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Abstract: Hardness is an essential property in the design of refractory high entropy alloys (RHEAs).
This study shows how a neural network (NN) model can be used to predict the hardness of a RHEA,
for the first time. We predicted the hardness of several alloys, including the novel C 1Cr3Mo11 9Nbyg
Rej5TazgWpg using the NN model. The hardness predicted from the NN model was consistent with
the available experimental results. The NN model prediction of Cy1CrzMoq1 9NbygRe 5TazgWpo was
verified by experimentally synthesizing and investigating its microstructure properties and hardness.
This model provides an alternative route to determine the Vickers hardness of RHEAs.

Keywords: high entropy alloys; neural networks; hardness-prediction; microstructure

1. Introduction

Refractory high entropy alloys (RHEAs) are designed by adding high melting point
elements such as Cr, Mo, Nb, Ta, Ti, V, W, Re, W, Ru, Zr, Rh, Os, Ir, and Hf. RHEAs
have excellent properties, such as a high hardness and high-temperature softening resis-
tance [1-4]. Thus, application of RHEAs can be very promising candidates in the field of
aerospace industry. Many studies of RHEAs such as TaNbHfZrTi, TiZrNbMoV, NbMoTaW,
VNbMoTaW, Ti,ZrHfs sMoNbx, and Aly 5CoCrCuFeNi have shown excellent yield strength
both at room and high temperatures [5-10]. However, the poor ductility at room temper-
ature of RHEAs limits their industrial application. One study has shown that doping
elements such as C, B, N, O, Al, Si with RHEAs could improve the mechanical properties of
RHEAs and enhance their applications [11-18]. The addition of 0.1 atomic percentage (at.%)
of C and 0.3 at.% of C in Moy sNbHf( 5ZrTijo has improved the plasticity and increased
the compressive stress [19]. Therefore, doping with low concentrations of non-metallic
elements is very important in RHEAs for improving the mechanical properties. However,
predicting the mechanical properties of doped RHEAs by the first principles method is
very complex. Moreover, experimental techniques are costly and tedious. Therefore, ma-
chine learning (ML) could be a promising tool to predict the mechanical properties of new
complex RHEAs.

ML approaches have been used to predict the crystal structures and properties of
materials [20-22] with convincing results. Islam et al. [23] trained neural network (NN)
models that can analyze the phase of multi-principal element alloys (MPEAs) with 118
data samples. An NN model is a supervised machine learning prediction model that is
inspired by the functionalities of the human brain. Wen et al. [24] developed a material
design strategy using ML for predicting the desired properties of high entropy alloys
(HEAs). George et al. [25] also utilized a machine learning model which can predict the
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elasticity of high entropy alloys and included experimental validation. These studies have
shown that ML methods are capable and reliable in discovering new RHEAs and predicting
their phases. However, many studies focus on phase formation predictions, and a few on
predicting the mechanical or functional properties of complex RHEAs.

In this study, the Vickers hardness of several complex RHEAs including Cy ;CrsMoq1 9
NbyoRe15TazgWyo were predicted by utilizing an NN model. We experimentally synthe-
sized Cp1CrsMoq1 9NbygRe5TazgWyg, and the phase, microstructure, and Vickers hardness
were studied. The measured Vickers hardness was found to be consistent with the NN
model prediction.

2. Materials and Methods
2.1. Computational Methods

The features of the alloys and the corresponding target hardness values used in this
study were collected from several previous publications [6,19,26,27]. In this study, we only
considered the average hardness value of HEAs present in the reference papers and did not
consider the hardness value that changed with the applied load. Although a total of 380
experimental records of measured hardness were collected from the literature, the alloys
that contained unwanted elements were left out, reducing the number of total available
samples to 128.

A supervised machine learning task performs several steps before the actual prediction
is made. An NN model requires features to train and thus make informed predictions. In
this particular task, 22 relevant features that were initially picked based on the domain
knowledge of which features could be helpful to predict Vickers hardness consisted of the
percentage of each element in the alloy, i.e., % of Cr, % of Hf, % of Mo, % of Nb, % of Ta, %
of Ti, % of Re, % of V, % of W, % of Zr, % of Co, % of Ni, % of Fe, % of Al, % of Mn, % of Cu,
% of C, the entropy of the alloy (AS,,ix) [28], the bulk modulus (B), the shear modulus (G),
the valence electron concentration (VEC) [29], and the melting temperature (T;,;). The HEA
features were calculated using the rule of mixtures.

ASm,-x = —R 3 CilnCi (1)
i=1

B =) (CiB)) @

G =) .(CG) ®)

Tin = Ci (Tn); )

VEC = f Ci(VEC), ®)

i=1

where R is the ideal gas constant, C; the atomic percentages of the ith element, B; is the bulk
modulus of the ith element, G; is the shear modulus of the ith element, (T},); is the melting
point of the ith element, and (VEC); is the valence electron concentration of the ith element.

In a typical supervised machine learning task, the dataset is split into training and
testing sets before any feature engineering, visualization, analysis, or training is performed,
so as to prevent any data leakage, i.e., the training should not be influenced by any
information from the test data. After random shuffling, 90% of the total samples were
allocated for training and validation and 10% for testing. Here, we explain the data
preprocessing steps that were conducted on the training data before the NN model was
trained. Firstly, the features that had zero or nominal variance were removed from the
dataset. The methods adopted for feature selection and engineering in this work stem from
a general class of feature engineering techniques [30]. ML models work on the basis of how
close the samples are located to each other in the high-dimensional feature space. Features
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that have nominal variance do not contribute much to differentiating among the samples,
therefore it is better to remove such features before passing the data to an ML model to
reduce space as well as time complexity. The removed feature was the “% of Re” in each
sample, because all the samples in the training data had the same percentage of Re. Next,
we removed the correlation among the features by two methods in succession, first, by
the method of condition indices, and then by visually plotting the correlation among the
features that successfully passed the condition index test.

A subset of the scatterplot of the features before the condition indices step is shown in
Figure 1. There is clear association between that bulk modulus, valence electron concentra-
tion, entropy, and melting temperature, suggesting that these features are highly correlated.
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Figure 1. Seatterplot matrices of six features from the 128 samples data.

Table 1. The calculated Pearson’s correlation coefficients which are related to different features of high entropy alloys
(HEAs) in 128 data samples.

ASmix B G VEC Tim HV

ASmix 1 -0.24 -0.25 -0.16 -0.12 0.044
B -0.24 1 0.62 0.9 0.88 0.53
G -0.25 0.62 1 0.48 0.37 0.32
VEC -0.16 0.9 0.48 1 0.96 0.57
Tin -0.12 0.88 0.37 0.96 1 0.56
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Table 1. The calculated Pearson’s correlation coefficients which are related to different features of
high entropy alloys (HEAs) in 128 data samples.

ASmix B G VEC T, HV
ASix 1 —0.24 —025 ~0.16 —0.12 0.044
B —0.24 1 0.62 0.9 0.88 0.53
G 025 0.62 1 0.48 0.37 0.32
VEC ~0.16 0.9 0.48 1 0.96 0.57
Ty —0.12 0.88 0.37 0.96 1 0.56
HV 0.044 0.53 0.32 0.57 0.56 1

Table 1 shows that a correlation exists among the different features used. During
feature removal, only those features that had minimal correlation with the target variable
hardness were removed; this set of removed features included VEC, T,,, and B. This is a
way to reduce the feature space complexity by losing minimal information from the dataset.
Furthermore, visually plotting the scatterplots of the remaining features revealed some
correlation among the % of Co, the % of Fe, and the % of Ni. Hence, the % of Co and the %
of Fe were eliminated.

Next, Pandas library [32] was used to normalize the value of the features so that each
feature came within a range of 0 and 1. Feature normalization allows all the features to scale
to a similar scale, and thus makes training faster by balancing the length of the contours of
the loss function across all dimensions of the parameters that are to be updated.

After that, the actual training steps began. The number of training samples is very
small; therefore, k-fold cross-validation was chosen to obtain a model which performed
the best on average among all the validation folds. Furthermore, because a neural network
training comes with several hyperparameter choices, the hyperparameters were tuned us-
ing a randomized search. The hyperparameter grid used to sample different configurations
of randomized hyperparameter search is as below:

learning rate = {0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005}

weight decay for regularization = {1 x 107°,5 x 107>,1x 10745 x 107°,1 x 1073,5 x 1073,1 x 1072,5 x 1072,1 x 10!}

momentum = {0.5, 0.75, 0.99}
nesterov = {True, False}

number of nodes per layer = {14, 17, 21, 24, 28, 35}

number of maximum epochs to train = {50, 75, 100, 125, 150, 175, 200, 250, 300, 325, 350, 375, 400, 425, 450,475,500}

dropout probability per node = {0, 0.3, 0.5}
minibatch size = {1, 2, 4, 8, 16, 32, 64}
optimizers = {torch.optim.SGD}

The training methodology followed a four-step procedure:

Step 1. Randomly selected 500 different configurations from the hyperparameter space.

Step 2. Trained 500 neural networks using all of these configurations with 20-fold
cross validation.

(a) The purpose of this k-fold training was to find the most generalizable set of hyperpa-
rameter configurations among the randomly chosen 500 configurations.
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Step 3. After obtaining the best set of hyperparameters, we discarded all the previously
trained 500 * 20 models and trained a new neural network using:

(b) all the training data;
(c) the best set of hyperparameters obtained from Step 2;
(d) no cross validation. (because we had already found the hyperparameters).

Step 4: In Step 2, all intermediate models were saved at the end of each epoch. This
allowed us to monitor the performance of our model on the test set at each epoch. In
essence, if the model performance diverged after the nth epoch, we could discard the
training epochs after the nth epoch. This gave us the “best model” corresponding to this
“best set of hyperparameter configuration”.

The open-source libraries PyTorch, scikit-learn, and scorch were used to train the NN
model and predict the hardness of the RHEAs.

The NN model consisted of three abstract regions, namely, the input layer, the hidden
layers, and the output layer. The input layer takes in the features and passes them to the
hidden layers. The output layer is the last layer of the NN model, which simply pro%%feleg
‘t%e output based on the information passed from the last hidden layer nodes. The following

AS i

relationship can be used to calculate the output of each neuron (4;):

where bj are the bias terms and Wi are weights provided for each input node. "l(}u%
value of aj proceeds through an actigliatToz_ gﬁ‘é\{ibﬁ. EIT'hen, the activation function will d&!
fine the output of this particular neuron. The type of activation function used in this NN
mibeled by deaklye RedUIei383. diguie; 2retibw svitightiprovidelifseddohtiipw owdd ewRhehvedne
sitypodéeedhitidenghyanrs didtiapdrrmtisistetheid itferecti vatinbersrdt v voils d afimeutlad
oetiputlofdhisipivticalefuretiom appedyiprarbactivdtibe fanatichesedvintkjsNNnowedebis
iepkgo Redd tR3Intigie dishbevietha i dparedeheseadighiliandobkasehivheonsistedndy fivie
thidided lsgferte Each tayier agndikted st shifatan nrirabiers & optiionse A asuishnelyk s
1riyersE) fugction approximator, and the larger the network, the more able it is to learn
the nuances in the feature space. The weights and biases were randomly initialized before
each training. The optimization criterion tp timize was mean square error (MSE) loss.
MSE = = > (1= %)’ @)
MSE = — ¥ (v, - 1) @)
i=1
where 7 is number of data points, Y; is the observed values, and ¥, is the predicted val-
wudaere 1 is number of data points, Y; is the observed values, and Y; is the predicted values.

() (Y )

HV

HV

Figtre 2. A schematic model of the neural network (NN) showing 5 hidden layers: The input consists of HEAS feattires as
represented By square boxes on the left.

2.2. Experimental Methods

The CoiCrsMoisNb2oResTazoWzo alloy was synthesized by vacuum arc melting
method (MAM-1, Edmund Biihler, Bodelshausen, Germany) from the corresponding ele-
ment mixture under a pure areon atmospvhere. The powders of Cr. Mo. Nb. Re, Ta, W. and
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2.2. Experimental Methods

The Cp1CrsMoq1 9NbyRe 5TazgWog alloy was synthesized by vacuum arc melting
method (MAM-1, Edmund Biihler, Bodelshausen, Germany) from the corresponding
element mixture under a pure argon atmosphere. The powders of Cr, Mo, Nb, Re, Ta, W,
and C were mixed inside a polystyrene mill jar for 15 min and cold pressed in a stainless
steel mold using a pressure of 350 MPa and a dwelling time 30 s. The purity of each elements
was more than 99.5 wt %. For the purpose of homogeneous distribution of elements, the
melted ingots were flipped over and re-melted 4 times. After this, epoxy resin (a mixture
of SamplKwick powder and SamplKwick liquid with the volume ratio 2:1) was applied
to firmly wrap the solid ingots for easy handling. The cross section of the sample was cut
using a BUEHLER low speed saw. Prior to the property tests, the cross section surface was
mechanically ground with SiC papers with differing grit sizes, namely, 320, 600, 800, 1000,
and 1200 mesh in sequence. After that, the ground cross section surface was polished using
the MetaDi™ Supreme polycrystalline diamond suspension (1 um), and, finally, rinsed
with deionized water and dried in air. The crystal structure of the sample was identified
using an X-ray diffractometer system (Empyrean, PANalytical) provided with equipped
Cu Ka radiation (A = 0.15406 nm). The 20 scan range from 20-120 degrees was performed
with a step size of 0.026 degrees. The microstructure and chemical compositions of the
Cp.1Cr3Moq1 9NbyyRe5TazgWyo were examined using a field emission scanning electron
microscope equipped with second electron (SE) and energy dispersive spectroscopy (EDS)
detector (Ametek. Model: APOLLO XL, Berwyn, PA, USA). Vickers hardness was measured
with a digital micro hardness tester (Clark Instrument Model CM-802AT, Novi, MI, USA).
Three testing loads were used, namely, 2000, 500, and 100 gf, and the dwell time was 15 .
The Vickers hardness (HV) of C1Cr3Moq1.9NbygRe 5TaggWoo was tested at five different
positions on the sample to ensure the consistency of the results. The intervals between
adjacent testing positions were three times larger than that of the indent diagonals, which
avoided the effects of work hardening.

3. Results and Discussions
3.1. Machine Learning Results

The best set of hyperparameter configurations obtained were learning rate = 0.001,
weight decay for regularization = 0.001, momentum = 0.99, optimizers = stochastic gradient
descent, nesterov = True, number of nodes per layer = 35, number of maximum epochs to
train = 325, dropout probability per node = 0, and minibatch size = 1. The learning curves
of hardness prediction are shown in Figure 3. The y-axis represents the mean squared error
and the x-axis represents the number of epochs. It can be seen from the curve that the NN
model was able to learn from the training data and predict the hardness of the samples for
the validation data with a gradual decrease in loss over several epochs of training, starting
from 0.125 and flattening out at around 0.0675. The NN model was trained on a dataset of
128 HEAs. There were also several models that diverged during training. An example case
is shown in Figure 4.
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Figure 4. Mean squared error as a function of the number of epochs: a diverging model.

We also generated, for each test sample, the hardness predictions of all 500 models
trained. Then, the uncertainty error bars were plotted using standard deviation as the

metric, which are shown in Figure 5. As expected, there existed some variance among theg of 14
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3.2. Experimental Results
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3REIR 4o el hath ipacing PatiQf e difractionanslec Aasitive ipteges apd.
X:bp Kavelength, respectlvely The Iattice parameter was determined to be 3.21 £ 0.002 A.

T T T T T
(110)  — C0.1Cr3Mo11.9Nb20Re15Ta30W20
211
o (200
n
g (220)
E J
=] UJ
o
-
e
30 60 70 80 90

lefrachon angle 2¢ (deg.)

Higwe 7. Image ShowingtheeXRROpptetebihthel kYo yy ih theheaxipandndapisindisdiagithe the
sizagtion angle A Ing Aunetion SRy respeeether)y-

The mideosstuectuedri fdmmaidbonfohthes-aastaSh (Crevid] psNNRRIResThayWizg alloy its
sthomminFigigrer8a8Twbkndsrafawhavedh diffbridigfeoimgasbateadeaty cbeerkedkighted
qtigltarkeny thedightethardagh flergae thimnl thgetatien dtea dailtethartighteithrdacabighgersaten
metiriy andhbedarkenncilas durkecandapds she lseevestiphlhs el thoerghting] vlisfithgmighaivie
distinguishable areas are seen, the XRD results only show a single BCC phase structure.
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Figure 8. (a) SEM image of sample surface after polishing; (b) energy dispersive spectroscopy (EDS) testing areas on the
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1able 3: EBS testing results of the polished sample surfacs:
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reason for the variation. As shown in Figure 9, the vapor pressure of the six elements from
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S?R@P Efm&g&ttggﬁ&l AR0QC shows the ollowing relationship [46], Cr > Mo > Nb > Re >

Ta > W. Therefore, during the arc melting process, Cr and Mo were more volatile than the
other elements, especially Cr.
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A Vickers hardness test was carried out and the results are listed in Table 4. Based
on the results, the average hardness was approximately 600 HV. Meanwhile, it was also
determined that with the increase in testing load, the obtained average hardness decreases.
This phenomenon is ascribed to indentation size effect [47], and similar observations were
also reported by other researchers [48,49].

Table 4. Vickers hardness test results of Cj1CrsMoq1 9NbygRei5TazgWop.

Load (gf) Average Hardness (HV) Standard Deviation (HV)
2000 587.10 21.56
500 595.44 21.35
100 622.60 13.05

The ML studies on mechanical and physical properties of HEAs were verified by com-
paring with the experiments [21-26,50-52]. The predicted Vickers hardness of Cy1CrsMoy1 9
NbyoRe15TazgWoo with nominal composition and experimental composition were 695 Hy
and 686 Hy, respectively. The experimentally measured Vickers hardness of Cy 1CrsMo1; 9Nb
20Rej5TazgWyg agreed with the machine learning prediction, with an error below 15%.
Moreover, the calculated Vickers hardness of Cy1CrzMoq1.9NbygRe 5TazgWyoy was found
to be 900 Hy using the rule of mixture and Chen’s model [53]. This predicted value of
hardness had an error % of 64, which is not reliable. The hardness predictions from the
current model seem very promising because they were studied with small training datasets.
The close agreements between predictions and experiments validate the reliability of the
current NN model. The prediction accuracy can be further improved with sufficiently
larger datasets. A similar neural NN model could be used in predicting properties of future
RHEAs, such as yield strength, ductility, and tensile strength, etc.

4. Conclusions

In this study, an NN model consisting of five hidden layers was introduced and the
hardness of the novel alloy Cy 1CrzMo11 9NbygRej5TazgWog was predicted. The microstruc-
ture study showed a single BCC phase existing in Cp 1Cr3Moj;1 9NbyyRe5TazgWyo. The
predicted hardness of Cy 1CrzsMoq1 9NbyoRe5TazggWog by the NN model was 695 HV, which
agreed with the experiment. The current NN method will allow researchers to synthesize
virtual RHEAs to achieve the expected hardness without any experimental trial and error
method. Therefore, provides a promising scope in accelerating RHEAs designs with the
desired hardness.
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