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In this study, refractory high entropy alloys (RHEAs) Mo20Nb20Re20Ta20W20,

Mo15Nb20Re15Ta30W20, and Mo15Nb20Re10Ta35W20 were studied by applying the first-

principles density functional theory (DFT) method. The DFT calculation was based on a

large unit cell model of 100-atom supercell, with randomly distributed five element atoms.

The  mechanical properties of all three RHEAs were calculated and compared. Comparing

with  the other two RHEAs, Mo15Nb20Re15Ta30W20 possesses balanced mechanical properties

with  an optimized concentration of expensive Re element. We  combined the DFT calcu-

lations  of a supercell with Debye–Grüneisen theory to investigate the thermal properties

of  the two RHEAs Mo20Nb20Re20Ta20W20 and Mo15Nb20Re15Ta30W20. Mo15Nb20Re15Ta30W20

was selected for further experimental exploration and the computational results were

compared.  The experimental study shows the existence of a single BCC structure of

Mo15Nb20Re15Ta30W20. The crystal structure, density, lattice parameter, and hardness
predicted  computationally are consistent with the experiment data.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the
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Table 1 – Basic crystal structural properties of the RHEAs at RT.

Alloys �Smix (J/K.mol) �Hmix (kJ/mol) ı (%) Tm (◦C)  ̋ VEC

Mo20Nb20Re20Ta20W20 13.38 −13.92 2.70 2945 2.83 5.8
Mo15Nb2 2.71 2956 2.94 5.65
Mo15Nb2 2.62 2947 3.33 5.55
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xperimental  methods
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opy (�Smix), atomic size differences (ı), and enthalpy
 (�Hmix) were used to predict the solid-solution phase
n  of RHEAs [44]. The calculated basic crystal structure
s of the RHEAs are shown in Table 1. A new parameter
ined by Zhang et al. [27], that uses �Smix, �Hmix, and
emperature of mixing (Tm) for predicting the solid
phase formation in RHEAs. It is observed that  ̋ >

 ı < 6.6 % are needed to form a solid solution [45].
g  to the related VEC studies [29,30], the VEC of BCC
EAs is less than 6.87. It can be seen from Table 1 that
value of current RHEAs is less than 6.87, indicating
RHEAs will have a BCC crystal phase. The calculated
rs from Table 1 suggest the existence of a stable solid
cture for all three RHEAs.

echanical  properties

lated elastic constants and other mechanical prop-
the current RHEAs are listed in Table 2. The DFT
lculation of elastic constants reveals that current
e elastically stable as (C44 > 0, C11 > |C12| , and C11 +
. The ductility and metallic characters of a mate-
be determined by the B/G ratio (Pugh’s theory) [46]
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6 [48]. The value of � is greater than 0.26 for all
EAs which further confirms the ductile nature of

 believe future ductility experiment will confirm our
 The model proposed by Chen et al. [49] was imple-
o find the Vickers hardness of the RHEAs. The Vickers
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Table 2 – Calculated elastic constants (GPa); C11; C12; C44,Cauchy pressure C11−C44 (GPa), bulk modulus B (GPa), shear
modulus G (GPa), Young’s modulus E (GPa), Poisson’s ratio (�), Pugh’s ratio (B/G), lattice constant a (Å), density � (g/cm3)
and  hardness Hv (GPa). All calculations are in zero pressure and zero Kelvin temperature.

Alloys C11 C12 C44 C11−C44 B G E � B/G 
 a Hv

Mo20Nb20Re20Ta20W20 390 191 111 186 258 111 293 0.31 2.30 14.8 3.22 8.88
Mo15Nb20Re15Ta30W20 381 181 109 183 248 108 285 0.30 2.28 15.04 3.05 8.85
Mo15Nb20Re10Ta35W20 358 181 88 183 238 90 241 0.33 2.62 14.8 3.23 6.03

Fig. 2 – (a) Variations of vibrational heat capacity (Cv) with temperature (K) for Mo20Nb20Re20Ta20W20 and
Mo15Nb20Re15Ta30W20; (b) Variations of thermal coefficient of linear expansion (˛) with temperature for
Mo20Nb2
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Table 3 – Calculated vibrational heat capacity at constant volume CV (J/K/mol) and thermal coefficient of linear expansion
 ̨ (10−5/K) for Mo20Nb20Re20Ta20W20 and Mo15Nb20Re15Ta30W20.

Temperature (K) Mo20Nb20Re20Ta20W20 Mo15Nb20Re15Ta30W20

CV (J/K/mol) 100  70.71 289.7
300  116.27 466.62
1500 124.39 497.66
3000 124.66 498.68

 ̨ (10−6/K) 100 3.37 3.51
300  5.55 5.66
1500 5.94 6.03
3000 5.95 6.04

Fig. 3 – X-ray diffraction patterns of as-cast
Mo15Nb20Re15Ta30W20 alloy.

Table 4 – Experimental hardness test of
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Fig. 4 – (a) EDS composition analysis areas of Mo15Nb20Re15Ta30W20; (b) SEM second electron region of
Mo15Nb20Re15Ta30W20.
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