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Abstract

Motivation: Dimension reduction techniques are widely used to interpret high-dimensional biological data. Features
learned from these methods are used to discover both technical artifacts and novel biological phenomena. Such fea-
ture discovery is critically importent in analysis of large single-cell datasets, where lack of a ground truth limits valid-
ation and interpretation. Transfer learning (TL) can be used to relate the features learned from one source dataset to
a new target dataset to perform biologically driven validation by evaluating their use in or association with addition-
al sample annotations in that independent target dataset.

Results: We developed an R/Bioconductor package, projectR, to perform TL for analyses of genomics data via TL of
clustering, correlation and factorization methods. We then demonstrate the utility TL for integrated data analysis
with an example for spatial single-cell analysis.

Availability and implementation: projectR is available on Bioconductor and at https://github.com/genesofeve/
projectR.

Contact: gsteinobrien@jhmi.edu or ejfertig@jhmi.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Dimension reduction plays a key role in biological discovery from
high-dimensional genomics datasets. Lower-dimensional spaces
learned represent both biological information and technical arti-
facts. Thus, it is crucial to interpret and validate these spaces.
Independent datasets from related but varied biological contexts,
such as different data modalities of equivalent samples or data from
the same tissue in related organisms, can be used for interpretation
and validation as only the biological effects, and not the technical
effects, will be shared. Thus, we can use transfer learning (TL), a
sub-domain of machine learning, for in silico validation, interpret-
ation and exploration of these spaces using independent but related
datasets across measurement technologies, tissues and species (Stein-
O’Brien et al., 2019; Taroni et al., 2019). Furthermore, once the
robustness of biological signal is established, these TL approaches
can be used for multimodal data integration (Stuart et al., 2019).
Here, we present the projectR package to perform TL for
multiple unsupervised dimension reduction techniques for genomics
analysis.

2 Materials and methods

The projectR package performs TL from the outputs of PCA (princi-
pal component analysis), NMF (non-negative matrix factorization),
regression, K-means, hierarchical clustering and correlation via the
main function of the package—projectR. The inputs to projectR are
target data and learned gene features. To learn a common feature
mapping, two datasets can be input into the geneMatchR function
which will return the datasets separately or jointly, if merge is true,
with only common rows—this is automatically done when calling
projectR. The loadings argument in projectR corresponds to features
for spaces learned by PCA, NMF, regression, K-means and hierarch-
ical clustering and correlation, respectively (Meng et al., 2016).
projectR returns a matrix with sample weights for each input basis
in the loadings matrix with the option to include P-values (Wald-
test and/or bootstrap, Supplementary Files 1 and 5). It is important
to note that projection is a bijection, thus, it is possible to use a given
dataset as either target or source provided the necessary latent space
as already been learned from it. To facilitate TL further, additional
functions are provided to operate on the output of projectR.
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Example uses include, the aucMat function which identifies patterns
predictive of given sample annotations using the performance and
prediction function from the ROCR package and the alluvialMat
function which generates an alluvial plot using the target samples
weights to link projected patterns to target annotations. To visualize
the projected pattern, we have provided getUMAP and getTSNE
functions in the package.

To demonstrate the application of projectR in spatial single-cell
analysis we used scRNAseq data from 1297 cells with �12 500 unique
transcripts and expressing more than five genes from development stage
6 Drosophila embryo as source data (Karaiskos et al., 2017). The pos-
ition of almost all of the fly embryo cells can be specified using the
binarized expression from in situ imaging of 84 marker genes (Fowlkes
et al., 2008; Karaiskos et al., 2017). The code for this analysis is avail-
able at https://github.com/fertigLab/projectRSpatialExample. We vali-
dated the patterns by comparing them to spatial patterns given with
vISH (virtual in situ hybridization) (https://shiny.mdc-berlin.de/DVEX/)
computed by DistMap (Karaiskos et al., 2017).

3 Results

ProjectR perform TL on gene signatures from clustering, PCA, NMF
and correlation. It is computationally efficient, taking 8.09 6 0.51 s
on a 16 GB, Intel Core i7-8750H based 64-bit Windows 10 com-
puter for projecting a 20 000 � 1000 target dataset on 20 000 �
100 latent space. It is important to note that this step is independent
of learning the latent space which will take additional time.
Previously, we demonstrated the ability of this approach to relate
molecular signatures learned with a NMF algorithm, CoGAPS
(Fertig et al., 2010) across data platforms, tissues and species (Stein-
O’Brien et al., 2019). Here, we expand TL in the projectR
Bioconductor package for multi-modal data integration using signa-
tures defined from a wider range of techniques.

We demonstrate the application of this software package using
TL with CoGAPS to enable spatial single-cell analysis
(Supplementary File 4). Following dimension reduction of scRNAseq
data from >5000 pooled stage 6 Drosophila embryos using CoGAPS
(Fertig et al., 2010), the learned genes signatures or amplitude matrix,
was input to projectR as the loadings. Concomitantly, an age-
matched set of in situ imaging data for 84 marker genes binarized
into a gene-marker by position matrix is input as the target data (see
Section 2). The resulting projection yields a pattern by position matrix
showing the spatial distribution of the specific pattern(s) learned from
scRNA-Seq data (Fig. 1). For example in Figure 1, patterns 13, which
corresponds to mesodermal lineage, is restricted to the ventral region
of the embryo. To validate spatial distribution of the scRNAseq pat-
terns, top ten genes for each pattern, i.e. Ilp4, twi, Cyp310a1,
ventrally-expressed-protein-D for pattern 13, were compared to their
vISH distributions (Fowlkes et al., 2008; Karaiskos et al., 2017).
While most genes spatial expression was highly correlated (r > 0.9)
with a single pattern, a few genes had more modest correlation values
(r � 0.6) spread across multiple patterns in line with CoGAPS’ facility
to account for gene reuse in the signatures that it learns
(Supplementary File 3). We therefore sought to test the robustness of
the spatial projections via leave one out cross-validation for each of
these genes. High correlations (r > 0.99, Supplementary Fig. S6) of
the resulting pattern with the original is indicative of the robustness
of latent space representations which leverage information across
multiple genes (Cleary et al., 2017; Stein-O’Brien et al., 2019).

4 Discussion

We have developed projectR as a software package to enable TL di-
mension reduction of genomics data. Previously, we have shown that
application of this technique to patterns learned from NMF relates
datasets from different species, data modalities, tissues and measure-
ment platforms (Stein-O’Brien et al., 2019). In this article, we demon-
strate its further utility to integrate imaging and single-cell data for
spatial transcriptional analysis and expansion to dimension reduction
techniques beyond NMF. While similar to Slide-seq, we note projectR
expands beyond just a NMF-based regression framework to provide a

more general software tool able to implement high spatial resolution
of transcriptional data (Rodriques et al., 2019). The software is devel-
oped generally to enable pattern validation, discovery and annotation
transfer across datasets with a wide range of unsupervised learning
techniques. As the efficacy of TL via dimension reduction is dependent
on the quality of the learned latent spaces, testing the relative informa-
tion content transferred by these different techniques we be important
to determine for a given use case. While currently limitations of this
work preclude the ability to predict individual gene/cell values outside
of the context of individual patterns, expansion of this method to this
end is an area of active development. Future work applying this tool
will enable assessment of biological pattern discovery and integrated
analysis of multi-modal genomics data.
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Fig. 1. Spatial gene expression patterns identified in Drosophila stage 6 embryo

using projectR and CoGAPS. (a) Projected pattern 13 visualized in the dorsal, lateral

and ventral regions colored by projected pattern weights. (b) The gene expression of

top most gene associated with pattern 13 colored by vISH scores from DistMap
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