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Proof and argumentation are essential components of 
learning mathematics, and technology can mediate students’ 
abilities to learn.  This systematic literature review synthesizes 
empirical literature which examines technology as a support 
for proof and argumentation across all content domains.  The 
themes of this review are revealed through analyzing articles 
related to Geometry and mathematical content domains 
different from Geometry.  Within the Geometry literature, five 
subthemes are discussed: (1) empirical and theoretical 
interplay in dynamic geometry environments (DGEs), (2) 
justifying constructions using DGEs, (3) comparing 
technological and non-technological environments, (4) 
student processing in a DGE, and (5) intelligent tutor systems. 
Within the articles related to content different from Geometry, 
two subthemes are discussed: technological supports for 
number systems/algebra and technological supports for 
calculus/real analysis.  The technological supports for proof 
revealed in this review could aid future research and practice 
in developing new strategies to mediate students’ 
understandings of proof. 

Keywords: Proof and proving, Argumentation, Technology, 
Dynamic Geometry Software  

1. INTRODUCTION

Proof and argumentation are important process standards
for learning, doing, and understanding mathematics (Knuth, 
2002).  In fact, some scholars claim that proof lies at the core 
of mathematics and cannot be separated from the subject itself 
(Schoenfeld, 1994).  Despite the importance of proof in 
learning mathematics, research consistently shows that 
students of all ages struggle to construct viable mathematical 
arguments (e.g. Healy & Hoyles, 2000; Lannin, 2005; Lin, 
Yang, & Chen, 2004; Sen & Guler, 2015).  Because of this, 
extensive research is devoted to analyzing learners’ struggles 
with proof and enhancing their argumentative capacities (e.g. 
Styliandies, Bieda, & Morselli, 2016; Stylianides, Stylianides, 
& Weber, 2017).  Technology is of specific interest as a tool 
for mediating learners’ capacities with proof and 
argumentation because there is a general consensus that 
technology enhances mathematical learning (National Council 
of Teachers of Mathematics [NCTM], 2000; UK Department 
of Education, 2014).  Current literature reviews provide 
important contributions by synthesizing research related to 
Dynamic Geometry Software as a tool for proving within 
Geometry (Hollebrands, Laborde, & Sträßer, 2008; Sinclair & 

Robutti, 2013; Sinclair, et al., 2016).  However, current 
reviews have not utilized a systematic methodology for 
searching for and finding literature and have only reported on 
one subject domain (Geometry).  A systematic methodology 
ensures a broad coverage of the literature that might have been 
missed in previous reviews. Additionally, given an 
international emphasis on reasoning and proof in school 
mathematics across all content domains (e.g. NCTM, 2000; 
UK Department of Education, 2014), the field could benefit 
from a review of technological supports related to all 
mathematical subjects.  To add to the current body of 
knowledge, we utilize a systematic methodology to find 
articles which report on technology as a support for engaging 
with proof and argumentation across all content domains.  

In what follows, we detail our deliberate and systematic 
approach for including or excluding articles in this synthesis 
of the literature.  However, we must first admit a partiality in 
our conceptualization of proof and argumentation.  Harel and 
Sowder (1998) viewed proof as a process of ascertaining and 
persuading.  In other words, proof and argumentation involves 
arguing for or against a mathematical claim and convincing 
oneself and others of the truth or falsity of the claim.  We align 
with this view of proof and argumentation, though we 
acknowledge the differences in how others in the field 
conceptualize these terms.  Additionally, some scholars 
acknowledge a primary distinction between the constructs of 
proof and argumentation.  While we acknowledge potential 
differences in interpreting proof and argumentation, we align 
with Stylianides, et al.’s (2016) contention that “(1) 
argumentation and proof are closely related, and (2) 
considering both argumentation and proof helps draw 
attention to a wider range of important processes related to 
proving than when considering them separately” (p. 316). 
Therefore, both argumentation and proof are considered in this 
review.  We made every effort to account for differing 
perspectives of proof and argumentation by including articles 
from a variety of conceptualizations.  However, due to our 
biased interpretation of proof and argumentation, it is possible 
that we did not account for some publications which make an 
important contribution to the field.  

2. METHODS

A systematic review methodology (Cooper, 2017;
Hannes, Claes, & Belgian Campbell Group, 2007) was 
utilized to find and analyze research studies related to 
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technology as a support for proof and argumentation.  A 
systematic literature review follows a strategic process 
wherein articles are retrieved from databases using a bank of 
search terms, selected or excluded based on pre-determined 
criteria, and synthesized to portray themes of the literature.  To 
determine which databases to use in our search, we consulted 
a research librarian who recommended three databases 
relevant to our research topic: ERIC EBSCOhost, Education 
Full Text (H.W. Wilson), and PsychINFO. Furthermore, we 
chose to review articles published after the year 2000 because 
NCTM’s (2000) curriculum document, having an 
international impact, prioritized proof as a process standard 
for K-12 mathematics.  Using limiters to include peer 
reviewed articles published after January 1, 2000, we 
conducted a simultaneous search in each of the three databases 
on January 3, 2019 including the following terms anywhere in 
the article: (proof OR argumentation) AND (math*1) AND 
(tech*).  The terms were chosen based on curriculum 
documents in the field of mathematics education related to 
proof and technology (e.g. NCTM, 2000; UK Department of 
Education, 2014).  

 
The simultaneous search yielded 938 articles in total with 

754 articles remaining after duplicates were eliminated.  Each 
of the 754 articles were transported to RefWorks, a tool for 

creating bibliographies, and they were subsequently 
transported to a spreadsheet for screening purposes.  The 
criteria for inclusion in the review were as follows: (1) 
publication type—the publication was a journal article or 
conference paper, (2) empirical—the study reported empirical 
findings, (3) participants—the study included learners2 of any 
age as participants, (4) content—the study focused on 
technology as a support for proof and/or argumentation, and 
(5) language—the study was written in English.  

 
In the first phase of the screening process, the title of each 

article was examined to determine whether it met inclusion 
criteria.  After the title screen, 207 articles remained. Next, 
each abstract of the remaining articles was reviewed to 
determine whether it met the inclusion criteria eliminating 
another 142 articles.  Finally, the full text of each remaining 
article was scanned, and after this last phase of screening, 28 
articles remained for inclusion.  To seek possible publications 
that were missed in the search, an ancestral search was run on 
each of the references for the 28 included articles.  The 
ancestral search yielded an additional 4 articles leaving a total 
of 32 articles included in this review.  A PRISMA diagram 
(Moher, Liberati, Tetzlaff, Altman, & The PRISMA Group) 
of our search and selection process can be found in Figure 1. 

Figure 1  PRISMA Diagram 

 
1 Any letters occurring after * were included in the search. 2  We did not consider studies including teachers as participants 

unless the teachers were situated as learners within a college course. 
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3. ANALYSIS 
 

To analyze and synthesize the literature, each article was 
read in full and coded according to a rigorous coding scheme. 
Articles were coded for the number of participants, content of 
the mathematical task(s), theoretical framing, technological 
support(s), findings, among many other indicators which can 
be found in Table 1.  After the coding process, the articles 
were analyzed according to a constant comparative method 
(Glaser & Strauss, 1967) to organize the literature into 
categories for discovering themes and sub-themes.  The 
categories and themes constantly evolved during the analysis 
until an amenable set of themes were developed.  

 
Our analysis revealed 22 of the 32 articles included in this 

review explored technology as support for proof in Geometry.  

Therefore, the first theme constitutes technological supports 
for proof and argumentation in Geometry while the second 
theme represents technological supports for proof and 
argumentation in subjects different from Geometry.  We 
developed sub-themes within each of these major themes, and 
they are discussed further in the findings.  Prior to sharing the 
thematic findings, we briefly share contextual features of the 
studies reported in this review based on the country in which 
the study took place, the number of participants, and the 
duration of the study.  This information might provide the 
reader with an overall sense of the context of each article, and 
it might suggest implications for future research.  In what 
follows, we present the findings followed by a discussion on 
implications for future research and practice. 

 

What country did the study take place?  

What was the participants' grade level? 1=K-2, 2=3-5, 3=6-8, 4=9-12, 5=College 

What was the sample size? 1=30 or less, 2=30-60, 3=60-90, 4=90 or more 

What content was used to solicit argumentation? 1=Algebra, 2=Number Theory, 3=Geometry, 4=Precal/Trig/Cal 
5=Other (specify), 6=Unknown 

What was the duration of the study? 1=One day or less, 2=1 week or less, 3=one month or less, 4=one marking 
period or less, 5=one semester (or summer) or less, 6=one school year or less, 7=more than one school year 
(specify) 

Explain theoretical/conceptual framework used 

Specify the technological support to solicit argumentation 

How were students working on argumentative tasks? 1=individually, 2=collaboratively, 3=NA 

Specify the methods used 

Explain the findings 

Table 1  Coding Scheme 
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4. FINDINGS 
 
4.1 Contextual Features of Literature 
 

Tables 2-4 present the statistical findings of the 
contextual features of the studies reported within this paper as 
a whole.  Table 2 reveals more studies were conducted in the 
United States (8 out of 32) than any other country, though only 
including articles written in English could have impacted these 
results.  European (Italy, Spain, Germany, United Kingdom) 
and Middle Eastern (Israel, Turkey, and Cyprus) countries 
also contributed much of the literature. Table 3 reveals the 
majority of the studies included less than 30 participants (21 
out of 32), although almost 20% of the studies included 91 or 
more participants.  Table 4 reveals the majority of studies were 
shorter than one week (18 out of 32), while some studies were 
more longitudinal in nature with seven studies extending more 
than one semester. 

 
Country Percentage of Publications 

United States 25% (8/32) 
Italy 16% (5/32) 
Spain 13% (4/32) 

Germany 9% (3/32) 
Israel 9% (3/32) 

Turkey 9% (3/32) 
United Kingdom 9% (3/32) 

Hong Kong 6% (2/32) 
Cyprus 3% (1/32) 
Taiwan 3% (1/32) 

Note: Percentages exceed 100% because some studies took 
place in more than one country. 

Table 2  Publications by Country 
 
 

Number of Participants Percentage of 
Publications 

30 or less 66% (21/32) 
31 to 60 13% (4/32) 
61 to 90 3% (1/32) 

91 or more 19% (6/32) 

Table 3  Number of Participants 
 
 

Duration of the Study Percentage of 
Publications 

One day or less 22% (7/32) 
More than one day and less 

than one week 
34% (11/32) 

More than one week and less 
than one month 

22% (7/32) 

More than one month and 
less than one semester 

16% (5/32) 

More than one semester and 
less than one year 

3% (1/32) 

More than one year 3% (1/32) 

Table 4  Duration of the Study 
 
 

4.2 Technological Supports in Geometry 
 

Through synthesizing the literature, five sub-themes 
related to technology as a support for proof and argumentation 
in Geometry were constructed: (1) empirical and theoretical 
interplay in dynamic geometry environments (DGEs), (2) 
justifying constructions using DGEs, (3) comparing 
technological and non-technological environments, (4) 
student processing in a DGE, and (5) intelligent tutor systems.  
All of the articles used DGEs as the technological support for 
supporting proof and argumentation signifying the importance 
scholars place on this specific tool.  Mariotti (2001) explained 
the inner-workings of one DGE called Cabri-Géomètre as a 
“microworld which embodies Euclidean geometry, with its 
elements and its properties (points, line, circles, but also 
midpoint, angle bisector, perpendicularity, parallelism, . . .)” 
(p. 260).  Though there are many types of DGEs, they are all 
equipped with several tools that help students construct and 
manipulate figures, check measurements, explore geometric 
properties on a computerized screen, and test multiple cases 
quickly and efficiently.  Mariotti (2000) contends “the novelty 
of a dynamic environment consists in the direct manipulation 
of its figures” (p. 27).  That is, all manipulations of a figure 
occur in real time allowing the student to visualize geometric 
properties dynamically rather than from a static orientation.  
The thematic findings that follow further provide a 
comprehensive description of DGEs. 
 
 
4.2.1 Empirical and Theoretical Interplay in DGEs 

 
The literature strongly suggests that technology supports 

students’ argumentative capacities in Geometry when the 
tools are used effectively.  However, several scholars caution 
that technology, and particularly DGEs, might lead students to 
become less appreciative of the necessity of proof (e.g. 
Christou, Mousoulides, Pittalis, & Pitt-Pantazi, 2004; Lachmy 
& Koichu, 2014; Mariotti, 2002; Marrades & Gutiérrez).  This 
is because in a DGE, students can empirically test 
mathematical claims using dragging functions or measuring 
tools and become convinced of the veracity of a claim without 
deductive justification (Lachmy & Koichu, 2014).  Leung & 
Lopez-Real (2002) capture the tension between the deductive 
nature of geometry and the empirical qualities of DGE in their 
assertion “when this empirical and inductive dimension is to 
be added to a pedagogical structure that is traditionally rooted 
in deductive logic, careful examination is needed on how to 
combine these two seemingly opposite perspectives” (p. 4).  
Because of this tension, several scholars explored how to 
support students in connecting empirical investigations in 
DGE with theoretical geometric proof. 

 
Some scholars suggest the design of a task could help 

students see the connection between empirical investigations 
and theoretical proof (Christou, et al, 2004; Guven & Karatas, 
2009; Hadas, Hershkowitz, & Shwarz, 2000).  Christou, et al. 
(2004) designed a task for three pre-service primary school 
teachers specifically asking them to explore within 
Geometer’s Sketchpad, create a conjecture, and explain why 
the conjecture is true.  Within their task sequence, they found 
pre-service teachers felt more compelled to prove the 
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conjecture because they had the opportunity to discover within 
the DGE and create their own conjecture instead of proving a 
given claim.  Similarly, Hadas, et al. (2000) designed an open 
task sequence to help students move from empirical aspects of 
DGE to theoretical grounds.  In their study with eighth and 
tenth grade participants, they created a task wherein students 
created a conjecture on the sums of interior and exterior angles 
of a polygon and explained why their conjecture was true.  
However, Hadas, et al. (2000) specifically designed the task 
to lead students to a false conjecture. After being surprised that 
their conjecture was incorrect, students understood that proof 
was necessary even after using tools within the DGE to test 
their conjectures.  Additionally, 50% of the eighth-grade 
students and 56% of tenth-grade students had success in 
creating a viable argument after changing their conjecture. 
Guven & Karatas’ (2009) found pre-service teachers engaged 
in a mathematization process of experimenting, conjecturing, 
and proving within a DGE when they were given open tasks 
that allowed for multiple conjectures and points of entry. 
Other scholars (e.g. Healy & Hoyles, 2002; Marrades & 
Gutiérrez, 2000) similarly noted the importance of the 
conjecture process before engaging in proof.  

 
Instead of focusing on the task sequence, Leung and 

Lopez-Real (2002) sought to understand how two students, 
Hilda and Jane, operated between empirical and theoretical 
grounds when doing a proof by contradiction using Cabri 
Geometry Software.  Through their observations of Hilda and 
Jane, Leung and Lopez-Real (2002) developed a framework 
for the argumentative stages of proof by contradiction in DGE.  
First, the student creates a biased DGE microworld followed 
by constructing a pseudo-object, or an impossible Euclidean 
figure.  Then, the student discovers a locus of validity, or a 
confinement through which the pseudo-object is valid.  Lastly, 
the student makes a conjecture and organizes their proof by 
contradiction.  Lueng and Lopez-Real (2002) suggested the 
critical stage of creating a pseudo-object “might bring about 
the cognitive unity of a theorem bridging the empirical-
theoretical gap between inductive acquisition and formal 
justification” (p. 21).  Building on Lueng & Lopez-Real’s 
(2002) work, Baccaglini-Frank, Antonini, Leung, & Mariotti 
(2013) developed the notion of a proto-pseudo object which is 
“a geometrical object that has the potential of becoming a 
pseudo object” (p. 65).  The transition from a proto-pseudo 
object to a pseudo object proved essential to having success in 
proof by contradiction in their analysis.  Together, these 
studies revealed that an appropriate task sequence and careful 
attention to student reasoning can overcome the divide 
between empirical aspects of DGE and theoretical features of 
Euclidean Geometry. 
 
 
4.2.2 Justifying Constructions using DGEs 
 

Other scholars focused on constructions within a DGE 
and how students justified their constructions.  Mariotti’s 
(2000) study with high school students showed they were able 
to create theoretical rather than intuitive understandings of 
constructing geometric figures as a result of using Cabri 
Geometry Software.  At the beginning of their investigations, 
students saw dragging as an external process to constructing a 

figure.  However, through mathematical discussions and 
social learning with peers and the instructor, students began to 
see dragging as a theoretical move in the construction of the 
figure. In other words, the geometry software became part of 
the theory for proving rather than a simple tool.  In a later 
study with ninth and tenth-grade students, Mariotti (2002) 
developed a sequence of instruction for using Cabri Geometry 
Software to aid students in justifying their conjectures.  First, 
she suggested that teachers should encourage students to 
explain their reasoning throughout the construction process.  
Then, through a negotiation process, students should make 
their constructions acceptable to the classroom community.  
Lastly, students should adapt their justifications to defend 
their constructions.  

 
Similarly, Jones (2000) engaged 26 twelve year-old 

students in a three-phase sequence wherein students justified 
their geometric constructions within Cabri-Géomètre.  In the 
first phase of instruction, students were to construct figures 
which were invariant under dragging.  During this phase, 
students gave descriptions rather than justifying their 
conjectures.  In the second phase, students were required to 
construct quadrilaterals that were invariant under dragging 
and explain why their construction produced the quadrilateral. 
In this phase, students’ explanations were tied to the DGE and 
had few theoretical underpinnings.  Instead, they used terms 
such as “dragging” as warrants for their claims.  In the final 
phase, students were to create explanations about relationships 
between various quadrilaterals.  By the third phase, the 
students created mathematical explanations that did not rely 
on the DGE. Jones’ (2000) study showed that students require 
time to create deductive justification for their constructions.  
However, his study is an existence proof that students’ 
mathematical arguments for constructions can be improved 
within a DGE.  The literature on justifying constructions 
suggest DGEs can be a powerful way for helping students 
create theoretical understandings for their constructions. 

 
 

4.2.3 Comparing Technological and Non-technological 
environments 

 
Several studies examined the differences between 

technological and non-technological settings on students’ 
affect towards mathematics (Gómez-Chacón, Albaladejo, & 
López, 2014; Zengin, 2017) and their abilities to create 
deductive arguments (Hollebrands, Connor, & Smith, 2010; 
Smith, 2011).  Gomez, et al. (2014) suggested that affect 
influences students’ cognition as it relates to geometry proof. 
In their study with two classes of students aged 14-15 years 
old, participants engaged in a task sequence wherein the 
teacher taught 13 reasoning tasks using paper-and-pencil as 
tools and 12 reasoning tasks using GeoGebra.  By the end of 
their task sequence, 42% of students created viable arguments 
using GeoGebra compared to only 9% using paper-and-pencil. 
Additionally, students showed much more perseverance when 
using GeoGebra as compared to working with paper-and-
pencil. Gomez, et al. (2014) hypothesized that affect and 
cognition worked conjointly in students’ reasoning processes 
while using GeoGebra.  That is, students had more tools to 
persevere using a DGE and were more likely to try new 
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strategies independently which caused them to have greater 
success in doing proofs. Zengin (2017) worked with pre-
service mathematics teachers for 9 weeks working through 
reasoning and proof tasks in GeoGebra.  Using an established 
Likert-scale measurement tool, he evaluated how students’ 
attitudes changed towards proof as a result of using GeoGebra 
using a pre/posttest design.  Higher scores on the test indicated 
positive attitudes while lower scores indicated negative 
attitudes.  There was a significant difference in students’ 
attitudes towards proof on the post-test (M=85.77) when 
compared with the pre-test (M=73.13), t(21)=6.06, p<.05, 
r=.79.  This indicates the intervention had a large effect on 
students’ attitudes towards proof.  While it could be argued 
that their attitudes changed for reasons unrelated to GeoGebra, 
qualitative findings revealed students specifically 
acknowledged the DGE as a determinant for changing their 
views towards proof.  

 
Two studies (Hollebrands, et al, 2010; Smith, 2011) found 

technology to enhance students’ proof explorations when 
experimentally comparing the effects of DGE with non-
technology environments.  Hollebrands, et al. (2010) studied 
how eight college students used NonEuclid, a DGE for non-
Euclidean Geometry, in their attempts to create proofs.  They 
found students often used the software to check the validity of 
claims, and it was very beneficial in their investigations.  
However, students did not use explicit warrants for their 
arguments when working in the DGE.  The authors 
hypothesized that students were accustomed to working on 
proofs with static figures rather than dynamic ones which 
might have made them unsure about their arguments within 
the DGE.  In his study with eighth-grade students, Smith 
(2011) found students created more arguments when using 
Geometer’s Sketchpad compared to an environment with 
physical manipulatives such as snap cubes.  Students also 
frequently referred to the technology as warrants for their 
arguments in the DGE though they rarely referred to physical 
manipulatives as warrants in the non-technology environment. 
However, similar to Hollebrands, et al. (2010), Smith (2011) 
found students rarely used explicit warrants when working in 
the DGE. Hollebrands, et al.’s (2010) and Smith’s (2011) 
studies revealed DGEs enhanced students’ exploration 
processes but did not necessarily impact their abilities to 
create deductive arguments.  Together, the research suggests 
DGEs have a positive effect on students’ motivation and 
exploration of geometric proof when compared with non-
technological environments.  

 
 

4.2.4 Student Processing in a DGE 
 

A few studies focused on students’ processes while they 
worked within a technological environment on geometry 
proof tasks.  Within a DGE, Lachmy and Koichu (2014) 
proposed the notion of direct variants (i.e. elements of a figure 
that may be directly manipulated through dragging) and 
indirect variants (i.e. elements of a figure that depend on 
dragging direct variants).  Creating an argument in a DGE 
requires one to develop a hierarchy of dependencies relating 
direct and indirect variants.  In Lachmy and Koichu’s (2014) 
case study of one high attaining ninth grade student, they 
found the student had more success in creating arguments for 

conditional statements when compared with biconditional 
statements.  The authors suggested that the student struggled 
constructing a figure in the DGE because she did not realize 
the appropriate hierarchy of dependencies for biconditional 
statements.  Focusing on students’ processes in an 
unmoderated DGE, Fukawa-Connelly and Silverman (2015) 
found that justifying a mathematical argument became 
normalized over time.  In their study, three students used a 
software called Virtual Math Teams with GeoGebra for four 
weeks to construct figures, conjecture, and justify within a 
DGE equipped with a chat box available for students to 
converse with one another virtually.  At the beginning of the 
intervention, students often solved tasks without feeling the 
need to justify their responses to their classmates . However, 
argumentation became a normalized practice by the end of the 
four weeks.  The authors suggested the interaction between 
students was unmoderated, so the article provided little 
information for how the practice of argumentation became 
normalized over time.  Soldano and Arzarello (2016) used 
game theoretic logic to design a game-type DGE called 
Geometric Constructor wherein students worked in dyads to 
attempt to create favorable situations to win the game. One 
student always had a more favorable position, and the students 
were to justify why one position was more favorable than the 
other.  The authors found students processed reasoning and 
proof in three ways when using Geometric Constructor. 
Students used the reflected game to heuristically answer 
questions, provide evidence for a claim, and to check extreme 
cases.  Each of these processes are important for developing 
deductive arguments, but the authors noted many students 
persisted in relying on empirical evidence.  They concluded 
more research is needed to determine how and if games can 
help students create deductive arguments.  While the current 
literature provides some insight into how students process 
within a DGE, there is much left to be discovered in this 
theme. 

 
 

4.2.5 Intelligent Tutor Systems 
 

Four studies explored DGEs equipped with intelligent 
tutor systems as a support for proof and argumentation. 
Paneque, Cobo, and Fortuny (2017) used GeoGebraTUTOR, 
a DGE that allows teachers to pre-load a software with 
possible solution paths that students might use when creating 
a proof, to determine the teacher-tutor interactions that were 
necessary to aid students in their deductive arguments.  In their 
study, the teacher pre-loaded scaffolds into the DGE so a 
virtual tutor could respond with messages to re-direct 
students’ thinking when they started an incorrect solution 
path.  Through their observations of the teacher, tutor, and 
students, they noticed GeoGebraTUTOR helped students 
think strategically about proof if the scaffolds were presented 
in a way that maintained the challenge of the problem.  That 
is, the teacher had to make sure their pre-loaded scaffolds 
appropriately guided the students without reducing the 
cognitive demand of the problem.  Cobo, Fortuny, Puertas, 
and Richard (2007) used a similar DGE equipped with a 
virtual tutor called AgentGeom. AgentGeom is equipped with 
a graphic area where students can build geometric figures and 
a deduction editor where students can test hypotheses, check 
measurements, and validate other properties.  The student may
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interact with the virtual tutor at any time by asking for help, or 
the tutor will provide help if the student starts down an 
incorrect solution path. In their case study of one 16 year-old 
named Gerard, they found Gerard appropriated the knowledge 
needed to create a viable argument through discursive actions 
with the artificial tutor.  Both the graphic area and deductive 
area proved to be essential in Gerard’s success at creating a 
viable argument.  

 
Matsuda and VanLehn (2005) also used a DGE with a 

virtual tutor that used pre-loaded messages to interact with 
students.  However, their study experimentally tested the 
effects of two scaffolds provided by the virtual tutor: forward 
chaining and backward chaining.  Forward chaining refers to 
starting with a given statement and providing deductive 
warrants to arrive at a conclusion while backward chaining 
“starts from a goal to be proved and applies postulates 
backwards, that is, by matching a conclusion of the postulate 
to the goal, then posting the premises that are not yet proved 
as new goals to be proved” (p. 443). starting with the claim 
and working backwards deductively towards the given 
statement.  In a pre/post-test experimental design with 52 
undergraduate students, Matsuda and VanLehn (2005) found 
forward chaining was a more productive scaffold from the 
virtual tutor than backward chaining.  However, both scaffolds 
improved students’ argumentative abilities (Regression 
equation: Post-test=0.52*pre-test−0.14(if BC)+0.50). Wong, 
Yin, Yang, and Cheng (2011) similarly used an experimental 
design to determine the effects of an intelligent system called 
MR Geo (Multiple Representations for Geometry) on ninth-
grade students’ proving abilities. Instead of using a virtual 
tutor, MR Geo scaffolds instruction by providing the student 
with four representational systems on one screen.  The four 
panes the student could interact with were the problem pane, 
the dynamic pane, the formal proof pane, and the proof tree 
pane.  The student could work within each pane at the same 
time, and certain features in each pane would highlight to 
show the corresponding moves in another pane.  Wong, et al. 
(2011) found that medium and low achievement groups (as 
determined by a pre-test and math grades) benefitted more 
than high achievement groups from their interaction with MR 
Geo.  The four studies using intelligent tutor systems show 
positive outcomes for improving all students’ proving 
capabilities, but lower-performing students might benefit 
more from these systems.   
 
 
4.3 Technological Supports in Subjects other than 

Geometry 
 

There were ten studies which used technology as a 
support for proof and argumentation in subjects other than 
Geometry.  The ten articles were all related to number 
systems/algebra or calculus/real analysis which constitute the 
sub-themes for this section.  In what follows, the findings are 
synthesized to report the current state of research in this 
domain. 

 
 
 
 

4.3.1 Number Systems/Algebra 
 
Three studies explored the same data set to determine the 

effects of collaboration scripts and heuristic worked examples 
on students’ general and mathematical argumentative 
capacities while solving Number Theory tasks (Kollar, et al., 
2014; Vogel, et al., 2016; Schwaighofer, et al., 2017).  
Collaboration scripts are virtual scripts that help students 
organize their group communication to solve a problem while 
heuristic worked examples are solved examples that show the 
strategies an imaginary student uses to solve a problem 
(Schwaighofer, et al., 2017).  Heuristic worked examples are 
especially relevant to proof because proofs require students to 
learn strategies rather than procedures.  They show the 
processes that a student might use to solve a specific proof 
problem, so students can extrapolate their understanding to a 
new task.  In all three studies, the collaboration scripts and 
heuristic worked examples were computerized allowing the 
students to work between both scaffolds.  In each of the three 
studies, 101 pre-service mathematics teachers were randomly 
placed in one of four conditions based on a 2x2 factorial 
(heuristic worked examples vs. no example support, 
collaboration script vs. no collaboration support), and they 
worked in dyads to complete argumentation tasks.  Using a 
pre/post-test design, Vogel, et al. (2016) found the two 
supports had a positive effect on students’ disposition to use 
general argumentation skills.  Controlling for pre-test scores, 
Kollar, et al. (2014) similarly found groups using 
collaboration scripts made significantly higher gains in their 
social discursive argumentation skills (i.e. the ability to 
socially participate in argumentative practices) (F(1,96)=4.42, 
p=.04, part. 𝜂2=.04), and there was also a positive effect for 
students who received heuristic worked examples compared 
to those who received no example support (F(1,96)=9.68, 
p<.01, part. 𝜂2=.09).  However, when specifically focusing on 
the mathematical component of argumentation, Kollar, et al. 
(2014) found students with low prior achievement performed 
better on the mathematical argumentation post-test when they 
did not have heuristic worked examples as a scaffold while 
students with high prior achievement made greater gains with 
heuristic worked examples.  Schwaighofer, et al. (2017) found 
that there was no significant difference with respect to the 
order in which the scaffold was administered.  However, 
fading the initial scaffold (i.e. taking the support away after a 
certain amount of time) had a positive effect on students’ 
dialogic argumentation skills (i.e. social argumentation 
wherein students come to consensus by agreeing with one 
another rather than critiquing). 

 
Lavy (2006) explored how MicroWorlds Project Builder, 

an interactive computer software that allows one to build 
shapes on a geoboard, aided students in their argumentation 
on number theory tasks.  In her observation of two students, 
she found students’ empirical investigations with the 
geoboards were essential to their creation of proofs.  She also 
discovered that one student was less skilled in creating verbal 
arguments, so pointing to the screen acted as a useful warrant 
for deducing claims . Ugurel, Morali, Karahan, & Boz (2016) 
similarly used a computerized environment where students 
could create shapes and figures for proof tasks in Algebra.  
They sought to understand how an intervention of visual 
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proofs, or proofs by drawing a diagram, could benefit three 
high school students’ argumentative reasoning.  They found 
students both improved in their abilities to create visual proofs 
over time, and the students found them helpful for 
conceptually understanding deductive reasoning. 

 
Stoyle & Morris (2017) used blogs as an intervention with 

fifth-grade students to understand if it helped them create 
mathematical arguments with fractions and number systems.  
The 134 students in their study were split into one of three 
groups (control, blog, and face-to-face).  In the blog group, 
students interacted with each other in groups via a blog so their 
record of communication was preserved throughout the 22 
days of the intervention.  The control group did not participate 
in any interaction with peers while the face-to-face group 
interacted in person.  Via a pre/post-test design, Stoyle and 
Morris (2017) found the blog group performed significantly 
better on a test measuring conceptual mathematics knowledge 
than the other two groups.  They hypothesized that writing 
arguments in a blog space was more beneficial than the other 
groups because students had to process their thoughts in 
written format rather than verbal. Cayton-Hodges (2016) 
similarly hypothesized that writing in a computerized 
environment would help students’ argumentative capacities in 
Algebra.  They hoped to determine what type of student-tutor 
interactions were most beneficial for students, but their results 
were mostly inconclusive. 
 
 
4.3.2 Calculus/Real Analysis 
 

Two studies used a DGE to explore proofs for calculus 
topics (Caglayan, 2015; Zembat, 2008).  Caglayan (2015) 
introduced GeoGebra to eight mathematics majors in college 
as a way to help them see limits of functions dynamically 
rather than from a static point of view.  Caglayan interviewed 
each of the participants for about two hours to determine how 
they used a dynamic representation of limits to create and 
argument.  He found students created visual proofs using 
constituents such as hand gestures and cursor gestures.  
Students came to understand concepts such as limits at a point, 
right and left hand limits, and limits at infinity because they 
were able to reason within the dynamic software by checking 
values and relating them back to algebraic ways of solving a 
limit.  Relatedly, Zembat (2008) used Geometer’s Sketchpad 
as a means for engaging four college students in creating 
arguments for derivatives.  Students in this study worked on 
one task where they used Geometer’s Sketchpad, a TI-83 
graphing calculator, and spreadsheet software and another task 
where they only used paper and pencil.  Zembat (2008) found 
students used multiple types of reasoning while using 
technology and were able to make connections between 
algebraic, graphical, and statistical representations.  When 
using only paper and pencil, students only used procedural 
reasoning making few connections to other representations. 

 
In an undergraduate Real Analysis course, Roy, Inglis, 

and Alcock (2017) designed an intervention with 49 college 
students using a tool called e-Proof, which is an audio and 
visual representation of a proof that can be replayed.  The e-
Proof highlights certain parts of a proof as they are being 
explained via an audio recording.  They hypothesized that 

students would perform better on proof tasks using e-proofs 
because it reduces working memory overload.  Using an 
experimental design, they found students that interacted with 
e-Proof scored lower on a delayed test than the control group 
who used a textbook signifying the e-Proof group was 
significantly worse at retaining the information.  To 
understand why their hypothesis did not hold, Roy, et al. 
(2017) ran further analyses and determined that students did 
not have to expend the same amount of effort when learning 
with e-Proofs compared to learning with a textbook.  The 
authors also suggested the audio portion might have interfered 
with students’ abilities to interact with written text.  The 
findings indicate scaffolding too much to aid students in 
understanding proofs might be detrimental to their long-term 
retention.  Together, the studies reveal favorable outcomes for 
using DGEs for argumentation in calculus topics, but Roy et 
al.’s (2017) study provides a cautionary tale for lowering the 
cognitive demand of tasks.  

 
 

5. DISCUSSION 
 

This review revealed technology can contribute to 
enhancing students’ capacities, explorations, beliefs, and 
motivations related to argumentation and proof.  This is not 
surprising given the general consensus amongst scholars that 
technology enhances mathematical learning (e.g. Heid & 
Blume, 2008; NCTM, 2000).  Still, the current literature 
reveals several gaps for which future research might examine.  
The contextual features presented at the beginning of this 
study revealed most research utilized less than 30 participants 
and was conducted for less than one week.  It is difficult to 
understand how learners progress in their abilities to create 
arguments over time while utilizing technology without 
longitudinal data.  Current research mostly takes an 
observational approach seeking to analyze students’ progress 
or processes over a short period of time.  Much of this 
observational research has been analyzed within this paper, 
and it makes an important contribution to the field. However, 
future research might seek to analyze the effects of technology 
on larger sample sizes over an extended period of time in order 
to further generalize findings.  The contextual features also 
revealed research on technological supports for proof and 
argumentation is well-balanced across many geographic 
regions.  

 
In alignment with other literature reviews, our systematic 

search and analysis revealed DGEs are a promising support 
because they allow students to explore dynamic 
representations of figures to reason and make informed 
conjectures.  Several scholars suggested students might be 
prone to accept empirical arguments because they can see the 
truth of a conjecture through multiple manipulations of an 
object dynamically.  This suggests implications for research 
and practice. Mariotti’s (2000) study revealed students can 
realize actions in a DGE as a theoretical move, but little is 
known about how students develop theoretical understandings 
within a technological environment.  Researchers might 
continue to search for supportive actions in making the 
transition from empirical investigations to deductive proving 
in DGEs, and practitioners likely need to scaffold this 
transition. 
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The review revealed intelligent tutor systems might 
scaffold students’ experiences with technology and proof, but 
some research warns against over-scaffolding.  Like Roy et al. 
(2017), other scholars should pursue research with an honest 
examination of how and when to use technology as a scaffold 
for proof and argumentation.  It is possible that over-relying 
on technology reduces the cognitive demand of a task thereby 
taking away valuable learning opportunities.  Research might 
specifically examine the extent to which technological 
scaffolding improves or weakens the cognitive demand of 
tasks.  

 
Some research experimentally compared technological 

environments with paper-and-pencil environments, and the 
literature generally suggests technology enhances students’ 
affective experiences with proof.  In general, the research 
suggests students enjoy utilizing technology more than paper-
and-pencil formats, and technology enhances learners’ 
investigations.  However, there is no empirical evidence that 
technology supports students’ abilities to create deductive 
warrants more readily when compared with paper-and-pencil 
formats.  This further suggest the need for future research and 
practitioners to search for scaffolds which support learners in 
transitioning from empirical investigations to deductive 
proofs.  

 
One novelty of our review is that is reports on literature 

which examines technology as a support for subjects different 
from Geometry.  Our analysis revealed promising 
technological supports for subjects such as Algebra or 
Calculus.  Collaboration scripts and heuristic worked 
examples might enhance learners’ argumentative abilities, but 
the research revealed differences in effects based on the 
abilities of the learner.  Future research might examine this 
relationship and determine when these technological tools are 
supportive.  The analysis also revealed tools such as blogs or 
GeoGebra in enhancing learners’ capacities with proof in 
Algebra or Calculus.  Blogs are promising as a support 
because they provide a record of communication from past 
events.  Utilizing blogs, practitioners might be able to allow 
students to reflect on previous knowledge related to proof 
based on their posts from the past. GeoGebra also provides 
many opportunities for visualization and conceptual 
understanding in Algebra and Calculus.  

 
There is a strong need to update research on technological 

supports for proof and argumentation.  Technology is 
constantly changing, and therefore, previous findings may not 
be consistent or relevant as new technological tools develop.  
Many of the studies in this review utilized tools that are no 
longer widely used within educational settings because new 
and better tools have become available.  In the future, 
researchers might explore tools such as GeoGebra, Desmos, 
and graphing calculators which are commonly used in many 
mathematics classrooms today, otherwise absent from most of 
this review of the literature since 2000.  

 
Based on this review, scholars ought to see a gap to 

conduct more research in mathematical content areas other 
than Geometry since reasoning and proof applies to all content 
domains (e.g. NCTM, 2000).  One might argue that the terms 

used in this search (i.e. proof and argumentation) excluded 
literature in other content areas that make important 
contributions.  We acknowledge this as a potential limitation, 
but it is important to note that these terms are consistent with 
current curricular recommendations and standards for school 
mathematics (NCTM, 2000).  Therefore, while this limitation 
may have contributed to the disproportion of studies favoring 
Geometry, the terms should be well-represented in other 
content areas as well.  Another potential limitation is only 
reviewing articles written after the year 2000.  While this 
ensured a manageable systematic review process, future 
literature reviews might seek to understand how technology 
research related to proof has evolved over time. 

 
With continued attention on proof and argumentation in 

the K-16 curriculum, it is important that the field continues to 
theorize and advance research related to teaching and learning 
proof.  With a growing emphasis on using technology 
regularly in mathematics classrooms, it is likely the research 
base in this area will grow over the next several years.  This 
review might act as a source for the continued development of 
technology as a support for proof and argumentation in 
moving forward in the future. 
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