
Under consideration for publication in J. Fluid Mech. 1

A scaling law for the shear-production range
of second-order structure functions

Y. Pan and M. Chamecki†
Department of Meteorology, Pennsylvania State University, University Park, PA 16802, USA

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

Dimensional analysis suggests that the dissipation length scale (`ε = u3?/ε) is the appro-
priate scale for the shear-production range of second-order streamwise structure function
in neutrally stratified turbulent shear flows near solid boundaries, including smooth-
and rough-wall boundary layers and shear layers above canopies (e.g., crops, forests and
cities). These flows have two major characteristics in common: (i) a single velocity scale,
i.e., the friction velocity (u?) and, (ii) the presence of large eddies that scale with an
external length scale much larger than the local integral length scale. No assumptions
are made about the local integral scale, which is shown to be proportional to `ε for the
scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here
ε is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of
energy cascade in the inertial subrange. The scaling yields a log-law dependence of the
second-order streamwise structure function on (r/`ε), where r is the streamwise spatial
separation. This scaling law is confirmed by large-eddy simulation (LES) results in the
roughness sublayer above a model canopy, where the imbalance between local production
and dissipation of TKE is much greater than in the inertial layer of wall turbulence and
the local integral scale is affected by two external length scales. Parameters estimated
for the log-law dependence on (r/`ε) are in reasonable agreement with those reported for
the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the
validity of the `ε-scaling is extended to shear flows with much greater imbalance between
production and dissipation, indicating possible universality of the shear-production range
in flows near solid boundaries. Secondly, from a modeling perspective, `ε is the appro-
priate scale to characterize turbulence in shear flows with multiple externally imposed
length scales.
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1. Introduction

From the perspective of turbulence theory, the flow over a canopy (e.g., crops, forests
and cities) in the neutrally stratified atmospheric boundary layer (ABL) presents an
interesting opportunity to study scaling and universality of shear layers with multiple
external length scales. Early studies idealized flow over canopies as a superposition of
canopy wakes and boundary-layer turbulence over a displaced wall (reviewed by Rau-
pach & Thom 1981). This reasoning and the small scale nature of the wakes of plant
elements imply that turbulent motions above the canopy are primarily scaled by the dis-
tance from the wall, (z − d0), known as the inertial layer length scale. The displacement
height, d0, is associated with the mean height of momentum absorption (Thom 1971;
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Jackson 1981). However, significant departures from the inertial layer turbulence are
clearly seen in measurements within the canopy roughness sublayer, which extends from
the ground to approximately three canopy heights (Kaimal & Finnigan 1994). As shown
by the important work of Raupach et al. (1996), the canopy roughness sublayer is more
analogous to a mixing layer than to a rough-wall boundary layer due to its inflectional
mean velocity profile and consequent flow instabilities. Second- and third-order turbu-
lence statistics and the significant imbalance between production and dissipation of the
turbulent kinetic energy (TKE) observed in shear layers above canopies are also similar
to those in mixing layer flows. The canopy-mixing layer analogy identifies a shear length
scale (`s), defined as the mean velocity divided by the mean velocity shear at canopy top,
to be the predominant length scale within the canopy roughness sublayer (Raupach et al.
1996). Thereafter, the flow above vegetation canopies is typically viewed and modeled as
the superposition of mixing layer and boundary layer eddies over a displaced rough wall
(e.g., Poggi et al. 2004). In summary, the flow above a canopy represents a combination
of two well studied canonical shear flows (rough-wall boundary layer and mixing layer),
with two distinct external length scales (the inertial length scale (z− d0) and the mixing
layer scale (`s)) and a large imbalance between local production and dissipation of TKE.

The energy density within the production range is of particular interest. For neutrally
stratified flows, the shear layer above the canopy and the inertial layer in the wall tur-
bulence have two characteristics in common: (i) a single velocity scale, i.e., the friction
velocity (u?) and, (ii) the presence of large eddies that scale with an external length scale
much larger than the local integral length scale. These two characteristics are the major
conditions used by Perry et al. (1986) to conduct dimensional analysis for wall-bounded
flows, showing that a k−1 scaling was expected in the production range for the spectral
energy density on scales greater than the local integral scale (k is the wavenumber). How-
ever, experimental evidence of the k−1 spectrum in wall-bounded flows is elusive, mainly
due to the aliasing problem associated with one-dimensional spectrum in flows with finite
Reynolds number (Tennekes & Lumley 1972; Davidson 2004). The second-order stream-
wise spatial structure function, 〈∆u2(r)〉, is an analogous counterpart to the spectrum of
streamwise velocity. Physically 〈∆u2(r)〉 can be considered (roughly) as the cumulative
energy of eddies of size r and less, and d〈∆u2(r)〉/dr can be considered as the energy den-
sity (Davidson 2004). Here 〈〉 indicates an ensemble average, u is the streamwise velocity,
and r is the streamwise spatial separation. Davidson et al. (2006) showed clear experi-
mental evidence of a logarithmic region in 〈∆u2(r)〉 in wall-bounded flows, where the k−1

spectrum was unclear. The authors concluded that, compared with the one-dimensional
spectrum, the structure functions provide a clearer diagnostic for analyzing the scal-
ing of turbulent motions. Recent theoretical and experimental results of second- and
higher-order structure functions within the inertial layer of moderate-Reynolds-number
wall turbulence (Davidson & Krogstad 2014) show that the length `ε = u3?/ε is a more
appropriate scale than the inertial layer length scale. The dissipation rate, ε, represents
the energy cascade in the inertial subrange. Hereafter we follow Townsend (1958) and
refer to `ε as the dissipation length scale. Note that `ε is on the same order of the inte-
gral scales, and is different from the viscous dissipation (Kolmogorov) length scale. The
theory proposed by Davidson & Krogstad (2014) postulated that integral-scale eddies
scaled with r, u?, and ε, leaving out the integral length scale (`). However, the absence
of ` as a relevant length scale in the dimensional analysis is hard to justify a-priori, as it
implies universality of integral-scale eddies.

The objective of this work is to investigate the validity of the logarithmic `ε-scaling in
the roughness sublayer above the canopy, which is characterized by two external length
scales and exhibits much greater imbalance between production and dissipation of TKE



A scaling law for the shear-production range of second-order structure functions 3

than the inertial layer of wall turbulence. Dimensional analysis in §2 suggests a logarith-
mic dependence of the production range 〈∆u2(r)〉 on (r/`ε) is expected for shear flows
near solid boundaries, with no specific assumptions about the local integral scales or
the production and dissipation of turbulent kinetic energy (TKE). By following Perry
et al. (1986) and explicitly including the integral length scale in the analysis, we avoid
postulating the existence of universal scaling as done by Davidson & Krogstad (2014).
However, differently from Perry et al. (1986), a local balance between production and
dissipation of TKE is not invoked in the obtention of the inertial subrange. Instead, by
requiring the analysis to be consistent with Kolmogorov’s scaling in the inertial subrange,
we obtain ` ∝ `ε, formally justifying the `ε-scaling. Large-eddy simulation (LES) results
validated against field experimental data (described in §3) are used to identify the log-
arithmic `ε-scaling in the roughness sublayer above the canopy (§4). Simulation results
show a convincing collapse of 〈∆u2(r)〉 when r is normalized by `ε (see §4.3). Conclusions
follow in § 5.

2. The scaling law for the second-order streamwise structure function

For turbulent motions within the inertial layer of wall-bounded flows, Perry et al. (1986)
proposed three ranges of spatial scales with distinct scalings for the energy distribution:
(1) a universal range in which motions are uniquely determined by the kinematic viscosity
(ν) and the rate of dissipation of TKE (ε), (2) a shear-production range in which motions
are scaled by the integral length scale (`) and the friction velocity (u?), and (3) an
inactive range in which motions are scaled by the boundary layer thickness (δ) and the
friction velocity (u?). Perry et al. (1986) specified ` ∝ z because they were only interested
in the inertial layer of wall turbulence. Because this assumption is inapplicable to the
canopy roughness sublayer (Raupach et al. 1996), we retain the use of `. Perry et al.
(1986) conducted a dimensional analysis for the streamwise velocity spectrum, matching
the spectral energy density for the overlap of adjacent ranges. Here we apply the same
dimensional analysis approach to the second-order streamwise spatial structure function,

〈∆u2(r)〉 = 〈[u(x+ rêx, t)− u(x, t)]
2〉, (2.1)

where x is the position vector, r is the spatial separation, êx is the unit vector in the
streamwise direction, and t is the time. We write

〈∆u2〉 = f1(ν, ε, r), 〈∆u2〉 = f2(`, u?, r), 〈∆u2〉 = f3(δ, u?, r), (2.2)

for the universal, shear-production and inactive ranges, respectively. The matching of
energy density (given by d〈∆u2(r)〉/dr) is performed for the overlap of adjacent ranges.

The matching of d〈∆u2(r)〉/dr for the overlap of the shear-production and inactive
ranges is equivalent to the approach taken by Davidson & Krogstad (2014), except that
Davidson & Krogstad (2014) used ε instead of ` in the scaling of integral-scale eddies
(f2). In order to avoid postulating universality of the production range, we retain the
use of ` and rewrite the matching procedure following the steps from Perry et al. (1986).
For the shear-production range, we have[

d〈∆u2(r)〉/dr
]
/(u2?/`) = F2(r/`). (2.3)

For the inactive range, we have[
d〈∆u2(r)〉/dr

]
/(u2?/δ) = F3(r/δ). (2.4)

In the overlap of these two ranges, (2.3) and (2.4) are both valid, and therefore

F2(r/`)/F3(r/δ) = `/δ = (r/δ)/(r/`), (2.5)
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suggesting that F2(r/`) ∝ (r/`)−1. Thus, we rewrite (2.3) as[
d〈∆u2(r)〉/d(r/`)

]
/u2? = B2/(r/`), (2.6)

where B2 is a universal constant. Integrating (2.6) yields,

〈∆u2(r)〉/u2? = A′2 +B2 ln(r/`), (2.7)

where A′2 is a constant of integration.
This log-law expression for the second-order structure function was also obtained by

Davidson et al. (2006) by postulating that r
[
d〈∆u2(r)〉/dr

]
is a constant proportional to

u2? within the overlap of shear-production and inactive ranges. Physically r
[
d〈∆u2(r)〉/dr

]
is a measure of the energy contained by eddies of size r on a ln(r) scale. Davidson
et al. (2006) specified ` ∝ z for the inertial layer of wall turbulence. The prediction
〈∆u2(r)〉 ∝ ln(r/z) has been confirmed by laboratory and field experimental data (David-
son et al. 2006; Davidson & Krogstad 2009; de Silva et al. 2015). More recently, Davidson
& Krogstad (2014) noted that ` ∝ `ε collapses experimental data better than ` ∝ z. The
authors also suggest that `ε is a more general length scale, valid for other shear flows.
de Silva et al. (2015) argued that for high-Reynolds-number wall-bounded flows, local
production and dissipation of TKE within the inertial layer are in approximate balance
(P/ε ≈ 1) and `ε ≈ κz, where κ = 0.4 is the von Kármán constant. However, for im-
balanced local production and dissipation of TKE within the inertial layer of moderate-
Reynolds number wall turbulence (1 < P/ε < 1.4), experimental data favor the use of `ε
in place of z to scale the second-order structure function (Davidson & Krogstad 2014).

We now formally justify ` ∝ `ε as a requirement for F2(r/`) in the overlap between
the shear-production and universal range to be consistent with Kolmogorov’s scaling in
the inertial subrange (Kolmogorov 1941)

〈∆u2(r)〉 = C2(rε)2/3, (2.8)

where C2 is a universal constant. Note that the −5/3 spectral counterpart of this scaling,
has been convincingly observed in the roughness sublayer above corn and forest canopies
(Shaw et al. 1974; Wilson et al. 1982; Kaimal & Finnigan 1994; van Hout et al. 2007).
Plugging (2.8) into (2.3) yields

F2(r/`) = (2/3)C2(`/`ε)
2/3(r/`)−1/3. (2.9)

Because F2(r/`) is only a function of (r/`), `/`ε must be a constant, implying ` ∝ `ε.
This conclusion is consistent with the statement from Townsend (1958) that ` and `ε are
approximately equal in constant density flows. Therefore (2.7) becomes

〈∆u2(r)〉/u2? = A2 +B2 ln(r/`ε), (2.10)

where A2 is a constant of integration. Equation (2.10) is expected to hold for the overlap
of the shear-production and inactive ranges regardless of the specific details of the local
integral scale or the production and dissipation of TKE.

3. Description of field experimental data and large-eddy simulations

3.1. Description and analysis of experimental data

The experimental data were obtained using sonic anemometers deployed at five heights
in a large maize field z/h = 1/3, 2/3, 1, 4/3 and 5/3 (Gleicher et al. 2014). Velocity time
series were sampled at a frequency of 20 Hz and statistics were computed using a 7.5-
hour period of approximately stationary turbulence, when u? = 0.51 m s−1. This period
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Figure 1. The second-order streamwise temporal structure function (〈∆u(τ)〉) evaluated using
an averaging time interval T normalized by the values calculated using the entire 7.5-hour
period of approximately stationary turbulence (no subscript). Results shown for time lags
τ/(`ε/〈u〉) = 1, 5 and 10 (represented using dashed, solid and dash-dotted lines, respectively) at
z/h = 1, 4/3 and 5/3.

corresponds to over 25, 000 integral time scales, allowing good sampling of extreme events
and motions at spatial scales comparable to the integral length scale (Chamecki 2013).
For motions within the inertial subrange, hot-film and particle image velocimetry (PIV)
measurements (Shaw et al. 1974; Wilson et al. 1982; van Hout et al. 2007) provide more
accurate sampling than sonic anemometers. More specifically, Horst & Oncley (2006)
reported non-negligible path averaging errors for sonic anemometer sampling of motions
within the inertial subrange.

The scaling proposed in §2 is applied to spatial structure functions, whereas only the
temporal structure functions can be obtained from field data measured at fixed locations.
The second-order streamwise temporal structure function is defined as

〈∆u2(τ)〉 = 〈[u(x, t+ τ)− u(x, t)]2〉, (3.1)

where τ is the time separation. As shown later in §4.2, Taylor’s hypothesis of frozen
turbulence is inapplicable within the canopy roughness sublayer, and using the temporal
structure functions to assess spatial scalings is inaccurate. Both the spatial and temporal
structure functions can be obtained from LES results of the resolved velocity. Thus, LES
results of spatial structure functions are used to assess the scalings (§4.3), while field
data of temporal structure functions are critical for assessing the fidelity of LES results
(§4.2).

The convergence of statistics obtained from field data is evaluated by investigating
the variability caused by changing the length of the averaging time interval (T ) used
for analysis (as done by Liu et al. 1994). Fig. 1 shows that the second-order structure
functions at z/h = 1, 4/3 and 5/3 converge within an averaging time interval of 3 hours
or less for the range of time lags of interest in the present analysis.

3.2. LES model setup and analysis of results

The LES model employed here was described in detail by Pan et al. (2014a,b). The effect
of the model vegetation canopy on the flow is represented by a distributed drag that
dissipates the kinetic energy of the flow,

f = −CDa|ũ|ũ, (3.2)
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Table 1. The number of grid points, grid spacing, and the number of vertical grids occupied
by the model canopy used for fine, median and coarse resolution simulations.

Resolution Number of grid points Grid spacing Number of vertical grids
Nx ×Ny ×Nz ∆x ×∆y ×∆z occupied by the model canopy

Fine 560× 224× 400 0.375 m ×0.375 m ×0.13125 m 16
Median 420× 168× 300 0.5 m ×0.5 m ×0.175 m 12
Coarse 280× 112× 200 0.75 m ×0.75 m ×0.2625 m 8

where CD is the drag coefficient, a is the leaf area density, and ũ is the resolved ve-
locity. The model corn canopy is homogeneous and infinite in both horizontal direc-
tions, and the profile of leaf area density is obtained from experimental data (see Gle-
icher et al. 2014, and reference therein). The effect of reconfiguration (i.e., bending and
streamlining) of flexible canopy elements is represented using a drag coefficient mod-
eled as a power-law function of velocity capped by an upper limit (Pan et al. 2014b),
CD = min

(
(|ũ|/A)B , CD,max

)
, where A = 0.22 m s−1, B = −2/3, and CD,max = 0.8.

When the velocity is low, the reconfiguration is negligible, and thus CD ≈ CD,max. When
the velocity is high, the reconfiguration is strong, and thus CD ≈ (|ũ|/A)B . The power-
law exponent, B = −2/3, is the Vogel number reported by theoretical and laboratory
studies for simple bending (Alben et al. 2002; Gosselin et al. 2010).

Three LES runs using different grid resolution were conducted with a friction velocity,

u? = 〈u′w′〉1/2h = 0.51 m s−1, where u′ = u − 〈u〉 and w′ = w − 〈w〉 are the turbulent
fluctuations of streamwise and vertical velocity components, and the subscript “h” indi-
cates values at the top of the canopy (h = 2.1 m). The simulation domain was a box with
Lx×Ly×Lz = 100h×40h×25h. The model canopy occupies the entire horizontal domain
and the lowest one canopy height of the vertical domain. Table 1 shows the number of
grid points, grid spacing, and the number of vertical grids occupied by the model canopy
used for fine, median and coarse resolution simulations. An additional median resolution
simulation varying the friction velocity by a factor of 5 (u? = 0.1 m s−1) was conducted
to investigate the sensitivity of results to Reynolds number. Supplementary simulations
on a smaller domain size (Lx×Ly×Lz = 20h×20h×10h) were conducted to determine
the range of scales for which the spatial structure functions are not affected by domain
size.

The LES runs used the Lagrangian scale-dependent dynamic Smagorinsky subgrid-
scale (SGS) model (Bou-Zeid et al. 2005). The simulation was driven by a mean pressure
gradient force. Viscous, Coriolis and buoyancy effects were not considered. Predictions of
turbulence statistics up to the third-order, the strength of quadrant events (e.g., sweeps,
ejections and inward and outward interactions), and the fractions of momentum flux
transported in different event quadrants agree well with the field experimental data (Pan
et al. 2014b). The median and coarse resolution simulations were conducted using a
timestep of ∆t = 0.005 s, while the fine resolution simulation were conducted using
a timestep of ∆t = 0.004 s. Turbulence statistics were calculated using statistically
steady state flow periods of 45 min for the median and coarse resolution simulations and
30 min for the fine resolution simulation. For a given vertical position, statistics were
calculated using the instantaneous velocity field within the entire horizontal domain at
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ũ
2
(τ
)〉

0.8

0.9

1  

1.1

0.8

0.9

1  

1.1

0.8

0.9

1  

1.1

0.8

0.9

1  

1.1

z/h = 1

z/h = 4/3

z/h = 5/3

z/h = 2(c)

Figure 2. The results of the TKE dissipation rate (ε), the second-order streamwise spatial
structure function (〈∆ũ2(r)〉), and the second-order streamwise temporal structure function
(〈∆ũ2(τ)〉) evaluated using an averaging time interval T normalized by the values calculated
using the entire statistically steady state periods (no subscript). Results are obtained from the
median resolution simulation with u? = 0.51 m −1 and shown for selected heights, z/h = 1, 4/3,
5/3 and 2. The structure functions are shown for selected scales, r/`ε = 1, 5 and 10 (b) and
τ/(`ε/〈u〉) = 1, 5 and 10 (c), represented by dashed, solid and dash-dotted lines, respectively.

each timestep and then averaged in time. The spatial structure functions were calculated
using snapshots of the instantaneous velocity fields within the entire domain output every
1000 timesteps. For the median and coarse resolution simulations, 540 snapshots were
output every 5 s. For the fine resolution simulation, 450 snapshots were output every 4 s.
The temporal structure functions were calculated using time series output every timestep
at a specified crossflow sectional plane.

In the analysis of simulation results, the displacement height was determined as the
mean height of the distributed drag following Thom (1971) and Jackson (1981), yielding
d0/h = 0.78. The dissipation rate of TKE was estimated from the SGS dissipation rate
(Bou-Zeid et al. 2010), which is given by

ε = −〈τ SGS : S̃〉, (3.3)

where τ SGS is the SGS stress tensor and S̃ =
(
∇ũ+ (∇ũ)T

)
/2 is the filtered strain

rate tensor. The scale-dependent SGS model provides reliable estimates of the cascade
of TKE from resolved scales to subgrid scales (Bou-Zeid et al. 2005). The convergence of
LES results is also evaluated by investigating the change in the turbulence statistics with
the length of the averaging time interval (T ) used for analysis. For the median resolution
simulation with u? = 0.51 m s−1, Fig. 2 shows that results of the TKE dissipation rate and
the second-order structure functions at 1 < z/h < 2 converge within an averaging time
interval of 10 min or less. Simulations with alternative grid resolution and friction velocity
require a similar averaging time interval for these statistics to converge (not shown). The
use of spatial averaging for the analysis of LES results yields shorter averaging periods
required for convergence in comparison to those needed for the field data.
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4. Results and Discussions

4.1. Characteristics of the roughness sublayer above the model canopy

The region of interest here is the shear layer above the model canopy and within the
lowest 20% of the domain, corresponding to the region 1 < z/h < 5. Within this region,
simulations with u? = 0.51 m s−1 yield the Reynolds number for the flow, Re = `εu?/ν,
ranging from 2.6 × 104 to 1.4 × 105. The roughness Reynolds number, Re? = hu?/ν =
7.2×104, where h = 2.1 m is the canopy height. The Taylor microscale Reynolds number,
Reλ = λu?/ν, ranges from 1.1×103 to 2.8×103. For the median resolution simulation, the
effective Reynolds number, ReLES = (η/ηLES)4/3Re (Muschinski 1996), ranges from 34
to 236. The effective roughness Reynolds number, Re?LES = (η/ηLES)4/3Re? = 92. Here

ν = 1.48× 10−5 m2 s−1 is the kinematic viscosity of air, λ =
(
15νσ2

u/ε
)1/2

is the Taylor

microscale, η =
(
ν3/ε

)1/4
is the Kolmogorov length scale, ηLES = cs∆ is the SGS mixing

length, cs is the Smagorinsky coefficient, and ∆ = (∆x∆y∆z)
1/3

is the characteristic grid
spacing (Scotti et al. 1993). The roughness Reynolds number varies with friction velocity,
but not with grid resolution. The effective roughness Reynolds number varies with grid
resolution, but not with friction velocity. The fine and coarse resolution simulations yield
Re?LES = 136 and 54, respectively.

Fig. 3(a) shows the vertical profiles of the production and dissipation rates of TKE
normalized by u3?/h. These dimensionless vertical profiles are independent of grid res-
olution and friction velocity (not shown). The insensitivity of ε estimated using (3.3)
to grid spacing implies that the rate of energy cascade provides reasonable estimates of
the rate of TKE dissipation. The reliability of LES estimates of ε/(u3?/h) immediately
above the model canopy is further supported by the good agreement with dissipation
rates estimated from PIV measurements above a mature corn canopy obtained by van
Hout et al. (2007) (dashed line compared with crosses in Fig. 3a). Close to the canopy
top, the ratio P/ε ≈ 3 (Fig. 3b), a value much greater than that observed in the inertial
layer of wall turbulence and more characteristic of mixing layers (Rogers & Moser 1994).
For z/h > 2.5, the production and dissipation of TKE are almost in balance (Fig. 3a, b),
and the production length scale (`P = u3?/P) approaches κ(z − d0) (solid line compared
with vertical dotted line in Fig. 3c). These features indicate the recovery of an inertial
layer, and thus z/h = 2.5 is determined as the upper boundary of the canopy roughness
sublayer.

Within the roughness sublayer above the canopy (1 < z/h < 2.5), two external length
scales coexist: (z−d0) associated with inertial layer eddies and `s = 〈u〉z=h/(∂〈u〉/∂z)z=h
associated with mixing layer eddies (Raupach et al. 1996). As expected, `s (dash-dotted
line in Fig. 3c) is much larger than κ(z − d0) near the canopy top, and it becomes
significantly smaller than κ(z − d0) above the canopy roughness sublayer (z/h > 2.5).
Even though the production length scale (solid line in Fig. 3c) increases as the canopy top
is approached, it does not reflect the large coherence of mixing layer eddies that scale on
`s. Interestingly, the dissipation length scale `ε (dashed line in Fig. 3c) provides a smooth
transition from `s near the canopy top to κ(z−d0) above the canopy roughness sublayer.
These LES results suggest that `ε has the potential to characterize the transition from
a mixing-layer flow close to the canopy top to a boundary-layer flow above the canopy
roughness sublayer. Thus, LES results support the theoretical analysis in §2 that `ε
characterizes the shear-production range turbulent motions.
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Figure 3. LES results of the production (P) and dissipation (ε) rates of TKE normalized by
u3
?/h (a), the ratio P/ε (b), and the length scales (`P , `ε and `s) normalized by κ(z − d0) (c)

against vertical distance from the ground (z) normalized by canopy height (h). In panel (a),
Solid and dashed lines indicate P/(u3

?/h) and ε/(u3
?/h), respectively. Crosses indicate estimates

of ε/(u3
?/h) from PIV measurements above a corn canopy (van Hout et al. 2007). In panel

(c), solid, dashed and dash-dotted lines indicate `P/κ(z − d0), `ε/κ(z − d0) and `s/κ(z − d0),
respectively. Here u? is the friction velocity, d0 is the displacement height, and (z − d0), `s, `P ,
and `ε are the inertial layer, mixing layer, production, dissipation length scales, respectively. The
horizontal dotted lines indicate the upper boundary of the canopy roughness layer, z/h = 2.5.

4.2. Evaluation of the second-order streamwise temporal structure function

We start by using results of temporal and spatial structure functions from the median
resolution simulation with u? = 0.51 m s−1 to assess the validity of Taylor’s hypothesis
of frozen turbulence in the canopy shear layer. Fig. 4a shows that the temporal struc-
ture functions converted using Taylor’s hypothesis (〈∆ũ2(r = τ〈u〉)〉) agree well with
the spatial structure functions (〈∆ũ2(r)〉) at small scales, but asymptote faster to the

maximum value (2〈u′2〉). The cutoff scale for the validity of Taylor’s hypothesis increases
with increasing distance from the canopy top. Specifically for z/h > 4/3 (blue, cyan,
black, green and grey dashed and solid lines in Fig. 4a), the cutoff scale is greater than
r/lε = 3. The inapplicability of Taylor’s hypothesis is expected, given the large values
of turbulence intensity (σu/〈u〉) typically observed in canopy shear layers (Fig. 4(b)).
Note that spatial structure functions collapse using the `ε-scaling, but their temporal
counterparts do not due to inapplicability of Taylor’s hypothesis for the production and
inactive ranges. Results from simulation using different grid resolutions or friction ve-
locity yield the same conclusion (not shown). The nonequivalence between spatial and
temporal structure functions exposes the limitations of field experimental data in assess-
ing structure function scalings (and other related statistics such as correlation functions,
integral length scales, etc.) in canopy shear layers.

Fig. 5 shows evaluation of LES results of the second-order temporal structure functions
against field experimental data. Note that both hot-film and PIV measurements within
the roughness sublayer above corn canopies confirmed the −5/3 scaling in the inertial
subrange of the spectrum of the streamwise velocity (Shaw et al. 1974; Wilson et al. 1982;
van Hout et al. 2007). Within the inertial subrange, Taylor’s hypothesis of frozen turbu-
lence is valid (see Fig. 4), and therefore the second-order streamwise temporal structure
function (〈∆u2(τ)〉) and the energy density (d〈∆u2(τ)〉/dτ) are expected to scale as τ2/3

and τ−1/3, respectively. Due to non-negligible path averaging errors associated with sonic
anemometer measurements at the frequencies that correspond to the inertial subrange
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Figure 4. (a) LES results of second-order streamwise spatial structure functions (〈∆ũ2(r)〉; solid
lines) and temporal structure functions converted using Taylor’s hypothesis (〈∆ũ2(r = τ〈u〉)〉;
dashed lines) normalized by the square of friction velocity (u2

?) against spatial separation (r)
normalized by the dissipation length scale (`ε). Red, magenta, blue, cyan, black, green and grey
lines indicate results for 1 < z/h < 2 with an increment of ∆z/h = 1/6. (b) The turbulence
intensity (σu/〈u〉) against vertical distance from the ground (z) normalized by canopy height
(h), where σu and 〈u〉 are the standard deviation and the mean of the streamwise velocity,
respectively.

(Horst & Oncley 2006), the raw field data of d〈∆u2(τ)〉/dτ at small scales do not follow
τ−1/3 exactly (black dots compared with grey solid lines in Fig. 5d–f ). Nevertheless, the
τ−1/3 dependence of d〈∆u2(τ)〉/dτ in the inertial subrange is approached by raw data
from sonic anemometer measurements.

Because LES does not resolve SGS motions, the structure function of the resolved
velocity (ũ) is expected to be smaller than the raw field data (dashed lines compared
with black dots in Fig. 5a–c). The vertical dotted lines in Fig. 5(d–f ) indicate the cutoff
scales for the median resolution simulation, sitting at the transition from the inertial
subrange to the overlap of the shear-production and inactive ranges. At subgrid scales,
reducing the grid spacing improves the capability of reproducing the energy density
(cyan dashed lines compared with red dashed lines in Fig. 5d–f to the left of the vertical
dotted lines). At resolved scales, the fine and median resolution simulations yield the same
energy density, whereas the coarse resolution simulation exhibits a pile-up of energy (blue
dashed lines compared with cyan and red dashed lines in the inset in Fig. 5f ). In addition,
for the fine and median resolution simulations, the scale-dependent dynamic SGS model
predicts the same profile of the Smagorinsky coefficient, whereas the coarse resolution
simulation results show a reduction of the Smagorinsky coefficient (not shown). Both
the pile-up of energy at resolved scales and the reduction of the Smagorinsky coefficient
indicate insufficient resolution for the coarse resolution simulation (Bou-Zeid et al. 2005).
Thus, we conclude that the median grid resolution used here corresponds to the minimum
resolution required for the adequate reproduction of turbulence above the maize canopy
studied here. For z/h = 1, LES results slightly overestimated the energy density of raw
experimental data at resolved scales (dashed lines compared with black dots to the right
of the vertical dotted line in Fig. 5d). For z/h = 4/3 and 5/3, LES results reproduced
the energy density of raw experimental data at resolved scales (dashed lines compared
with black dots to the right of the vertical dotted lines in Fig. 5e, f ).

To provide a better basis for comparison with LES, a Gaussian filter (Pope 2000)
is applied to the experimental data. The filter size, ∆τ = (4/

√
2)∆x/〈u〉, is chosen to
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Figure 5. Evaluation of LES results of the normalized second-order temporal structure function
(〈∆ũ2(τ)〉/u2

?; a–c) and the energy density (
[
d〈∆u2(τ)〉/dτ

]
/(u3

?/h); d–f ) against field experi-
mental data for z/h = 1 (a, d), 4/3 (b, e) and 5/3 (c, f ). Blue, red and cyan dashed lines indicate
LES results from coarse, median and fine resolution simulations, while black and grey dots in-
dicate the structure function of raw and filtered experimental velocity data. The vertical dotted
lines in (d–f ) indicate the cutoff scales for the median resolution simulation, τ = 4∆x/〈u〉,
where ∆x = 0.5 m. The filter size applied to experimental velocity data, ∆τ = (4/

√
2)∆x/〈u〉,

are 0.87, 0.61 and 0.51 s for z/h = 1, 4/3 and 5/3, respectively.

maintain turbulent motions at spatial scales greater than 4∆x (i.e. the scales resolved
in the LES). LES results reproduced the second-order streamwise temporal structure
function of filtered experimental velocity data for z/h = 4/3 and 5/3 (red dashed lines
compared with grey dots in Fig. 5b, c). Close to the canopy top, the removal of energy
from large scales is enhanced by wake production behind individual canopy elements,
a feature not represented in the LES model. As expected, for z/h = 1, LES results
overestimated the structure function of filtered experimental velocity data, especially
at large scales τ/(h/u?) > 0.5 (red dashed line compared with grey dots in Fig. 5a).
Results presented in Fig. 5 suggest that the fine and median resolution simulations are
capable of reproducing details of second-order structure functions above the canopy for
scales larger than those in the inertial subrange (a finer grid resolution would be needed
for inertial subrange scales to be reliable). The analysis presented next focuses on the
overlap of shear-production and inactive ranges, where motions are well resolved in the
simulations.

4.3. Scaling of the second-order streamwise spatial structure function

Fig. 6(a-c) shows results of the second-order streamwise spatial structure function of
resolved velocity (〈∆ũ2(r)〉) from the median resolution simulation with u? = 0.51 m s−1

against the eddy size (r) normalized by three different length scales (κ(z − d0), `P and
`ε). Within the roughness sublayer layer above the canopy (1 < z/h < 2.5), the inertial
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ũ
2
(r
)〉
/
u
2 ⋆

0

1

2

3

4

5

6

7

8(a)

Towards

Canopy

Top

r/ℓP

0.1 1 10 100
〈∆

ũ
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Figure 6. LES results of the normalized second-order streamwise spatial structure function of
(〈∆ũ2(r)〉/u2

?) against streamwise spatial separation (r) normalized by κ(z − d0) (a), `P (b)
and `ε (c–f ). Here (z − d0), `P and `ε are the inertial layer, production and dissipation length
scales. Solid lines of different colours indicate results at different heights within the shear layer
above the canopy (1 < z/h < 2.5), with an increment of ∆z/h = 1/8, 1/12 and 1/16 for coarse
(e), median (a–c, f ) and fine (d) resolution simulations. Arrows indicate decreasing vertical
coordinate towards the canopy top. Simulations were conducted with u? = 0.51 m s−1 (a–e)
and 0.1 m s−1 (f ).

layer, production and dissipation length scales ((z− d0), `P and `ε) are not proportional
to each other (Fig. 3b). LES runs with varying domain sizes (not shown) suggest that the
current domain provides reliable estimates of 〈∆ũ2(r)〉 for r/`ε < 20. Curves representing
〈∆ũ2(r)〉/u2? at different heights do not collapse when r is normalized by κ(z − d0)
(Fig. 6a) or `P (Fig. 6b), but do collapse when r is normalized by `ε (Fig. 6c). The
collapse against `ε is robust to changes in grid resolution and friction velocity (Fig. 6d–
f ). These results indicate that `ε rather than (z− d0) or `P is the correct scaling for the
second-order structure function within the shear layer above the canopy.

The overlap of the shear-production and inactive ranges corresponds to spatial scales
greater than the integral length scale (r > ` ∝ `ε) and much smaller than the bound-
ary layer thickness (r � δ ∼ Lz). In addition, results in §4.2 suggest that LES re-
solves spatial scales greater than 4∆x. Thus we estimate that the resolved overlap of
the shear-production and inactive ranges for the present simulation consists of spatial
scales max(`ε, 4∆x) < r < 0.2Lz. This range of spatial scales roughly corresponds to
1 < r/`ε < 10, where a ln(r/`ε) law is observed for LES results of the second-order struc-
ture function (Fig. 6c–f ). Fig. 7 shows the ranges of parameters A2 and B2 in (2.10)
estimated for each simulation by applying a least square fitting to the logarithmic region
(max(`ε, 4∆x) < r < 0.2Lz) of individual curves in Fig. 6(c–f ). An additional set of
parameters A2 and B2 is estimated for each simulation by applying a least square fitting
to all the heights together (circles in Fig. 7). The ranges of A2 and B2 estimated for
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Figure 7. Ranges of parameters A2 (a) and B2 (b) in ( 2.10) estimated for each simulation
by applying a least square fitting to the logarithmic region (max(`ε, 4∆x) < r < 0.2Lz) of
individual curves in Fig. 6(c–f ) against the effective roughness Reynolds number (Re?LES). Blue,
red and cyan error bars indicate the ranges estimated for coarse, median and fine resolution
simulation with u? = 0.51 m s−1, while the black error bar indicates the ranges estimated for
median resolution simulation with u? = 0.1 m s−1. Circles that are the same colour as error bars
indicate an additional set of parameters A2 and B2 estimated for each simulation by applying a
least square fitting to the logarithmic region of all curves in Fig. 6(c–f ). Open and filled cirlces
represent simulations with u? = 0.51 and 0.1 m s−1, respectively. Grey areas in (a) and (b)
indicate the ranges 0.37 < A2 < 0.97 and 2.16 < B2 < 2.44 estimated by de Silva et al. (2015)
using laboratory and field experimental data obtained in the inertial layer of wall turbulence.

fine and median resolution simulations (cyan, red and black error bars in Fig. 7) are in
reasonable agreement with those estimated by de Silva et al. (2015) using laboratory and
field experimental data obtained in the inertial layer of wall turbulence (0.37 < A2 < 0.97
and 2.16 < B2 < 2.44, represented by grey areas in Fig. 7). Varying u? by a factor of 5
can change the displacement height by 10% (Pan et al. 2016), but it induces negligible
changes in the estimated ranges for A2 and B2 (black error bar compared with red error
bar in Fig. 7). Fig. 6(c–f ) confirms the validity of the dimensional analysis presented in
§2 in the shear layer above a canopy, while Fig. 7 suggests the possibility of the existence
of a fairly universal set of parameters A2 and B2 that may hold for a wide range of shear
flows.

5. Conclusions

Dimensional analysis following Perry et al. (1986) and Davidson & Krogstad (2014)
constrained by the scaling within the inertial subrange yields a general prediction for
the second-order structure function (〈∆u2(r)〉) in the production range of shear flows.
The dimensional analysis presented here justifies the assumption of universality of the
production range invoked by Davidson & Krogstad (2014) for flows characterized by a
single velocity scale in which three distinct ranges of eddy sizes exist, as described by
(2.2). The universal and shear-production ranges are common for all shear flows. The
eddies with sizes much larger than the local integral scale are less universal, but may
not be confined to flows near solid boundaries. Under these conditions, the logarithmic
dependence of 〈∆u2(r)〉 on (r/`ε) is expected to hold. The proportionality between the
integral and the dissipation length scales (` ∝ `ε) is a requirement for the dimensional
analysis to be consistent with the theory of Kolmogorov (1941). The `ε-scaling and the
log-law behaviour at integral scales (r/`ε > 1) are confirmed by LES results for the
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roughness sublayer above a model corn canopy (a shear layer with two externally imposed
length scales and a large imbalance between production and dissipation rates of TKE).
The good agreement between parameters in the log-law obtained here and those reported
by de Silva et al. (2015) for the inertial layer in wall turbulence implies that the key
differences between these two types of flows are likely contained in `ε, suggesting possible
universality of the shear-production range across different shear flows. In the specific case
of a model vegetation canopy studied here, the dissipation length scale exhibits a smooth
transition from the shear length scale at the canopy top to the inertial layer length scale
at the upper boundary of the canopy roughness sublayer. This result suggests that, from
a modeling perspective, `ε is the appropriate scale to characterize turbulent shear flows
with multiple imposed length scales.
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