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Proof and argumentation are essential components of
learning mathematics, and technology can mediate students’
abilities to learn. This systematic literature review synthesizes
empirical literature which examines technology as a support
for proof and argumentation across all content domains. The
themes of this review are revealed through analyzing articles
related to Geometry and mathematical content domains
different from Geometry. Within the Geometry literature, five
subthemes are discussed: (1) empirical and theoretical
interplay in dynamic geometry environments (DGEs), (2)
Jjustifying  constructions using DGEs, (3) comparing
technological and non-technological environments, (4)
student processing in a DGE, and (5) intelligent tutor systems.
Within the articles related to content different from Geometry,
two subthemes are discussed: technological supports for
number systems/algebra and technological supports for
calculus/real analysis. The technological supports for proof
revealed in this review could aid future research and practice
in developing new strategies to mediate students’
understandings of proof-
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1. INTRODUCTION

Proof and argumentation are important process standards
for learning, doing, and understanding mathematics (Knuth,
2002). In fact, some scholars claim that proof lies at the core
of mathematics and cannot be separated from the subject itself
(Schoenfeld, 1994). Despite the importance of proof in
learning mathematics, research consistently shows that
students of all ages struggle to construct viable mathematical
arguments (e.g. Healy & Hoyles, 2000; Lannin, 2005; Lin,
Yang, & Chen, 2004; Sen & Guler, 2015). Because of this,
extensive research is devoted to analyzing learners’ struggles
with proof and enhancing their argumentative capacities (e.g.
Styliandies, Bieda, & Morselli, 2016; Stylianides, Stylianides,
& Weber, 2017). Technology is of specific interest as a tool
for mediating learners’ capacities with proof and
argumentation because there is a general consensus that
technology enhances mathematical learning (National Council
of Teachers of Mathematics [NCTM], 2000; UK Department
of Education, 2014). Current literature reviews provide
important contributions by synthesizing research related to
Dynamic Geometry Software as a tool for proving within
Geometry (Hollebrands, Laborde, & Straf3er, 2008; Sinclair &
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Robutti, 2013; Sinclair, et al., 2016). However, current
reviews have not utilized a systematic methodology for
searching for and finding literature and have only reported on
one subject domain (Geometry). A systematic methodology
ensures a broad coverage of the literature that might have been
missed in previous reviews. Additionally, given an
international emphasis on reasoning and proof in school
mathematics across all content domains (e.g. NCTM, 2000;
UK Department of Education, 2014), the field could benefit
from a review of technological supports related to all
mathematical subjects. To add to the current body of
knowledge, we utilize a systematic methodology to find
articles which report on technology as a support for engaging
with proof and argumentation across all content domains.

In what follows, we detail our deliberate and systematic
approach for including or excluding articles in this synthesis
of the literature. However, we must first admit a partiality in
our conceptualization of proof and argumentation. Harel and
Sowder (1998) viewed proof as a process of ascertaining and
persuading. In other words, proof and argumentation involves
arguing for or against a mathematical claim and convincing
oneself and others of the truth or falsity of the claim. We align
with this view of proof and argumentation, though we
acknowledge the differences in how others in the field
conceptualize these terms. Additionally, some scholars
acknowledge a primary distinction between the constructs of
proof and argumentation. While we acknowledge potential
differences in interpreting proof and argumentation, we align
with Stylianides, et al.’s (2016) contention that “(1)
argumentation and proof are closely related, and (2)
considering both argumentation and proof helps draw
attention to a wider range of important processes related to
proving than when considering them separately” (p. 316).
Therefore, both argumentation and proof are considered in this
review. We made every effort to account for differing
perspectives of proof and argumentation by including articles
from a variety of conceptualizations. However, due to our
biased interpretation of proof and argumentation, it is possible
that we did not account for some publications which make an
important contribution to the field.

2. METHODS

A systematic review methodology (Cooper, 2017;
Hannes, Claes, & Belgian Campbell Group, 2007) was
utilized to find and analyze research studies related to
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technology as a support for proof and argumentation. A
systematic literature review follows a strategic process
wherein articles are retrieved from databases using a bank of
search terms, selected or excluded based on pre-determined
criteria, and synthesized to portray themes of the literature. To
determine which databases to use in our search, we consulted
a research librarian who recommended three databases
relevant to our research topic: ERIC EBSCOhost, Education
Full Text (H.W. Wilson), and PsychINFO. Furthermore, we
chose to review articles published after the year 2000 because
NCTM’s (2000) curriculum document, having an
international impact, prioritized proof as a process standard
for K-12 mathematics. Using limiters to include peer
reviewed articles published after January 1, 2000, we
conducted a simultaneous search in each of the three databases
on January 3, 2019 including the following terms anywhere in
the article: (proof OR argumentation) AND (math*!) AND
(tech*). The terms were chosen based on curriculum
documents in the field of mathematics education related to
proof and technology (e.g. NCTM, 2000; UK Department of
Education, 2014).

The simultaneous search yielded 938 articles in total with
754 articles remaining after duplicates were eliminated. Each
of the 754 articles were transported to RefWorks, a tool for

creating bibliographies, and they were subsequently
transported to a spreadsheet for screening purposes. The
criteria for inclusion in the review were as follows: (1)
publication type—the publication was a journal article or
conference paper, (2) empirical—the study reported empirical
findings, (3) participants—the study included learners? of any
age as participants, (4) content—the study focused on
technology as a support for proof and/or argumentation, and
(5) language—the study was written in English.

In the first phase of the screening process, the title of each
article was examined to determine whether it met inclusion
criteria. After the title screen, 207 articles remained. Next,
each abstract of the remaining articles was reviewed to
determine whether it met the inclusion criteria eliminating
another 142 articles. Finally, the full text of each remaining
article was scanned, and after this last phase of screening, 28
articles remained for inclusion. To seek possible publications
that were missed in the search, an ancestral search was run on
each of the references for the 28 included articles. The
ancestral search yielded an additional 4 articles leaving a total
of 32 articles included in this review. A PRISMA diagram
(Mobher, Liberati, Tetzlaff, Altman, & The PRISMA Group)
of our search and selection process can be found in Figure 1.

ERIC EBSCOhost Education Full Text (H.W. PsychINFO
January 1, 2000-January 3, Wilson) January 1, 2000-January 3,
2019 January 1, 2000-January 3, 2019
2019

754 Non-Duplicate
Citations

Inclusion/Exclusion
Criteria Applied

547 Articles
Excluded After
Title Screen

207 Articles
Remain

!

Search

Inclusion/Exclusion 142 Artinles
Criteria Applied kot e bt
pp Abstract Screen
65 Articles
Remain
4 Articles Added Inclusion/Exclusion 37 Articles
After Ancestral |« Excluded After

Criteria Applied

Full Text Screen

32 Articles
Included

Figure 1 PRISMA Diagram

! Any letters occurring after * were included in the search.

© 2020 Research Information Ltd. All rights reserved.

2 We did not consider studies including teachers as participants
unless the teachers were situated as learners within a college course.
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3. ANALYSIS

To analyze and synthesize the literature, each article was
read in full and coded according to a rigorous coding scheme.
Articles were coded for the number of participants, content of
the mathematical task(s), theoretical framing, technological
support(s), findings, among many other indicators which can
be found in Table 1. After the coding process, the articles
were analyzed according to a constant comparative method
(Glaser & Strauss, 1967) to organize the literature into
categories for discovering themes and sub-themes. The
categories and themes constantly evolved during the analysis
until an amenable set of themes were developed.

Our analysis revealed 22 of the 32 articles included in this
review explored technology as support for proof in Geometry.

115]

Therefore, the first theme constitutes technological supports
for proof and argumentation in Geometry while the second
theme represents technological supports for proof and
argumentation in subjects different from Geometry. We
developed sub-themes within each of these major themes, and
they are discussed further in the findings. Prior to sharing the
thematic findings, we briefly share contextual features of the
studies reported in this review based on the country in which
the study took place, the number of participants, and the
duration of the study. This information might provide the
reader with an overall sense of the context of each article, and
it might suggest implications for future research. In what
follows, we present the findings followed by a discussion on
implications for future research and practice.

What country did the study take place?

What was the participants' grade level? 1=K-2, 2=3-5, 3=6-8, 4=9-12, 5=College

What was the sample size? 1=30 or less, 2=30-60, 3=60-90, 4=90 or more

5=Other (specify), 6=Unknown

What content was used to solicit argumentation? 1=Algebra, 2=Number Theory, 3=Geometry, 4=Precal/Trig/Cal

(specify)

What was the duration of the study? 1=One day or less, 2=1 week or less, 3=one month or less, 4=one marking
period or less, S5=one semester (or summer) or less, 6=one school year or less, 7=more than one school year

Explain theoretical/conceptual framework used

Specify the technological support to solicit argumentation

How were students working on argumentative tasks? 1=individually, 2=collaboratively, 3=NA

Specify the methods used

Explain the findings

Table 1 Coding Scheme

www.technologyinmatheducation.com
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4. FINDINGS
4.1 Contextual Features of Literature

Tables 2-4 present the statistical findings of the
contextual features of the studies reported within this paper as
a whole. Table 2 reveals more studies were conducted in the
United States (8 out of 32) than any other country, though only
including articles written in English could have impacted these
results. European (Italy, Spain, Germany, United Kingdom)
and Middle Eastern (Israel, Turkey, and Cyprus) countries
also contributed much of the literature. Table 3 reveals the
majority of the studies included less than 30 participants (21
out of 32), although almost 20% of the studies included 91 or
more participants. Table 4 reveals the majority of studies were
shorter than one week (18 out of 32), while some studies were
more longitudinal in nature with seven studies extending more
than one semester.

Country Percentage of Publications
United States 25% (8/32)
Italy 16% (5/32)
Spain 13% (4/32)
Germany 9% (3/32)
Israel 9% (3/32)
Turkey 9% (3/32)
United Kingdom 9% (3/32)
Hong Kong 6% (2/32)
Cyprus 3% (1/32)
Taiwan 3% (1/32)

Note: Percentages exceed 100% because some studies took

place in more than one country.

Table 2 Publications by Country

Number of Participants Percentage of
Publications
30 or less 66% (21/32)
31 to 60 13% (4/32)
61 to 90 3% (1/32)
91 or more 19% (6/32)

Table 3 Number of Participants

Duration of the Study Percentage of
Publications
One day or less 22% (7/32)
More than one day and less 34% (11/32)
than one week
More than one week and less 22% (7/32)
than one month
More than one month and 16% (5/32)
less than one semester
More than one semester and 3% (1/32)
less than one year
More than one year 3% (1/32)

Table 4 Duration of the Study

© 2020 Research Information Ltd. All

rights reserved.
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4.2 Technological Supports in Geometry

Through synthesizing the literature, five sub-themes
related to technology as a support for proof and argumentation
in Geometry were constructed: (1) empirical and theoretical
interplay in dynamic geometry environments (DGEs), (2)
justifying constructions using DGEs, (3) comparing
technological and non-technological environments, (4)
student processing in a DGE, and (5) intelligent tutor systems.
All of the articles used DGEs as the technological support for
supporting proof and argumentation signifying the importance
scholars place on this specific tool. Mariotti (2001) explained
the inner-workings of one DGE called Cabri-Géométre as a
“microworld which embodies Euclidean geometry, with its
elements and its properties (points, line, circles, but also
midpoint, angle bisector, perpendicularity, parallelism, . . .)”
(p. 260). Though there are many types of DGEs, they are all
equipped with several tools that help students construct and
manipulate figures, check measurements, explore geometric
properties on a computerized screen, and test multiple cases
quickly and efficiently. Mariotti (2000) contends “the novelty
of a dynamic environment consists in the direct manipulation
of its figures” (p. 27). That is, all manipulations of a figure
occur in real time allowing the student to visualize geometric
properties dynamically rather than from a static orientation.
The thematic findings that follow further provide a
comprehensive description of DGEs.

4.2.1 Empirical and Theoretical Interplay in DGEs

The literature strongly suggests that technology supports
students’ argumentative capacities in Geometry when the
tools are used effectively. However, several scholars caution
that technology, and particularly DGEs, might lead students to
become less appreciative of the necessity of proof (e.g.
Christou, Mousoulides, Pittalis, & Pitt-Pantazi, 2004; Lachmy
& Koichu, 2014; Mariotti, 2002; Marrades & Gutiérrez). This
is because in a DGE, students can empirically test
mathematical claims using dragging functions or measuring
tools and become convinced of the veracity of a claim without
deductive justification (Lachmy & Koichu, 2014). Leung &
Lopez-Real (2002) capture the tension between the deductive
nature of geometry and the empirical qualities of DGE in their
assertion “when this empirical and inductive dimension is to
be added to a pedagogical structure that is traditionally rooted
in deductive logic, careful examination is needed on how to
combine these two seemingly opposite perspectives” (p. 4).
Because of this tension, several scholars explored how to
support students in connecting empirical investigations in
DGE with theoretical geometric proof.

Some scholars suggest the design of a task could help
students see the connection between empirical investigations
and theoretical proof (Christou, et al, 2004; Guven & Karatas,
2009; Hadas, Hershkowitz, & Shwarz, 2000). Christou, et al.
(2004) designed a task for three pre-service primary school
teachers specifically asking them to explore within
Geometer’s Sketchpad, create a conjecture, and explain why
the conjecture is true. Within their task sequence, they found
pre-service teachers felt more compelled to prove the
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conjecture because they had the opportunity to discover within
the DGE and create their own conjecture instead of proving a
given claim. Similarly, Hadas, et al. (2000) designed an open
task sequence to help students move from empirical aspects of
DGE to theoretical grounds. In their study with eighth and
tenth grade participants, they created a task wherein students
created a conjecture on the sums of interior and exterior angles
of a polygon and explained why their conjecture was true.
However, Hadas, et al. (2000) specifically designed the task
to lead students to a false conjecture. After being surprised that
their conjecture was incorrect, students understood that proof
was necessary even after using tools within the DGE to test
their conjectures. Additionally, 50% of the eighth-grade
students and 56% of tenth-grade students had success in
creating a viable argument after changing their conjecture.
Guven & Karatas’ (2009) found pre-service teachers engaged
in a mathematization process of experimenting, conjecturing,
and proving within a DGE when they were given open tasks
that allowed for multiple conjectures and points of entry.
Other scholars (e.g. Healy & Hoyles, 2002; Marrades &
Gutiérrez, 2000) similarly noted the importance of the
conjecture process before engaging in proof.

Instead of focusing on the task sequence, Leung and
Lopez-Real (2002) sought to understand how two students,
Hilda and Jane, operated between empirical and theoretical
grounds when doing a proof by contradiction using Cabri
Geometry Software. Through their observations of Hilda and
Jane, Leung and Lopez-Real (2002) developed a framework
for the argumentative stages of proof by contradiction in DGE.
First, the student creates a biased DGE microworld followed
by constructing a pseudo-object, or an impossible Euclidean
figure. Then, the student discovers a locus of validity, or a
confinement through which the pseudo-object is valid. Lastly,
the student makes a conjecture and organizes their proof by
contradiction. Lueng and Lopez-Real (2002) suggested the
critical stage of creating a pseudo-object “might bring about
the cognitive unity of a theorem bridging the empirical-
theoretical gap between inductive acquisition and formal
justification” (p. 21). Building on Lueng & Lopez-Real’s
(2002) work, Baccaglini-Frank, Antonini, Leung, & Mariotti
(2013) developed the notion of a proto-pseudo object which is
“a geometrical object that has the potential of becoming a
pseudo object” (p. 65). The transition from a proto-pseudo
object to a pseudo object proved essential to having success in
proof by contradiction in their analysis. Together, these
studies revealed that an appropriate task sequence and careful
attention to student reasoning can overcome the divide
between empirical aspects of DGE and theoretical features of
Euclidean Geometry.

4.2.2  Justifying Constructions using DGEs

Other scholars focused on constructions within a DGE
and how students justified their constructions. Mariotti’s
(2000) study with high school students showed they were able
to create theoretical rather than intuitive understandings of
constructing geometric figures as a result of using Cabri
Geometry Software. At the beginning of their investigations,
students saw dragging as an external process to constructing a
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figure. However, through mathematical discussions and
social learning with peers and the instructor, students began to
see dragging as a theoretical move in the construction of the
figure. In other words, the geometry software became part of
the theory for proving rather than a simple tool. In a later
study with ninth and tenth-grade students, Mariotti (2002)
developed a sequence of instruction for using Cabri Geometry
Software to aid students in justifying their conjectures. First,
she suggested that teachers should encourage students to
explain their reasoning throughout the construction process.
Then, through a negotiation process, students should make
their constructions acceptable to the classroom community.
Lastly, students should adapt their justifications to defend
their constructions.

Similarly, Jones (2000) engaged 26 twelve year-old
students in a three-phase sequence wherein students justified
their geometric constructions within Cabri-Géométre. In the
first phase of instruction, students were to construct figures
which were invariant under dragging. During this phase,
students gave descriptions rather than justifying their
conjectures. In the second phase, students were required to
construct quadrilaterals that were invariant under dragging
and explain why their construction produced the quadrilateral.
In this phase, students’ explanations were tied to the DGE and
had few theoretical underpinnings. Instead, they used terms
such as “dragging” as warrants for their claims. In the final
phase, students were to create explanations about relationships
between various quadrilaterals. By the third phase, the
students created mathematical explanations that did not rely
on the DGE. Jones’ (2000) study showed that students require
time to create deductive justification for their constructions.
However, his study is an existence proof that students’
mathematical arguments for constructions can be improved
within a DGE. The literature on justifying constructions
suggest DGEs can be a powerful way for helping students
create theoretical understandings for their constructions.

4.2.3 Comparing Technological and Non-technological
environments

Several studies examined the differences between
technological and non-technological settings on students’
affect towards mathematics (Gomez-Chacon, Albaladejo, &
Lopez, 2014; Zengin, 2017) and their abilities to create
deductive arguments (Hollebrands, Connor, & Smith, 2010;
Smith, 2011). Gomez, et al. (2014) suggested that affect
influences students’ cognition as it relates to geometry proof.
In their study with two classes of students aged 14-15 years
old, participants engaged in a task sequence wherein the
teacher taught 13 reasoning tasks using paper-and-pencil as
tools and 12 reasoning tasks using GeoGebra. By the end of
their task sequence, 42% of students created viable arguments
using GeoGebra compared to only 9% using paper-and-pencil.
Additionally, students showed much more perseverance when
using GeoGebra as compared to working with paper-and-
pencil. Gomez, et al. (2014) hypothesized that affect and
cognition worked conjointly in students’ reasoning processes
while using GeoGebra. That is, students had more tools to
persevere using a DGE and were more likely to try new
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strategies independently which caused them to have greater
success in doing proofs. Zengin (2017) worked with pre-
service mathematics teachers for 9 weeks working through
reasoning and proof tasks in GeoGebra. Using an established
Likert-scale measurement tool, he evaluated how students’
attitudes changed towards proof as a result of using GeoGebra
using a pre/posttest design. Higher scores on the test indicated
positive attitudes while lower scores indicated negative
attitudes. There was a significant difference in students’
attitudes towards proof on the post-test (M=85.77) when
compared with the pre-test (M=73.13), t(21)=6.06, p<.05,
r=79. This indicates the intervention had a large effect on
students’ attitudes towards proof. While it could be argued
that their attitudes changed for reasons unrelated to GeoGebra,
qualitative  findings revealed students specifically
acknowledged the DGE as a determinant for changing their
views towards proof.

Two studies (Hollebrands, et al, 2010; Smith, 2011) found
technology to enhance students’ proof explorations when
experimentally comparing the effects of DGE with non-
technology environments. Hollebrands, et al. (2010) studied
how eight college students used NonEuclid, a DGE for non-
Euclidean Geometry, in their attempts to create proofs. They
found students often used the software to check the validity of
claims, and it was very beneficial in their investigations.
However, students did not use explicit warrants for their
arguments when working in the DGE. The authors
hypothesized that students were accustomed to working on
proofs with static figures rather than dynamic ones which
might have made them unsure about their arguments within
the DGE. In his study with eighth-grade students, Smith
(2011) found students created more arguments when using
Geometer’s Sketchpad compared to an environment with
physical manipulatives such as snap cubes. Students also
frequently referred to the technology as warrants for their
arguments in the DGE though they rarely referred to physical
manipulatives as warrants in the non-technology environment.
However, similar to Hollebrands, et al. (2010), Smith (2011)
found students rarely used explicit warrants when working in
the DGE. Hollebrands, et al.’s (2010) and Smith’s (2011)
studies revealed DGEs enhanced students’ exploration
processes but did not necessarily impact their abilities to
create deductive arguments. Together, the research suggests
DGEs have a positive effect on students’ motivation and
exploration of geometric proof when compared with non-
technological environments.

4.2.4  Student Processing in a DGE

A few studies focused on students’ processes while they
worked within a technological environment on geometry
proof tasks. Within a DGE, Lachmy and Koichu (2014)
proposed the notion of direct variants (i.e. elements of a figure
that may be directly manipulated through dragging) and
indirect variants (i.e. elements of a figure that depend on
dragging direct variants). Creating an argument in a DGE
requires one to develop a hierarchy of dependencies relating
direct and indirect variants. In Lachmy and Koichu’s (2014)
case study of one high attaining ninth grade student, they
found the student had more success in creating arguments for

© 2020 Research Information Ltd. All rights reserved.
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conditional statements when compared with biconditional
statements. The authors suggested that the student struggled
constructing a figure in the DGE because she did not realize
the appropriate hierarchy of dependencies for biconditional
statements. Focusing on students’ processes in an
unmoderated DGE, Fukawa-Connelly and Silverman (2015)
found that justifying a mathematical argument became
normalized over time. In their study, three students used a
software called Virtual Math Teams with GeoGebra for four
weeks to construct figures, conjecture, and justify within a
DGE equipped with a chat box available for students to
converse with one another virtually. At the beginning of the
intervention, students often solved tasks without feeling the
need to justify their responses to their classmates . However,
argumentation became a normalized practice by the end of the
four weeks. The authors suggested the interaction between
students was unmoderated, so the article provided little
information for how the practice of argumentation became
normalized over time. Soldano and Arzarello (2016) used
game theoretic logic to design a game-type DGE called
Geometric Constructor wherein students worked in dyads to
attempt to create favorable situations to win the game. One
student always had a more favorable position, and the students
were to justify why one position was more favorable than the
other. The authors found students processed reasoning and
proof in three ways when using Geometric Constructor.
Students used the reflected game to heuristically answer
questions, provide evidence for a claim, and to check extreme
cases. Each of these processes are important for developing
deductive arguments, but the authors noted many students
persisted in relying on empirical evidence. They concluded
more research is needed to determine how and if games can
help students create deductive arguments. While the current
literature provides some insight into how students process
within a DGE, there is much left to be discovered in this
theme.

4.2.5 Intelligent Tutor Systems

Four studies explored DGEs equipped with intelligent
tutor systems as a support for proof and argumentation.
Paneque, Cobo, and Fortuny (2017) used GeoGebraTUTOR,
a DGE that allows teachers to pre-load a software with
possible solution paths that students might use when creating
a proof, to determine the teacher-tutor interactions that were
necessary to aid students in their deductive arguments. In their
study, the teacher pre-loaded scaffolds into the DGE so a
virtual tutor could respond with messages to re-direct
students’ thinking when they started an incorrect solution
path. Through their observations of the teacher, tutor, and
students, they noticed GeoGebraTUTOR helped students
think strategically about proof if the scaffolds were presented
in a way that maintained the challenge of the problem. That
is, the teacher had to make sure their pre-loaded scaffolds
appropriately guided the students without reducing the
cognitive demand of the problem. Cobo, Fortuny, Puertas,
and Richard (2007) used a similar DGE equipped with a
virtual tutor called AgentGeom. AgentGeom is equipped with
a graphic area where students can build geometric figures and
a deduction editor where students can test hypotheses, check
measurements, and validate other properties. The student may
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interact with the virtual tutor at any time by asking for help, or
the tutor will provide help if the student starts down an
incorrect solution path. In their case study of one 16 year-old
named Gerard, they found Gerard appropriated the knowledge
needed to create a viable argument through discursive actions
with the artificial tutor. Both the graphic area and deductive
area proved to be essential in Gerard’s success at creating a
viable argument.

Matsuda and VanLehn (2005) also used a DGE with a
virtual tutor that used pre-loaded messages to interact with
students. However, their study experimentally tested the
effects of two scaffolds provided by the virtual tutor: forward
chaining and backward chaining. Forward chaining refers to
starting with a given statement and providing deductive
warrants to arrive at a conclusion while backward chaining
“starts from a goal to be proved and applies postulates
backwards, that is, by matching a conclusion of the postulate
to the goal, then posting the premises that are not yet proved
as new goals to be proved” (p. 443). starting with the claim
and working backwards deductively towards the given
statement. In a pre/post-test experimental design with 52
undergraduate students, Matsuda and VanLehn (2005) found
forward chaining was a more productive scaffold from the
virtual tutor than backward chaining. However, both scaffolds
improved students’ argumentative abilities (Regression
equation: Post-test=0.52*pre-test—0.14(if BC)+0.50). Wong,
Yin, Yang, and Cheng (2011) similarly used an experimental
design to determine the effects of an intelligent system called
MR Geo (Multiple Representations for Geometry) on ninth-
grade students’ proving abilities. Instead of using a virtual
tutor, MR Geo scaffolds instruction by providing the student
with four representational systems on one screen. The four
panes the student could interact with were the problem pane,
the dynamic pane, the formal proof pane, and the proof tree
pane. The student could work within each pane at the same
time, and certain features in each pane would highlight to
show the corresponding moves in another pane. Wong, et al.
(2011) found that medium and low achievement groups (as
determined by a pre-test and math grades) benefitted more
than high achievement groups from their interaction with MR
Geo. The four studies using intelligent tutor systems show
positive outcomes for improving all students’ proving
capabilities, but lower-performing students might benefit
more from these systems.

4.3 Technological Supports
Geometry

in Subjects other than

There were ten studies which used technology as a
support for proof and argumentation in subjects other than
Geometry. The ten articles were all related to number
systems/algebra or calculus/real analysis which constitute the
sub-themes for this section. In what follows, the findings are
synthesized to report the current state of research in this
domain.
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4.3.1 Number Systems/Algebra

Three studies explored the same data set to determine the
effects of collaboration scripts and heuristic worked examples
on students’ general and mathematical argumentative
capacities while solving Number Theory tasks (Kollar, et al.,
2014; Vogel, et al., 2016, Schwaighofer, et al., 2017).
Collaboration scripts are virtual scripts that help students
organize their group communication to solve a problem while
heuristic worked examples are solved examples that show the
strategies an imaginary student uses to solve a problem
(Schwaighofer, et al., 2017). Heuristic worked examples are
especially relevant to proof because proofs require students to
learn strategies rather than procedures. They show the
processes that a student might use to solve a specific proof
problem, so students can extrapolate their understanding to a
new task. In all three studies, the collaboration scripts and
heuristic worked examples were computerized allowing the
students to work between both scaffolds. In each of the three
studies, 101 pre-service mathematics teachers were randomly
placed in one of four conditions based on a 2x2 factorial
(heuristic worked examples vs. no example support,
collaboration script vs. no collaboration support), and they
worked in dyads to complete argumentation tasks. Using a
pre/post-test design, Vogel, et al. (2016) found the two
supports had a positive effect on students’ disposition to use
general argumentation skills. Controlling for pre-test scores,
Kollar, et al. (2014) similarly found groups using
collaboration scripts made significantly higher gains in their
social discursive argumentation skills (i.e. the ability to
socially participate in argumentative practices) (F(1,96)=4.42,
p=.04, part. n’=.04), and there was also a positive effect for
students who received heuristic worked examples compared
to those who received no example support (F(1,96)=9.68,
p<.01, part. n>=.09). However, when specifically focusing on
the mathematical component of argumentation, Kollar, et al.
(2014) found students with low prior achievement performed
better on the mathematical argumentation post-test when they
did not have heuristic worked examples as a scaffold while
students with high prior achievement made greater gains with
heuristic worked examples. Schwaighofer, et al. (2017) found
that there was no significant difference with respect to the
order in which the scaffold was administered. However,
fading the initial scaffold (i.e. taking the support away after a
certain amount of time) had a positive effect on students’
dialogic argumentation skills (i.e. social argumentation
wherein students come to consensus by agreeing with one
another rather than critiquing).

Lavy (2006) explored how MicroWorlds Project Builder,
an interactive computer software that allows one to build
shapes on a geoboard, aided students in their argumentation
on number theory tasks. In her observation of two students,
she found students’ empirical investigations with the
geoboards were essential to their creation of proofs. She also
discovered that one student was less skilled in creating verbal
arguments, so pointing to the screen acted as a useful warrant
for deducing claims . Ugurel, Morali, Karahan, & Boz (2016)
similarly used a computerized environment where students
could create shapes and figures for proof tasks in Algebra.
They sought to understand how an intervention of visual
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proofs, or proofs by drawing a diagram, could benefit three
high school students’ argumentative reasoning. They found
students both improved in their abilities to create visual proofs
over time, and the students found them helpful for
conceptually understanding deductive reasoning.

Stoyle & Morris (2017) used blogs as an intervention with
fifth-grade students to understand if it helped them create
mathematical arguments with fractions and number systems.
The 134 students in their study were split into one of three
groups (control, blog, and face-to-face). In the blog group,
students interacted with each other in groups via a blog so their
record of communication was preserved throughout the 22
days of the intervention. The control group did not participate
in any interaction with peers while the face-to-face group
interacted in person. Via a pre/post-test design, Stoyle and
Morris (2017) found the blog group performed significantly
better on a test measuring conceptual mathematics knowledge
than the other two groups. They hypothesized that writing
arguments in a blog space was more beneficial than the other
groups because students had to process their thoughts in
written format rather than verbal. Cayton-Hodges (2016)
similarly hypothesized that writing in a computerized
environment would help students’ argumentative capacities in
Algebra. They hoped to determine what type of student-tutor
interactions were most beneficial for students, but their results
were mostly inconclusive.

4.3.2  Calculus/Real Analysis

Two studies used a DGE to explore proofs for calculus
topics (Caglayan, 2015; Zembat, 2008). Caglayan (2015)
introduced GeoGebra to eight mathematics majors in college
as a way to help them see limits of functions dynamically
rather than from a static point of view. Caglayan interviewed
each of the participants for about two hours to determine how
they used a dynamic representation of limits to create and
argument. He found students created visual proofs using
constituents such as hand gestures and cursor gestures.
Students came to understand concepts such as limits at a point,
right and left hand limits, and limits at infinity because they
were able to reason within the dynamic software by checking
values and relating them back to algebraic ways of solving a
limit. Relatedly, Zembat (2008) used Geometer’s Sketchpad
as a means for engaging four college students in creating
arguments for derivatives. Students in this study worked on
one task where they used Geometer’s Sketchpad, a TI-83
graphing calculator, and spreadsheet software and another task
where they only used paper and pencil. Zembat (2008) found
students used multiple types of reasoning while using
technology and were able to make connections between
algebraic, graphical, and statistical representations. When
using only paper and pencil, students only used procedural
reasoning making few connections to other representations.

In an undergraduate Real Analysis course, Roy, Inglis,
and Alcock (2017) designed an intervention with 49 college
students using a tool called e-Proof, which is an audio and
visual representation of a proof that can be replayed. The e-
Proof highlights certain parts of a proof as they are being
explained via an audio recording. They hypothesized that
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students would perform better on proof tasks using e-proofs
because it reduces working memory overload. Using an
experimental design, they found students that interacted with
e-Proof scored lower on a delayed test than the control group
who used a textbook signifying the e-Proof group was
significantly worse at retaining the information. To
understand why their hypothesis did not hold, Roy, et al.
(2017) ran further analyses and determined that students did
not have to expend the same amount of effort when learning
with e-Proofs compared to learning with a textbook. The
authors also suggested the audio portion might have interfered
with students’ abilities to interact with written text. The
findings indicate scaffolding too much to aid students in
understanding proofs might be detrimental to their long-term
retention. Together, the studies reveal favorable outcomes for
using DGEs for argumentation in calculus topics, but Roy et
al.’s (2017) study provides a cautionary tale for lowering the
cognitive demand of tasks.

5. DISCUSSION

This review revealed technology can contribute to
enhancing students’ capacities, explorations, beliefs, and
motivations related to argumentation and proof. This is not
surprising given the general consensus amongst scholars that
technology enhances mathematical learning (e.g. Heid &
Blume, 2008; NCTM, 2000). Still, the current literature
reveals several gaps for which future research might examine.
The contextual features presented at the beginning of this
study revealed most research utilized less than 30 participants
and was conducted for less than one week. It is difficult to
understand how learners progress in their abilities to create
arguments over time while utilizing technology without
longitudinal data.  Current research mostly takes an
observational approach seeking to analyze students’ progress
or processes over a short period of time. Much of this
observational research has been analyzed within this paper,
and it makes an important contribution to the field. However,
future research might seek to analyze the effects of technology
on larger sample sizes over an extended period of time in order
to further generalize findings. The contextual features also
revealed research on technological supports for proof and
argumentation is well-balanced across many geographic
regions.

In alignment with other literature reviews, our systematic
search and analysis revealed DGEs are a promising support
because they allow students to explore dynamic
representations of figures to reason and make informed
conjectures. Several scholars suggested students might be
prone to accept empirical arguments because they can see the
truth of a conjecture through multiple manipulations of an
object dynamically. This suggests implications for research
and practice. Mariotti’s (2000) study revealed students can
realize actions in a DGE as a theoretical move, but little is
known about how students develop theoretical understandings
within a technological environment. Researchers might
continue to search for supportive actions in making the
transition from empirical investigations to deductive proving
in DGEs, and practitioners likely need to scaffold this
transition.
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The review revealed intelligent tutor systems might
scaffold students’ experiences with technology and proof, but
some research warns against over-scaffolding. Like Roy et al.
(2017), other scholars should pursue research with an honest
examination of how and when to use technology as a scaffold
for proof and argumentation. It is possible that over-relying
on technology reduces the cognitive demand of a task thereby
taking away valuable learning opportunities. Research might
specifically examine the extent to which technological
scaffolding improves or weakens the cognitive demand of
tasks.

Some research experimentally compared technological
environments with paper-and-pencil environments, and the
literature generally suggests technology enhances students’
affective experiences with proof. In general, the research
suggests students enjoy utilizing technology more than paper-
and-pencil formats, and technology enhances learners’
investigations. However, there is no empirical evidence that
technology supports students’ abilities to create deductive
warrants more readily when compared with paper-and-pencil
formats. This further suggest the need for future research and
practitioners to search for scaffolds which support learners in
transitioning from empirical investigations to deductive
proofs.

One novelty of our review is that is reports on literature
which examines technology as a support for subjects different
from Geometry. Our analysis revealed promising
technological supports for subjects such as Algebra or
Calculus.  Collaboration scripts and heuristic worked
examples might enhance learners’ argumentative abilities, but
the research revealed differences in effects based on the
abilities of the learner. Future research might examine this
relationship and determine when these technological tools are
supportive. The analysis also revealed tools such as blogs or
GeoGebra in enhancing learners’ capacities with proof in
Algebra or Calculus. Blogs are promising as a support
because they provide a record of communication from past
events. Utilizing blogs, practitioners might be able to allow
students to reflect on previous knowledge related to proof
based on their posts from the past. GeoGebra also provides
many opportunities for visualization and conceptual
understanding in Algebra and Calculus.

There is a strong need to update research on technological
supports for proof and argumentation. Technology is
constantly changing, and therefore, previous findings may not
be consistent or relevant as new technological tools develop.
Many of the studies in this review utilized tools that are no
longer widely used within educational settings because new
and better tools have become available. In the future,
researchers might explore tools such as GeoGebra, Desmos,
and graphing calculators which are commonly used in many
mathematics classrooms today, otherwise absent from most of
this review of the literature since 2000.

Based on this review, scholars ought to see a gap to
conduct more research in mathematical content areas other
than Geometry since reasoning and proof applies to all content
domains (e.g. NCTM, 2000). One might argue that the terms
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used in this search (i.e. proof and argumentation) excluded
literature in other content areas that make important
contributions. We acknowledge this as a potential limitation,
but it is important to note that these terms are consistent with
current curricular recommendations and standards for school
mathematics (NCTM, 2000). Therefore, while this limitation
may have contributed to the disproportion of studies favoring
Geometry, the terms should be well-represented in other
content areas as well. Another potential limitation is only
reviewing articles written after the year 2000. While this
ensured a manageable systematic review process, future
literature reviews might seek to understand how technology
research related to proof has evolved over time.

With continued attention on proof and argumentation in
the K-16 curriculum, it is important that the field continues to
theorize and advance research related to teaching and learning
proof. With a growing emphasis on using technology
regularly in mathematics classrooms, it is likely the research
base in this area will grow over the next several years. This
review might act as a source for the continued development of
technology as a support for proof and argumentation in
moving forward in the future.
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