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a b s t r a c t

Let F be a family of n-element sets. In 1995, Axenovich, Fon-Der-Flaass and Kostochka
established an upper bound on the size of F that does not contain a ∆-system with
q = 3 sets. Using the ideas of their proof we extend the results to an arbitrary q.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A family of sets D is called an (n, q)-∆-system if |D| = q, each member of D has cardinality n (i.e., D is n-uniform),
and the intersection of any two sets in D is the same. Similarly, a family of sets D is called a weak (n, q)-∆-system if
|D| = q, each member of D has cardinality n, and the intersection of any two sets in D has the same cardinality. Denote
by f (n, q) the maximum cardinality of an n-uniform family F which contains no (n, q)-∆-system, and denote by g(n, q)
the maximum cardinality of an n-uniform family F which contains no weak (n, q)-∆-system. Upper and lower bounds
for f (n, q) and g(n, q) have been studied extensively. A survey by Kostochka can be found in [7].

Axenovich, Fon-Der-Flaass and Kostochka [4] proved that for any ϵ > 0, there is a constant C(ϵ), such that

g(n, 3) ≤ C(n!)
1
2 +ϵ .

Based on ideas of [4], we were able to obtain an upper bound for general q, namely Theorem 2.1 which says that for
any integer q and ϵ ∈ (0, 1/(q − 1)] there is a constant C , such that

g(n, q) ≤ C(n!)1−
1

q−1 +ϵ
.

In Section 3 we prove that

g(n, q) ≥

{
(q(q − 1))n/2 if n is even

(q − 1)
(
(q − 1)2 +

q−2
2

)(n−1)/2
if n is odd.

As mentioned before, the idea of the proof of Theorem 2.1 is quite similar to that of [4] and is done by induction on
n. We finish this section with the outline of that idea. The base case is validated by choosing C large enough. Constants
K , L,M, α, that depend on ϵ and q but not on n, are chosen sequentially. Based on F that does not contain (n, q)−∆-system
we construct a ‘‘relatively large’’ subfamily G ⊂ F i.e. such that
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(i) |G|/|F| is bounded from below by 1/(Lnα)(q−2)nα ,

and which additionally satisfies

(ii) the ratio |{Y : |Y ∩ X |≥ nα}|/|G| is at least 1 − 1/L for all X ∈ G.

Note that the way we construct G is the main difference between [4] and our paper. Due to (i), an upper bound on |G|

yields also an upper bound on |F|, so the rest of the proof is focused on bounding |G|. Inside G there exists a family
A = {A1, . . . , AK } with |Ai ∩ Aj| ≤ Mnα . Family A is used to decompose G = G0 ∪ G1 ∪ G2 as follows:

G0 = {X ∈ G : ∃j ∈ [K ] such that|X ∩ Aj| < nα},
G1 = {X ∈ G : ∀j ∈ [K ] nα ≤ |X ∩ Aj| < Mnα},
G2 = {X ∈ G : ∃j ∈ [K ] such that|X ∩ Aj| ≥ Mnα}.

Bounding of |G0| will be based on use of inequality (ii) and bound on G2 will follow from Lemma 2.4 (in this lemma k = nα ,
δ =

1
q−1 − ϵ and ϵ1 is a small constant).

To estimate |G1| set B =
⋃

i,j Ai ∩ Aj and N(b, a1, . . . , aK ) to be the number of X ∈ G1 such that |X ∩ B| = b and
|X ∩ (Ai \ B)| = ai. Hence

|G1| ≤

∑
(b,a1,...,aK )∈D

N(b, a1, . . . , aK ),

where D is a set of all possible choices of (b, a1, . . . , aK ). To estimate each of N(b, a1, . . . , aK ) consider B̃, Ã1, . . . ÃK , subsets
of B, A1/B, . . . , Ak/B of size b, a1, . . . , aK respectively, and X = ∪

K
i=1Ãi ∪ B̃. An important observation that allows to

incorporate induction hypothesis is that for t = (n−b−a1−· · ·−aK ) a family G1(X) = {F\X : F ∈ G1, X ⊆ F} is t-uniform
and does not contain a weak (t, q)-∆-system. So N(b, a1, . . . , aK ) is bounded by estimating the number of possible choices
of B′, A′

1, . . . , A
′

K and using induction hypothesis for each such choice. Finally, |G1| is bounded by estimating a size of D
and using derived bounds for N(b, a1, . . . , aK ).

2. Main theorem

Theorem 2.1. Let q ≥ 3 be an integer and ϵ ∈ (0, 1/(q − 1)]. There exists C = C(ϵ, q) such that if F is an n-uniform family
of sets that does not contain weak ∆ system of size q, then

|F| ≤ C (n!)1−
1

q−1 +ϵ
.

Proof. For simplicity of the argument set δ =
1

q−1 − ϵ and note that δ ∈ [0, 1/(q − 1)). We work with δ instead of ϵ
for the rest of the proof. Given q and δ, we will now fix some other constants that are useful to prove Theorem 2.1. We
choose an integer K such that

K >
(q − 2)(1 − δ)
1 − (q − 1)δ

. (1)

Since δ ≥ 0 we observe that K ≥ q − 1. In order to select the other constants, we now make the following Claim:

Claim 2.2. Inequality (1) implies that for all M > (q − 2)/K,

δ +
1 − δ

K
>

M − 1 + δ(KM − M + 1)
KM − q + 2

(2)

We postpone the proof of Claim 2.2 until we have finished selecting constants. Next we choose M large enough
(M > max{q − 2, e2}) so that inequality (3) holds:

δ +
1 − δ

K
>

Mδ
M − q + 2

. (3)

Consequently, we choose α which is smaller than the left hand side of inequalities (2) and (3) and which is
simultaneously larger than the right hand sides of both. Such α satisfies

α >
Mδ

M − q + 2
,

α < δ +
1 − δ

K
,

α >
M − 1 + δ(KM − M + 1)

KM − q + 2
.
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Note that α > δ, and that the three inequalities above imply that

ϵ1 = α(M − q + 2) − Mδ > 0, (4)

ϵ2 = −αK + δK + 1 − δ > 0, (5)

ϵ3 = α(KM − q + 2) − M + 1 − δ(KM − M + 1) > 0. (6)

Finally, we choose L > 2K (say L = 3K ).
We now include the proof of Claim 2.2:

Proof of Claim 2.2.

δ +
1 − δ

K
>

M − 1 + δ(KM − M + 1)
KM − q + 2

⇔

δ +
1 − δ

K
> δ +

M − 1 + δ(q − 2 − M + 1)
KM − q + 2

⇔

1 − δ

K
>

M − 1 + δ(q − 1 − M)
KM − q + 2

⇔

(1 − δ)(KM − q + 2) > KM − K + δ(q − 1 − M)K ⇔

−q + 2 + (−δ)(KM − q + 2) > −K + δ(q − 1 − M)K ⇔

−q + 2 − δ(−q + 2) > −K + δ(q − 1)K ⇔

(−q + 2)(1 − δ) > −((q − 1)δ − 1)K ⇔

K >
(q − 2)(1 − δ)
(q − 1)δ − 1

. □

The proof of Theorem 2.1 is by induction on n. Let n0 be such that for all n ≥ n0

n1−α > 3M, nϵ1 > 2L2(q−2), nϵ2 > (2M)K ,
nα

ln n
≥

K + 1
MK 2 , nϵ3 > 4e7MK2

. (7)

Take

C = max
n≤n0

{
|F|

(n!)1−δ
: F is n-uniform, F has no weak (n, q)-∆-system}.

Observe that such a choice of C establishes the base case of induction.
Now assume that for all integers smaller than n we have proved Theorem 2.1. Let F be an n-uniform system that does

not contain a weak (n, q) −∆-system. The following claim will be used extensively throughout the proof.

Claim 2.3. Let X be a set of size x and F ′
= {F ∈ F : X ⊂ F}, then

|F ′
| ≤ C ((n − x)!)1−δ .

Proof of Claim. Note that F̃ = {F\X : F ∈ F ′
} is (n − x)-uniform and does not contain a weak (n − x, q)-∆-system. The

claim then follows from the induction hypothesis. □

Set

k = nα and ℓ = Lk.

The following lemma is also needed.

Lemma 2.4. For every A ∈ F

|{X ∈ F : |A ∩ X |≥ Mk}| ≤ n−ϵ1nα
C (n!)1−δ

k(q−2)k .

Proof of Lemma. Note that ϵ1 > 0 by (4). Observe that in view of Claim 2.3 and induction hypothesis, we have

|{X ∈ F : |X ∩ A|≥ Mk}| ≤

∑
i≥Mk

(
n
i

)
C ((n − i)!)1−δ .

In order to further estimate this upper bound we set

φ(i) =

(
n
i

)
((n − i)!)1−δ .
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Then, for all i ≥ Mk

φ(i + 1)
φ(i)

=

( n
i+1

)
((n − i − 1)!)1−δ(n

i

)
((n − i)!)1−δ

=
n − i
i + 1

1
(n − i)1−δ

=
(n − i)δ

i + 1
≤

nδ

Mnα + 1
<

1
M
,

with last inequality following from α > δ. Consequently,∑
i≥Mk

φ(i) ≤
M

M − 1
φ(Mk) ≤ 2φ(Mk).

Hence,

|{X ∈ F : |X ∩ A|≥ Mk}| ≤ 2Cφ(Mnα).

It is now sufficient to show that

2Cφ(Mnα) ≤ n−ϵ1nα
C (n!)1−δ

k(q−2)k ,

or equivalently that

P := 2nϵ1n
α
k(q−2)kφ(Mnα)/(n!)1−δ < 1.

Indeed,

P = 2 nϵ1n
α
nα(q−2)nα

(
n

Mnα

)
(n − Mnα)!1−δ/(n!)1−δ

≤ 2 nϵ1n
α
nα(q−2)nα (n

Mnα )δ

Mnα!

≤ 2 nϵ1n
α
nα(q−2)nαnMnαδ eMnα

(Mnα)Mnα

≤ 2
( e
M

)Mnα

n(ϵ1+α(q−2)+δM−αM)nα .

By (4) the exponent of n above is equal to zero. Also by the choice of M we have that M > e2 so we infer that

P ≤ 2
( e
M

)Mnα

< 1. □

Our next goal is to obtain G with following two properties:

for all A ∈ G, |{X ∈ G : |A ∩ X |< k}| <
|G|

L
, (8)

|G| ≥
|F|

ℓ(q−2)k . (9)

In order to obtain a family G we construct families

F = F0 ⊇ F1 ⊇ · · · ⊇ Fm = G

with m ≤ (q − 2)k and auxiliary multisets

∅ = I0 ⊂ I1 ⊂ · · · Im ⊆ {0, 1, . . . , k − 1}q−2.

Take F0 = F and I0 = ∅. For j > 0, if there is Fj ∈ Fj−1 and xj ∈ {0, 1, . . . , k − 1} such that

|{X ∈ Fj−1 : |X ∩ Fj|= xj}| ≥
Fj−1

ℓ
, (10)

then set Ij = Ij−1 ∪ xj and

Fj = {X ∈ Fj−1 : |X ∩ Fj| = xj}. (11)

Otherwise stop the process, and set m = j − 1.
This process ends after at most (q − 2)k steps as a consequence of the following claim.

Claim 2.5. No value of x ∈ {0, . . . , k − 1} can appear in some Ij more than (q − 2) times.



3038 A. Arman, B. Kay and V. Rödl / Discrete Mathematics 342 (2019) 3034–3042

Proof of Claim. The proof is by contradiction. Assume x appears in an Ij at least (q − 1) times. Let x = xi1 = · · · = xiq−1
for some 1 ≤ i1 < · · · < iq−1 ≤ j, and let Fi1 ∈ Fi1−1, . . . , Fiq−1 ∈ Fiq−1−1 be the sets used in the process of creating
Fi1 , . . . ,Fiq−1 . It follows from (11) that sets Fi1 , . . . , Fiq−1 are different and from (10) that all constructed sets Fi are
nonempty. Hence for an X ∈ Fiq−1 we infer that {Fi1 , Fi2 , . . . , Fiq−1 , X} is a weak ∆-system of size q with a common
intersections of size x. This contradicts the assumption of Theorem 2.1 □

Hence, the process described above stops after m ≤ (q − 2)k steps.
Recall that G = Fm. We now want to show, that G satisfies (8) and (9). Note that (9) is straightforward, since in each

step of the construction we take 1/l portion of the previous family, i.e. |Fj| ≥
|Fj−1|

l holds. We prove that (8) holds by
contradiction. Assuming that (8) fails, it means that there exist Fm+1 ∈ G = Fm such that

|{X ∈ G : |X ∩ Fm+1|< k}| >
|Fm|

L
.

Hence there exists xm+1 < k, such that

|{X ∈ G : |X ∩ Fm+1|= xm+1}| >
|Fm|

ℓ
.

This, however, means that we should have continued in the construction, contradicting our assumption that G = Fm.

Construction of A. Next we will construct a set A = {A1, . . . , AK } ⊆ G with the property that

|Ai ∩ Aj| ≤ Mk for all 1 ≤ i < j ≤ K . (12)

(This set will be subsequently used to bound |F|.) We choose A1 ∈ G arbitrarily and then pick A2, . . . , AK consequently.
Assume that for some Aj with j < K we cannot find Aj+1 ∈ G that will satisfy (12), then any X ∈ G intersects some Ai,
i = 1, . . . , j in at least Mk elements. Hence, by (9), Lemma 2.4 and (7)

|F| ≤ ℓ(q−2)k
|G|

≤ L(q−2)kk(q−2)kK max
i∈[j]

|{X ∈ G : |X ∩ Ai|≥ Mk}|

≤ L2(q−2)nαn−ϵ1nαC(n!)1−δ < C(n!)1−δ.

In other words, if we could not find K sets A1, . . . , AK satisfying (12), then

|F| < C(n!)1−δ,

establishing the inductive step.
Consequently, we may assume that the process of selecting members of the family {A1, A2, . . . , AK } does not stop

before AK is chosen. Having constructed A = {A1, A2, . . . , AK } we will set

G0 = {X ∈ G : ∃j ∈ [K ] such that|X ∩ Aj| < k},
G1 = {X ∈ G : ∀j ∈ [K ] k ≤ |X ∩ Aj| < Mk},
G2 = {X ∈ G : ∃j ∈ [K ] such that|X ∩ Aj| ≥ Mk}.

Note that G = G0 ∪ G1 ∪ G2. By (8) and choice of L, we infer

|G0| ≤ K
|G|

L
<

|G|

2
.

Consequently, |G| ≤ |G0| + |G1| + |G2| implies |G| < 2|G1| + 2|G2|, so by (9)

|F| ≤ ℓ(q−2)k
|G| < 2ℓ(q−2)k(|G1| + |G2|). (13)

We will first bound 2ℓ(q−2)k
|G2|. By Lemma 2.4 and recalling that L > 2K ,

2ℓ(q−2)k
|G2| ≤ 2L(q−2)kk(q−2)kK max

j∈[K ]

|{X ∈ G : |X ∩ Aj|≥ Mk}|

≤ L2(q−2)nαn−ϵ1nαC(n!)1−δ

≤
(
L2(q−2)n−ϵ1

)nα
C(n!)1−δ.

So, by (4) we get

2ℓ(q−2)k
|G2| <

1
2
C(n!)1−δ. (14)

Next, we bound 2ℓ(q−2)k
|G1|. Set B =

⋃
1≤i<j≤K (Ai ∩Aj). Recalling (12), we have |B| < K 2Mk. Set A′

i = Ai/B for i ∈ [K ]. Note
that

G1 =

⋃
b,a1,...,aK ∈Z≥0

b≤|B|, k≤b+ai, ai<Mk

{X ∈ G : ∀j |X ∩ A′

j| = aj, |X ∩ B| = b}. (15)
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Next, we estimate the number of X ∈ G that have a prescribed intersection size with each of B, A1, . . . , AK . To this end
set

N(b, a1, . . . , aK ) = |{X ∈ G : ∀j |X ∩ A′

j|= aj, |X ∩ B|= b}|.

Let D = {(b, a1, . . . , aK ) : b < MK 2k, k ≤ b + ai, ai < Mk}. Note that (15) implies

|G1| ≤

∑
(b,a1,...,aK )∈D

N(b, a1, . . . , aK ). (16)

In order to further estimate |G1| we provide a bound for N(b, a1, . . . , aK ) over the set D. Consider B̃, Ã1, . . . ÃK , subsets of
B, A′

1, . . . , A
′

k of size b, a1, . . . , aK respectively, and set X = ∪
K
i=1Ãi ∪ B̃. Define a family G1(X) = {F\X : F ∈ G1, X ⊆ F},

which, for t = n − b −
∑K

i=1 ai, is t-uniform and does not contain a weak (t, q)-∆-system (due to Claim 2.3). Applying
induction hypothesis to G1(X), we have

N(b, a1, . . . , aK ) ≤

(
|B|
b

) K∏
i=1

(
|Ai|

ai

)
C [(n − b − a1 − · · · − aK )!]1−δ ,

which implies

N(b, a1, . . . , aK ) ≤ 2MK2k
K∏

i=1

(
n
ai

)
C [(n − b − a1 − · · · − aK )!]1−δ . (17)

In order to further bound N(b, a1, . . . , aK ), recall that (b, a1, . . . , aK ) ∈ D. We set a = ⌈
∑K

1 ai/K⌉. Since ai < Mk for every
j = 1, . . . , K we have that a ≤ Mk. We note that

∑
ai ≥ Ka− K . In view of definition of G1 we have b+ ai ≥ k and hence

b + a ≥ k, or equivalently −b ≤ a − k. Hence, we infer that

−b − a1 − · · · − aK ≤ −(K − 1)a + K − k.

Using the log-concavity of binomial coefficients we infer that

N(b, a1, . . . , aK ) ≤ 2MK2k
K∏

i=1

(
n
ai

)
C [(n − (K − 1)a + K − k)!]1−δ

≤ 2MK2k
(
n
a

)K

C [(n − (K − 1)a + K − k)!]1−δ .

In order to further bound N(b, a1, . . . , aK ) we set

ψ(a) =

(
n
a

)K

C [(n − (K − 1)a + K − k)!]1−δ (18)

and verify the following

Claim 2.6.

max
a≤Mk

ψ(a) = ψ(Mk).

Proof of Claim. Indeed, observe that for a ≤ Mk

ψ(a)
ψ(a − 1)

=

(n
a

)KC [(n − (K − 1)a + K − k)!]1−δ( n
a−1

)KC [(n − (K − 1)(a − 1) + K − k)!]1−δ

≥

(
n − a + 1

a

)K (
1

nK−1

)1−δ

.

Since a ≤ Mk and because of (4) we have
n − a + 1

a
≥

n
a

− 1 ≥
n
Mk

− 1 ≥
n

2Mk
,

so we get

ψ(a)
ψ(a − 1)

≥

( n
2Mk

)K
(

1
nK−1

)1−δ

=
1

(2M)K
n(1−α)K−(K−1)(1−δ)
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=
1

(2M)K
n−αK+Kδ+(1−δ)

(by (5)) =
1

(2M)K
nϵ2 .

By (7) the last expression is greater than 1. Consequently φ(a + 1) ≥ φ(a), which establishes Claim 2.6. □

Claim 2.6 implies that for (b, a1, . . . , aK ) ∈ D

N(b, a1, . . . , aK ) ≤ 2MK2kψ(Mk),

and by (18)

N(b, a1, . . . , aK ) ≤ 2MK2k
(

n
Mk

)K

C [(n − (K − 1)Mk + K − k)!]1−δ .

This, together with (16) implies the following bound on |G1|.

|G1| ≤ MK 2k (Mk)K 2MK2k
(

n
Mk

)K

C [(n − (K − 1)Mk + K − k)!]1−δ

≤ (MK 2k)(Mk)K eMK2k
(

n
Mk

)K

C [(n − (K − 1)Mk + K − k)!]1−δ

≤ e2MK2k
(

n
Mk

)K

C [(n − (K − 1)Mk + K − k)!]1−δ , (19)

with the last inequality due to the fact that we have xK 2
· xK ≤ eK

2x for all x ≥ 1 and K ≥ 1. Finally, we establish the
following

Claim 2.7.

2ℓ(q−2)k
|G1| <

1
2
C(n!)1−δ.

Proof of Claim. Indeed, by (19)

2ℓ(q−2)k
|G1| ≤ 2ℓ(q−2)ke2MK2k

(
n
Mk

)K

C [(n − (K − 1)Mk + K − k)!]1−δ .

To establish Claim 2.7 it is sufficient to show

4ℓ(q−2)ke2MK2k
(

n
Mk

)K

<

(
n!

(n − (K − 1)Mk + K − k)!

)1−δ

. (20)

To estimate the left side of (20) we recall that L = 3K , K > (q−2),M > e2 and note that Lq−2
= (3K )q−2 < e3K (q−2)

≤ e3K
2M .

4ℓ(q−2)ke2MK2k
(

n
Mk

)K

≤ 4L(q−2)kk(q−2)ke2MK2k
( ne
Mk

)MkK

≤ 4e5K
2Mkk(q−2)kn(1−α)KMk

( e
M

)MKk

≤ 4e5K
2Mkn(α(q−2)+(1−α)KM)k. (21)

On the other hand, the right side of (20) can be bounded using n
( n
e

)n
> n! >

( n
e

)n:(
n!

(n − (K − 1)Mk + K − k)!

)1−δ

≥

((n
e

)n 1
n

( e
n

)n−(K−1)Mk+k−k
)1−δ

≥
1
n

((n
e

)(K−1)Mk−K+k
)1−δ

≥
1

nK+1

1
eMK2k

n((K−1)Mk+k)(1−δ).

Moreover, nK+1
≤ e(K+1) ln n

≤ eMK2k by (7), so(
n!

(n − (K − 1)Mk + K − k)!

)1−δ

≥
1

e2MK2k
n((K−1)Mk+k)(1−δ). (22)
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Recall, that our goal is to prove (20), and according to (21) and (22) it is sufficient to show that

4e5K
2Mkn(α(q−2)+(1−α)KM)k

≤
1

e2MK2k
n((K−1)Mk+k)(1−δ),

or by rearranging that

4e7K
2Mk

≤ n((KM−M+1)(1−δ)−(α(q−2−KM)+KM))k. (23)

Note that the coefficient of the exponent of the right side after rearranging terms is equal to

KM − M + 1 + (KM − M + 1)(−δ) − α(q − 2 + KM) − KM =

α(KM − q + 2) − M + 1 − δ(KM − M + 1) = ϵ3.

Hence, (23) is equivalent to 4e7K
2Mk < nϵ3k which is true by (7). □

Finally, recall that by (13)

|F| < 2ℓ(q−2)k
|G1| + 2ℓ(q−2)k

|G2|.

By (14) and Claim 2.7 both terms on the right side are smaller than 1
2C(n!)

1−δ , which implies

|F| < C(n!)1−δ.

Therefore, the induction step holds, and this finishes the proof of Theorem 2.1. □

3. Lower bound

In this section, we will show that estimates on f (n, q) imply lower bounds on g(n, q).
Trivially, f (1, q) = q − 1 and in [3], Abbott, Hanson, and Sauer settled exactly the values of f (2, q):

Theorem 3.1. For all q ≥ 0, we have:

f (2, q) =

{
q(q − 1) if n is even
(q − 1)2 +

q−2
2 if n is odd.

Moreover, in [2] Abbott and Hanson showed the following:

Theorem 3.2 (Abbott, Hanson, 1977). For all r , s, q ≥ 0, we have:

g(r + s, q) ≥ g(r, q)g(s, q).

In [5], Deza showed that the only large weak-∆-systems are also ∆-systems. More precisely:

Theorem 3.3 (Deza, 1974). For all n > 0 and q > n2
− n + 1, if F is a weak (n, q)-∆-system, then F is an (n, q)-∆-system.

In particular, we have:

f (n, q) = g(n, q).

In [6], Erdős, Milner, and Rado showed that g(n, q) ≥ (q − 1)n for all n, q > 0. Here we remark that the result of
Theorem 3.3 shows that for q > n2

− n + 1, the lower bounds for f (n, q) are also lower bounds on g(n, q). We observe
now that the inequality in Theorem 3.2 along with the results of Theorem 3.3 can be used to prove lower bounds on
g(n, q) whenever q ≤ n2

− n + 1.

Theorem 3.4. Fix n > 0 and let 3 < q ≤ n2
− n + 1. Then we have:

g(n, q) ≥

{
(q(q − 1))n/2 if n is even

(q − 1)
(
(q − 1)2 +

q−2
2

)(n−1)/2
if n is odd.

Proof of Claim. For ease of notation, suppose n is even, and set n = 2t . By iterated application of the inequality in
Theorem 3.2 and observing that q > 22

− 2 + 1, we have:

g(n, q) = g(2 + 2 + · · · + 2  
t

, q)

≥ g(2, q)g(2, q) . . . g(2, q)  
t

= f (2, q)f (2, q) . . . f (2, q)  
t
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= (q(q − 1)) (q(q − 1)) . . . (q(q − 1))  
t

= (q(q − 1))t

= (q(q − 1))n/2 .

as desired. The case when n is odd resolves similarly by writing n = 2t + 1 and applying f (1, q) = (q − 1). □

Abbott and Exoo [1] obtained bounds better than in Theorem 3.4 for q = 4, q = 5 and odd n. Namely they showed
that for odd n

g(n, 4) ≥ 31(10)(n−3)/2 and g(n, 5) ≥ 79(20)(n−3)/2.

Their bounds are based on g(3, 4) ≥ 31, g(3, 5) ≥ 79 and g(2, 5) ≥ 20.
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