
occupancy trends can inform the contribution of a given occupant to the
total concentration of a particular species.

The spatial maps of O;(t) can be used with computational fluid dy-
namics simulations to model the spatial dispersion of human-associated
species and subsequent inhalation exposure of seated receptors at
varying distances from the seated source. Spatially-resolved tracking of
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seated occupants is especially of value in understanding airborne
transmission of viruses produced by respiratory activities. Furthermore,
spatial indoor seated occupancy monitoring platforms based on chair-
based temperature sensing can be integrated with contact tracing dur-
ing pandemics to reduce the spread of infectious diseases. Spatial maps
in O4(t) and [ Os(t) dt can guide open-plan office seat assignments to
decrease the likelihood that people are in close spatial proximity to one
another by considering individual office use patterns.

4.2. Diurnal seated occupancy diversity factor profiles

The diurnal profiles in total seated occupancy determined by the
chair-based temperature sensor array (Figs. 5 and 6) can be used to
evaluate a time-resolved seated occupancy diversity factor following
ANSI/ASHRAE/IES Standard 90.1-2019. When a room’s utilization
schedule is not known, ASHRAE 90.1 suggests using an occupancy di-
versity factor based on predicted office demand for weekdays and
weekends. As such, diversity factors are of value for conducting energy
simulations for office environments under variable occupancy [70]. The
occupancy diversity factor can be determined by dividing the actual
room occupancy by the room seat capacity and thus, ranges from 0 for
an unoccupied room to 1 for a room occupied at capacity. Fig. 7 illus-
trates the weekday seated occupancy diversity factor computed for the
Living Lab office with a room capacity of 20 seats (left y-axis: mean,
median, and 25th/75th percentile for February 10 to August 31, 2019)
and the weekday office occupancy diversity factor recommended by
ASHRAE 90.1 (right y-axis) [70].

The Living Lab and ASHRAE 90.1 weekday occupancy diversity
factors are similar in shape, yet different in magnitude. As discussed
previously, the characteristic weekday diurnal Og s (t) profile exhibits
two peaks at around 12:00 and 16:00. Each peak in O; 1o (t) corresponds
to a peak in the seated occupancy diversity factor, which is approxi-
mately 0.20 at 12:00 and 0.25 at 16:00. At 16:00, the diversity factor
varies been 0.15 (25th percentile) and 0.35 (75th percentile), demon-
strating that the Living Lab room occupancy commonly remains below
one-third of its 20 seat capacity. The ASHRAE 90.1 occupancy diversity
factor shows step-wise peaks at approximately the same time intervals as
for the Living Lab office. However, the magnitude of the ASHRAE 90.1
occupancy diversity factor is much greater, with peaks approaching 1
from 09:00 to 12:00 and 14:00 to 17:00. During the evening, from 19:00
to 22:00, the Living Lab and ASHRAE 90.1 diversity factors are more
similar in magnitude, varying between 0.075 and 0.10. The differences
observed between the Living Lab and ASHRAE 90.1 diversity factors
highlight the potential benefits that can be gained by tailoring building
demand to specific office environments [70], especially for offices such
as the Living Lab which operate under atypical workday schedules.

Classifying a room based on fullness and the diversity of work-
related activities helps to understand the energy demand with regards
to lighting, electronic devices, heating and cooling, and ventilation.
Similar to this study, Duarte et al. (2013) compared monthly measured
room occupancies in commercial offices to the ASHRAE 90.1 diversity
factor schedule [70]. Both private and open-plan offices had notable
overlap with the peak times of energy demand, but differed notably in
peak magnitudes, which were overestimated by the ASHRAE 90.1 di-
versity factor. This difference was exacerbated on days on or near hol-
idays and was also variable for different spaces and days of the week.

4.3. Seated occupancy sensing considerations and limitations

Occupant sensing campaigns must consider indoor space usage to
select accurate sensing systems. The chair-based thermocouple arrays
introduced in this study are evaluated as accurate for estimating seated
occupancy. When someone sits in a chair, provided the chair is not
heavily covered in layers of thick blankets or jackets, the datalogger
instantly senses one’s presence. The algorithm used to estimate
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occupancy after data collection ensures that the binary occupancy is
noted within 15 s of the real action. This method has an advantage over
other seat-based occupancy measurement systems in that thermal
sensing tailors to human detection, while pressure detection may add
false-positives [90]. As it is an instantaneous method of seated occu-
pancy sensing, it does not require training for post-occupancy estima-
tions; however, methods of real-time data collection would further the
application potential of the thermocouple arrays. Because 20 separate
sensors and dataloggers were used to create an array detection system,
of known locations, the spatial grid reflects exact desk locations.
Device-centered detection methods such as a Bluetooth and WiFi sensing
can also be used to create a grid using sensors, and can detect zone-based
location, rather than exact occupant location [73,77].

In order to capture the presence of standing or moving individuals in
a space intended for primarily sitting, a seated occupancy detection
method can be combined with room-based sensors, such as PIR or
cameras. Delocalized occupancy sensing in larger buildings with more
frequent room traversal, rather than smaller zones, is possible with the
use of less accurate, but more broader sensing techniques, including
Bluetooth, WiFi, and PIR, rather than seat-based sensors.

5. Conclusions

This study developed and evaluated a novel indoor occupancy
sensing technique — a chair-based temperature sensor array — to monitor
seated occupancy patterns in an open-plan office environment. The
chair-based temperature sensor array enabled for highly localized seated
occupancy detection by tracking the seat surface temperatures and bi-
nary seated occupancies of each chair in the office with 15-s time res-
olution. The technique offers advantages compared to delocalized
occupancy sensing techniques, such as a single CO, or door PIR sensor
per office. Notably, spatial maps in chair-specific seated occupancy
trends over varying temporal scales offer insight into how each occupant
contributes to office energy expenditures. The near-instant rise and
decay in seat surface temperatures at the beginning and end of a seated
period, respectively, demonstrates that this non-invasive technique can
rapidly detect seated presence. Chair-based temperature sensing pro-
vides a means to categorize seated occupancy by relative level of pres-
ence in the office and cluster occupants by the amount of time they
spend in a modern, collaborative indoor workspace. This technique is
well suited for indoor environments that are primarily used for sitting-
related tasks in a single, well-defined zone.

The chair-based temperature sensor array captures the diversity in
office use patterns for populations that do not follow traditional work
schedules. In societies fueled more by service- and technology-based
industries, the idea of a typical office setting is becoming more ab-
stract as buildings get creative with flexible definitions for office envi-
ronments. Development of co-working spaces, the ability to work from
home, and on-demand workplaces attract companies and freelancers
alike, with the opportunities to save costs, promote creative collabora-
tion, and reduce air pollution due to unnecessary commutes [93].
Straying from the traditional 09:00 to 17:00 workday will have drastic
effects on predicted building usage profiles and the resulting temporal
energy demands. Proper energy audits and smart buildings can help to
avert avoidable energy spending in these unique contexts. As shown in
this study for a Living Lab office, seated occupancy profiles vary
considerably among the 20 occupants due the flexible work schedules of
the graduate students.

Seated occupancy monitoring with chair-appended thermocouples
can guide research on how people shape the composition of indoor air as
individual occupancy profiles are continually recorded. The chair-based
temperature sensor array can be used streamline data collection for
epidemiology studies to monitor the continuity and extent of time in-
dividuals spend sitting continuously at work. Reliable, continuous
monitoring can aid in improving sitting-related information in specific
environments and can be used to tailor intervention strategies to prevent
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sedentary-related health problems, such as encouraging management to
allow for more active workplaces [49]. A low-cost, flexible version of the
thermocouple setup could relay information to an app that tells people
how long they are present, allowing them to track their own office time
as well as levels of continuous sitting.

Future efforts can focus on integration of a chair-based temperature
sensor array with IoT-based platforms for buildings. Real-time data co-
ordination through wireless connectivity would reduce the need for
manual downloading of seat surface temperatures. Chair-based occu-
pancy detection methods resulting from novel uses of sensors and con-
trollers can be upscaled for applications where people sit most of the
time, such as in offices, classrooms, auditoriums, and in transportation.
As many large-scale, multi- and single-tenant office buildings currently
use COy-based DCV, these HVAC&L strategies can be improved when
integrated with seat-based sensors that immediately detect the number
of occupants to decrease lag and occupant schedule uncertainties. While
this thermocouple setup detects seated occupant locations with a high
degree of accuracy, the next step in delivering location-based HVAC&L
control, whether for thermal comfort or energy efficiency, depends on
the capabilities of the HVAC&L system itself to deliver tailored re-
sponses. Even with dependable monitoring is it also important to
consider that quantitative occupancy detection is not a substitute for
qualitative information, such as desired occupant preferences of thermal
status or activity levels [49]. Horr et al. (2016) conclude in a review of
indoor environmental quality and occupants that sensors related to
building systems could increase productivity by automatically relaying
subjective feedback information to companies to tailor the building to
employees [50].
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