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Abstract
Previous work showed that reCAPTCHA v2’s image chal-
lenges could be solved by automated programs armed with
Deep Neural Network (DNN) image classifiers and vision
APIs provided by off-the-shelf image recognition services.
In response to emerging threats, Google has made signifi-
cant updates to its image reCAPTCHA v2 challenges that
can render the prior approaches ineffective to a great extent.
In this paper, we investigate the robustness of the latest ver-
sion of reCAPTCHA v2 against advanced object detection
based solvers. We propose a fully automated object detection
based system that breaks the most advanced challenges of
reCAPTCHA v2 with an online success rate of 83.25%, the
highest success rate to date, and it takes only 19.93 seconds
(including network delays) on average to crack a challenge.
We also study the updated security features of reCAPTCHA
v2, such as anti-recognition mechanisms, improved anti-bot
detection techniques, and adjustable security preferences. Our
extensive experiments show that while these security features
can provide some resistance against automated attacks, adver-
saries can still bypass most of them. Our experiment findings
indicate that the recent advances in object detection technolo-
gies pose a severe threat to the security of image captcha
designs relying on simple object detection as their underlying
AI problem.

1 Introduction

CAPTCHA is a defense mechanism against malicious bot
programs on the Internet by presenting users a test that most
humans can pass, but current computer programs cannot [49].
Often, CAPTCHA makes use of a hard and unsolved AI prob-
lem. Over the last two decades, text CAPTCHAs have be-
come increasingly vulnerable to automated attacks as the
underlying AI problems have become solvable by computer
programs [17, 19, 20, 27, 28, 34, 35, 51, 51–53]. As a result,
text CAPTCHAs are no longer considered secure. In fact, in
March 2018, Google shut down its popular text CAPTCHA
scheme reCAPTCHA v1 [23]. Image CAPTCHA schemes

have emerged as a superior alternative to text ones as they are
considered more robust to automated attacks.

reCAPTCHA v2, a dominant image CAPTCHA service
released by Google in 2014, asks users to perform an im-
age recognition task to verify that they are humans and not
bots. However, in recent years, deep learning (DL) algorithms
have achieved impressive successes in several complex image
recognition tasks, often matching or even outperforming the
cognitive ability of humans [30]. Consequently, successful
attacks against reCAPTCHA v2 that leverage Deep Neural
Network (DNN) image classifier and off-the-shelf (OTS) im-
age recognition services have been proposed [44, 50].

The prior work advanced our understanding of the security
issues of image CAPTCHAs and led to better CAPTCHA
designs. However, recently, Google has made several major
security updates to reCAPTCHA v2 image challenges that
can render prior image classification and recognition based
approaches ineffective to a great extent. For example, the
latest version of reCAPTCHA pulls challenge images from
relatively complex and common scenes as opposed to mono-
tonic and simple images in the past. Through a comprehensive
experiment, we show that both image classifiers and image
recognition APIs provide poor success rates against the latest
reCAPTCHA v2 challenges.

Our experiment also shows that the current version of re-
CAPTCHA v2 adopts several additional security enhance-
ments over the earlier versions. First, reCAPTCHA v2 has
introduced anti-recognition techniques to render the challenge
images unrecognizable to state-of-the-art image recognition
technologies. For example, it often presents noisy, blurry,
and distorted images. reCAPTCHA image challenges are
likely to be using adversarial examples [15, 46] as a part of
the anti-recognition mechanism as well. Second, it adapts
the difficulty-level for suspicious clients by presenting them
with harder challenges. Third, the improved anti-bot detec-
tion mechanism of reCAPTCHA can now detect the popular
web automation framework like Selenium. Apart from those,
reCAPTCHA v2 also added click-based CAPTCHA tests,
which are not explored in the prior studies. We suspect that
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the click-based CAPTCHAs were not available at the time of
publication of the most recent attack on reCAPTCHA v2.

Taking reCAPTCHA v2 as an example, we investigate
the security of image CAPTCHA schemes against advanced
object detection technologies. To this end, we develop an
object detection based real-time solver that can identify and
localize target objects in reCAPTCHA’s most complex im-
ages with high accuracy and efficiency. Specifically, our sys-
tem can break reCAPTCHA image challenges with a suc-
cess rate of 83.25%, the highest success rate to date, and it
takes only 19.93 seconds (including network delays) on aver-
age to crack a challenge. Our economic analysis of human-
based CAPTCHA solving services shows that our automated
CAPTCHA solver provides comparable performance to hu-
man labor. Therefore, the scammers can exploit our system
as an alternative to human labor to launch a large-scale attack
against reCAPTCHA v2 for monetary or malicious purposes,
leaving millions of websites at the risk of being abused by
bots [11].

We also provide an extensive analysis of the security fea-
tures of the latest version of reCAPTCHA v2. First, we
find that the anti-recognition mechanisms employed by re-
CAPTCHA can significantly degrade the performance of both
image recognition and object detection based solvers. How-
ever, our extensive analysis shows that we can neutralize re-
CAPTCHA’s anti-recognition attempts by applying advanced
training methods to develop a highly effective object detection
based solver. Second, we also find that our system can bypass
many other imposed security restrictions. For example, we can
bypass the browser automation framework restriction by using
the puppeteer-firefox [10] framework. Our findings reveal that
despite all the evident initiatives by Google, reCAPTCHA still
fails to meet the stringent security requirements of a secure
and robust CAPTCHA scheme.

In summary, we make the following contributions:
• Through extensive analysis, we show that prior DNN

image classifiers and off-the-shelf vision APIs based ap-
proaches are no longer effective against the latest version
of reCAPTCHA v2. We then propose an object detec-
tion based attack that can break the most advanced image
challenges provided by reCAPTCHA v2 with high accu-
racy and efficiency.

• We provide a comprehensive security analysis of differ-
ent security features employed by the latest version of re-
CAPTCHA v2. Our extensive study shows that these fea-
tures can provide some resistance to automated attacks.
However, adversaries can still bypass most of them.

• Our study indicates that the recent advances in object
detection algorithms can severely undermine the security
of image CAPTCHA designs. As such, the broader im-
pact of our attack is that any image CAPTCHA schemes
relying on simple object detection as their underlying AI
problem to make a distinction between bots and humans
might be susceptible to this kind of attack.

Figure 1: A reCAPTCHA v2 challenge widget.

2 reCAPTCHA v2 background

reCAPTCHA v2 relies on an advanced risk analysis engine
to score users’ requests and let legitimate users bypass the
CAPTCHA test. Once the user clicks the reCAPTCHA – “I’m
not a robot” — checkbox, the advanced risk analysis engine
tries to determine whether the user is a human using various
signals collected by the system, including different aspects of
the user’s browser environment, and Google tracking cookies
[36, 44]. If the system finds the user suspicious, it asks the
user to solve one or more image CAPTCHA(s) to prove that
he/she is a human and not a bot. In general, a user with no
history with Google services will be assigned to relatively
difficult challenges. In this paper, our system attempts to
solve these CAPTCHAs. Note that, Bock et al. followed a
similar approach to break reCAPTCHA’s audio challenges in
2017 [16].

It is important to note that the third version of reCAPTCHA,
reCAPTCHA v3, was released in October 2018. reCAPTCHA
v3 is intended to be frictionless, i.e., not requiring any users’
involvement in passing a challenge. However, it has raised
some serious security concerns due to the method it uses to
collect users’ information [21, 42]. In this paper, we only tar-
get reCAPTCHA v2’s most recent (as of March 2020) image
challenges because it is still the most popular and widely used
version of reCAPTCHA deployed on the Internet. From now
on, we will use the term reCAPTCHA to refer to reCAPTCHA
v2 unless otherwise specified.

Challenge widget. If reCAPTCHA requires the user to solve
a challenge, a new iframe gets loaded on the webpage af-
ter clicking on the “I’m not a robot” checkbox. The iframe
contains the actual reCAPTCHA challenge (Figure 1). The
challenge widget can be divided into three sections: top, mid-
dle, and bottom. The top section includes instructions about
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Figure 2: Representing a 400px × 400px challenge image as
an R×C grid. Here, R=No. of rows, and C=No. of cells per
row in the HTML table element holding the challenge image.

how to solve the challenge. The section in the middle holds
the candidate images. The user has to select or click on im-
ages that contain the target object mentioned in the instruction.
At the bottom, it has multiple buttons, including the “reload”
button, “audio CAPTCHA” button, and the “verify” button.

The images are located inside an HTML table element.
The table has multiple rows, and each row holds the same
number of cells. Each cell has an img tag in it and renders
an image from the URL specified in the tag. If the table has
4 rows and each row has 4 cells, then 16 candidate images
in total will be rendered, from which the user has to select
the right images. However, all these images are pulled from
a single source URL in the challenge widget initially, i.e., a
single image is split across multiple table cells in an equal
proportion. Therefore, this particular challenge image can be
treated as a 4 × 4 grid. Figure 2 illustrates the process of
representing a 400px × 400px challenge image as an R×C
grid. Here R and C correspond to the number of rows and the
number of cells per row in the table element.

reCAPTCHA CAPTCHA types. The current version of re-
CAPTCHA has two types of image CAPTCHAs: 1) selection-
based image CAPTCHA and 2) click-based image CAPTCHA.
The selection-based CAPTCHA requires the user to select
the correct grids containing the right object as specified in the
instruction to pass the challenge (see Figure 6 in Appendix
A). It is the common CAPTCHA type that the user would
encounter in a reCAPTCHA-protected site. The click-based
CAPTCHAs have been introduced only recently. In a click-
based image challenge, when the user clicks on a grid, the
image on the grid disappears, and a new image gets generated
in its place (see Figure 7 in Appendix A). The user has to
repetitively click on the potential grids until the target object
is no longer present in any of the grid while submitting a chal-
lenge. It takes a relatively long time to solve the click-based
CAPTCHAs than selection-based ones as there is a delay
between the click and image regeneration process.

3 Threat model
We assume the attacker’s goal is to abuse Web applications
protected by reCAPTCHA using an automated program. We
also assume the attacker has access to a GPU enabled machine
to deploy an object detection system for cracking CAPTCHAs.
The attacker can launch the attack from a single IP address.
However, having access to a large IP pool will allow the at-
tacker to launch a large-scale attack. reCAPTCHA may occa-
sionally block an IP address for some time. In such a scenario,
the attacker may need to use a proxy service or anonymity
network such as Tor [24] to bypass the IP restriction. In sum-
mary, we consider a low-to-moderately resourced attacker
whose goal is to deploy a highly effective automated solver
to break reCAPTCHA challenges for malicious purposes.

4 Our approach
Our automated CAPTCHA breaker consists of a browser au-
tomation module and a solver module.
Browser automation module. The browser automation mod-
ule is responsible for automating different browser-specific
tasks while solving a CAPTCHA challenge. These tasks in-
clude locating the reCAPTCHA checkbox, initiating the re-
CAPTCHA challenge, and identifying the potential HTML
elements on the challenge widget. This module is also in
charge of fetching challenge images, submitting the solution
once the CAPTCHA is solved, monitoring the progress of the
challenge, and checking the reCAPTCHA verification status.
Solver module. The solver module consists of two main com-
ponents: the base object detector and the bounding box to
grid mapping algorithm. The base object detector takes the
challenge image from the browser automation module and
identifies and localizes objects in it. For each recognized ob-
ject instance, the base detector returns its class name, the
confidence score, and coordinate information in terms of the
bounding box. The bounding box to grid mapping algorithm
then uses this data to map the bounding boxes holding the
target object back to the grids where they are present.

4.1 The browser automation module
The browser automation module first visits a reCAPTCHA-
protected webpage and locates the frame element holding
“I am not a robot” checkbox. It then clicks on the check-
box, which is identified by recaptcha-anchor, to initiate
the challenge. Now our system switches to the challenge wid-
get. Then it primarily conducts the following steps to solve
the challenge.
Extracting challenge instruction. Our system lo-
cates the element holding the challenge instruction
rc-imageselect-instructions. The challenge instruc-
tion is a multi-line string, and the second line always
refers to the name of the target object. Further, it indicates
the challenge type. For instance, in click-based image
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CAPTCHAs, the challenge instruction always holds the
phrase — “Click verify once there are none left” (See Figure
7). The name of the target object, for which we must solve
the challenge, may not always be in the singular form. If that
happens, we singularize it.

Determining the total number of rows (R) and the num-
ber of cells per rows (C). As discussed in Section 2, if we
know the total number of rows (R) and the number of cells
per row (C) in the HTML table holding the challenge image,
we can represent the challenge image as an R×C grid. We
use JavaScript methods to determine R and C.

Downloading challenge image. The element
rc-imageselect-tile holds the challenge image.
There will be multiple such elements based on the total
number of grids. Since all the elements link to the same
image, our system downloads the first image only. However,
for click-based CAPTCHAs, it will need to download
dynamically loaded images on the selected grids as well.

Identifying buttons on the challenge widget. To submit the
challenge once it is solved, we need to click on the “verify”
button. Our system locates the “verify” button using its iden-
tifiers recaptcha-verify-button.

4.2 Implementation of the solver module

The solver module identifies and localizes target objects in
reCAPTCHA challenge images. Further, the module is re-
sponsible for mapping the detected objects back to their corre-
sponding (potential) grids in the original challenge. The two
main components of this module are a base object detection
system and the bounding box to the grid mapping algorithm.
We now discuss each of them in detail.

4.2.1 Base object detector: YOLOv3

We use YOLOv3 as the base object detector after experiment-
ing with several other advanced object detectors, including
Faster R-CNN [40], R-FCN [22], SSD [33], and RetinaNet
[32]. We find YOLOv3 to be significantly faster than all other
tested object detectors when running the detection on a test
image; however, the accuracy of YOLOv3 might be slightly
lower than other object detectors. Since solving CAPTCHAs
is a time-sensitive task, we opt to use YOLOv3 for its su-
perior speed. The feature extractor network in YOLOv3 is
called Darknet-53 because it has 53 convolutional layers, with
shortcut connections. See [39] for details.

Datasets. We use two datasets, specifically developed to
handle object categories found in reCAPTCHA challenges.
The first dataset is a publicly available dataset called MS
COCO [13]. The MS COCO dataset has 80,000 training im-
ages and 40,000 validation images with 80 object classes,
out of which 8 classes frequently appear in reCAPTCHA
challenges. The MS COCO object classes common to re-

CAPTCHA object categories are bicycle, boat, bus, car, fire
hydrant, motorcycle, parking meter, and traffic light. The sec-
ond dataset is a custom one that we develop by ourselves.
We crawled over 6,000 images from different sources such
as Flickr 1, Google image search 2, and Bing image search 3.
After prepossessing these, we end up with 4800 images. We
also use 2100 images from the original reCAPTCHA chal-
lenges for this dataset. We manually annotated and labeled
the object instances in those images to prepare and finalize
the dataset. Our final custom dataset has 11 object categories:
boat, bridge, chimney, crosswalk, mountain, palm tree, stair,
statue, taxi, tractor, and tree.
Training the base object detector. We use two YOLOv3
models trained on the two datasets. We mostly go with the
default architecture of the YOLOv3 network with some minor
modifications for both models. We set up the batch size to 64,
and the learning rate to 0.001 for training. We use the Darknet
[38], an open-source neural network framework written in
C, for training the YOLOv3 models. We train the model on
the MS COCO dataset for roughly 15 days, and the model on
the custom dataset for 2 days. The training is performed on a
server with an NVIDIA RTX 2070 GPU. We then evaluate the
weight files for both models on corresponding test sets and
choose the best weights. Our final model for the MS COCO
dataset has the mean average precision at 0.5 IOU (mAP@.5)
of 57.4% on the testing set. The second model has obtained a
mAP@.5 value of 51.79% on the respective testing set.
Inference or making predictions. We use the Darknet
framework to make predictions on reCAPTCHA challenge
images with our trained models. By default, Darknet does not
provide any localization information. We adjust the source
code to output the bounding box coordinates when running
the inference on an image. The modified prediction output
includes class name, confidence score, and bounding box co-
ordinates for each detected object instance in a prediction
operation. We set the detection threshold to 0.2.

4.2.2 The bounding box to grid mapping algorithm

After detecting the objects with the base object detector in
the challenge image, we need to map the objects back to their
corresponding grids in the original challenge. Our bounding
box to grid mapping algorithm works as follows.

1. Use the R and C parameters from the browser automa-
tion module to get an R×C grid representation of the
image.

2. Compute coordinates of each grid relative to the top left
of the image (see Figure 2).

3. Take the prediction output from the base object detector.
1https://www.flickr.com/
2https://images.google.com/
3https://www.bing.com/images/
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Figure 3: A result returned by the bounding box to grid map-
ping algorithm. Left: An original challenge image (the target
object is a “bus”). Right: The JSON array returned by the
algorithm.

4. For each bounding box with the class label matching the
target object name in the challenge, take the coordinates
of the box and the grids. If any of the coordinates of the
bounding box falls inside a grid, mark it as a potential
grid. Depending on the size of the bounding box, it may
fall within multiple grids. We store all of these grid num-
bers in an array and call it as the potential grid numbers
(PGNs).

5. For each bounding box, return the class name, confidence
score, and the PGNs.

6. Return the results as a JSON array.

Figure 3 shows an example of the result returned by the
bounding box to the grid mapping algorithm for a sample
challenge image.

4.3 Submitting and verifying challenges
The JSON array returned by the solver module is passed to the
browser automation module. The browser automation module
first extracts the potential grid numbers from the PGNs arrays
and locates the representative grids in the HTML table. It then
clicks on these grids in the challenge widget and finally clicks
the “verify” button when the process is completed.

The system then verifies whether the challenge is passed
or not using the “reCAPTCHA ARIA status messages.” 4 We
further verify the challenges submitted to our own websites
by validating user response token, g-recaptcha-response,
to the reCAPTCHA backend. The g-recaptcha-response
remains empty until the challenge is solved. When a challenge
is successfully solved, it gets populated with a long string. Af-
ter submitting a challenge to our website, our bot first extracts
the user response token. It then sends a verification request

4https://support.google.com/recaptcha/#aria_status_message

Figure 4: The frequency of different object categories in
collected challenges.

to the reCAPTCHA backend server with this token and the
secret key to authenticate the token.

5 Attack evaluation

5.1 Implementation and evaluation platform

The browser automation module is built upon the puppeteer-
firefox [10], a node library developed by Google, to control
the Firefox web browser programmatically. The core function-
alities of the module are developed using JavaScript. The base
object detector in the solver module is based on the YOLOv3
object detection algorithm. We train and test the YOLOv3
models with a customized version of the Darknet framework
that especially meets our needs. Our bounding box to the grid
mapping algorithm is written in C for efficiency.

We train the YOLOv3 models on a server with 6 IntelR©

XeonR© E5-2667 CPUs, an NVIDIA GeForce RTX 2070 GPU,
and 96GB of RAM running the Arch Linux operating system.
We compile the Darknet framework against the GPU with
CUDA 10.2 and cuDNN 7.5. We conduct all the experiments
on this machine.

Experimental setting. We use puppeteer-firefox (version
0.5.1) running on top of node library version 14.4.0 for
browser automation. The browser we used is Firefox 65.0. We
run the web browser in a clean state each time, i.e., no caches
or cookies are retained between two subsequent requests. We
do not attempt to obfuscate any aspects of the requests or web
browser properties (e.g., using custom User-Agent header or
modifying the Navigator object properties). Further, unless
otherwise specified, all the requests to reCAPTCHA-protected
websites are made from a single IP address and a single ma-
chine.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses    273



Table 1: Performance of image recognition services.

Image Recognition
Service Success Rate (%) Speed (s)

Google Cloud Vision 19 16.67
Microsoft Azure Computer

Vision 34 17.90

Amazon Rekognition 47 19.68
Clarifai 27 15.35

Table 2: Performance of object detection services.

Object Detection Service Success Rate (%) Speed (s)
Google Cloud Vision 36 9.47

Microsoft Azure Computer
Vision 31 10.54

Amazon Rekognition 38 9.86

5.2 Preliminary analysis
To do the preliminary analysis, we collect 10,385 re-
CAPTCHA challenges from 8 websites protected by re-
CAPTCHA service from May 2019 to November 2019. Fig-
ure 4 shows frequencies of different object categories in the
collected challenges. As we can see, there are only 19 object
categories, with the top 5 categories representing over 75% of
the total challenges. The top 5 object classes are bus, traffic
light, crosswalk, car, and fire hydrant.

Breaking reCAPTCHA with vision APIs for image recog-
nition. We test 4 popular off-the-shelf online vision APIs
for image recognition. The services we use are Cloud Vi-
sion API provided by Google [7], Azure Computer Vision
API provided by Microsoft [9], Rekognition API provided
by Amazon [2], and the API provided by Clarifai [5]. First,
we select some challenge images from different categories,
extract the individual grids from them, and submit those grids
to the image recognition services to analyze the tags (labels)
returned by them. We find that in most cases, one of the la-
bels for a grid holding the target object matches precisely
with the name of the object in the reCAPTCHA challenge
instruction, thus simplifying the process of mapping the tags
returned by an API service to reCAPTCHA challenge object
names while submitting a challenge. However, we find one
instance where the labels are not consistent across various
APIs. For example, Amazon Rekognition API classifies re-
CAPTCHA’s crosswalk images as “Zebra Crossings,” while
Google’s Cloud Vision API recognizes them as “Pedestrian
crossings.” We do a simple preprocessing that transforms
these labels to name “crosswalk” for consistency.

Next, we develop a proof-of-concept attack and submit 100
live reCAPTCHA challenges separately using each image
recognition API. Table 1 provides the success rate and speed
of attack using image recognition services. The Google Cloud
Vision provides the lowest success rate, followed by Clarifai.
We note that the attack success rate is below 40% for all the
services except for Amazon Rekognition.

Finally, we manually verify the results and analyze the
failed challenges. We find that the image recognition services’
poor performance is due to the complex nature of the cur-
rent challenge images, which often contain complex everyday
scenes with common objects in their natural context. For ex-
ample, we find many instances where a potential grid holding
a “crosswalk” also holds other common objects such as “car”
and “traffic light” in it, and tags returned by an API include
names of all the objects except the primary target. Further, in
many challenges, a single target object spans across multiple
grids, and some of those grids contain only a tiny part of the
whole object. Image recognition services failed to identify
the target object in such a scenario. The earlier version of
reCAPTCHA used to show relatively simple images, usually
containing one disparate object per grid or images with simple
scenes having a monotonic background, making it easier for
image recognition services to analyze the contents.

Breaking reCAPTCHA with an image classifier. We also
perform an attack using a Convolutional Neural Network
(CNN) based image classifier. The classifier is trained on
over 98,000 images from 18 classes. These include all object
classes in Figure 4, except the “store front.” Interestingly, the
“store front” class has been phased-out from reCAPTCHA
challenges during the later part of our data collection period.
We then submit 100 live reCAPTCHA challenges using our
image classifier based solver. The success rate and speed of at-
tack are 21% and 16.96 seconds, respectively. After analyzing
the failed challenges manually, we find that the same factors
related to the poor performance of the image recognition APIs
contributed equally (or even higher) to the low success rate
of the image classifier based attack.

Breaking reCAPTCHA with online vision APIs for object
detection. We also carry out a proof-of-concept attack using
three off-the-shelf computer vision APIs for object detection
provided by Google, Microsoft, and Amazon. We customize
our bounding box to the grid mapping algorithm to process
the bounding box results for the objects detected by the APIs.
Like before, we submit 100 live reCAPTCHA challenges us-
ing these APIs. Table 2 shows attack performance of each
off-the-shelf object detection API. We can see that the Ama-
zon Rekognition API and Google Cloud Vision API achieve
similar performance, while Microsoft Azure Computer Vi-
sion API performs relatively poorly. We analyze the results
to understand why these services are not effective against re-
CAPTCHA challenges. We find several factors that contribute
to low success rates. First, these services can recognize objects
from certain object categories only. However, most of them
can detect objects that frequently appear in the reCAPTCHA
challenges such as “bus”, “car”, “traffic light”, and “bicycle”.
While the top 5 objects in Figure 4 account for around 70% of
the submitted challenges during this experiment, our manual
analysis shows that the object detection APIs fail to identify
at least one target object in these categories in most of the
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Table 3: The time required to break a reCAPTCHA challenge
by percentiles.

Percentile 1st 5th 95th 99th
Speed (s) 13.28 13.91 39.76 58.65

failed cases. It suggests that the cloud-based vision APIs for
object detection are still in their early stage of development,
and yet to be ready to handle complex images such as those
found in reCAPTCHA challenges.

5.3 Breaking reCAPTCHA challenges with
our system

Success rate and speed of attack. To evaluate the effective-
ness and efficiency of our approach, we submit 800 challenges
to 4 reCAPTCHA-enabled websites using our automated
CAPTCHA-breaking system. Out of them, 701 challenges are
selection-based, 87 challenges are click-based, and 12 are “no
CAPTCHA reCAPTCHA” challenges, where our system gets
verified simply by clicking on the reCAPTCHA checkbox.
Our system breaks 656 (out of 788) challenges, resulting in a
success rate of 83.25%.

The average speed of breaking a CAPTCHA challenge
is 19.93 seconds, including delays. The delays include net-
work delay to load and download images, which takes about
1~8 seconds depending on CAPTCHA types and artificially
induced delay between each of the clicks. The minimum, me-
dian, and maximum time needed to break a challenge are
13.11, 14.92, and 89.02 seconds respectively. Table 3 lists
the time required to break a challenge by percentiles. Our
solver module takes about 6.5 seconds to detect objects in a
challenge image regardless of the number of objects being
present.

Attack on selection-based CAPTCHAs. Generally, the
selection-based image reCAPTCHA challenges appear more
often than click-based ones. The success rate and speed of
breaking selection-based challenges are 84.74% and 17.47
seconds, respectively. Figure 5a shows frequency and suc-
cess rate for each object category in the submitted challenges.
As we can see, only 19 object categories have been repeated
across all 701 selection-based reCAPTCHA image challenges.
Further, the top 5 object categories constitute over 78% of the
total challenges. If we consider the first 10 categories, this
number goes above 95%.

Note that reCAPTCHA often asks users to solve multiple
image puzzles in a row to pass a single selection-based re-
CAPTCHA test. However, in 80.81% of passed CAPTCHAs,
our system is required to solve only one image test. In 16.84%
of challenges, it is required to solve 2 image puzzles. The
maximum number of puzzles required to pass a test is 5, and
it occurs only twice.

(a) Selection-based CAPTCHA.

(b) Click-based CAPTCHA.

Figure 5: Attack performance. Frequency and success rate
for each object category.

We find that in the majority of cases, there are at least 3
potential grids required to be chosen to pass a selection-based
CAPTCHA test. Precisely, in 5.72% of passed CAPTCHAs,
our system is asked to select 2 grids. In 42.59% of solved
CAPTCHAs, it is required to choose 3 grids. In 32.15% of
solved challenges, the system is required to select 4 grids. The
number of selected potential grids in the remaining challenges
ranges from 5 to 14. We also find 2 tests where our system
had to choose 18 grids to pass the challenges. It takes 4.01
seconds to select a grid while solving a challenge, on average.

Attack on click-based CAPTCHAs. We come across only
87 click-based CAPTCHAs in the 800 submitted challenges,
and our system passes 62 of them. The success rate and speed
are 71.26% and 43.53 seconds, respectively. Figure 5b pro-
vides the frequency and success rate for different object cat-
egories in click-based reCAPTCHA challenges. As we can
see, in click-based CAPTCHA challenges, there are only five
object categories.
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Since reCAPTCHA’s click-based CAPTCHAs are rela-
tively new and have not been explored in the previous study,
we experiment to analyze the security of it further. The study
by Sivakorn et al. revealed that the initial implementation of
reCAPTCHA v2 used to provide flexibility in its selection-
based challenges, i.e., it used to accept 1 or 2 wrong grid
selection(s) along with a certain number of correct grid se-
lections while solving a CAPTCHA test [44]. We investigate
whether reCAPTCHA provides such flexibility for click-based
challenges. We submit some CAPTCHAs by clicking on a
different combination of correct and wrong grids. We sub-
mit 50 challenges for each combination. The result of our
experiment is summarized in Table 4. The highest success
rate we achieve is 6% when we click 6 correct grids and 1
wrong grid while submitting the challenges. It suggests that
reCAPTCHA does not usually provide any solution flexibility
for click-based CAPTCHAs.

Table 4: The success rates of different combinations of cor-
rect and wrong grid selection in a click-based CAPTCHA
solution.

# of Correct Grid # of Wrong Grid Success Rate
3 1 0.00%
4 1 2.00%
5 1 0.00%
6 1 6.00%
6 2 0.00%

3 (out of 4) 0 0.00%
4 (out of 5) 0 0.00%
5 (out of 6) 0 2.00%

Impact of security preference. reCAPTCHA allows the
website owners to adjust the security level based on their
needs while deploying it to their websites. There are three
levels in the security preference setting from “Easiest for user”
to “Most secure.” By default, reCAPTCHA uses the security
level in the middle, which we call “Medium secure.” To inves-
tigate the impact of these settings on the attackers’ success
rate, we deploy reCAPTCHA on our website and submit 50
challenges for each security setting. We run the experiment
from a network that is isolated from the network hosting our
webserver to avoid any biases. We further follow the same
experimental setting mentioned in 5.1.

The results of our findings are summarized in Table 5. The
difference in the accuracy of our system across three security
preferences is negligible. We have not noticed any obvious
pattern that can distinguish one security preference from oth-
ers. However, for the “Easiest for user” setting, we find that
reCAPTCHA occasionally accepts a solution even when our
bot misses one potential grid containing the target object or
clicks on a wrong grid along with the correct grid selections.
Further, reCAPTCHA often requires the bot to solve multiple
image puzzles in a single selection-based challenge when us-

Table 5: The success rates of different security preferences
in the reCAPTCHA deployment setting.

Security Preference Success Rate (%) Speed (s)
Easiest for user 82 16.75
Medium secure 78 14.31

Most secure 84 18.79

ing the “Most secure” security preference on the reCAPTCHA
admin panel for our website.

Impact of browser automation software. To study the im-
pact of different browser automation frameworks on the per-
formance of the bots, we develop a bot using the Selenium
[12]. Selenium is one of the most widely used browser automa-
tion frameworks, which was also used by prior arts. Selenium
provides WebDriver for both Mozilla Firefox and Google
Chrome web browsers. In particular, we use Selenium Python
bindings (version 3.141.0) with Python version 2.7.18 in this
experiment. For web browsers, we select Firefox 65.0 and
Chrome 78.0.3882.0. To keep the experiment consistent with
our main attack, we run the program from the same machine,
and we access reCAPTCHA-enabled websites from the same
IP address. Further, we clear the caches and cookies each time
we launch the program.

First, we use Firefox WebDriver. We submit 100
CAPTCHAs and notice that most of our attempts fail to break
them. Accurately, the system can solve only 32% of the total
submitted challenges. A careful examination of our system
log reveals that reCAPTCHA rejects many of the potentially
correct solutions. Further, 12 out of 100 requests have been
blocked with the message — “We’re sorry, but your computer
or network may be sending automated queries. To protect our
users, we can’t process your request right now.” Note that
at the same time, we also run our original puppeteer-firefox
based system and verify that it can normally solve the chal-
lenges. Next, we repeat the same experiment with Chrome
WebDriver. We recognize a similar pattern as before: the suc-
cess rate of breaking the CAPTCHAs is below 40%. We also
find that reCAPTCHA shows a significantly higher percent-
age of click-based CAPTCHAs when we use the Selenium.
Specifically, more than 25% of the challenges that our system
attempt to solve are click-based ones. Furthermore, we also
encounter many noisy images.

Since reCAPTCHA’s advanced risk analysis engine treats
our Selenium based system as highly suspicious, we try to
obfuscate the presence of Selenium and investigate whether
the obfuscation could improve our attack performance. When
using an automation framework, the browser is supposed to
set navigator.webdriver property to “true” according to
W3C specification. However, an adversary may not follow
this specification in an attempt to hide the presence of Web-
Driver to dodge detection. To experiment with an attacker’s
perspective, we set this property to “false.” Moreover, we ob-
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fuscate different aspects of the browser environment, such as
the user-agent string, the number of plugins used, the number
of fonts, and screen resolution. We then run a series of ex-
periments with these settings. However, none of our attempts
have resulted in any noticeable difference.

Impact of anti-recognition. We conduct a comprehensive
analysis of the anti-recognition techniques employed by re-
CAPTCHA that have been introduced only recently in an
attempt to undermine AI-based recognition. First, we need
to identify noisy, distorted, or perturbed images. However,
identifying such images is not trivial. A simple approach
could be using Signal to Noise Ratio (SNR) measure to
estimate the noise in an image. However, we cannot sim-
ply use SNR because we do not have access to the orig-
inal ground truth images. In this situation, we find scikit-
image’s [48] estimate_sigma function to be particularly
useful. estimate_sigma provides a rough estimation of the
average noise standard deviation (σnoise) across color chan-
nels for an RGB image. We calculate σnoise for all 1,048
images that our solver attempt to solve during our experi-
ment. The σnoise for 928 (over 88%) images are all below
2. For the remaining 120 images, the σnoise ranges from 2 to
14.86. By manually analyzing the images, and doing the visual
inspection, we find images with σnoise over 10 appear to be
extremely noisy and distorted, and contains some kinds of per-
turbations. We find 52 such images, and we use them for our
comprehensive analysis of reCAPTCHA’s anti-recognition
attempts.

We suspect that reCAPTCHA might be using adversar-
ial examples [15, 46], slightly perturbed images maliciously
crafted to fool pre-trained image classifiers. Prior work also
recommended using adversarial examples to limit the impact
DNN image classifier based attacks [44]. We experiment to
validate our assumption. First, we labeled the potential grids
in images with perturbations. We then extract these grids from
the images and submit them to the computer vision services
for recognition.

Table 6 shows the label sets returned by 4 off-the-shelf im-
age recognition services for an actual reCAPTCHA challenge
image. The target object in the challenge is a fire hydrant,
and the potential grids are 1, 3, and 4. Table 7 shows the
result of our experiment. We can see that vision APIs have
misclassified a significant number of potential grids. Clarifai
API has the highest number of misclassifications, followed by
Microsoft Computer Vision API. Google Cloud Vision API
did not return any labels for 32 potential grids. Note that we
consider a label set to be acceptable (A) if at least one of the
tags in the set describes the image’s content to some extent,
even if the name of the target object is not present in it. For
example, a potential grid for the target object car may also
contain other objects like road, traffic light, and crosswalk.
If an image recognition API returns a label set with the tags
crosswalk, street, and traffic light, we consider it acceptable
even though it does not contain the tag for the main target

object (a “car” in this case). We consider a label set to be
an exact match (EM) if one of the returned labels in the set
matches the name of the target object. A label set is said to be
misclassified (MC) if none of the returned labels in the label
set has any semantic relation with the grid’s actual content.
For instance, as shown in Table 6, Google Cloud Vision API
misclassified the potential grid number 3, which is an image of
a fire hydrant, as an Art (or a Plant). A label set is considered
empty (E) if the API does not return any label. In our exper-
iment, we find many grids that are misclassified by image
recognition services with very high (over 90%) probability,
which is a strong indication that those grids are adversarial.
Generally, non-adversarial perturbation does not mislead a
well-trained image classifier; instead, it degrades the target
class’s confidence score. At the same time, vision APIs for
image recognition return correct or acceptable label sets for
some noisy girds (see Table 7). Hence, based on our findings,
we hypothesize that reCAPTCHA is using a mixture of ad-
versarial perturbations and random noises in some challenge
images. Note that the actual identification of adversarial per-
turbations or examples is a non-trivial task, and it is still an
open research problem in the AI domain.

Next, we investigate the impact of adversarial perturbations
or random noises on our object detection models. We run our
pre-trained object detection models on the same 52 images to
determine how many target objects they can correctly identify.
Note that, it is not always necessary to detect and localize all
the target objects in a challenge image, i.e., it is sufficient to
pass a challenge if the bounding box to grid mapping algo-
rithm result can capture all the potential grids regardless of
the number of objects present in the challenge image. Our
base object detection models can recognize less than 60% of
the target objects in the challenge images (see Table 8). We
use the object counts as a metric to assess object detection
models’ performance to simplify the analysis.

Next, we apply different data augmentation techniques to
study whether retraining the object detection system using the
augmented data helps increase the system’s robustness against
reCAPTCHA’s anti-recognition mechanisms. We develop a
data augmentation pipeline employing various augmentation
methods such as additive Gaussian noise injection, blurring,
and changing the brightness and contrast, etc. We utilize the
imgaug [31] library for data augmentation. For adding Gaus-
sian noise, we use the AdditiveGaussianNoise function
with scale=(0, .2∗255). We use the following methods for
blurring: GaussianBlur with sigma=(0.5-5.0), MedianBlur
with k=(5, 17), and AverageBlur with k=(5, 17). Figure 8 in
Appendix B shows some examples of data augmentation meth-
ods applied to a sample reCAPTCHA challenge image. We
randomly select 30% of training images and apply each data
augmentation method from our pipeline to images. Finally,
we retrain our object detection models using the augmented
training samples. We also collect 500 perturbed images (σnoise
> 5) from the reCAPTCHA challenges and fine-tune the mod-
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Table 6: A noisy image from reCAPTCHA challenge and the labels returned by 4 image recognition services. The target object
is a “Fire Hydrant.” PGNs=Potential Grid Numbers (1, 3, 4).

Image PGNs Google Cloud Vision Microsoft Azure
Computer Vision

Amazon
Rekognition Clarifai

1 leaf, grass, plant animal, mammal art, painting desktop, animal, dog,
people, nature

3 pattern, art grass, outdoor hydrant, fire hydrant nature, abstract,
pattern, art

4 pink, toy, action figure hydrant, outdoor
object, fire hydrant hydrant, fire hydrant travel, old, art,

desktop

els further by utilizing adversarial training. Note that, even
though we call it adversarial training, some training samples
may not include adversarial noises. Since reCAPTCHA’s
source code and data are not open-source, it is challenging to
do further verification.

Table 8 depicts the performance of our object detection
models. We can see that the object detection models with
augmented data can detect 149 (over 73%) out of 203 tar-
get objects in the perturbed images. That is over 17% per-
formance improvement with respect to our base models. It
is also evident that adversarial training provides significant
performance boosts further while using only 500 training
samples. We suspect reCAPTCHA might be generating the
perturbation from a simple data distribution, which enabled
us to achieve such a great increase in performance despite
training against only a small number of adversarial samples.
We expect that adding more perturbed images from original
reCAPTCHA challenges will further enhance the detection
performance. Notice that models have misidentified some
objects after performing data augmentation and adversarial
training. We can reduce the number of misdetections by set-
ting the detection threshold to a higher value (our default is
0.2). However, doing so slightly degrades the overall perfor-
mance of the object detection models.

We note that advanced object detection systems, such as
YOLOv3, are less susceptible to anti-recognition techniques
employed by reCAPTCHA in general. For example, our base
object detection models (Table 8) perform much better in iden-
tifying objects in the perturbed images than vision APIs for
image recognition in Table 7. We assume that reCAPTCHA
mainly targeted image recognition and classification systems
because all of the prior attacks against reCAPTCHA in lit-
erature are based on them. In summary, our findings imply
that an effectively trained object detection based solver can
neutralize reCAPTCHA’s anti-recognition attempts.

IP address rate-limit. To study whether reCAPTCHA en-
forces any IP address rate limit, we set up a 3-day experiment.
We select 3 reCAPTCHA-enabled websites and attempt to
initiate 1000 reCAPTCHA challenges to a chosen website
each day. We limit ourselves to 1000 requests to a site each
day to minimize the impact on the test website. Further, there

Table 7: Results of noisy grid classification returned by im-
age recognition services. EM=No. of exact match label sets.
A=No. of acceptable label sets. E=No. of empty label sets.
MC=No. of misclassifications label sets.

Labels
Service # of Grids EM A E MC

Google Cloud Vision 172 31 68 32 41
Microsoft Azure Computer

Vision 172 19 82 9 62

Amazon Rekognition 172 70 58 0 44
Clarifai 172 27 71 0 74

is a delay of 60 seconds between two subsequent requests. We
perform this experiment with 3 IP addresses: an institutional
IP, a residential IP, and a Tor anonymity network IP.

We experiment with the academic IP first. On the first
day, we can initiate 818 reCAPTCHA challenges, and the
remaining 182 attempts have been blocked. On the second
day, we are able to initiate the reCAPTCHA challenges 801
times, and the remaining 199 attempts have been blocked. On
the third day, none of our attempts has been blocked. The
duration of the blocking period usually ranges from 36 to
95 minutes. Note that getting the IP blocked in one web-
site by reCAPTCHA does not generally restrict that same IP
from initiating reCAPTCHA challenges on other websites,
which is normal behavior. We could initiate reCAPTCHA
challenges more than 800 times from a single IP address to
a particular website in any of the cases. Next, we repeat this
experiment from the same machine but with a residential IP
and observe a similar pattern. Finally, we experiment by tun-
neling the traffic through the Tor network with the exit node
in Germany (selected randomly by the Tor client). During
this experiment, a significant number of requests have been
blocked by reCAPTCHA. Specifically, at least 30% of our
requests are blocked each day. It is worth noting that the exit
node’s geolocation does not usually make that much of a
difference. We confirm this by repeating the experiment sepa-
rately with a manually specified exit node in three different
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Table 8: Impact of anti-recognition on object detection mod-
els.

Model Objects Objects
Detected

Objects
Detected with
Wrong Label

Base (B) 203 114 1
B+Basic

Augmentation (BA) 203 149 11

B+BA+Adversarial
Training 203 167 13

regions, namely North America (the US), Europe (Nether-
lands), and Asia (Hong Kong). It implies that reCAPTCHA
considers requests originating from an IP within the Tor net-
work to be highly suspicious.

Our findings also indicate that reCAPTCHA’s anti-bot tech-
nology follows a relaxed per IP address rate-limit approach
towards regular IP addresses. While it may be reasonable for
a modern web application to allow thousands of requests from
a single client machine with a unique IP address, a webpage
dedicated for the sole purpose of user registration or login
may not want to provide such freedom. Therefore, we rec-
ommend letting the website owners set up a custom daily IP
address rate-limit by adding such an option in reCAPTCHA
deployment settings and enforcing the restriction from the
reCAPTCHA backend.

6 Economic analysis
We use five popular human-based online CAPTCHA solving
services to compare their performance with our system. The
services are 2Captcha [1], Anti-Captcha [3], BestCaptcha-
Solver [4], DeathByCaptcha [6], and Imagetyperz [8]. We
submit 500 reCAPTCHA challenges to each service, total-
ing 2500 challenges for all the services combined. The av-
erage success rate and speed of breaking reCAPTCHA chal-
lenges are shown in Table 9. As we can see, our system
outperforms both BestCaptchaSolver and Imagetyperz. While
2Captcha, Anti-Captcha, and DeathByCaptcha perform a lit-
tle better than ours, they are significantly slower. Our sys-
tem is more than 3.5x faster than the fastest human-based
CAPTCHA solving service. Further, the adversaries can run
our system with virtually no cost by deploying it on their
machines. Overall, our system’s performance is comparable
to that of human-based online CAPTCHA solving services,
and scammers could use it as an alternative to human workers
to automatically solve reCAPTCHA challenges.

7 Comparing to prior attacks
Sivakorn et al. leveraged online image annotation APIs
to break the earlier implementation of reCAPTCHA (re-
CAPTCHA 2015) with a success rate of 70.78% [44]. Since
then, reCAPTCHA has changed significantly. In a similar
attack, Weng et al. evaluated the security of 10 real-world

Table 9: Performance of human-based CAPTCHA solving
services.

Service Success Rate (%) Speed (s)
2Captcha 98.2 73.11

Anti-Captcha 92.4 83.99
BestCaptchaSolver 67.2 93.42
DeathByCaptcha 96.2 78.33

Imagetyperz 73 131.4

Our system 83.25 19.93

image CAPTCHAs, including reCAPTCHA 2018 [50]. They
used a CNN-based image classification model to break re-
CAPTCHA 2018 challenges with a success rate of 79%. Note
that reCAPTCHA 2018 used to show relatively simple im-
ages when compared to the current reCAPTCHA challenges.
Further, Weng et al. encountered only 10 image categories
in the reCAPTCHA 2018 challenges, where we come across
18 object categories in the latest version of reCAPTCHA.
Moreover, the anti-recognition mechanism employed by the
current reCAPTCHA was not available in reCAPTCHA 2018
as well.

In summary, we propose a new approach to breaking the
most advanced version of reCAPTCHA using object detec-
tion models. Our method significantly outperforms prior ap-
proaches as well as off-the-shelf object detection APIs. We
believe the stark difference in the performance between our
solver and off-the-shelf object detection APIs is because we
train our solver to handle reCAPTCHA object categories ex-
clusively. In contrast, object detection APIs are developed for
general-purpose object detection tasks. Further, as discussed
before, we assume that these services are still in their early
development stages.

8 Discussion

8.1 Ethics

We did not affect the security or the availability of the tested
websites during our data collection for preliminary analy-
sis or performing a live attack on reCAPTCHA as we limit
our access within the two iframe elements related to the
challenge. We also disclosed our findings to Google when we
developed our system’s initial implementation in August 2019.
Unfortunately, we have not noticed any discernible changes
to reCAPTCHA by Google that can prevent our attack. Our
system can still break the reCAPTCHA challenges with a
high success rate as of March 2020.

We have not published the source code of our tool due to
concerns over potential abuse by scammers and fraudsters
alike. However, we encourage researchers to contact us if
they want to use our tool for research purposes only.
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8.2 Limitation
We design our attack to break reCAPTCHA challenges specif-
ically. While reCAPTCHA is the most widely deployed
CAPTCHA service on the Web, there are other popular image
CAPTCHA schemes. It will be interesting to see if we could
extend our object detection based solver module to attack a
whole family of similar image CAPTCHA designs. We plan
to conduct a study on the generalization of our attack as a
future extension.

8.3 Countermeasures
While it may not be possible to prevent our attack completely,
we provide several countermeasures to limit it.
Content heterogeneity. Our experiment shows that content
homogeneity has contributed to lowering the accuracy of
image recognition and classification services. However, it has
minimal to no impact on our object detection based solver. As
such, reCAPTCHA’s current approach to resisting automated
attacks does not seem to be working. We recommend using
images from diverse and heterogeneous sources, which will
provide the CAPTCHA designers more flexibility if they need
to expand the total number of object categories.
Incorporate natural language understanding to image
CAPTCHA test. The natural language understanding is con-
sidered as one of the three biggest open problems in natural
language processing [14]. This weakness could be exploited
to strengthen the security of image CAPTCHA. We suggest
utilizing the natural language understanding in forming the
challenge instruction so that the direction needed to solve a
challenge must be inferred through natural language reason-
ing. The current design of reCAPTCHA makes this informa-
tion readily available to the attacker.
Use spatial properties of the object. The main design flaw
of reCAPTCHA is that an advanced object detection system
can solve its underlying AI problem for telling humans and
bots apart. The problem could be hardened for the machine
by exploiting the object’s spatial attributes, such as shape,
size, orientation, tilt direction, etc. However, it may require
extensive research to determine whether designing such a
CAPTCHA scheme is feasible in practice.

9 Related work

CAPTCHA is an active research area, and there exists an
extensive body of studies in this area. Due to space limita-
tions, we only discuss the works that are mostly related to
ours. Further, we mainly focus on CAPTCHA attack related
research.
Image CAPTCHAs. Golle et al. [29] used support vector
machine classifiers to break Asirra CAPTCHA [26]. Zhu et
al. analyzed the security of various earlier image CAPTCHAs
and proposed attacks to break them [54]. Sivakorn et al. used

deep learning techniques to break reCAPTCHA 2015 [44].
Later Weng et al. analyzed the security of several real-world
image CAPTCHAs, including reCAPTCHA 2018, and devel-
oped deep learning-based attacks that succeeded in breaking
all the CAPTCHAs tested in their work [50]. Osadchy et al.
proposed a new CAPTCHA scheme called DeepCAPTCHA
that exploits adversarial examples in CAPTCHA image gen-
eration to deceive DNN image classifiers [37]. Shi et al. pro-
posed a framework for generating text and image adversarial
CAPTCHAs [43].

Text CAPTCHAs. Most text CAPTCHA schemes have been
broken [20,28,34,35,51,52]. Chellapilla et al. proposed using
machine learning algorithms to break earlier text CAPTCHA
designs [20]. Yan et al. used simple pattern recognition al-
gorithms to break most of the text CAPTCHAs provided at
Captchaservice.org with a near-perfect success rate [51]. El
Ahmad et al. proposed a novel attack against reCAPTCHA
v1 2010 [25]. In 2011, Bursztein et al. evaluated the secu-
rity of 15 CAPTCHA schemes from popular web sites and
concluded that 13 of them were vulnerable to automated at-
tacks [19]. In 2014, Bursztein et al. used a machine learning-
based generic attack to break many popular real-world text
CAPTCHA schemes, including reCAPTCHA 2011 and re-
CAPTCHA 2013 [17]. In 2016, Gao et al. were able to break
many text CAPTCHAs using a low-cost attack that uses Log-
Gabor filters [28]. In 2018, Ye et al. proposed a Generative
Adversarial Networks (GANs) based approach to break 33
text CAPTCHA schemes [53].

Audio CAPTCHAs. Audio CAPTCHAs designed as al-
ternative CAPTCHA schemes for visually impaired users
have been subjected to automated attacks over the years
[16, 18, 41, 45, 47]. Tam et al. analyzed the security of au-
dio CAPTCHAs from popular websites by using machine
learning techniques and were able to break many of them,
including an earlier version reCAPTCHA [47]. In 2017, Bock
et al. proposed an automated system called unCaptcha that
could break reCAPTCHA’s audio challenges with an accuracy
above 85% [16]. In 2017, Solanki et al. proposed a low-cost
attack against several popular audio CAPTCHAs using off-
the-shelf speech recognition services [45].

10 Conclusion

CAPTCHAs have become a standard security mechanism
for protecting websites from abusive bots. In this work, we
showed that one of the Internet’s most widely used image
CAPTCHA schemes, reCAPTCHA v2, could be broken by
an automated solver based on object detection method with a
high success rate. Our extensive analysis showed that despite
several major security updates to counter automated attacks,
which could invalidate prior image recognition and classifi-
cation based solvers, reCAPTCHA remains vulnerable to ad-
vanced object detection systems. Given the capabilities of the
current object detection systems, we think that reCAPTCHA
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is essentially broken because its reverse Turing tests to dis-
tinguish humans from bots are easily solvable by an object
detection based automated solver.
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Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learn-
ing at test time. Lecture Notes in Computer Science,
page 387–402, 2013.

[16] Kevin Bock, Daven Patel, George Hughey, and Dave
Levin. uncaptcha: A low-resource defeat of re-
captcha’s audio challenge. In Proceedings of the
11th USENIX Conference on Offensive Technologies,
WOOT’17, Berkeley, CA, USA, 2017. USENIX Asso-
ciation.

[17] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki,
and John C. Mitchell. The end is nigh: Generic solv-
ing of text-based captchas. In Proceedings of the
8th USENIX Conference on Offensive Technologies,
WOOT’14, Berkeley, CA, USA, 2014. USENIX Asso-
ciation.

[18] Elie Bursztein and Steven Bethard. Decaptcha: Break-
ing 75% of ebay audio captchas. In Proceedings of
the 3rd USENIX Conference on Offensive Technologies,
WOOT’09, Berkeley, CA, USA, 2009. USENIX Asso-
ciation.

[19] Elie Bursztein, Matthieu Martin, and John Mitchell.
Text-based captcha strengths and weaknesses. In Pro-
ceedings of the 18th ACM Conference on Computer
and Communications Security, CCS ’11, page 125–138,
New York, NY, USA, 2011. Association for Computing
Machinery.

[20] Kumar Chellapilla and Patrice Y. Simard. Using ma-
chine learning to break visual human interaction proofs
(hips). In Proceedings of the 17th International Con-
ference on Neural Information Processing Systems,
NIPS’04, pages 265–272, Cambridge, MA, USA, 2004.
MIT Press.

[21] Thomas Claburn. Google’s recaptcha favors
– you guessed it – google: Duh, only a bot
would refuse to sign into the chocolate factory.
https://www.theregister.co.uk/2019/06/28/
google_recaptcha_favoring_google/, 2019. Last
accessed 8 August 2019.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses    281

https://2captcha.com/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://anti-captcha.com/mainpage
https://anti-captcha.com/mainpage
https://bestcaptchasolver.com/
https://bestcaptchasolver.com/
https://www.clarifai.com/
https://www.deathbycaptcha.com/
https://www.deathbycaptcha.com/
https://cloud.google.com/vision
https://cloud.google.com/vision
http://www.imagetyperz.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://github.com/puppeteer/puppeteer/tree/master/experimental/puppeteer-firefox
https://github.com/puppeteer/puppeteer/tree/master/experimental/puppeteer-firefox
https://github.com/puppeteer/puppeteer/tree/master/experimental/puppeteer-firefox
https://trends.builtwith.com/widgets/reCAPTCHA-v2
https://trends.builtwith.com/widgets/reCAPTCHA-v2
https://selenium.dev/
https://selenium.dev/
http://cocodataset.org/#overview
http://cocodataset.org/#overview
https://www.kamperh.com/slides/ruder+kamper_indaba2018_talk.pdf 
https://www.kamperh.com/slides/ruder+kamper_indaba2018_talk.pdf 
https://www.theregister.co.uk/2019/06/28/google_recaptcha_favoring_google/
https://www.theregister.co.uk/2019/06/28/google_recaptcha_favoring_google/


[22] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn:
Object detection via region-based fully convolutional
networks, 2016.

[23] Google Developers. Choosing the type of recaptcha.
https://developers.google.com/recaptcha/
docs/versions#v1, 2019. Last accessed 23 July 2019.

[24] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceed-
ings of the 13th Conference on USENIX Security Sympo-
sium - Volume 13, SSYM’04, Berkeley, CA, USA, 2004.
USENIX Association.

[25] Ahmad S El Ahmad, Jeff Yan, and Mohamad Tayara.
The robustness of google captchas. Technical report,
School of Computer Science, Newcastle University, UK,
May 2011.

[26] Jeremy Elson, John Douceur, Jon Howell, and Jared
Saul. Asirra: A captcha that exploits interest-aligned
manual image categorization. pages 366–374, 01 2007.

[27] Haichang Gao, Wei Wang, Jiao Qi, Xuqin Wang, Xiyang
Liu, and Jeff Yan. The robustness of hollow captchas. In
Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13, page
1075–1086, New York, NY, USA, 2013. Association for
Computing Machinery.

[28] Haichang Gao, Jeff Yan, Fang Cao, Zhengya Zhang,
Lei Lei, Mengyun Tang, Ping Zhang, Xin Zhou, Xuqin
Wang, and Jiawei Li. A simple generic attack on text
captchas. In NDSS, 2016.

[29] Philippe Golle. Machine learning attacks against the
asirra captcha. In Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security, CCS
’08, pages 535–542, New York, NY, USA, 2008. ACM.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. 2015
IEEE International Conference on Computer Vision
(ICCV), Dec 2015.

[31] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi
Tanaka, Jake Graving, Christoph Reinders, Sarthak Ya-
dav, Joy Banerjee, Gábor Vecsei, Adam Kraft, Zheng
Rui, Jirka Borovec, Christian Vallentin, Semen Zhy-
denko, Kilian Pfeiffer, Ben Cook, Ismael Fernández,
François-Michel De Rainville, Chi-Hung Weng, Abner
Ayala-Acevedo, Raphael Meudec, Matias Laporte, et al.
imgaug. https://github.com/aleju/imgaug, 2020.
Online; accessed 01-Feb-2020.

[32] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. Focal loss for dense object detection.
2017 IEEE International Conference on Computer Vi-
sion (ICCV), Oct 2017.

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. Ssd: Single shot multibox detector. Lecture Notes
in Computer Science, page 21–37, 2016.

[34] Greg Mori and Jitendra Malik. Recognizing objects
in adversarial clutter: Breaking a visual captcha. In
Proceedings of the 2003 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
CVPR’03, pages 134–141, Washington, DC, USA, 2003.
IEEE Computer Society.

[35] Gabriel Moy, Nathan Jones, Curt Harkless, and Ran-
dall Potter. Distortion estimation techniques in solving
visual captchas. In Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition, CVPR’04, pages 23–28, Washington,
DC, USA, 2004. IEEE Computer Society.

[36] neuroradiology. Insiderecaptcha. https://github.
com/neuroradiology/InsideReCaptcha, 2014. Last
accessed 8 August 2019.

[37] M. Osadchy, J. Hernandez-Castro, S. Gibson, O. Dunkel-
man, and D. Pérez-Cabo. No bot expects the deep-
captcha! introducing immutable adversarial exam-
ples, with applications to captcha generation. IEEE
Transactions on Information Forensics and Security,
12(11):2640–2653, Nov 2017.

[38] Joseph Redmon. Darknet: Open source neural networks
in c. http://pjreddie.com/darknet/, 2013–2016.
Last accessed 21 July 2019.

[39] Joseph Redmon and Ali Farhadi. Yolov3: An incremen-
tal improvement. arXiv, 2018.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with
region proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6):1137–1149,
Jun 2017.

[41] Shotaro Sano, Takuma Otsuka, Katsutoshi Itoyama, and
Hiroshi Okuno. Hmm-based attacks on google’s re-
captcha with continuous visual and audio symbols. Jour-
nal of Information Processing, 23:814–826, 11 2015.

[42] Katharine Schwab. Google’s new recaptcha has a dark
side. https://www.fastcompany.com/90369697/
googles-new-recaptcha-has-a-dark-side, 2019.
Last accessed August 2019.

282    23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

https://developers.google.com/recaptcha/docs/versions#v1
https://developers.google.com/recaptcha/docs/versions#v1
https://github.com/aleju/imgaug
https://github.com/neuroradiology/InsideReCaptcha
https://github.com/neuroradiology/InsideReCaptcha
http://pjreddie.com/darknet/
https://www.fastcompany.com/90369697/googles-new-recaptcha-has-a-dark-side
https://www.fastcompany.com/90369697/googles-new-recaptcha-has-a-dark-side


[43] Chenghui Shi, Xiaogang Xu, Shouling Ji, Kai Bu, Jian-
hai Chen, Raheem Beyah, and Ting Wang. Adversarial
captchas, 2019.

[44] Suphannee Sivakorn, Iasonas Polakis, and Angelos D.
Keromytis. I am robot: (deep) learning to break seman-
tic image captchas. 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), Mar 2016.

[45] Saumya Solanki, Gautam Krishnan, Varshini Sampath,
and Jason Polakis. In (cyber)space bots can hear you
speak: Breaking audio captchas using ots speech recog-
nition. pages 69–80, 11 2017.

[46] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks, 2013.

[47] Jennifer Tam, Jiri Simsa, Sean Hyde, and Luis V. Ahn.
Breaking audio captchas. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors, Advances in Neural
Information Processing Systems 21, pages 1625–1632.
Curran Associates, Inc., 2009.

[48] Stéfan van der Walt, Johannes L. Schönberger, Juan
Nunez-Iglesias, François Boulogne, Joshua D. Warner,
Neil Yager, Emmanuelle Gouillart, Tony Yu, and the
scikit-image contributors. scikit-image: image process-
ing in Python. PeerJ, 2:e453, 6 2014.

[49] Luis von Ahn, Manuel Blum, and John Langford.
Telling humans and computers apart automatically. Com-
mun. ACM, 47(2):56–60, February 2004.

[50] Haiqin Weng, Binbin Zhao, Shouling Ji, Jianhai Chen,
Ting Wang, Qinming He, and Raheem Beyah. Towards
understanding the security of modern image captchas
and underground captcha-solving services. Big Data
Mining and Analytics, 2:118–144, 06 2019.

[51] Jeff Yan and Ahmad Salah El Ahmad. Breaking vi-
sual captchas with naive pattern recognition algorithms.
Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007), pages 279–291, 2007.

[52] Jeff Yan and Ahmad Salah El Ahmad. A low-cost attack
on a microsoft captcha. In Proceedings of the 15th ACM
Conference on Computer and Communications Security,
CCS ’08, pages 543–554, New York, NY, USA, 2008.
ACM.

[53] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu,
Yansong Feng, Pengfei Xu, Xiaojiang Chen, and Zheng
Wang. Yet another text captcha solver: A generative
adversarial network based approach. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 332–348,
New York, NY, USA, 2018. ACM.

[54] Bin B. Zhu, Jeff Yan, Qiujie Li, Chao Yang, Jia Liu, Ning
Xu, Meng Yi, and Kaiwei Cai. Attacks and design of
image recognition captchas. In Proceedings of the 17th
ACM Conference on Computer and Communications
Security, CCS’10, pages 187–200, New York, NY, USA,
2010. ACM.

Appendix A Captcha Types

Figure 6 shows an example of a selection-based CAPTCHA
challenge, and Figure 7 shows an example of a click-based
CAPTCHA challenge.

Figure 6: Selection-based image CAPTCHA.

Appendix B Data Augmentation

Figure 8 depicts some examples of data augmentation meth-
ods applied to a sample reCAPTCHA challenge image.
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Figure 7: Click-based image CAPTCHA.

(a) Original image (b) AdditiveGaussianNoise (scale=.1∗255)

(c) GaussianBlur (sigma=5.0) (d) MedianBlur (k=13) (e) AverageBlur (k=15)

Figure 8: Examples of data augmentation methods.
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