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Abstract (150 words) 31 

 32 

The interaction of coral reefs, both chemically and physically, with the surrounding seawater is 33 

governed, at the smallest scales, by turbulence. Here we review recent progress in understanding 34 

turbulence in the unique setting of coral reefs - how it influences flow and the exchange of mass 35 

and momentum both above and within the complex geometry of coral reef canopies.  Flow above 36 

reefs diverges from canonical rough boundary layers due to their large and highly heterogeneous 37 

roughness and the influence of surface waves.  Within coral canopies, turbulence is dominated 38 

by large coherent structures which transport momentum both into and away from the canopy but 39 

is also generated at smaller scales as flow is forced to move around branches or blades creating 40 

wakes. Future work should carefully consider the influence of spatial variations on the fluxes of 41 

momentum and scalars in interpreting observations in reef environments and in applying these to 42 

numerical models. 43 

 44 
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1.0  Introduction  52 

Coral reefs are among the most diverse ecosystems on the planet (Veron 1995). They play an 53 

important role protecting coastlines from the damaging effects of waves, provide nurseries for 54 

many ocean fish species, and represent a vital source of food for developing nations (Ferrario et 55 

al. 2014; Burke et al. 2011).  Additionally, reefs are biogeochemical “reactors”, where the high 56 

metabolism of the benthic community transforms and recycles carbon, nitrogen, and other 57 

nutrients for marine food chains (D’elia & Wiebe 1990).  The interaction of coral reefs, both 58 

chemically and physically, with the surrounding seawater is governed by flow - at the large 59 

scales by tides, mesoscale currents, and waves and at the smallest scales by turbulence.   60 

 61 

Oceanic forcing shapes regional circulation patterns and the horizontal transport of water masses 62 

with different properties to the reef, governing the environmental conditions and the dispersal of 63 

reef larvae and, thus, the biogeographical distribution of reef organisms (reviewed in Lowe & 64 

Falter 2015).  However, turbulent mixing governs the vertical “coupling” between the bed and 65 

the overlying water - determining the vertical transport of heat, food, pollutants, pathogens, 66 

larvae, or nutrients to or from the benthic reef community (Thomas & Atkinson 1997; Falter et 67 

al. 2004, 2007; Monismith et al. 2010; Sebens et al. 1998, 2003, Reidenbach et al., 2009).  A 68 

review of reef-scale hydrodynamics and boundary layer flows over reefs can be found in 69 

Monismith (2007).  Here, however, we focus on the smallest scales of water motion on coral 70 

reefs - turbulence.   71 

 72 

This review is motivated, in part, by a defining physical characteristic of coral reefs that makes 73 

them a good place to study turbulence - their extreme hydrodynamic roughness.  While natural 74 

surfaces under the erosive influence of breaking waves and strong currents would tend to be 75 

worn smooth, scleractinian (hard) corals actively grow complex structures (i.e. “roughness 76 

elements” to fluid dynamicists!) that induce mixing and enhance turbulent fluxes near the bed 77 

(e.g. van Woesik et al 2012).  The geometric complexity of corals can be seen at the scale of 78 

individual coral colonies with their various morphologies (e.g. branching, foliated, massive, and 79 

encrusting forms), to the scale of reef platforms where steeply sloping forereefs cut with spur-80 

and-groove formations differ greatly from the wide, shallow reef flats, and bommie-filled 81 

lagoons in (Figure 1).  Spatially-variable reef structure creates correspondingly complex 82 
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hydrodynamic regimes that are shaped, in part, by the relative height of the coral reef canopy, hc,  83 

relative to the depth of the water column, h, and the relative strength of wave-driven flows, Uw, 84 

to mean, unidirectional currents, Uc (Figure 2).   85 

 86 

Structural complexity creates manifold microhabitats and is thought to be a key feature 87 

influencing ecological processes on reefs - affecting the availability of food and the abundance of 88 

fish, enhancing herbivory by reef fishes to reduce algae cover, and providing shelter from 89 

predators (Holbrook et al. 2002; Gratwicke & Speight, 2005; Harborne et al. 2012; Graham & 90 

Nash 2013).  The interdisciplinary nature of science on coral reefs has led to various methods for 91 

defining and quantifying the structural complexity of the benthic community.  One of the most 92 

common methods of quantifying bottom roughness in marine ecological studies is the “chain-93 

and-tape” estimate of rugosity, which is the ratio of the contour length along the substrate surface 94 

to the corresponding projected horizontal length (Risk 1972).  Recent efforts to quantify the 95 

complex, multiscale benthic topography of coral reefs have found success in fractal theory 96 

(Zawada & Brock, 2009; Duvall et al. 2019). Hydrodynamic studies quantify roughness as 97 

standard deviation (Lowe et al. 2005a), root-mean-square slope (Rogers et al. 2018), or 98 

‘roughness density’, the total frontal area of canopy elements per horizontal area (Schlichting 99 

1937, Dvorak 1969, Wooding 1973, Jimenez 2004).  But, most often, physical oceanographers 100 

are interested in how the ‘roughness elements’ of the benthic reef community impose large 101 

bottom stresses on the flow, characterizing this effect through drag coefficients (CD),  102 

hydrodynamic roughness (z0), and friction factors (fw, fe) (Lowe et al. 2005a; Monismith 2007). 103 

For example, estimates of drag coefficients over coral reef communities commonly find values 104 

one to two orders of magnitude higher than that for sandy or muddy coastal beds (Heathershaw 105 

& Simpson 1978; Lugo-Fernandez et al. 1998; Lentz et al. 2017).   106 

 107 

This review focuses on recent progress in understanding turbulence in the unique setting of coral 108 

reefs.  We develop a mathematical framework for our discussion in Section 2. We draw insights 109 

from relevant engineering literature on flow over rough surfaces and studies of atmospheric flow 110 

over vegetation and urban canopies in Section 3.  The shallow setting of many reef environments 111 

requires consideration of the influence of the free-surface and waves on turbulent flows (Section 112 

4).  For reefs exposed to internal waves, stratified turbulent boundary layer dynamics become 113 
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relevant (Section 5).  We consider turbulent flow within coral canopies (Section 6) as it is 114 

important for mass transport (Section 7), predation of corals by fish, particle capture by corals, 115 

and larval settlement.  116 

 117 

2.0 The analysis framework  118 

Here we present the equations governing flow in and above coral canopies and define some 119 

useful terms and notations that will be used throughout the paper.  We adopt right-handed 120 

Cartesian coordinates where x = [x,y,z] represents the three-dimensional spatial coordinate axes 121 

and u = [u,v,w] is the corresponding velocity vector.  For the simplest case of unidirectional 122 

flow, turbulent quantities can be represented using a Reynolds decomposition of the velocity 123 

vector and other scalar quantities, shown here for the u-component of velocity, as: 124 

     (1) 125 

where the overbar represents a time-average and the prime denotes a fluctuating, or turbulent, 126 

quantity.  Using this notation within the equation for conservation of momentum and taking the 127 

time-average results in the Reynolds-averaged Navier Stokes equation, here presented in two 128 

dimensions - x, streamwise horizontal and parallel to the bed, and z, normal to the bed (z = 0 at 129 

the bed): 130 

     (2) 131 

 132 

where t is time, p is pressure, ⍴ is the fluid density, and 𝜏xz is defined here as a sum of the 133 

Reynolds stress and the viscous stress: 134 

    (3) 135 

 136 

where µ is fluid viscosity. Equation 2 is relevant for unidirectional flow above canopies, but 137 

surface gravity waves are a common feature of coral reef habitats.  Oscillatory wave-driven flow 138 

can significantly enhance turbulence in a region near the bed called the wave boundary layer 139 

(Grant & Madsen 1986; Trowbridge & Lentz 2018).  Turbulent motions in the presence of waves 140 
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complicate the usual Reynolds decomposition for velocity, with the introduction of wave-141 

correlated motions: 142 

      (4) 143 

 144 

where the second term, 𝑢$ , added relative to Equation 1, represents motions that are coherent with 145 

the wave phase. 146 

 147 

The time-averaged vertical stress in the presence of waves includes an extra stress (relative to 148 

Equation 4) that is due to the temporal correlation of oscillatory velocities: 149 

.     (5) 150 

For high Reynolds numbers, typical for reef environments, the last term in Equations 4 and 5 is 151 

generally negligible. Other stress terms (𝜏xx, 𝜏yy, 𝜏xy), not written out here, will also be relevant in 152 

regions of flow with significant variability in the horizontal or in the presence of waves and 153 

include terms important to the wave radiation stress (Longuet-Higgins & Stewart 1964).   154 

 155 

Within the canopy, the effect of the roughness elements is felt more directly, as flow must move 156 

around coral branches, heads, blades of macroalgae, and other canopy elements, creating a 157 

highly variable spatial flow structure that is challenging to characterize - even for the simplest 158 

geometric approximations of canopy elements (Lowe et al., 2005b).  To represent the effect of 159 

this complex instantaneous flow field on the mean velocities within the canopy, it is common to 160 

employ a double-averaging method with the Reynolds-averaged Navier Stokes equations - both 161 

in time, as is commonly done, and in space over a horizontal plane to remove element-scale 162 

spatial heterogeneity (Raupach & Shaw 1982).  Using this idea, time-averaged quantities are 163 

further broken down as, 164 

       (6) 165 

 166 

where brackets denote a spatial average over a horizontal plane (excluding the solid parts of the 167 

canopy elements), and double-primes denote deviations from the spatial mean.  The double-168 

averaged, 2D momentum equation for unidirectional flow within a canopy becomes, 169 
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 170 

     (7) 171 

 172 

where,  173 

          (8) 174 

 175 

is the spatially-averaged total stress, in which an extra term, , called the “dispersive 176 

stress” appears, that accounts for the spatial correlations in the time-averaged velocity field. The 177 

last term in Equation 7, Fx , represents the spatially-averaged drag force exerted by the canopy 178 

elements onto the surrounding flow.   179 

 180 

3.0  Turbulence and mixing over rough terrain  181 

Turbulence in coral reef environments arises through a variety of mechanisms including breaking 182 

surface waves, breaking internal waves, boundary layers over coral elements and free shear 183 

layers from separated flows around those elements.  The latter two mechanisms are distinctive to 184 

coral reefs relative to other environmental settings due to the extreme, complex nature of coral 185 

surfaces.  Flows over terrestrial vegetated canopies (i.e. Belcher et al. 2012) are most similar, 186 

though the ubiquity of oscillatory motion due to surface waves sets coral reefs further apart.   187 

 188 

The key quantity that characterizes the turbulence and overall structure for unstratified flow 189 

interaction with a boundary is the net rate of loss of fluid momentum or equivalently, the drag 190 

force that the boundary exerts on the fluid. This is generally given in terms of force per unit area 191 

as a total stress, 𝜏b, which is manifested at the boundary via viscous shear stress and pressure 192 

drag on roughness elements.  For rough boundaries at high Reynolds numbers, the latter is 193 

dominant (Jimenez 2004). The total stress is also given in terms of a friction velocity 194 

 where r is water density.  The drag (D) on the flow (per unit area, AT) is given, 195 

using a quadratic drag law as:         196 

     (9) 197 
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where U is a suitably defined reference velocity often chosen based on a reference height or 198 

using a depth average. This choice, of course, can result in differing values for the drag 199 

coefficient, CD, and potentially complicates comparison between reported measurements 200 

(Rosman & Hench 2011). 201 

 202 

Starting with canonical considerations of unstratified steady and oscillatory flow interaction with 203 

a rough boundary (c.f. Grant & Madsen 1986, Trowbridge & Lentz 2018), we can identify a suite 204 

of relevant dimensionless parameters that will describe the interaction of flow with reef 205 

roughness and subsequent turbulent flow characteristics: 206 

 207 

   (10) 208 

 209 

The first parameter represents the relative magnitude of steady (Uc) to oscillatory (Uw) velocities. 210 

The second parameter, 𝜙&', is the relative angle between waves and steady flow. The third and 211 

fourth parameters relate a characteristic physical roughness length scale, k, to the total water 212 

depth, h, and to the wave orbital amplitude, A = Uw T, respectively.  A key issue that will require 213 

attention is that of obtaining some parametric representation of the influence of the reef surface 214 

geometry on the flow. Reef surfaces are inherently multiscaled, so that the choice for the 215 

characteristic scale, k, and its connection to the hydrodynamics is not immediately clear. The last 216 

parameter P then represents some measure (or set of measures) that captures the effects of the 217 

complex distribution of roughness scales on the flow.  As discussed further below, these 218 

measures can include spectral distributions, solidity, and roughness density among others. 219 

 220 

Because relevant velocity and roughness scales are large, reefs are assumed to be fully rough so 221 

the Reynolds number is not typically considered as a parameter. Near coral surfaces, at the scale 222 

of individual coral communities and within canopies, viscous effects will likely play important 223 

roles. 224 

 225 

  226 
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3.1 Canonical rough boundary layer 227 

In the classic paradigm for flow over a homogeneously rough boundary, at some distance above 228 

the bed, the flow depends only on u*, some characteristic length scale for the roughness, z0, and 229 

distance from the boundary, z.  Dimensional considerations then require that the time-averaged 230 

velocity U(z) follow a logarithmic profile: 231 

 232 

     (11) 233 

(Pope 2000) where 𝜅 ~ 0.4 is the von Kármán constant (Long et al. 1993, Bailey et al. 2014).  234 

Equation 11, an expression of the so-called law of the wall, applies where the distance from the 235 

wall is much greater than the roughness scale, z >> z0 and much smaller than the overall 236 

boundary layer thickness, 𝛿.  The length scale z0 in the log profile, is more accurately the 237 

hydrodynamic roughness, and represents the height at which the average velocity would vanish if 238 

extrapolated downward.  This quantity is typically determined from empirical fits of Equation 11 239 

to measured velocity profiles.  In actuality, the velocity near z~z0 is modified by details of the 240 

roughness and, especially for coral reefs, by the turbulent wave boundary layer.  The relation 241 

between the hydrodynamic roughness length and a representative physical roughness scale k 242 

introduced in Equation 10 is not explicit, however.  A relation for sand grain roughness, obtained 243 

by Nikuradse (1933), is commonly used for homogenous roughness: z0 = ks/30, where ks is a 244 

characteristic sand grain size.  For more complex roughness characterized by multiple length 245 

scales, the transfer function is not so clear, as will be discussed further below. 246 

 247 

Large and highly variable roughness for coral reef surfaces complicates the definition of the 248 

vertical coordinate in Equation 11.  An arbitrarily defined vertical coordinate z’ can be related to 249 

the coordinate z in Equation 11 introducing the hydrodynamic origin or displacement height, zref 250 

= z-z’ (Raupach et al. 1991). Jackson (1981) showed that this location corresponds to the height 251 

at which the hydrodynamic drag force is applied to the surface. For widely spaced, regular 252 

transverse square bars, Leonardi et al. (2003) showed that this was at roughly half of the element 253 

height.  254 

 255 
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The parameters in Equation 11 are defined differently across various fields of application, for 256 

example, in engineering literature, the velocity offset associated with z0 is commonly given as a 257 

‘roughness function’ Δ𝑈,, and Equation 11 is expressed as 258 

.      (12) 259 

Here + refers to nondimensional values scaled using a viscous length 𝜈 𝑢∗⁄  so that 𝑈, =260 

𝑈(𝑧) 𝑢∗⁄  and 𝑧, = 𝑧𝑢∗ 𝜈⁄ . The roughness function then is related to the reduction in the velocity 261 

profile for the rough boundary case relative to that for a smooth wall (Jimenez 2004). 262 

 263 

Equations 11 and 12 apply within a limited region near the boundary where the overall boundary 264 

layer thickness is not yet relevant.  For open channel flows where the boundary layer is ‘fully-265 

developed’ so that the boundary effects extend throughout the water column, Equations 11 and 266 

12 can accurately describe velocity profiles for z < 0.2h (Nezu & Nakagawa 1993). Outside of 267 

this region, the deviation of the mean velocity from the log profile can be accounted for by 268 

addition of a wake function or velocity defect law (Coles 1956) that adjusts for dynamics in the 269 

outer layer.  The velocity profile across the layer is then represented by: 270 

 271 

.     (13) 272 

 273 

Here, Π is a flow dependent wake strength parameter.  For fully developed flow, δ = h in 274 

Equation 13, and Π ⋍ 0.2 (Nezu & Nakagawa, 1993). The presence of a free surface can affect 275 

turbulent flow differently, suppressing vertical turbulent motions and modifying the velocity 276 

profile relative to that near the centerline in a closed channel or at the upper edge of a developing 277 

boundary layer (see Talke et al. 2013).  Guo & Julien (2007) developed a modified wake 278 

function that accounts for a near-surface reduction in velocity for open-channel flow. 279 

 280 

If we consider CD from Equation 9 defined using the depth averaged velocity and assume fully 281 

developed flow and k << h so that Equation 13 applies over the full depth, then the drag 282 

coefficient can be related to the hydrodynamic roughness as: 283 
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    (14) 284 

where the drag coefficient then varies as function of depth, for a given roughness (Lentz et al. 285 

2017). 286 

 287 

Details and consequences associated with the logarithmic profile have been discussed 288 

extensively elsewhere (Grant & Madsen 1986; Jimenez 2004; Trowbridge & Lentz 2018).  The 289 

validity of Equations 11-13 has been verified in multiple settings (Lueck & Lu 1997; Sanford & 290 

Lien 1999), although values of the shear stress derived from the law of the wall and 291 

measurements of the shear stress made using other means, e.g. from the variance method (Stacey 292 

et al. 1999), sometimes do not agree. Nonetheless, the law of the wall has several useful features:  293 

(1) As evident in Equation 14 and shown by Lentz et al. (2017), the dependence of drag 294 

coefficients for depth-averaged flows on h/z0 can be obtained where roughness scales are 295 

assumed to be much smaller than the overall depth (similar behavior was observed by McDonald 296 

et al. (2006) for cases where the coral canopy was a sizable fraction of the total depth). 297 

(2) As will be discussed below, the assumed eddy diffusivity variation with height appropriate to 298 

law of the wall can be used with measurements of bulk concentration gradients of scalars, like 299 

total alkalinity or temperature for example, to infer fluxes. 300 

 301 

In the context of coral reefs, several factors put the validity of Equations 11-13 into question, 302 

however, including large and highly heterogeneous roughness and the influence of surface 303 

waves.  304 

 305 

3.2 Turbulence over highly irregular roughness 306 

The parameter P in the functional relation in Equation 10 represents some quantitative measure 307 

(or set of measures) of irregular reef roughness that captures the connection between the complex 308 

multiscaled surface and the hydrodynamic roughness z0 in Equation 11.  A number of measures 309 

have been proposed in engineering studies of rough boundaries including root-mean-square 310 

(rms) height, spectral moments, roughness slope, among others (see Schultz & Flack 2009 and 311 

references therein).  As summarized by Schultz & Flack (2009), “Even with modest success of 312 

these correlations for a specific roughness type, it can be concluded that, at present, there is no 313 

CD ⇡ 2


ln

✓
h

z0

◆
+ (⇧� 1)
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sufficiently satisfactory scaling for a generic, three-dimensional roughness”.  The situation is 314 

more acute when considering complex roughness associated with coral reef canopies. 315 

  316 

We can nonetheless obtain some guidance on how to approach roughness parameterization from 317 

considering regular roughness arrays. Considering a single, bluff body of height k and transverse 318 

width s on a flat bottom within a steady mean flow U, the total pressure drag should be well-319 

described using a drag coefficient of order 1 and using the frontal area k*s. If we consider a 320 

regular array of these elements, sparsely spaced at intervals of w and b in the longitudinal and 321 

lateral directions, respectively, then the total drag per unit area is 322 

 .     (15) 323 

Following this paradigm, it seems reasonable that the force exerted on the boundary, and by 324 

corollary, the hydrodynamic roughness, should be proportional to the exposed frontal area.  For 325 

2D beds, this regime is described as k-type roughness where the hydrodynamic roughness is a 326 

function of the height of elements, k and the roughness density, l (Perry et al. 1969). 327 

Measurements show that z0/k is linear with l for 𝜆 ≤	0.15 (Raupach et al. 1991; Jimenez, 2004). 328 

Since l ~ k/w, this points to the roughness slope as a relevant parameter as observed for sand 329 

ripples (Nielsen 1992).  Engineering studies have similarly shown slope to be relevant (Napoli et 330 

al. 2008; Schultz & Flack 2009). 331 

   332 

Roughness slope has been used successfully to describe drag for reef surfaces. Rogers et al. 333 

(2018) used a numerical model to examine flow over a reef surface obtained from high 334 

resolution topographic measurements from a shallow reef flat in American Samoa with relatively 335 

sparse coral coverage. Model drag estimates agreed well with observed values and were well 336 

predicted using Equation 14 with z0 based on rms roughness and an average roughness slope. 337 

 338 

For the regular roughness case, as element spacing is reduced, flow sheltering begins to play a 339 

role, reducing the relative flow velocity and complicating the relationship with l.  When spacing 340 

is reduced so that k~w, the full element height k is no longer relevant for drag. This is the d-type 341 

roughness regime identified by Perry et al. (1969).  Leonardi et al. 2003 showed that for w<5k 342 

the hydrodynamic origin approaches ~0.1w below the top of the roughness elements. This can be 343 
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interpreted as a critical cavity aspect ratio w/k~5 below which the outer flow no longer responds 344 

to the lower part of the cavity geometry. For d-type roughness then, the full roughness density is 345 

no longer relevant in Equation 15 and the roughness element spacing w must play a role in 346 

setting the hydrodynamic roughness. 347 

 348 

Rajagopalan (2010) applied the critical cavity aspect ratio paradigm to 2D irregular roughness to 349 

determine the hydrodynamic origin 𝜁9 relative to the top of the roughness, based on an effective 350 

cavity aspect ratio for the irregular bed. For the 2D case, the hydrodynamic roughness was given 351 

by    where  is a modified roughness density measured down to 𝜁9.  This 352 

idea is consistent with an alternate empirical roughness density ls that adjusts for the ‘windward 353 

wetted surface area’ (Sigal & Danberg 1990, van Rij et al. 2002). Numerous relationships 354 

between z0 and l and ls have been determined empirically for a range of 2D and 3D bed 355 

geometries, as reviewed by Flack & Schultz (2010). 356 

 357 

Roughness measurements show that coral reefs are commonly multiscaled (Zawada & Brock 358 

2009; Duvall et al. 2019) with roughness distributions that can be described by a red spectral 359 

distribution (Nunes & Pawlak 2008; Jaramillo & Pawlak 2011; Amador et al. submitted A) over 360 

a range of scales spanning O(10 cm) to O(10 m).  In order to resolve the relevant spectral range, 361 

Reidenbach et al. (2006) covered a section of reef with plastic sheeting effectively eliminating 362 

fine scale roughness and found that drag and turbulence was unchanged. The Eilat forereef they 363 

considered (Figure 2b) could be described as a sparse canopy with a set of isolated obstacles 364 

with k/h >> 1 so results may not be broadly applicable to more dense canopies, but their 365 

observations suggest that the larger roughness scales are dominant in the mean flow drag 366 

response.  367 

 368 

At the lower end of the spectrum, the transition between the scales that contribute to roughness 369 

and those that can be considered bathymetry is not obvious for reef topography. Conceptually, 370 

we might consider scales that lead to flow separation as contributing to roughness, with longer 371 

length scales driving a potential flow response. Schultz & Flack (2009) noted that roughness 372 

with an average slope less than 0.35 did not map onto the hydrodynamic roughness, denoting 373 

lower slopes as ‘wavy’ surfaces.  Spatial drag measurements by Amador et al. (submitted A) 374 
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over a sparsely covered forereef were best correlated with spectral roughness rms for 375 

wavelengths greater than 20 m (for depths of 5-30 m) suggesting that the larger roughness scales 376 

were most relevant in determining drag, consistent with Reidenbach et al. (2006).  The apparent 377 

discrepancy between these results and Schultz & Flack’s (2009) critical slope may be associated 378 

with the fact that, for coral reefs, longer wavelengths are more likely coincident with sharp 379 

changes, as for spur and groove topography (Storlazzi et al. 2003), that are manifested in broad 380 

spectral distributions. 381 

 382 

Where k<<h, we can explore whether the overlying flow can be at least in local equilibrium with 383 

the local bed roughness.  Studies of rough wall turbulence have shown that the boundary layer 384 

thickness must satisfy d / ks >~ 40, where ks is the equivalent sand grain roughness, for the 385 

turbulence similarity assumptions that underlie Equation 11 to be valid (Jimenez 2004, Flack et 386 

al. 2005).  Where this condition is not met, turbulence may be more characteristic of that for flow 387 

over obstacles.  Nevertheless, velocity profiles have been shown to be well-described by 388 

logarithmic structure in many high roughness coral reef environments and yield bed stresses that 389 

agree with other methods (Reidenbach et al 2006; Lentz et al. 2017; Arzeno et al. 2018, Amador 390 

et al. submitted A). Spatially averaged drag estimates by Amador et al. (submitted A) yielded 391 

values that compared reasonably well with log fit and Reynolds stress estimates at one of two 392 

fixed sites.  At a second site, where advection was notable, the comparison was poorer. At both 393 

sites, however, Reynolds stress profiles showed relatively weak connection with local shear, 394 

indicating nonequilibrium conditions (Amador et al. submitted B).  395 

 396 

The high spatial heterogeneity that characterizes coral reef environments poses a challenge for 397 

interpreting field observations traditionally obtained from a single location.  It also represents a 398 

practical problem for numerical modeling where model grid cells require averaging over variable 399 

roughness. These issues are similar to those associated with atmospheric flow over variable 400 

topography and associated studies can provide some guidance in understanding turbulence in 401 

coral reefs. Meteorologists use the blending height db as a measure of the vertical extent at which 402 

effects of surface heterogeneities are no longer discernible (Mahrt, 2000). Mason (1988) 403 

described the blending height as the level at which a change in bed stress is balanced by a 404 

corresponding perturbation in advection which gives  where Lc is a 405 
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characteristic horizontal scale for heterogeneity, 𝑈:;  is the velocity at the blending height and Cb 406 

is a constant of order 1. Alternately, the blending height has also been defined using a diffusive 407 

length argument (Claussen 1990) as .  The blending height can be 408 

interpreted as the height above a homogenous patch of roughness to which the flow can be 409 

considered in local equilibrium.  For coral reef flows with depth h, and typical steady flow drag 410 

coefficients CD ~ 10-2 (Lentz et al. 2017), these relations suggest that heterogeneity at scales less 411 

than Lc = 10-100 h will lead to turbulence that is not in equilibrium with the local roughness. 412 

Given the roughness regimes that are represented in Figure 2, we can anticipate that spatial 413 

variability will play an important role in turbulence for many reef environments.  In these cases, 414 

local advective contributions to momentum balances and to turbulent fluxes will be important.   415 

 416 

Spatial variability brings about additional complications in parameterizing turbulent stresses over 417 

reef scales due to the role of persistent spatial flow structure. As shown by Mahrt (1987) for 418 

numerical modeling of atmospheric flow, this spatial structure contributes to subgrid fluxes that 419 

appear via the dispersive stress in Equation 8.  For coral reefs, specific mechanisms for spatially 420 

variable, persistent flow can include local advection and acceleration around individual 421 

roughness elements and reef topography (Hench & Rosman 2013; Rogers et al. 2015), wave-422 

induced residuals (Pawlak & MacCready 2002) and thermally driven flows (Monismith et al. 423 

2006, Molina et al. 2014). 424 

 425 

Taylor (1987) noted a similar issue in averaging of variable roughness noting that the spatially-426 

averaged hydrodynamic roughness length is given by . Using a 427 

Taylor series expansion, this can be approximated as  which avoids averaging 428 

over the shear stress velocity.  These relations highlight the complications that must be 429 

considered in interpreting local observations and in applying these to numerical models.  430 

 431 

Extrapolating the approaches from atmospheric boundary layers neglects effects due to surface 432 

waves that are intrinsic for many reef environments.  Wave effects on current boundary layer 433 

structure in heterogeneous roughness have not previously been considered in detail. 434 

 435 
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4.0 Surface waves and the wave boundary layer 436 

Surface waves drive oscillatory motions that can often be larger than steady flows in many reef 437 

environments (Monismith 2007).  The effects of irrotational surface wave motion on turbulence 438 

generated by steady flow over the rough seabed is commonly neglected although Teixeira & 439 

Belcher (2002) have shown that wave induced strain and Stokes drift shear can result in time 440 

variable modulation of Reynolds stresses and anisotropy. Near the bed, the periodic motions 441 

directly drive turbulence and indirectly modify the mean flow. 442 

 443 

The vertical extent of the bottom boundary layer associated with wave driven motions is limited 444 

by the wave period so that vertical gradients in velocity along with corresponding stresses and 445 

turbulent intensities are much higher than for comparable steady flows (Grant & Madsen 1979). 446 

For sediment seabeds, wave boundary layer thicknesses are on the order of centimeters (Grant & 447 

Madsen 1986, Trowbridge & Lentz 2018). For rough beds, however, the turbulent wave 448 

boundary layer extent is determined by the height of the roughness elements, which for coral 449 

reefs can range from centimeters to meters (c.f. Figure 2). 450 

 451 

Similarly to the thicker steady flow boundary layer, turbulence within the wave-driven boundary 452 

layer can be related to the time variable shear stress velocity. The magnitude of the 453 

corresponding time varying stress is typically parameterized using a wave friction factor, fw, as: 454 

      (16) 455 

(Jonsson 1966). Extensive work has been carried out towards developing parameterizations for fw 456 

over homogeneously rough beds with k/A << 1, primarily in the context of coastal engineering 457 

and sediment transport applications.  The majority of these studies build on the original 458 

formulation by Jonsson (1966), later modified by Swart (1974) and examined experimentally by 459 

Kamphuis (1975), that shows an increase in fw with increasing relative roughness k/A. More 460 

recent work by Dixen et al. (2008) has extended this result for large roughness where k/A ~ O(1).  461 

 462 

The dissipation of wave energy due to bed friction is associated with the component of the time 463 

varying stress that does work on the oscillatory flow.  Jonsson (1966) defined the wave energy 464 



 

 16 

dissipation factor fe for sinusoidal waves based on the mean dissipation of wave energy which is 465 

given by: 466 

     (17) 467 

where 𝑢&(𝑡) is the time-variable freestream wave velocity.  Because the bottom stress is not 468 

generally in phase with the wave motion, fe and fw are not strictly the same, though these are 469 

often used interchangeably. Madsen (1994) related these formally for spectral waves as a 470 

function of their corresponding phase shift.  471 

 472 

Nielsen (1992) reviewed a number of models for turbulent wave boundary layers over 473 

homogeneous roughness. A quasi-steady model, assuming a log profile as in Equation 11, agrees 474 

reasonably well with measured velocity profiles for low relative roughness (k/A < 0.01). For 475 

large roughness (k/A > 0.06), the boundary layer structure was well-approximated using a 476 

constant eddy viscosity, consistent with wake-dominated turbulence (c.f. Pope 2000). 477 

 478 

The extension of results for wave boundary layers for homogenous roughness to coral reefs is 479 

challenged by the broad range of coral bed morphologies.  The dense canopies shown in Figure 480 

2 would suggest that coral reef surfaces would fall within high relative roughness values, k/A.  481 

As noted earlier, however, reef roughness is multiscaled with ‘roughness elements’ that also 482 

differ fundamentally from sand, gravel and rock boundaries. Though some massive corals may 483 

be well-described as solid obstacles, elements are commonly characterized at small scales by 484 

branching networks.  As discussed later, the degree to which flow penetrates these elements is a 485 

function of wave frequency (Lowe et al. 2005c, Reidenbach et al. 2006) with high frequency 486 

waves tending to generate greater flow through the elements. As for steady flow, the connection 487 

between physical roughness and the associated hydrodynamic roughness used for friction factor 488 

parameterizations is thus not clear.  489 

 490 

Reef surfaces dominated by low relief encrusting coral coverage may be well represented by 491 

homogeneous roughness wave boundary layer models. Estimates of wave dissipation factors by 492 

Lowe et al. (2005a) over a reef flat with relatively uniform, low relief roughness were well 493 

explained across a range of frequencies by a homogenous roughness parameterization using a 494 
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single roughness scale. Estimates for fe ranged from 0.1-0.7 for frequencies between 0.1 and 0.6 495 

Hz with higher values at higher frequencies, consistent with increasing friction and dissipation at 496 

higher relative roughness.  The inferred roughness scale compared well with physical roughness 497 

measurements quantified using rms over 3 m transects.   Other studies have yielded comparable 498 

estimates for dissipation factors, primarily for reef flats (Gerritsen 1981; Nelson 1996; Hearn 499 

1999; Falter et al. 2004; Pequignet et al. 2011) and forereef environments (Gerritsen 1981; 500 

Bandet 2009; Pequignet et al. 2011; Monismith et al. 2013). 501 

 502 

Pequignet et al. 2011 measured a higher friction factor (fe=0.4) for a forereef in Guam with 503 

complex, multiscaled roughness, relative to the reef flat (fe=0.06). Notably, Monismith et al. 504 

(2015) reported fe = 1.8 for a Palmyra forereef, attributing the high dissipation to the complex 505 

canopy structure which introduces an additional component to the drag so that the wave 506 

dissipation factor, following Lowe et al. (2007), is given by:  507 

 508 

     (18) 509 

 510 

where fe0 is the dissipation due to drag at the bottom, with typical values of 0.01 to 0.1, Cd ≈ 1 is 511 

a drag coefficient associated with canopy structure, l is the roughness density and aw represents 512 

the ratio of wave velocity within the canopy to the freestream wave velocity.  The factor aw is 513 

dependent on wave frequency, estimated by Lowe et al. 2005b as 0.5 < aw < 0.7 for dense 514 

canopies and long waves. 515 

 516 

The total stress on coral elements due to wave motion has three components: viscous shear 517 

stress, pressure drag associated with separated flow, and inertial forces (added mass effects) 518 

associated with flow acceleration.  Yu et al. (2018) note that these various components of forces 519 

lead to ambiguous definitions for the wave friction factor.  As discussed earlier and also shown 520 

by Yu et al. (2018), viscous shear forces are generally negligible at high Reynolds numbers 521 

characteristic of reef environments. The inertial forces on roughness elements are dominant at 522 

high wave frequencies, while pressure drag dominates for longer waves and for steady flow 523 

(Lowe et al. 2005b; Yu et al. 2018).  Because the inertial forces are associated with potential 524 

flow effects, these do not contribute to the stresses that are reflected in Equation 16. 525 
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Furthermore, because these are in quadrature with the outer wave flow, inertial forces do not 526 

contribute to fe, as evident in Equation 17. 527 

 528 

The pressure drag on the elements, associated with the second component in Equation 18, is 529 

related to vorticity formation in the wave boundary layer and is then the dominant contribution to 530 

the stress within the fluid.  Using the more general Reynolds decomposition in Equation 4 to 531 

account for wave motion, it is evident that the time variable, phase-averaged vertical stress in the 532 

wave boundary layer will have two contributions: 533 

      (19) 534 

(Nielsen 1992). Sleath (1987) showed that the second term, associated with phase-coherent 535 

turbulent motions, was dominant for flow over rough beds, relating the associated fluxes to 536 

persistent jets and bursts generated by discrete roughness elements. Bandet (2009) used along-537 

beam measurements from a horizontally profiling acoustic Doppler current profiler (ADCP) to 538 

resolve spatial patterns in phase-coherent motions in the outer region of the wave boundary layer 539 

over a 3m section of forereef characterized by sparse, multiscale canopy elements (Figure 3) 540 

with a red spectral roughness distribution (Nunes & Pawlak 2008). Coral roughness elements in 541 

the vicinity of the ADCP measurements extended up to 30 cm above the substrate with a rms 542 

height of krms = 16 cm.  Figure 3 shows phase averaged vorticity, 𝜔 normalized by Uw/ krms. The 543 

data reveal a wave boundary layer that extends up to 50 cm above the substrate but with a phase 544 

structure that varies with wave orbital amplitude. Boundary layer thickness increases slightly 545 

with orbital amplitude, but generally scales with roughness height. Single profile measurements 546 

below the roughness (not shown in Figure 3) show that the near-bed phase is invariant with 547 

increasing orbital amplitude.  Changes in the vorticity phase above the roughness height arise 548 

due to increased advection from the previous cycle as the oscillatory excursions increase, 549 

reflecting influence of larger length scales as orbital amplitude increases. These variations in 550 

phase coherent vorticity thus alters the phase response for the turbulence and associated stresses 551 

in Equation 19. 552 

 553 

The near-bed orbital amplitude provides a characteristic length scale for the wave motion that 554 

can provide some guidance in determining the range of scales that are hydrodynamically relevant 555 

for wave dissipation. For a red spectral distribution, this raises an interesting scenario where 556 
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increasing orbital amplitudes statistically ‘sample’ larger roughness scales such that k = k(A).   In 557 

this case, the ratio k/A will depend on the character of the roughness distribution.  558 

 559 

Where roughness scales are comparable to the overall depth (k/h ~ O(1)), the wave boundary 560 

layer paradigm implicit in standard parameterizations for fw is questionable. The drag 561 

formulation in Equation 18 may still provide a useful framework for estimating wave dissipation 562 

and boundary layer turbulence. 563 

 564 

Wave generated turbulence near the seabed and the associated increase in momentum transfer  565 

can modify turbulence in the steady flow, increasing u* with decreasing Uc/Uw.  Grant & Madsen 566 

(1979) devised an analytical model for k<<h based on a quasi-steady law of wall profile within 567 

the wave boundary layer that results in an increased ‘apparent’ roughness in the steady flow log 568 

profile in Equation 11.  Numerous other models have been proposed using varying wave 569 

boundary layer turbulence closures for different wave-current flow regimes (c.f. Fredsoe & 570 

Deigaard 1992).  Christoffersen & Jonsson (1985) used a constant eddy viscosity in the wave 571 

boundary layer applicable for large roughness.  These models have not been evaluated for large 572 

multi-scale coral reef roughness. 573 

 574 

Lentz et al. 2018 followed a simpler approach to account for wave effects on steady flow over a 575 

reef flat following the bed stress formulation considered by Wright & Thompson (1983) and 576 

Feddersen et al. (2000): 577 

     (20) 578 

where the vector bed stress is determined from the time average of the instantaneous stress.  This 579 

estimate for the steady stress effectively accounted for variations in Uc/Uw for a given drag 580 

coefficient or hydrodynamic roughness.  Effects due to variations in the relative angle 𝜙&' 581 

between waves and currents are included implicitly in Equation 20 since it is based on the 582 

velocity vectors.  Grant & Madsen’s (1979) model showed that 𝜙&' had only small effects on the 583 

mean stress, though this has not been exhaustively verified. Equation 20 is similar to the ‘linear’ 584 

drag law used by Hearn (1999) where the quadratic velocity factor in Equation 9 is replaced by a 585 

steady velocity scale multiplied by a factor proportional to the wave motion.  586 

 587 
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For highly spatially variable reef topography, wave motion can drive further spatial variability in 588 

turbulence.  Pawlak & MacCready (2002) showed that oscillating flow over inhomogenous 589 

roughness can drive strong residual flows, related to the periodic jets and bursts noted by Sleath 590 

(1987) in wave boundary layers.  These residuals then contribute to the total near bed steady 591 

stress via the dispersive term  in Equation 8. 592 

 593 

5.0  Complications to the standard rough boundary model 594 

It is clear that as in many inner shelf and coastal flows, the law of the wall, albeit including 595 

modifications to account for surface waves, is the fundamental model for vertical flow structure 596 

over coral reefs. Yet, there are several important aspects of these coral reef flows that can 597 

significantly affect the applicability of the law of the wall: effects of stratification, either pre-598 

existing or due to internal waves (Davis & Monismith 2011); the effects of shallowness of the 599 

flow, i.e. the fact that the free surface can influence the largest scales of motion (Walter et al. 600 

2011); and the effects of turbulence produced by breaking surface waves (Huang et al. 2012). 601 

 602 

In their study of turbulence on a reef for hc/h<<1 (Figure 2) Davis & Monismith (2011) showed 603 

that in the absence of stratification, turbulence properties like TKE dissipation rate behaved as 604 

would be expected from the law of the wall. In contrast, in the presence of shoaling internal 605 

tides, a common feature of the field site (Leichter et al. 1996; Davis et al. 2008), stratification 606 

significantly altered the vertical structure of the flow, for example producing velocity profiles 607 

with near-bed maxima, behavior that is decidedly different from Equation 11. Accordingly, 608 

turbulence quantities like Reynolds stress profiles and TKE dissipation rate were quite different 609 

from what would be expected for the classical rough wall flow. In this case, attempts to use law 610 

of the wall velocity fits to find u* and thus the scalar diffusivity, KT, would be expected to be 611 

significantly in error.  612 

 613 

Free surface effects may also significantly affect applicability of the law of the wall to coral reef 614 

flows. Firstly, while there do appear to be approaches for modeling how waves modify shallow 615 

flows (see above), there has never been an assessment of how waves model scalar fluxes. As 616 

shown in Lowe et al (2005b; 2008) wave motions in the canopy behave very differently than do 617 

mean flows in that they tend to be much less damped by drag since for waves the fundamental 618 



 

 21 

force balance tends to be between accelerations and pressure gradients. One effect of this is that 619 

mass transfer in the presence of waves tends to be somewhat greater than would be expected 620 

solely on the basis of the inferred drag (Lowe et al 2005c; Falter et al. 2005). Thus, it seems 621 

unlikely that u* inferred from log fits of flows over reefs in the presence of the waves can be 622 

used without modification to infer scalar fluxes. Secondly, it is well known that turbulence 623 

produced by breaking waves behaves quite differently from turbulence produced by bottom 624 

boundary layer drag (Terray et al 1996; Jones & Monismith 2008). Thus, given that regions of 625 

wave-breaking and thus high mass transfer (Hearn et al. 2001) may be important to overall 626 

functioning of any given reef, wave breaking may play a significant, albeit virtually unstudied, 627 

role in the overall functioning of reef ecosystems.  628 

 629 

Finally, a subtler aspect of the presence of the free surface is its potential for modifying large-630 

scale turbulence structures that are important to fluxes of any quantities, i.e., either of momentum 631 

or of scalars. As seen in the canonical co-spectra described by Kaimal et al. (1972), as applied to 632 

coral reefs, roughly 50% of the stress is carried by eddies with horizontal scales larger than the 633 

depth. Measurements reported by Walter et al. (2011) for tidal flow in a shallow estuary are 634 

likely similar to what might be found for shallow reef flows. They found that their co-spectra 635 

generally matched the form of the Kaimal co-spectra, differing most significantly at small 636 

wavenumbers, i.e., for scales comparable to or larger than the depth of the flow. This too may be 637 

a buoyancy effect in that large scales of turbulence in the presence of the free surface must do 638 

work against gravity to deform the free surface (e.g., Pan & Banerjee 1995). Whether or not 639 

these free surface effects are significantly large to be of practical interest in terms of influencing 640 

overall drag and mass transfer remains to be determined.  641 

 642 

6.0  Within-canopy flows  643 

Above, we have examined approaches for characterizing and quantifying structural complexity 644 

to understand its effect on the flow above the reef, but we are also interested in the structure of 645 

flow and turbulence within the ‘roughness sub-layer’ of the coral reef canopy as this is a 646 

chemically and biologically active region where the mass flux of material at the water-coral 647 

interface controls many important ecological processes (Section 7). 648 

 649 
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Foundational theoretical and observational work has been done in terrestrial and aquatic canopies 650 

such as forests (Belcher et al. 2012; Finnigan et al. 2009; Raupach & Thom 1981) and seagrass 651 

beds (Ghisalberti & Nepf 2002, 2006; Nepf & Vivoni 2000; Nepf 2012).  These studies provide a 652 

conceptual framework for our understanding of flow in coral reef canopies.  Within a canopy, 653 

flow encounters roughness elements and the forces acting on the surface of these elements 654 

dissipate kinetic energy and remove momentum from the flow.  The net result of which is 655 

enhanced drag on the mean flow within the canopy.  That this drag is extended over a vertical 656 

region (~hc) and not just on a surface plane is what distinguishes canopy flows from more 657 

familiar boundary layer flows (Finnigan 2000). 658 

 659 

For deeply submerged or ‘unconfined canopies’ (hc/h < 0.1) of sufficient roughness density, the 660 

discontinuity in form drag between the canopy and the region above results in an inflection point 661 

in the velocity profile (Finnigan 2000; Nepf 2012).  This region of strong shear produces 662 

hydrodynamic instabilities characteristic of plane mixing-layers where the turbulence is 663 

dominated by large coherent structures which transport momentum both into and away from the 664 

canopy (Raupach et al. 1996).  Finnigan et al. (2009) performed large eddy simulations of 665 

canopy flow and described the nature of the turbulent structures within a vegetated canopy as 666 

pairs of linked hairpin vortices (paired sweep and ejection) between which there is a pressure 667 

maximum and, likely, a scalar microfront. The prevalence of canopy-scale coherent structures 668 

means that turbulence in canopies is far from isotropic or random and that vertical turbulent 669 

transport is an important part of the turbulent kinetic energy (TKE) balance (Raupach et al. 670 

1996).  Large coherent structures which penetrate the canopy from the free-flow region above 671 

break down quickly upon interacting with canopy elements, resulting in a spectral ‘short-circuit’ 672 

of turbulent energy to small wavelength structures (Finnigan 2000). Additionally, within the 673 

canopy, turbulence is created at the scale of canopy elements as flow is forced to move around 674 

branches or blades creating wakes. 675 

 676 

Within unconfined canopies the momentum balance is primarily between the shear stresses at the 677 

top of the canopy and the form drag exerted by the canopy elements (Raupach 1992).  This 678 

shear-dependent momentum transfer results in a region of strong turbulence and rapid renewal of 679 

fluid from the top of the canopy down to the penetration depth of the coherent structures, but 680 
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below this, flow is reduced and turbulent mixing is weak (Nepf & Vivoni 2000; Ghisalberti & 681 

Nepf 2006).  However, when the canopy takes up a larger fraction of the total water column (0.2 682 

< hc/h < 1), such as in seagrass beds in shallow coastal waters, the external pressure gradient also 683 

becomes a significant force driving flow within the canopy (Nepf 2012).  The degree of canopy 684 

submergence determines the relative importance of shear stresses and pressure gradient forces 685 

within the canopy.  As hc/h approaches unity, the shear layer at the top of the canopy disappears 686 

and flow within the canopy, driven entirely by external pressure gradients, is greater in 687 

magnitude and more vertically-uniform than in unconfined canopies (Nepf & Vivoni 2000).   688 

 689 

There are some notable differences between coral canopies and their other aquatic or terrestrial 690 

counterparts.  In terrestrial canopies, the flow problem is typically considered to be semi-infinite 691 

or unconfined (hc/h<<1), but coral reefs are often in tidally-influenced and shallow coastal 692 

environments and the height of the canopy can be a significant fraction of the depth of the water 693 

column, even emergent at low tide, and hc/h is time variable. Another consequence of their 694 

shallow water habitats is that surface gravity waves can drive oscillatory flow within coral 695 

canopies, enhancing exchange relative to uni-directional flows.  Lastly, most of what we know 696 

about within-canopy flows is from studies considering idealized geometry or the uniform vertical 697 

and horizontal distribution of canopy roughness elements (although idealized studies of non-698 

uniform roughness by Rominger & Nepf (2012) examine flow adjustments within a canopy). 699 

However, the multiscale, multifractal complexity of coral reef structures results in spatially-700 

variable resistance and this nonuniform structure can be important to within-canopy flow 701 

structure (Duvall et al. 2019; Asher & Shavit 2019).  702 

 703 

Observations of mean and turbulent flow structure inside realistic coral canopies are limited - 704 

laboratory studies (Reidenbach et al. 2007; Lowe et al. 2008, Asher et al. 2016, Asher & Shavit 705 

2019) all using densely-packed arrays of coral skeletons of Pocillopora meandrina or Porites 706 

compressa (both branching species) and a field study (Hench & Rosman 2013, see Figure 2f) of 707 

flow around “bommies” of Porites rus have reported measurements on canopy flows.  Of these 708 

studies, Reidenbach et al. (2007) and Lowe et al. (2008) focused on comparisons of 709 

unidirectional and oscillatory flow dynamics within canopies, while Hench & Rosman (2013) 710 

and Asher & Shavit (2019) sought to understand role of spatially-variable canopy geometry. 711 
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Lowe et al. (2008) had some success adapting porous media flow theory to describe flow within 712 

a relatively homogenous canopy of Porites compressa through the addition of a canopy shear 713 

stress term.  This approach characterizes the canopy resistance as a “laminar resisting force” and 714 

form drag that are both dependent on a characteristic length scale of the porous medium, which 715 

is assumed to be homogenous in space. However, the nonuniform spatial distribution of porosity 716 

and resistance within natural coral reef canopies can generate regions of strong flow 717 

accelerations, recirculation zones behind coral colonies, and interacting wakes (Hench & 718 

Rosman 2013).  Persistent spatial variations in flow can contribute to the “dispersive stress” term 719 

that appears when the momentum equation is spatially-averaged (Equations 7 & 8).  In 720 

laboratory measurements of flow within a canopy of Pocillopora meandrina skeletons, Asher & 721 

Shavit (2019) found the dispersive stress to be the dominant stress term for hc/h=1 runs, and 722 

more than half of the magnitude of the Reynolds stress for hc/h<1 cases.   These results as well as 723 

evidence from other studies of spatially nonuniform canopies (e.g. Bohm et al. 2013; 724 

Moltchanov et al. 2015) suggest that the inner geometry of corals may generate high dispersive 725 

stresses that are a significant part of the momentum balance.  Furthermore, it is possible that in 726 

past work, unaccounted for dispersive stresses may be responsible for observed differences 727 

between bulk drag and shear stresses measured at one or a few locations near a reef boundary.  728 

Further work is needed here to better understand the role of nonuniform canopy roughness in the 729 

redistribution of momentum within reefs.   730 

 731 

Reidenbach et al., (2007) carried out laboratory experiments examining the velocity and 732 

turbulence structure above and within a bed of nonliving Porites compressa skeletons under 733 

unidirectional and wave-dominated flow (Figure 4).  Flow was measured with a two-734 

dimensional laser Doppler anemometer and mass transport was estimated using planar laser-735 

induced fluorescence (PLIF) with Rhodamine 6G dye applied to the surface of the corals.  736 

Figure 4(a) is an effective visualization of the role that turbulent structures play in mass 737 

transport at the coral canopy-water interface. Root-mean-square (rms) horizontal velocity 738 

(𝑈?@A = √< 𝑢D >) provides a comparable velocity scale for both unidirectional and oscillatory 739 

flows and is shown in Figure 4b.  Measurements of velocity and turbulence during 740 

unidirectional flow conditions (blue lines in Figure 4b,c) exhibit some features characteristic of 741 

canopy flows - very weak flow within the canopy and near zero turbulent stresses (-15 cm < z < -742 
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2 cm), an inflection point in the velocity profile at the top of the canopy and a corresponding 743 

peak in turbulent stresses (z = 0), and a logarithmic velocity profile and constant stress region 744 

apparent above the canopy (1 cm < z < 6 cm).  In wave-dominated runs (red lines in Figure 4b,c) 745 

rms horizontal velocity is still reduced within the canopy, but rms vertical velocity (not shown) is 746 

50% higher within the canopy compared to the overlying fluid. Turbulent stresses in the wave-747 

dominated flow peak just below the top of the canopy (z = 2 cm) and are non-zero and variable 748 

throughout the canopy, especially 𝑤′𝑤′HHHHHH.  A wave boundary layer of thickness, 𝛿& = 2.5cm was 749 

observed just above the canopy (z = 0-2.5 cm).  While the magnitude of the velocities in the 750 

unidirectional and oscillatory flows were similar (𝑈?@A = 9.0cm s-1), the increased turbulent 751 

energy in the wave-dominated run resulted in approximately twice the effective mass transfer 752 

(estimated both from PLIF analyses and using gypsum dissolution as a proxy for mass exchange) 753 

(Reidenbach et al. 2007).  Some of this enhanced mass transfer is attributed to vortex ejections, 754 

identified from pulses of dye originating at the coral surface and emerging into the flow region 755 

above, which occurred repeatedly at the same phase of the wave, 150° and 270°.  756 

  757 

7.0 Benthic fluxes to support ecosystem function. 758 

One of the primary motivations for the study of turbulent flow over and within coral reefs and 759 

other aquatic and terrestrial canopies has been to understand the physical processes governing 760 

the exchange of momentum, heat, and mass (i.e. nutrients, waste products, larvae, disease) 761 

between the fluid above and the biologically-active surface at the bed (Falter et al. 2013; 762 

Raupach & Thom 1981).  Benthic marine communities, such as coral reefs, rely on the flow of 763 

water and turbulent mixing to sustain many biological processes, and this has been supported in 764 

many observational studies. 765 

 766 

In a pair of noteworthy papers, Bilger & Atkinson (1992) and Atkinson & Bilger (1992) were the 767 

first to remark the importance of turbulent mass transfer to coral reef biogeochemistry and 768 

ecology. They were able to show that the uptake of phosphate by the reef community on the reef 769 

flat of Kaneohe Bay, Hawaii, was “mass transfer limited,” i.e., that this uptake rate was 770 

physically controlled by turbulent mixing between the reef benthos and the overlying water 771 

column. Mass transfer limitation is well known in the engineering literature, where, for example, 772 

it is important to the design of heat exchangers. These studies were able to show that 773 
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experimentally determined engineering parameterizations of the flux of scalar, F, from a rough 774 

boundary, represented in terms of a mass transfer velocity, Vt , with F = Vt ΔC, with ΔC the 775 

concentration difference between the surface and the fluid above (e.g. Dawson & Trass 1972; 776 

Dipprey & Sabersky 1963), could be applied to the Kaneohe Bay reef. These models take the 777 

form 778 

 779 

     (21) 780 

 781 

with U an appropriate mean velocity scale, Reh = U h /n  is the Reynolds number defined in 782 

terms of U and h, the outer length scale for the flow (e.g. the depth), ks is the sand grain 783 

roughness, and Sc is the Schmidt number. However, one adjustment, an extra multiplicative 784 

factor of 6.4, was needed to fit the standard model to their reef observations. They suggested that 785 

this was because coral reefs have substantially more surface area for exchange per unit area of 786 

wall surface. Of course, one complication with this interpretation is the fact that, as shown in 787 

Figure 5 below, there can be enormous variability in local mass transfer rates over the entire 788 

surface of a single coral colony (Chang et al. 2013). 789 

 790 

The physics of convective mass transfer offers an explanation of the behavior seen in Figure 5 791 

and the parametric dependence of the mass transfer velocity. In the absence of any flows, mass 792 

transfer would take place purely by molecular diffusion, whereas in the presence of flows, there 793 

is a very thin boundary layer near the surface across which diffusion sustains a flux. The thinner 794 

this layer is, the larger the diffusive mass flux. For a flat plate or a wall, the case commonly of 795 

engineering interest, the thickness of the diffusive layer is determined by the flow away from the 796 

wall.  As the velocity increases, the diffusive layer thins, and thus the mass transfer increases. 797 

However, for isolated objects, mean velocity strain can be an important determinant of local 798 

mass transfer. For example, mass transfer on a cylinder is maximal at the forward stagnation 799 

point where the velocity is zero but the compressive strain is maximal and minimal in the wake 800 

on the rear of the cylinder (Goldstein & Karni 1984; Sanitjai & Goldstein 2004; Chang et al. 801 

2013). Thus, for a coral colony, mass transfer on parts of the colony facing into the flow are 802 

likely to be much higher than on rearward facing parts. Moreover, because of reductions of 803 
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velocity, wake interactions etc., as seen in the magnetic resonance velocimetry measurements of 804 

Chang et al (2009), mass transfer rates on the interior parts of a branching coral colony would 805 

also be much smaller than on the tips of the branches.   806 

 807 

To examine coral colony mass transfer behavior in detail, Chang et al. (2014) carried out Large 808 

Eddy Simulations (LES) of steady and oscillating flows through four different branching corals 809 

(one of which was the coral shown in Figure 5). A striking finding of this work was that local 810 

mass transfer rates, including those that were wave phase dependent, were strongly correlated 811 

with the tangential component of the local wall shear stress, and not with the local pressure force, 812 

suggesting that colony-scale mass transfer might not be well parametrized by drag. Following the 813 

same approach as Chang et al. (2014), Stocking et al. (2018) used LES to study flows and mass 814 

transfer around massive (e.g. hemisphere-like) coral morphologies. They found that there could 815 

be subtle trade-offs between increasing surface area for mass transfer by increasing roughness 816 

and the concomitant reduction in local heat fluxes. These results should all be treated with some 817 

element of caution however, since: (a) both sets of calculations were done with Sc = 1 and the 818 

behavior of mass transfer for Sc >> 1 (characteristic of all scalars of interest) can differ 819 

significantly between small Sc and large Sc (Yaglom & Kader 1974); and (b) given that mass 820 

transfer is very strongly affected by the details of the near-wall flow, computed fluxes can 821 

depend on details of the calculation method and on near-wall grid resolution. 822 

 823 

For understanding flow effects at the reef scale, what is required is knowledge of the integrated 824 

effect of the highly variable local mass transfer seen above. This was explored by Falter et al. 825 

(2016) who attempted to show how flat boundary models might be extended to include coral 826 

canopies. The starting point for this analysis is the full set of equations for drag and mass transfer 827 

given (e.g.) by Atkinson (1992). These show that generally Vt ∝ U0.8 with a weak dependence 828 

on Sc.  Falter et al. (2016) argue that the velocity dependence derived from rough wall 829 

experiments could be generalized to canopy flows by noting that the rough wall data give Vt ∝ 830 

𝜏N9.O, where 𝜏N is the wall stress. Thus, for canopy flows, one needs to consider the effective wall 831 

stress associated with the drag on the canopy elements averaged over the entire surface (Nepf 832 

2012). Importantly this drag and mass transfer depends on the velocity inside the canopy, which 833 

is itself a function of the free stream velocity and the canopy density and geometry. Re-analysis 834 
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of the mass transfer measurements of Lowe et al. (2005c), using as a velocity scale a hybrid 835 

velocity computed from the mean and wave velocities, showed good agreement with the 836 

𝜏N9.O	dependence, although this result is very much dependent on using the Reynolds number and 837 

canopy element density parametrization of Tanino & Nepf (2008) which do not account for 838 

unsteady drag effects as documented by Sarpkaya (1975). Likewise, the single colony 839 

calculations of Chang et al. (2014) suggest that the relationship between drag (primarily 840 

associated with separation and thus pressure forces) and mass transfer (associated with near-wall 841 

shear and strain) may not be robust. Nonetheless, this formalism has been used with some 842 

success to estimate mass-transfer limited nutrient fluxes on reefs other than Kaneohe Bay (Wyatt 843 

et al. 2012; Falter et al. 2012; Gruber et al. 2019). 844 

 845 

It also appears that coral bleaching may involve mass transfer limitation: Nakamura & van 846 

Woesik (2001) showed that bleaching at high water temperatures could be suppressed if flows 847 

were sufficiently strong. The mass transfer interpretation of this result relies on the possibility 848 

that bleaching is designed to prevent the build-up of oxygen produced by symbiont 849 

photosynthesis in the polyps’ tissue (Lesser 1997); high rates of mass transfer may be able to 850 

enable the polyps to maintain non-harmful oxygen concentrations in their tissue. Given the 851 

strength of this result, it is surprising that few bleaching studies include flow measurements. 852 

 853 

Besides transfer of nutrients, flow and thus turbulent mixing has also been shown to be important 854 

to several other aspects of reef function: reef heterotrophy and to larval settlement. While it is 855 

known that flow can increase coral heterotrophy by increasing the supply of zooplankton to the 856 

corals (Sebens et al. 1997), flow may also increase the flux of phytoplankton and other organic 857 

material to reef organisms (Genin et al. 2009; Ribes & Atkinson 2007). Assuming law of the 858 

wall mixing (but with u* measured directly) and using measured profiles of chlorophyll a, 859 

Monismith et al. (2010) calculated rates of phytoplankton grazing by a soft coral and sponge 860 

dominated reef in the Florida Keys, finding that grazing rates increased with increased flows and 861 

thus turbulence.   862 

 863 

A similar use of the law of the wall mixing model is also the basis for the BEAMS (Benthic 864 

Ecosystem and Acidification Measurement System) approach devised by Takeshita et al. (2016) 865 
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to measure fluxes of total alkalinity and thus the rate of net community calcification. In this 866 

approach it is assumed that (a) the eddy diffusivities of scalars (Kt) and of momentum (nt) are the 867 

same; (b) that by fitting of Equation 11 to observed velocity profiles one can estimate u*; (c) and 868 

with u*  known,  𝐾Q = 𝜅𝑢∗𝑧. Using these assumptions, fluxes of the scalar of interest can be 869 

estimated from profiles of scalar concentration C (c.f. Monismith et al. 2010), i.e., 870 

      (22) 871 

As discussed above, while logistically convenient, this approach is limited to cases where surface 872 

wave motions are minimal and where the law of the wall can be taken to be reasonably accurate, 873 

i.e., when the water column is unstratified.  In the presence of stratification, vertical velocity 874 

shear can be increased because vertical mixing is suppressed by stratification (Turner 1973).  In 875 

contrast, Teneva et al. (2013) estimated KT by combining measurements of turbulence 876 

dissipation,𝜖, and buoyancy frequency, N, with the stratified turbulence parametrization of Shih 877 

et al. (2005).  878 

 879 

The potential effects of stratification would seem to be particularly important for reefs that 880 

experience episodic internal waves (Leichter et al. 2006; Reid et al. 2019, Wolanski & Delesalle 881 

1995), because during internal wave events, when the water column stratification is due to the 882 

presence of internal waves (Davis & Monismith 2011), concentrations of particulates and 883 

nutrients can be substantially higher than when internal waves are not present (e.g., Leichter et 884 

al. 1996) . How stratification affects mixing and turbulence is the subject of much ongoing 885 

research (see e.g. Ivey et al. 2008; Gregg et al. 2018; Monismith et al 2018) and is beyond the 886 

scope of the present review to describe in detail.  887 

 888 

The extent to which Equation 22 can be used in the presence of surface waves is at present 889 

unknown. The fundamental challenge here is that flow behavior in the presence of waves is 890 

fundamentally different from that of steady flows. As documented by Reidenbach et al. (2007), 891 

there can be strong phase dependence of vertical mixing of scalars. Moreover, TKE production 892 

can be negative at some phases, as a result of large time varying strains associated with wave 893 

motion (Texeria & Belcher 2002). One practical effect of this behavior is that negative TKE 894 

production implies negative eddy viscosities. Given the challenges of making eddy correlation 895 
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measurements of fluxes (e.g., Long et al. 2019), it might be hoped that the time-averaged effects 896 

of this phase-dependent flow behavior may still be describable by Fickian diffusion, i.e., by an 897 

eddy diffusivity, and ideally one derivable from something like the law of the wall modified for 898 

the presence of waves (i.e. Grant & Madsen 1979)).  899 

 900 

Consideration of the effects of turbulence on larval settlement on reefs points to the importance 901 

of aspects of coral reef turbulence other than vertical mixing. In a noteworthy laboratory study of 902 

wavy turbulent flow over a dense bed of coral skeletons (Porites Compressa from Kaneohe 903 

Bay), Reidenbach et al. (2009) showed that the probability of larval settlement on a reef was 904 

dependent on the detailed statistics of the near-reef velocity field produced by both turbulence 905 

and waves. The reason for this was that larval settlement requires a short period of time during 906 

which the hydrodynamic forces on the larvae are sufficiently small for the larvae to explore and 907 

attach itself to the substrate. Thus, what matters is the probability that the near-reef velocity 908 

remains sufficiently small for attachment to take place. Using measured velocities, they 909 

suggested that the probability of attachment dropped to zero for attachment times longer than 910 

about 10 sec, although given much weaker velocities inside the coral canopy itself, the 911 

probability that a larvae could successfully attach increased substantially. Extension of their 912 

results to reef structures other than densely packed P. compressa skeletons remains to be done. 913 

 914 

Most of the work considering mass-transport to coral reefs has examined how aspects of the flow 915 

environment and canopy morphology act to passively modify exchange through the diffusive 916 

boundary region.  However, there is some evidence that corals may be able to actively enhance 917 

mass transport using their epidermal cilia to induce counter-rotating vortices which break down 918 

the molecular diffusive region (Shapiro et al. 2014).  The significance of vortical ciliary flows 919 

has not been demonstrated for a wide range of flow conditions, but could be particularly 920 

important for shaping the microenvironment at coral surfaces under very low-flow conditions 921 

within a coral canopy. 922 

 923 

8.0  A turbulent future for coral reefs 924 

The rich literature of turbulent properties in and above rough boundaries from engineering 925 

literature (as reviewed above and in Jimenez 2004, 2012) and terrestrial canopies (Raupach & 926 
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Thom 1981; Finnigan 2000; Belcher et al. 2012) benefits our understanding of turbulence and 927 

flow in coral reef habitats, but, despite the apparent similarities, some common characteristics of 928 

coral reefs make the prediction of turbulence in this environment very challenging.  Bedforms 929 

and canopy roughness within natural coral reefs are inherently multiscaled and even 930 

directionally-dependent (i.e. spur-and-groove formations in Rogers et al. 2015; other examples in 931 

Reidenbach et al. 2006; Arzeno et al. 2018). There are some promising sensing technologies 932 

emerging to help quantify this complex roughness (e.g. Ferrari et al. 2016; Chirayath & Earle 933 

2016) and we are seeing some progress in the characterization of these structures through 934 

multifractal metrics (e.g. Duvall et al. 2019).  However, recent evidence suggests that the 935 

nonuniform spatial distribution of porosity and resistance elements within natural coral reefs has 936 

a significant - and in some cases, dominant - influence on the distribution of momentum within 937 

and above the coral canopy through the dispersive stress term (Asher & Shavit 2019).  Waves 938 

also complicate turbulent dynamics on coral reefs. Oscillating flow over inhomogenous 939 

roughness can induce strong, spatially-varying residual flows which also contribute to dispersive 940 

stress terms.  Dispersive stress is challenging to measure as it requires spatially-resolved 941 

turbulence measurements within a canopy, but its historical neglect may be responsible for the 942 

observed scatter between bulk drag estimates from flow above coral canopies and drag estimated 943 

from shear stresses only at one (or a few) points in space (noted by Rosman & Hench 2011; 944 

Lentz et al. 2017).  Future work should carefully consider the influence of spatial variations on 945 

the fluxes of momentum and scalars in interpreting observations in reef environments and in 946 

applying these to numerical models. 947 

 948 

An improved understanding of turbulent processes on coral reefs is crucial for the prediction of 949 

momentum, energy, and scalar transport, as we have emphasized in this review.  From an 950 

understanding of these basic fluxes, we can learn more about the physics which shape reef 951 

ecosystem processes (McClanahan et al. 2005; Nakamura & Van Woesik 2001; Nakamura et al. 952 

2005), sediment suspension and transport (Pomeroy et al. 2015), and larval settlement on reefs 953 

(Reidenbach et al. 2009).  Furthermore, we can begin to understand the physical-biological 954 

feedbacks inherent in reef ecosystems - not only how the canopy elements affect the flow and 955 

turbulent transport, but also how the physics shapes the growth and distribution of organisms 956 

within the reef canopy (see examples for other aquatic canopies in Luhar et al. 2008).   957 
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 958 

Understanding these complex feedbacks will become increasingly important if we are to 959 

effectively manage the climate-driven changes occurring in our coastal ecosystems globally.  960 

The accelerating rise in ocean temperatures has led to multiple, world-wide mass bleaching 961 

events and coral mortality in the last decade (Hughes et al. 2017).  Calcifying reef organisms are 962 

the engineers of coral reef ecosystems, and thus, reduced rates of calcification and coral 963 

mortality are already resulting in system-wide changes in the architectural complexity of bed 964 

roughness and overall sea-floor elevation due to biological and mechanical erosion (Bozec et al. 965 

2015; Yates et al. 2017).  Where corals struggle to survive, turf algae can become more abundant 966 

and, in addition to competing for space and light, can alter turbulence at in the reef, reducing bed 967 

stress, which implies the reduced mass transfer of necessary metabolites (e.g. oxygen and 968 

nutrients) as well (Stocking et al. 2016). 969 

 970 

Physics is key to the recovery of these ecosystems. The dispersal of coral gametes and settling of 971 

larvae, the genetic material necessary for reef recovery or habitat redistribution, is determined by 972 

turbulence as much as by large scale currents (Reidenbach et al. 2009).  Additionally, coastal 973 

managers are exploring reef restoration as a strategy to protect shorelines from erosion due to 974 

ever-higher seas (Ferrario et al. 2014).  An improved understanding of drag parameterization on 975 

reefs and the influence of wave-driven turbulence would benefit this effort. 976 

 977 
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Figures 1578 

 1579 

 1580 
Figure 1. – Schematic of a coral reef system with some common biogeographic zones: the 1581 

deep forereef where mean flows are often oriented alongshore, the shallow forereef/reef 1582 

crest which is heavily influenced by the energetic dissipation of wave energy, the reef 1583 

flat/back reef zone where flow is driven by wave setup offshore and tidal flows and coral 1584 

canopies can fill the entire water column, and deeper lagoons where flow is fairly tranquil 1585 

and sheltered from waves.  Each zone of the reef is characterized by relative magnitudes of 1586 

steady (Uc) to oscillatory (Uw) flow velocities. 1587 
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Figure 2. – (a) Coral reef environments classified by flow environment and roughness ratio 1591 

for studied reef locations pictured in (b) Eilat, Israel (Reidenbach et al. 2006), (c) Dongsha 1592 

Atoll, Taiwan, South China Sea (Reid et al. 2019; Davis et al. 2020) (d) Conch Reef, 1593 

Florida, USA (Davis & Monismith 2011) (e) Ofu, American Samoa (Rogers et al. 2018; 1594 

Green 2002), (f) Moorea, French Polynesia (Hench & Rosman 2013), (g) Kaneohe Bay, 1595 

Hawaii, USA (Lowe et al. 2005a), (h) Central Red Sea, Saudi Arabia (Lentz et al. 2016, 1596 

2017), (i) Ningaloo Reef, Australia (Taebi et al. 2011; Pomeroy et al. 2012), and not 1597 

pictured, but plotted in (a): point (j) Ipam, Guam (Pequignet et al. 2011) and point (k) 1598 

Lady Elliot Island, Australia (Huang et al. 2012). 1599 
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 1601 

       1602 

 1603 
Figure 3.  Top: Bed profiler from Bandet (2009).  Bottom: Phase averaged wave boundary 1604 

layer structure over a rough coral reef surface pictured at top. Upper panel shows cross-1605 

shore normalized wave velocity (60 cm above the bottom).  Six lower panels show near-bed 1606 

normalized spatially averaged vorticity versus average height above bed over a 2m transect 1607 

for increasing wave orbital amplitude, A. 1608 
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 1610 

 1611 
Figure 4. (a) Turbulent structures visualized with planar laser induced fluorescence (PLIF) 1612 

in a region at the interface between a canopy of Porites compressa coral skeletons in an 1613 

oscillatory flow. (b) root-mean-square (rms) horizontal velocity for a unidirectional flow 1614 

run with mean downstream flow of Uc = 8.5 cm s-1(blue lines) and a wave-dominated flow 1615 

with wave period, T = 5 s, and wave orbital velocity amplitudes, Uw = ±9 cm s-1(red lines), 1616 

(c) turbulent stresses (𝒖’𝒘’HHHHHH and 𝒘’𝒘’HHHHHH measured within and above coral canopy. Image and 1617 

data from Reidenbach et al. (2007, used with permission).  1618 
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 1620 

 1621 
Figure 5.  Local mass transfer (normalized by diffusive transfer rate, as the dimensionless 1622 

Sherwood number) for a Stylophora pistillata colony immersed in a steady flow in a flume 1623 

(from Chang et al. 2013, used w. permission). 1624 
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Table 1. Summary of variables used in this review 1626 
Variable Unit Description 

A m Wave orbital amplitude 
AT m2 Total plan area of bed 
b m Characteristic lateral roughness spacing 
C kg m-3 Concentration of a scalar 
CD - Coefficient of drag 
Cd - Coefficient of drag associated with canopy structure 
D N Drag force 
fe - Wave energy dissipation factor 
fw - Wave friction factor 
F kg m-2 s-1 Flux of a scalar 
Fx m s-2 Spatially averaged drag force per volume exerted by the canopy on 

the flow 
h m Water depth 
hc m Canopy height 
Kt m2 s-1 Turbulent diffusivity of a scalar 
k m Characteristic physical roughness length scale 
ks m Characteristic/equivalent sand grain roughness 
Lc m Characteristic horizontal scale for heterogeneity 
p N m-2 Pressure 
P - Roughness parameter 
s m Characteristic lateral roughness length scale 
T s Wave period 
t s Time 
u = [u,v,w] m s-1 Flow velocity in 3D space, x = [x,y,z] 	
𝑢∗ m s-1 Friction or shear velocity 
U m s-1 Characteristic flow velocity 
Udb m s-1 Velocity at the blending height 
Uc m s-1 Characteristic steady, unidirectional flow velocity 
Uw m s-1 Characteristic oscillatory flow velocity 
Vt m s-1 Mass transfer velocity 
w m Characteristic roughness spacing 
z0 m Hydrodynamic roughness 
zref m Hydrodynamic origin or displacement height 
d m Boundary layer thickness 
db m Blending height 
ef m2 s-3 Dissipation of wave energy due to bed friction 
l - Roughness density, frontal area of elements per plan area. 
µ kg m-1 s-1 Fluid viscosity 
n m2 s-1 Kinematic viscosity 
nt m2 s-1 Turbulent diffusivity of momentum 
𝜙&' radians Angle between waves and steady current 
r kg m-3 Fluid density 
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txz kg m-1 s-2 Shear stress  
tb kg m-1 s-2 Shear stress at the bed 
w s-1 Vorticity 
z0 m Hydrodynamic origin (relative to top of roughness) 

 1627 


