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1. Introduction

A family of sets D is called an (n, q)-A-system if |D| = q, each member of D has cardinality n (i.e., D is n-uniform),
and the intersection of any two sets in D is the same. Similarly, a family of sets D is called a weak (n, q)-A-system if
|D| = q, each member of D has cardinality n, and the intersection of any two sets in D has the same cardinality. Denote
by f(n, q) the maximum cardinality of an n-uniform family F which contains no (n, q)-A-system, and denote by g(n, q)
the maximum cardinality of an n-uniform family F which contains no weak (n, q)-A-system. Upper and lower bounds
for f(n, q) and g(n, q) have been studied extensively. A survey by Kostochka can be found in [7].

Axenovich, Fon-Der-Flaass and Kostochka [4] proved that for any € > 0, there is a constant C(¢), such that

g(n, 3) < C(n)z*e.

Based on ideas of [4], we were able to obtain an upper bound for general g, namely Theorem 2.1 which says that for
any integer q and € € (0, 1/(q — 1)] there is a constant C, such that

g(n. q) < C(n))"@ 7,

In Section 3 we prove that
(q(q — 1)? if n is even
(@1 (g—12+%52)""" ifnis odd.
As mentioned before, the idea of the proof of Theorem 2.1 is quite similar to that of [4] and is done by induction on
n. We finish this section with the outline of that idea. The base case is validated by choosing C large enough. Constants

K,L, M, «, that depend on € and g but not on n, are chosen sequentially. Based on F that does not contain (n, g)— A-system
we construct a “relatively large” subfamily G C F i.e. such that

g(n,q) >
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(i) 16]/|F| is bounded from below by 1/(Ln®)d-2n",
and which additionally satisfies
(ii) the ratio |{Y : |Y N X|> n“}|/|G| is at least 1 — 1/L for all X € G.

Note that the way we construct G is the main difference between [4] and our paper. Due to (i), an upper bound on |G|
yields also an upper bound on |F|, so the rest of the proof is focused on bounding |G|. Inside G there exists a family
A= {Aq, ..., Ac} with |A; N Aj| < Mn®. Family A is used to decompose G = Go U G U G, as follows:

Go = {X € G : 3j € [K] such that]X NA;| < n“},
G1={Xeg:Vje[KIn" <|XNA]| < Mn"},
G» = {X € G : 3j € [K] such that|X N A;| > Mn*}.

Bounding of |Gy| will be based on use of inequality (ii) and bound on G, will follow from Lemma 2.4 (in this lemma k = n%,
5= qﬁ — € and ¢ is a small constant).

To estimate |G| set B = U,.,jA,» N Aj and N(b, a4, ..., ax) to be the number of X € G; such that [XNB| = b and
|X N (A; \ B)| = a;. Hence

|G1] < Z N(b,ay, ..., ax),
(b,ay,...,ag)ebD
where D is a set of all possible choices of (b, ay, ..., ax). To estimate each of N(b, ay, . . ., ax) consider B, Ay, ...Ag, subsets
of B,A1/B, ..., Ax/B of size b, ay, ..., ax respectively, and X = U{(:lAi U B. An important observation that allows to
incorporate induction hypothesis is that fort = (n—b—a; —- - - —ag) a family G{(X) = {F\X : F € G1, X C F} is t-uniform
and does not contain a weak (t, q)-A-system. So N(b, ay, ..., ax) is bounded by estimating the number of possible choices
of B', A}, ..., Ay and using induction hypothesis for each such choice. Finally, |G| is bounded by estimating a size of D
and using derived bounds for N(b, ay, ..., ag).

2. Main theorem

Theorem 2.1. Let q > 3 be an integer and € € (0, 1/(q — 1)]. There exists C = C(e, q) such that if F is an n-uniform family
of sets that does not contain weak A system of size q, then

1
|Fl < C(ny'maTte,

Proof. For simplicity of the argument set § = %1 — € and note that § € [0, 1/(q — 1)). We work with ¢ instead of €
for the rest of the proof. Given q and §, we will now fix some other constants that are useful to prove Theorem 2.1. We
choose an integer K such that
—-2)(1-=6
K> 4=2=9) (1)
1—(g—1)

Since § > 0 we observe that K > q — 1. In order to select the other constants, we now make the following Claim:

Claim 2.2. Inequality (1) implies that for all M > (q — 2)/K,

1-8 M—1+8KM—M+1
5+ - + 4( +1) 2)
K KM —q+2

We postpone the proof of Claim 2.2 until we have finished selecting constants. Next we choose M large enough
(M > max{q — 2, e?}) so that inequality (3) holds:
1-6 M$é

> .
K M—q+2

Consequently, we choose o which is smaller than the left hand side of inequalities (2) and (3) and which is
simultaneously larger than the right hand sides of both. Such « satisfies

MS§

M—-q+2°
1-6

S+ —rf,
a<—|—K

M—14+8KM—M +1)
KM —q+2 '

8+

(3)

o >
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Note that « > §, and that the three inequalities above imply that

e =aM —q+2)—Ms >0, (4)
€&=—aK+38K+1—-6>0, (5)
e3=akM —q+2)—M+1—8KM—-M+1)> 0. (6)

Finally, we choose L > 2K (say L = 3K).
We now include the proof of Claim 2.2:

Proof of Claim 2.2.
1-8 M—-1+8KM—-M+1)
S+ > =4
K KM —q+2
8+]—_(S>8+M_1+8(q_2_M+])
K KM —q+2
1-8 M—-148g—1-M)
Kk KM —q+2
(1—8)KM—q+2)>KM—K+8(qg—1—MXK
—q+24+(—0)KM—-q+2)>—-K+8qg—1—-—M)XK
—q+2-686(—q+2)>—-K+qg— 1)K
(=q+2)(1-8)>—((g—1)8 — 1)K
(g—2)1-39)
(qg—18—1"
The proof of Theorem 2.1 is by induction on n. Let ny be such that for all n > ng
n® K+1

_—
Inn — MK?

¢

se et ¢

nl=® > 3M, n > 20292 g2 5 MK, ne > 4e™K? 7)

Take

C = max{——— : F is n-uniform, F has no weak (n, q)-A-system}.

Observe that such a choice of C establishes the base case of induction.
Now assume that for all integers smaller than n we have proved Theorem 2.1. Let F be an n-uniform system that does
not contain a weak (n, q) — A-system. The following claim will be used extensively throughout the proof.
Claim 2.3. Let X be a set of size x and ' = {F € F : X C F}, then
IFl<Cn—xH'".
Proof of Claim. Note that 7 = {F\X : F € F'} is (n — x)-uniform and does not contain a weak (n — x, q)-A-system. The
claim then follows from the induction hypothesis. O
Set
k=n* and ¢ =1Lk

The following lemma is also needed.

Lemma 2.4. ForeveryAe F

e C @)

X € F: JANX|> Mk}| <n e

Proof of Lemma. Note that €; > 0 by (4). Observe that in view of Claim 2.3 and induction hypothesis, we have

X e F: XNA= Mk} < (?)C((n —)n'-e,

i>Mk

In order to further estimate this upper bound we set

(i) = ('Z) ((n—in'=
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Then, for all i > Mk
gli+1) (1) (—i=DH'™ n_i 1

o0 (Y- i+1m—i
(n—i) n’ 1
< < —

i1 — Mn*+1 M
with last inequality following from « > §. Consequently,

’

M
> ) < = $(Mk) < 20(MK).
i>Mk

Hence,
X € F: |XNA|= Mk}| < 2Cp(Mn*).
It is now sufficient to show that

2Cp(Mn*) < n—él"”%,
or equivalently that

P := 201" KDk (Mn®) /() < 1.
Indeed,

M';a)(n — M) (nt) =

Mn%\8
n

<2 nqn"‘ na(q—z)n"‘( )
Mn¥!

p=2 nqn"‘ na(q—z)n‘x (

eMn"
( Mn )Mn“

e \Mn* «
<2 ( ) pl€1+elq—2)+8M—aMn®

o _ o o
< 2 peit na(q 2)n nMn B

By (4) the exponent of n above is equal to zero. Also by the choice of M we have that M > e? so we infer that
e Mn%
P<2 (7) <1. O
M

Our next goal is to obtain G with following two properties:

forallAe g, {Xeg:|ANX|< k}|<%, (8)

| 7]

In order to obtain a family G we construct families
F=Fo2FRA22Fm=g
with m < (q — 2)k and auxiliary multisets
P=IClC- 1y C{0,1,..., k—1}92%
Take 7y = F and Iy = . For j > 0, if there is F; € Fj_; and x; € {0, 1, ..., k — 1} such that

Fi_
X € Fia XN Bl=x)l = =7 (10)
then set [; = [,_; Ux; and
Fi={Xe€F1:XNE|l=x). (11)

Otherwise stop the process, and set m =j — 1.
This process ends after at most (q — 2)k steps as a consequence of the following claim.

Claim 2.5. No value of x € {0, ..., k — 1} can appear in some I; more than (q — 2) times.
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Proof of Claim. The proof is by contradiction. Assume x appears in an Jj at least (q — 1) times. Let x = x;; = --- = x; _,
forsome 1 <i; < -+ <ig—1 < j,and let F, € F,_1,.. .,F,-qi1 € Fiy1-1 be the sets used in the process of creating
Fiysooos Fig_y- It follows from (11) that sets F;, ..., F_, are different and from (10) that all constructed sets F; are
nonempty. Hence for an X € Fi,_, we infer that {F,, F;,, ..., Fiqq,X} is a weak A-system of size g with a common
intersections of size x. This contradicts the assumption of Theorem 2.1 0O

Hence, the process described above stops after m < (q — 2)k steps.

Recall that G = F;,,. We now want to show, that G satisfies (8) and (9). Note that (9) is straightforward, since in each
step of the construction we take 1/ portion of the previous family, i.e. |[7j| > @ holds. We prove that (8) holds by
contradiction. Assuming that (8) fails, it means that there exist F;,+1 € G = F,; such that

HX € G IXNFpyal< k}| > @

Hence there exists x,,+1 < k, such that

X € G : XN Fnp1l= Xmia}l > lf7m|~
This, however, means that we should have continued in the construction, contradicting our assumption that G = 7.
Construction of A. Next we will construct a set A = {Aq, ..., Ax} C G with the property that

|AiNAjl <Mk forall1<i<j<K. (12)

(This set will be subsequently used to bound |F|.) We choose A; € G arbitrarily and then pick A,, ..., Ax consequently.
Assume that for some A; with j < K we cannot find Aj;1 € G that will satisfy (12), then any X € G intersects some A;,
i=1,...,jin at least Mk elements. Hence, by (9), Lemma 2.4 and (7)

|F| < €42k g
< [ Dkpla—2kge max X € G : X NAj|= Mk}|
IS

< 072" pmant )= < c(n)' .
In other words, if we could not find K sets A, ..., Ak satisfying (12), then
|7l < C(n!)'~,

establishing the inductive step.
Consequently, we may assume that the process of selecting members of the family {Aq, Ay, ..., Ax} does not stop
before Ay is chosen. Having constructed A = {A1, Az, ..., Ax} we will set
Go = {X € G : Jj € [K] such that|X NAj| < k},
G1={Xeg:Vjel[Klk<|XNAj]| < Mk},
G, = {X € G : 3j € [K] such that|X N A;| > Mk}.

Note that G = Gy U G; U G,. By (8) and choice of L, we infer

gl g
<K— —_—.
IGol =K < 5
Consequently, |G| < |Go| + G1| + |G2| implies |G| < 2|G1| + 2|G.1, so by (9)
|F| < €972k|g| < 20972K(Gy| + |Ga)). (13)

We will first bound 2¢(9=2X|g,|. By Lemma 2.4 and recalling that L > 2K,

zg(q—z)szl < 2[(4=2)k(q=2)k je m[%(HX €G: X NA|> Mk}|
je

<[220 peein® o=
< (Lz(q_z)n_sl)"a c(n))'=2.
So, by (4) we get
2072k g, | < %C(n!)”. (14)
I\Lext, we bound 2019-2¥|G, |. Set B = |, ;_;¢(Ai NA)). Recalling (12), we have [B| < K>Mk. Set A; = A;/B for i € [K]. Note
that
G1 = U X €G:VjIXNA]| =g |XNB| =b}. (15)

b,al,...,aKezzo
b<|B|, k<b+a;, aj<Mk
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Next, we estimate the number of X € G that have a prescribed intersection size with each of B, Ay, ..., Ak. To this end
set
N(b,ay,...,ax)={X€G:Vj|X HA}|: a;, |X N B|= b}|.
Let D= {(b,as,...,ax): b < MK?k, k < b+ a;, a; < Mk}. Note that (15) implies
jGil< D Nb,a,...,a). (16)

(b,aq,...,ag)eD

In order to further estimate |G;| we provide a bound for N(b, a4, ..., ax) over the set D. Consider B’,A}, .. .,7\,(, subsets of
B, A/], ..., A, of size b, ay, ..., ax respectively, and set X = Uf:]A,- U B. Define a family G{(X) = {F\X : F € G;,X C F},
which, fort =n—b — Zf:] a;, is t-uniform and does not contain a weak (t, q)-A-system (due to Claim 2.3). Applying
induction hypothesis to G;(X), we have

B A;
N(b,a;,...,a¢) < <|b|> l_[ <|a |>C[(Tl —b—a;—---—a)]'?,
i=1 !

which implies
N(b, ai, ..., ax) <2M’<’<]—[< )C[n— b—ay— - —a)l' . (17)

In order to further bound N(b, ay, ..., ak), recall that (b, aq, ..., ax) € D. We set a = F21 a;/K1. Since a; < Mk for every
j=1,...,K we have that a < Mk. We note that ) _a; > Ka — K In view of definition of G; we have b+ a; > k and hence
b+ a > k, or equivalently —b < a — k. Hence, we infer that

—b—ay—-—ag < —(K—-T1a+K—k.

Using the log-concavity of binomial coefficients we infer that

N(b, ay, ..., ax) <2'V"”<]_[< )C[n— K—1a+K—k'?

< 2“““(2) Clin— (K = Da+K — k'

In order to further bound N(b, a4, ..., ax) we set

K
W(a) = (Z) Cln— (K — a+K — k)N]'= (18)
and verify the following

Claim 2.6.
max yr(a) = ¥ (Mk).

a<Mk

Proof of Claim. Indeed, observe that for a < Mk
v  ()Cln—K-1Na+K -k
vla—1) (1) Cltn— K= 1a—1D+K— k'

(n —a+ 1)’( ( 1 >15
> .
- a nk-1

Since a < Mk and because of (4) we have
n—a+1 n
- > > 1> —

a T a - Mk - 2Mk
so we get

1-6
@ (L)" L
Y(a—1) — \2Mk nk-1

1 (1=K —~(K=1)(1-8)
(ZM)K
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1
= @

1
(by (5)) = e

By (7) the last expression is greater than 1. Consequently ¢(a + 1) > ¢(a), which establishes Claim 2.6. O

—aK+K§+(1-98)

€2

Claim 2.6 implies that for (b, a;,...,ax) € D
N(b, ar, ... ag) < 2Ky (M),
and by (18)

K
N(b,aq, ..., a5) < 2M’<2’<(1\Zk) Cl(n—(K—-1)Mk+K— k).
This, together with (16) implies the following bound on |G4].

K
|G1] < MK?k (Mk)¢ 2MK2k<I\Zk> Cl(n— (K — )Mk + K — k)!]*7?

K
< (MK2k)(Mk)¥ eMK2k<1\Zk> Cl(n— (K — )Mk + K — k)1]*~?

K
< eZMK2k<I\:Ilk> Cl(n — (K — )Mk + K — k)]*™ | (19)

with the last inequality due to the fact that we have xK? - x¥ < e’ for all x > 1 and K > 1. Finally, we establish the
following

Claim 2.7.
1

201972k |g| < 5C(n!)H.

Proof of Claim. Indeed, by (19)
K
20972K|gy| < 2z<q—2>"e2M’<2’<<AZI) Clin— (K — )Mk +K — k)"
k

To establish Claim 2.7 it is sufficient to show

K ' 1-68
40092k g2MK?k n n . 20
¢ Mk) “\ (=K = )Mk +K — k). (20)

To estimate the left side of (20) we recall that L = 3K, K > (q—2), M > e? and note that L2 = (3K)1~2 < ¢3K(4-2) < 3K*M,

K
40(0- 2k 2MK?k (I\Zk) < 4102k (q—2)k 2MK K (E)MH{

Mk
2 e MKk
< 45K Mgk (1= )KMK (7)
M
2
< 45K Mk p(a(a=21+(1-c KMk 1)

On the other hand, the right side of (20) can be bounded using n (2)" > n! > (2)":

n! 1= a1 /e n—(K—T)Mk+k—k\ =3
> — —( -
((n—(K—l)MIH—K—k)!) - ((e) n(n) )
1/ /ny K=)Mk—K+k\ 173
= ((;) )

L1 e ome-g)
— nK+1 pMK2k ’

2
Moreover, nf+1 < e(K+l)lnn < eMK k by (7)' S0

1

al 1-5
: («(

> n

((n —(K—1)Mk+K — k)!) T e2MK2k

K—1)Mk+k)(1-8) 22)
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Recall, that our goal is to prove (20), and according to (21) and (22) it is sufficient to show that

4651(2Mkn(a(q—2)+(l—a)KM)k< 1 n((K—l)MlH—k)(l—S)’
— e2MK2k

or by rearranging that
407KME (KM =M+1)(1-8)~(a(g—2—KM)+KM))k (23)
Note that the coefficient of the exponent of the right side after rearranging terms is equal to
KM—M+1+(KM—M+ 1) (=8) —a(qg—2 +KM) — KM =
kM —q+2)—M+1—-86KM —M+ 1) = ;.

TK2MKk _ pesk which is true by (7). O

Hence, (23) is equivalent to 4e
Finally, recall that by (13)
|F| < 2097 2K(Gy| + 201072K|Gy .
By (14) and Claim 2.7 both terms on the right side are smaller than %C(n!)l“s, which implies
|7 < C(n)'~°.
Therefore, the induction step holds, and this finishes the proof of Theorem 2.1. O

3. Lower bound

In this section, we will show that estimates on f(n, q) imply lower bounds on g(n, q).
Trivially, f(1,q) = ¢ — 1 and in [3], Abbott, Hanson, and Sauer settled exactly the values of f(2, q):

Theorem 3.1. For all ¢ > 0, we have:
qig—1) if nis even
2,q)= _ .
f2.9 {(q—1)2~|—‘722 if n is odd.

Moreover, in [2] Abbott and Hanson showed the following:

Theorem 3.2 (Abbott, Hanson, 1977). For all r, s, ¢ > 0, we have:

g(r+s,q) > g(r, q)g(s, ).
In [5], Deza showed that the only large weak-A-systems are also A-systems. More precisely:

Theorem 3.3 (Deza, 1974). For alln > 0 and q > n®> — n + 1, if F is a weak (n, q)-A-system, then F is an (n, q)-A-system.
In particular, we have:

f(n,q) =g(n, q).

In [6], Erdés, Milner, and Rado showed that g(n, q) > (q — 1)" for all n, ¢ > 0. Here we remark that the result of
Theorem 3.3 shows that for ¢ > n?> — n + 1, the lower bounds for f(n, q) are also lower bounds on g(n, q). We observe
now that the inequality in Theorem 3.2 along with the results of Theorem 3.3 can be used to prove lower bounds on
g(n, q) whenever g < n> —n+ 1.

Theorem 3.4. Fixn > 0 and let 3 < q < n?> — n + 1. Then we have:
(q(qg — 1)"? if n is even

QMEmew—W+?WW Ynis odd.

Proof of Claim. For ease of notation, suppose n is even, and set n = 2t. By iterated application of the inequality in
Theorem 3.2 and observing that q¢ > 22 — 2 4 1, we have:
gn,q)=g2+2+---+2,q)
t
> 8(2,9)8(2,q)...8(2,q)
t

=f2,90(2.9)...f(2,9)

t
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=(qlq—1) (@g—1))...(q(qg— 1))

t

= (q(q— 1)
= (qq — 1)"?.
as desired. The case when n is odd resolves similarly by writing n = 2t + 1 and applying f(1,q) =(q—1). O

Abbott and Exoo [1] obtained bounds better than in Theorem 3.4 for ¢ = 4, ¢ = 5 and odd n. Namely they showed
that for odd n

g(n, 4) > 31(10)" 32 and g(n, 5) > 79(20)"3)/2,
Their bounds are based on g(3, 4) > 31, g(3,5) > 79 and g(2, 5) > 20.
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