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Abstract—Domain adaptation techniques have been developed
to handle data from multiple sources or domains. Most existing
domain adaptation models assume that source and target do-
mains are homogeneous, i.e., they have the same feature space.
Nevertheless, many real world applications often deal with data
from heterogeneous domains that come from completely different
feature spaces. In our remote sensing application, data in source
domain (from an active spaceborne Lidar sensor CALIOP
onboard CALIPSO satellite) contain 25 attributes, while data in
target domain (from a passive spectroradiometer sensor VIIRS
onboard Suomi-NPP satellite) contain 20 different attributes.
CALIOP has better representation capability and sensitivity to
aerosol types and cloud phase, while VIIRS has wide swaths and
better spatial coverage but has inherent weakness in differenti-
ating atmospheric objects on different vertical levels. To address
this mismatch of features across the domains/sensors, we propose
a novel end-to-end deep domain adaptation with domain mapping
and correlation alignment (DAMA) to align the heterogeneous
source and target domains in active and passive satellite remote
sensing data. It can learn domain invariant representation from
source and target domains by transferring knowledge across
these domains, and achieve additional performance improvement
by incorporating weak label information into the model (DAMA-
WL). Our experiments on a collocated CALIOP and VIIRS
dataset show that DAMA and DAMA-WL can achieve higher
classification accuracy in predicting cloud types.

Index Terms—domain adaptation, remote sensing, cloud type
detection, deep learning, multi-sensor, weak supervision

I. INTRODUCTION

Cloud and atmospheric aerosols are two critical components
that significantly impact Earth’s radiative energy balance,
hydrological and biological cycles, air quality and human
health [1]. For example, clouds constantly cover about two-
third of Earth’s surface and alter global energy distribution by
reflecting solar radiation and absorbing thermal emission from
the surface. Satellite-based remote sensing is the only means
to monitor the global distribution of aerosols and clouds.
Thus, improvements in aerosol and cloud observations are a
major focus of NASA’s Earth Science endeavor, and numerous
satellite sensors have been developed to observe and retrieve
aerosol and cloud properties. They can be largely divided into
two groups: 1) active sensors such as spaceborne Lidar (e.g.,
CALIOP) and Radar (e.g., CloudSat) and 2) passive sensors

such as MODIS, VIIRS and ABI. Active sensors collect data
by providing their own source of energy to illuminate the
objects they observe; while passive sensors collect different
sets of data attributes by detecting natural energy (e.g., solar
radiation and thermal emission) that is emitted or reflected
by the objects. The advantages of active sensors, compared to
passive sensors, include their capability of resolving the verti-
cal location of aerosol/cloud layer, better sensitivity to aerosol
type and cloud phase and better performance during night-time
and polar region. On the other hand, passive sensors observe
column integrated radiation and have inherent weaknesses in
differentiating atmospheric objects on different vertical levels.
However, passive sensors always have wide swaths and better
spatial coverage. Classifying cloud and aerosol types from
passive sensors is an important application in satellite remote
sensing due to its wide spatial coverage.

Our previous study [2] has shown proper use of machine
learning (ML) algorithms, such as Random Forest (RF), can
have better cloud type detection accuracy than physical-based
algorithms. However, the algorithms cannot directly learn
from multiple active and passive sensors. For example, RF
can be either developed for CALIOP or VIIRS data, but
it cannot jointly learn from both sensors since there is a
mismatch of features/variables among the sensors. RF and
other ML algorithms do not generalize to new combinations
of the learned features beyond those seen during the training
process. Moreover, many ML algorithms generally cannot do
joint label predictions if the labels are missing for one of
these sensors during training time. To address these issues,
we employ deep learning based domain adaptation which
can automatically learn feature representations from multiple
sensors with different features/variables in an end-to-end way.
Our model will be able to predict labels for all sensors even
when the labels are absent for some sensors at training time by
transferring knowledge from one set of sensors (e.g., CALIOP)
to another set of sensors (e.g., VIIRS).

Domain adaptation, a transductive transfer learning tech-
nique to transfer knowledge representation from labeled source
domain [3], has been thoroughly studied in computer vision
[4], [5] and natural language processing (NLP) applications
[6], [7]. Recently, the deep learning paradigm has become
popular in domain adaptation due to its ability to learn rich,978-1-7281-6251-5/20/$31.00 ©2020 IEEE



flexible, non-linear domain-invariant representations [8], [9].
However, few of these approaches have been adapted for
remote sensing applications. Moreover, domain adaptation
techniques using deep neural network have been mainly used
to solve the distribution drifting problem in homogeneous
domains [10]. The data in the homogeneous domains usually
share similar feature spaces and have the same dimension-
alities. Nevertheless, real world applications often deal with
heterogeneous domains that come from completely different
feature spaces with different dimensionalities. In our remote
sensing application, two remote sensor datasets collected by
active and passive sensors respectively are heterogeneous.
In particular, CALIOP actively detects hundreds of features
within an atmospheric column. In this study, only 25 features
that are sensitive to cloud phase and aerosol types are used.
The selected CALIOP data are fully labeled with 6 cloud and
aerosol types (see Section V). VIIRS is an imaging radiometer,
which collects radiometric measurements of the surface and
atmosphere in the visible and infrared bands. Quite a few
physical-based algorithms are developed for detecting cloud
and aerosols using VIIRS observations. However, it has been
shown that passive sensors may have difficulties in prediction
cloud/aerosol types in complicated atmospheres (e.g., over-
lapping cloud and aerosol layers, cloud over snow/ice surface,
etc.). Our goal is to adapt the good cloud representation from
active sensor (source domain) to passive sensor (target domain)
and build a domain invariant classifier to accurately classify
different cloud types (labels) in the passive sensing dataset.

The contributions of this paper are summarized as follows.
We also open sourced our implementation in PyTorch1.

• We develop a novel end-to-end deep domain adaptation
with domain mapping and correlation alignment (DAMA)
to learn domain invariant feature representation from
multiple heterogeneous satellite remote sensing sensors.

• We extend the above DAMA model with weak supervi-
sion by incorporating the noisy/weak labels (DAMA-WL)
from the target domain and achieve higher accuracy in
cloud type detection.

• Experiments show our DAMA model achieves higher ac-
curacy in detecting cloud types in the challenging passive
satellite remote sensing data compared to other state-
of-the-art ML models and our DAMA-WL can improve
accuracy further by utilizing the weak labels.

The rest of the paper is organized as follows. Related work
is introduced in Section II. Active and passive satellite remote
sensing data and problem are described in Section III. Section
IV introduces the end-to-end model of the deep domain
adaptation based cloud type detection and the components of
the model. Section V discusses the experiment and evaluation
of our method. Section VI concludes the paper.

II. RELATED WORK

Over the past few decades, a variety of remote sensing
aerosol and cloud retrieval algorithms have been developed

1DAMA source codes are available at: https://github.com/big-data-lab-
umbc/deep-multisensor-domain-adaptation

based on the physical principles and the radiative transfer of
light scattering and absorption within aerosol and cloud fields
(see review by [11]). These physical-based retrieval algorithms
are the backbone of many widely used aerosol and cloud
property products for weather and climate studies [12], [13].
Traditionally, many of these algorithms use a lookup table
approach, in which one must prescribe aerosol and cloud types.
The challenge is to ensure that the algorithm has the means
to select the appropriate model.

Although highly successful, it is challenging to improve
these physical-based algorithms. For example, according to
[14], there is no absolute separation between “aerosol” and
“cloud”. Most, if not all, the physical-based retrieval algo-
rithms that rely on threshold adjustments could have a lack
of flexibility in consideration of sensor and environmental
differences. Additional threshold adjustments and tests are
required to apply an existing algorithm to different sensors.
Thus, physical-based algorithms are expensive.

Machine learning (ML) and artificial intelligence (AI) tech-
niques may overcome the challenges faced by physical-based
algorithms. Since ML algorithms are written to autonomously
find information (e.g., patterns of spectral, spatial, and/or time
series data), they can learn hidden signatures of different types
of objects. ML algorithms are portable and can be easily
applied to active and/or passive sensor measurements. [2]
introduced two Random Forest (RF) machine learning models
for cloud mask and cloud thermodynamic phase detection
using spectral observations from VIIRS data. [15] developed
a deterministic self-organizing map (SOM) approach and ap-
plied it on satellite data based cloud type classification. Deep
learning [16] is also a promising technique, already having
revolutionized many fields such as computer vision [17],
natural language processing [18], and is increasingly being
used in remote sensing applications [19]. Those approaches
can learn representations of multiple variables in a single
domain.

Domain adaptation has been widely used in learning domain
invariant representation from source and target domains. In
unsupervised domain adaptation with unlabeled target domain,
several approaches have been developed to minimize the
feature distribution difference between the source domain and
target domain. DCC [20] and DAN [21] have used Maximum
Mean Discrepancy (MMD) loss to train a deep neural network
and learn a representation that is both discriminative and do-
main invariant. [10] introduced a correlation alignment based
method in the homogeneous domain adaptation in computer
vision. Its architecture is based on CNN with a classification
layer, and a correlation layer is used to minimize the dif-
ference in the second-order statistics between the source and
target domains. [22] introduced an adversarial learning based
domain adaptation method that combines adversarial learning
with discriminative feature learning. It specifically learns a
discriminative mapping of target images to the source feature
space by simultaneously fooling a domain discriminator in
distinguishing the encoded target images from source images.
The state-of-the-art approaches are mostly applicable to homo-



geneous domain adaptation in image classification, in which
the source and target domains are both two dimensional data
and share similar feature space. To the best of our knowledge,
few of the deep domain adaptation approaches have been used
in the remote sensing application or in the heterogeneous
domains [23], especially with the heterogeneous nature of
datasets collected by active and passive sensors.

III. DATA AND PROBLEM DESCRIPTION

In this section, we take a close look at the the heterogeneity
of our source (active) and target (passive) remote sensing data,
and its domain adaptation challenge.

A. Active and Passive Satellite Data

The Visible Infrared Imaging Radiometer Suite (VI-
IRS) [24], [25] is a passive instrument onboard polar orbiting
satellites Suomi-NPP and JPSS-1, and will be JPSS-2 after
2022. VIIRS collects visible and infrared imagery and pro-
vides less than 1-km spatial resolution observations (native
750m for VIIRS moderate spatial resolutions bands) and wide
spatial coverage. Passive sensors observe column-integrated
radiation. Accuracy of cloud and/or other atmospheric par-
ticles detections could significantly decrease if the whole
column is highly heterogeneous (e.g., multi-layered clouds
with different thermodynamic phases). In contrast to passive
satellite sensors that observe column-integrated, active sensors
are more reliable in recognizing objects in different layers
because of the high vertical resolutions. For example, the
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
onboard CALIPSO satellite [26], [27] operates at wavelengths
of 532nm and 1064nm, measuring lidar backscattering profiles
at a 30m vertical and 333 m along-track resolution. CALIOP
also measures the perpendicular and parallel signals at 532nm,
along with the depolarization ratio at 532nm that is frequently
used in cloud phase discrimination algorithms because of its
strong particle shape dependence [27]. Although active sensors
are very sensitive to cloud and aerosol layers, they have limited
spatial coverage. By taking into account these strengths and
weaknesses of both CALIOP and VIIRS, we intend to generate
reliable label datasets based on CALIOP Level-2 (version 4)
product. The VIIRS Level-1B observations and solar/satellite
geometries, and the CALIOP and VIIRS Level-2 cloud mask
and thermodynamic phase products will be used for training,
validation, testing, and comparison.

A major difference between VIIRS and CALIOP sensor data
is their spatial coverage. Figure 1 shows a coverage difference
using a full day data collection using NASA Earth Data World
View website [28]. VIIRS has nearly full coverage of the Earth
while CALIOP only covers yellow line area which is much
smaller than the coverage of VIIRS.

B. Domain Adaptation Challenge for Active and Passive
Satellite Data

In heterogeneous domain adaptation, the feature spaces
between the source and target domains are nonequivalent
and the dimensions may also generally differs [23]. In our

Fig. 1. An example showing the spatial coverage differences between VIIRS
(global coverage) and CALIOP (yellow lines) data (Credits: NASA).

satellite remote sensing application, the source (active) domain
data, contains sensing data with 25 attributes collected by the
CALIOP active spaceborne Lidar sensor while the target (pas-
sive) domain data contains another group of sensing data with
20 attributes collected by the VIIRS passive spectroradiometer
sensor. The attribute names, descriptions and pairwise data
distribution exploratory analysis can be found in [29]. Two
remote sensing datasets have completely different feature
spaces due to the nature of the data they collect, CALIOP data
has better separations for the cloud types as the data are more
evenly distributed compared to VIIRS in which the majority
data are mixed together in the distribution.

Following our previous work at [2], we filter nighttime data
records and choose the daytime records with 0 < Solar Zenith
angle (SZA) < 80. Four auxiliary attributes shared in both
CALIOP and VIIRS datasets are surface temperatures, surface
emissivity, surface type and snow ice index. The latitude and
longitude of the pixel are also provided in both CALIOP
and VIIRS datasets. In total, there are 6 auxiliary features
supplemented to both the source and target domains to train
the domain adaptation model. The CALIOP cloud labels are
used as reference label information in collocated CALIOP
and VIIRS datasets. A collocation algorithm [30] that fully
considers the spatial differences between the two instruments
and parallax effects is used to generate our collocated datasets.
Since cloud types derived from CALIOP dataset capture good
representation of cloud, we use the CALIOP cloud types
(label) as the ground truth for the collocated CALIOP and
VIIRS data records.

As the VIIRS satellite has wider spatial coverage, by learn-
ing a domain invariant classifier from the collocated CALIOP
and VIIRS data, we will be able to use it to classify different
cloud types for the un-collocated VIIRS/Suomi-NPP satellite
data that is off the track of CALIOP/CALIPSO satellite. The
problem can be formulated as follows.

Given CALIOP (source domain) training examples Ds =
{xi}, xi ∈ Rds

s with labels Ls = {yi}, yi ∈ {1, ..., L}, i ∈
{1, .., N} and unlabeled VIIRS (target domain) dataset Dt =
{ui}, ui ∈ Rdt

t , our model is to learn a domain invariant label-
ing function (classifier) f : Rds

s −→ Ls with f(Ds) = f(Dt).



IV. DEEP DOMAIN ADAPTATION BASED CLOUD TYPE
DETECTION USING ACTIVE AND PASSIVE SATELLITE DATA

The remote satellite sensing data raises more challenges as
the data captured by passive sensor and active Lidar are high
dimensional, globally covered and heterogeneous in nature. In
this paper, we propose an end-to-end deep domain adaptation
with domain mapping and correlation alignment (DAMA) and
apply it to classify the heterogeneous remote satellite cloud
and aerosol types. In training phase, there are two branches
of inputs that are source domain data features and target
domain data features that have different dimensionalities and
heterogeneous feature spaces. As shown in Figure 2, our model
introduces a heterogeneous domain mapping to transform the
feature space of target domain into the feature space of source
domain, and uses feature extraction layer to train the shared
representative features between the source and target domain.
At last, it adds a correlation layer to the end of the shared
layers, inspired by the idea of correlation alignment introduced
in [10]. By incorporating the correlation loss and classification
loss in training the domain adaptation network, we find the
network can maximize the classification accuracy on the target
domain by minimizing the difference in the second-order
statistics between the source and target domains. In the testing
phase, only VIIRS (target domain) data is fed into the deep
neural network by going through the deep domain mapping
layer and feature extraction layer. The trained source classifier
can then be applied to classify the output of the feature
extraction layer as the domain invariant feature representation
has been generated from the flow. Figure 2 demonstrates our
end-to-end deep domain adaptation with domain mapping and
correlation alignment which will be further explained in detail
in the rest of the section.

A. Deep Domain Mapping (DDM)

To adapt to the completely different feature spaces, i.e., the
heterogeneity of the source and target domain, we introduce
a deep learning based approach to learn a transformation to
map the target feature space into the source feature space. It
equalizes the number of features in source and target domains,
and also transforms both domains into the same feature space.

In our remote sensing dataset, the target domain (VIIRS)
has wider spatial coverage but with no label information. The
source domain (CALIOP) has better representation for cloud
types and is fully labeled, so mapping the target domain to
source domain can preserve the discriminating power of the
source domain and can also transfer it into the down-streaming
learner.

We design a deep neural network to perform the deep do-
main mapping (DDM) between the source and target domain.
The input of the DDM network is the target domain data and
the output of the network is the transformed target domain
data in the source domain feature space. Because the source
domain data and target domain data are collocated remote
sensing data with the same longitude and latitude coordinates,
mean squared error (MSE) loss function is used to measure the
error of the DDM network. Specifically, given source domain

training examples Ds = {xi}, x ∈ Rds
s , i = 1, ..., ns and

unlabeled target data set Dt = {ui}, u ∈ Rdt
t , i = 1, ..., nt,

with ds 6= dt and Rds
s 6= Rdt

t . Because the source domain
and target domain are collocated data so we have ns = nt.
The DDM is learnt to transform the target domain into source
domain feature space by minimizing l2 loss function:

l2 =
1

nt

nt∑
(i=1)

(DDM(ui)− xi)2 (1)

By minimizing the l2 error we aim to map the features of
the target domain into the feature space of the source domain
that has better feature representation. The l2 loss is co-trained
with the correlation alignment and classifier losses in an end to
end fashion by retaining the computation graph while training
the deep domain mapping.

Our multiple domain experiments in Table II show DDM
can significantly improve the classification accuracy, demon-
strate that domain adaptation and correlation alignment (to be
introduced in next section) work well on the multiple domain
data from the same feature space. The proposed heterogeneous
deep domain mapping network is also generic and flexible. It
can be plugged into other domain adaptation methods and used
in areas other than climate data analytics.

B. Domain Adaptation with Correlation Alignment

The domain adaptation in our DAMA model consists of
a set of shared multilayer perceptron (MLP) feature layers
(shown in Figure 2) that is used to extract the domain
invariant representation between source and target domain, and
a correlation layer that is used to minimize domain shift by
aligning the second order statistics of source and target data
distributions.

After transforming the target domain into the feature space
of source domain via DDM, the dimension of the transformed
target domain is identical to dimension of the source domain
and the source domain and target domain become homoge-
neous. The correlation alignment can be formulated as follows.

Given source domain training examples Ds = {xi}, xi ∈
Rds

s with labels Ls = {yi}, yi ∈ {1, ..., L}, i ∈ {1, ..., ns}
and unlabeled transformed target data set Dt = {x∗j}, x∗j ∈
Rds

s , j ∈ {1, ..., nt}, we can compute the covariance matrix of
source domain and target domain, represented as Cs and Ct

respectively:

Cs =
1

ns − 1
(DT

s Ds −
1

ns
(1TDs)

T (1TDs)) (2)

Ct =
1

nt − 1
(DT

t Dt −
1

nt
(1TDt)

T (1TDt)) (3)

where 1 is a column vector with all elements equals to 1.
We use the correlation loss proposed in [10] to measure the

distance between the second order statistics (covariances) of
the source and target data:

lcoral =
1

4d2
||Cs − Ct||2F (4)
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Fig. 2. DAMA: Network architecture of deep domain adaptation with domain mapping and correlation alignment. Deep domain mapping is used to map the
target domain into the feature space of source domain. The model uses several multilayer perceptron (MLP) layers to learn the shared representative features
between the source and target domain. A correlation layer is added to output of the feature extractor layer. At the end of the network is the source classifier
that classifies the source domain in training phase. DAMA-WL adds a target classifier trained with weak label of the target domain in addition to DAMA.

, where ||.||2F denotes the squared matrix Frobenius norm and
d is the number of the features.

By combining the correlation loss with the classification
loss, the joint loss function is minimized to learn the latent
features that can work well on the target domain:

l = lsrc +
t∑

(i=1)

λilcoral (5)

Here, lsrc is the source classifier loss calculated with the
multi-class cross entropy, t is the number of the correlation
layers in the deep network and λi is a weight that balances on
the adaptation with the classification accuracy on the source
domains. The classification loss lsrc and the correlation loss
lcoral play counterparts and reach an equilibrium at the end
of training so that the representative capacities of the source
domain can be adapted to the target domain, so the final
classifier performs well on the target domain with higher
accuracy.

C. Domain Adaptation with Weak Supervision

In the DAMA model, cloud information (i.e., the labels)
in VIIRS dataset (target domain) is not used because the
information is not accurate enough. In the remote satellite
sensing application, inaccurate VIIRS labels are also gen-
erated from the physical-based retrieval algorithm because
it could provide some information for the off-track pixels.
We further extend our model to incorporate the weak label
information from the target domain to help train the domain
invariant feature, our overall learning task will change from
unsupervised learning to weakly supervised learning [31] task.
The extended deep domain adaptation model with weak label
is called DAMA-WL, with the underlying principle to use
additional supervision information as constraints to efficiently
build the domain invariant classifier. Specifically, a target
domain classifier with weak VIIRS label is added into the

training phase in addition to the source domain classifier,
and it will be co-trained with correlation alignment and the
deep domain mapping, with target (VIIRS) classifier loss ltgt,
source (CALIOP) classifier loss lsrc and correlation loss lcoral
playing counterparts and converging, depicted in right part of
Figure 2. In DAMA-WL, the joint loss is composed of the
loss of source classifier, the loss of correlation alignment and
the loss of target classifier:

l∗ = lsrc +
t∑

(i=1)

λilcoral + ltgt (6)

D. End-to-End Training

The domain mapping and correlation alignment modules are
trained jointly in an end-to-end fashion in order to align the
heterogeneous source and target domains and build the domain
invariant classifier. In each training epoch, the parameters of
the correlation alignment and the domain mapping module are
updated alternatively using back-propagation algorithm. That
is, in every epoch, first, the model parameters are updated by
using the gradients calculated from minimizing the joint loss
function Eq. 5 of DAMA (or Eq. 6 of DAMA-WL), and then
model parameters associated with the domain mapping part are
updated by minimizing the l2 loss of domain mapping layer.
In this way, the end-to-end training of DAMA is performed.

V. EXPERIMENTS

We conduct several experiments on real world remote
sensing datasets to compare the performance of our proposed
model with the state-of-the-art ML models.

A. Datasets and Evaluation Metrics

Our experiments use CALIOP active sensor (source) and
VIIRS passive sensor (target) remote satellite sensing datasets
[2] with two label settings. In the first setting, we consider
ground-truth labels from CALIOP with six categories: 1) Clear



TABLE I
ACCURACY ON PREDICTING THE CLOUD TYPES ON VIIRS (TARGET) DATASET.

Models - Single Domain Source Target Day-005 Day-013 Day-019 Day-024 Day-030 Jan. 2017
Random Forest VIIRS VIIRS 0.778 0.738 0.731 0.726 0.710 0.739
MLP-VIIRS VIIRS VIIRS 0.770 0.750 0.724 0.729 0.718 0.743
MLP-CALIOP CALIOP CALIOP 1.000 1.000 1.000 1.000 1.000 1.000
Models - Multiple Domains
Domain Mapping Only CALIOP VIIRS 0.728 0.705 0.696 0.695 0.674 0.695
Correlation Align. Only CALIOP VIIRS 0.355 0.333 0.283 0.282 0.251 0.302
DAMA CALIOP VIIRS 0.780 0.759 0.745 0.745 0.721 0.752

and Clean (no cloud, no aerosol), 2) Pure Liquid Cloud (liquid
cloud only, no aerosol), 3) Pure Ice Cloud (ice cloud only, no
aerosol), 4) Ice and Liquid Cloud (cloud only, no aerosol), 5)
Aerosol (aerosol only, no cloud) and 6) Aerosol and Cloud.
In the second setting, we consider the aerosol-free pixels
from CALIOP, i.e., categories 1, 2 and 3, as ground truth
for source domain; we also consider aerosol-free pixels from
VIIRS Cloud Top and Optical Properties Product [24] as weak
labels in the target domain. The weak labels correspond to the
following three categories: 1) Clear Sky (no cloud), 2) Pure
Liquid Cloud, and 3) Pure Ice Cloud.

For the two label settings, training dataset is collocated
4 months (January 2013, January 2014, January 2015 and
January 2016) CALIOP and VIIRS datasets with 5,633,322
records in first label setting and 4,711,554 records in second
label setting. Each built model is evaluated by predicting the
labels for one month, i.e., January of the subsequent year
2017. We further perform the testing on five individual days of
January 2017 that include Day 5, 13, 19, 24 and 30. Figure 3
shows the class distribution against each cloud/aerosol type
(class) for the training and test VIIRS datasets with CALIOP
labels (first label setting). Similarly, Figure 4 shows class
distribution against each cloud type (class) for the training
and test VIIRS datasets with weak VIIRS labels (second label
setting). Analyzing the class distribution in the training dataset
for the first label setting, as illustrated in Figure 3, we can see
some class imbalance with highest class label data available
for “Pure Liquid” and lowest class label data available for
“Pure Cloud”. Similarly, for VIIRS weak label of the second
label setting, we can see highest class label data available for
“Pure Liquid” and lowest class label data available for “Clear
Sky”, as illustrated in Figure 4.

We used Accuracy as the evaluation metric to compare all
the models:

Accuracy =
Total number of correct predictions

Total number of data points
(7)

B. Performance Comparison using Data from Single Domain

For non-domain adaptation model comparison, we con-
ducted experiments on three baseline models which were
trained on data from a single domain. These baseline models
include 1) RF model: Random Forest trained on VIIRS data,
2) MLP-VIIRS: A deep learning based MLP model trained on
VIIRS data, 3) MLP-CALIOP: A deep learning based MLP
model trained on CALIOP data.

Fig. 3. Data distribution (data point count for each of 6 cloud/aerosol types)
for training and test VIIRS datasets.

Fig. 4. Data distribution (data point count for each of 3 cloud types) for
training and test VIIRS datasets.

In order to make fair comparison to our proposed model,
we apply the same neural network used in the shared layer of
our DAMA network to build the neural network for baseline
models (MLP-CALIOP and MLP-VIIRS), with the same type
and number of layers. In our experiments, the MLP (shared)
layers are 4 dense layers with 128, 256, 128, 64 neurons
respectively, each layer is followed with a ReLU activation
function and Dropout (0.5). To train the RF model, we specify
100 as the number of trees and 15 as the maximum depth of
the trees in the forest, chosen after hyperparameter tuning.

As shown in Table I, as an ML-based baseline result,
RF achieves around 77.8% training, 77.0% validation and
around 73.9% test accuracy (for January 2017). For the single
domain experiments, we can see MLP-CALIOP achieves



TABLE II
ACCURACY ON PREDICTING THE CLOUD TYPES ON VIIRS (TARGET) DATASET WITH WEAK LABEL.

Models - Single Domain Label Source Target Day-005 Day-013 Day-019 Day-024 Day-030 Jan. 2017
Random Forest CALIOP VIIRS VIIRS 0.957 0.947 0.934 0.933 0.917 0.939
Random Forest-WL VIIRS VIIRS VIIRS 0.905 0.911 0.883 0.878 0.854 0.889
MLP-VIIRS CALIOP VIIRS VIIRS 0.896 0.907 0.878 0.877 0.865 0.885
MLP-CALIOP CALIOP CALIOP CALIOP 1.000 1.000 1.000 1.000 1.000 1.000
Models - Multiple Domains
Domain Mapping Only CALIOP CALIOP VIIRS 0.910 0.913 0.890 0.896 0.885 0.899
Correlation Align. Only CALIOP CALIOP VIIRS 0.428 0.473 0.394 0.378 0.321 0.408
DAMA CALIOP CALIOP VIIRS 0.956 0.948 0.934 0.936 0.926 0.941
DAMA-WL CALIOP + VIIRS CALIOP VIIRS 0.963 0.964 0.958 0.958 0.949 0.960

100% accuracy in predicting the active sensing dataset, which
is expected as the data distribution of each cloud type is
very discriminative in the CALIOP. Our ultimate goal is
to transfer the discriminative representation from this active
sensor CALIOP to passive sensor VIIRS in order to accurately
classify the cloud types in the passive dataset. In comparison,
MLP-VIIRS model has lower accuracy around 74.3%, as
VIIRS is a passive dataset collected by detecting the reflection
of natural radiation and their feature discrimination power is
weak. This observation highlights the importance of using
multiple sensors data to better understand and classify the
unlabeled passive sensing data that has wider spatial coverage.
Our proposed deep domain adaptation model DAMA aims
to achieve higher accuracy than using single domain data by
transferring the discriminating power from the source domain
to target domain.

C. Performance Comparison of using Data from Multiple
Domains

For domain adaptation model comparisons, we conducted
experiments on two more baseline models that use our hetero-
geneous domain mapping and correlation alignment respec-
tively, using both source and target datasets. These baseline
models include the following: 1) Domain Mapping Only: This
model uses the deep domain mapping but no correlation align-
ment, 2) Correlation Alignment Only: This model uses the
Correlation alignment but no deep domain mapping strategy.
Comparing these baseline models with our proposed DAMA
model can help understand the importance of each module in
our model.

From the result of multiple sources based models in Table I,
our proposed DAMA model outperforms the two domain adap-
tation baselines significantly. DAMA improves the accuracy
by 5.7% on average of all the predictions from Day-005 to
Day-030 when compared to using the Domain Mapping Only
model. It also shows our approach improves more than 40%
accuracy in comparison to the Correlation Alignment Only
model with domain adaptation that uses the raw source and
target features.

D. Performance of Domain Adaptation with Weak Supervision

We also evaluate our models’ performance with the weak
label from VIIRS. In this experimental setting, both training
and testing of target domain are performed using the weak

labels from VIIRS. Comparing VIIRS’ weak labels with cor-
responding CALIOP category 2 and category 3 labels (further
explained in Section V-A), we get around 87% label match-
rate. The CALIOP label is considered as ground truth for the
experiment, so we can consider the weak label is noisy of only
87% accuracy.

Table II introduces two more experiments Random Forest-
WL and DAMA-WL that utilize weak label from VIIRS
dataset. Random Forest-WL trains the model with weak label
from VIIRS dataset of the second label setting, while DAMA-
WL adds a target classifier trained with weak label of VIIRS
dataset to DAMA. Other models shown in Table II use the
CALIOP label from collocated CALIOP and VIIRS pixels.
From Table II we can see DAMA-WL achieves highest accu-
racy 96.0% compared to the random forest models and other
baseline models. We also see DAMA-WL brings additional
1.9% accuracy improvement compared to the DAMA method,
which shows that the weak label does help train a better do-
main adaptation model in weak supervision on target domain.

E. Impact of Domain Mapping

The very low accuracy (around 40%) in predicting cloud
satellite data with Correlation Alignment Only model ex-
emplifies inherent complexities in heterogeneous data rep-
resentation and the challenge of directly applying existing
domain adaptation methods in heterogeneous domains. Our
proposed deep domain mapping can mitigate the gap between
the heterogeneous source and target domains and extract the
domain invariant representation by integrating with the domain
adaptation technique.

Our DAMA model’s prediction accuracy also outperform
Random Forest Model that is widely used in climate data.
Supervised learning model such as Random Forest in the
single domain assumes the label information on the target
domain is available, in comparison, DAMA is unsupervised
domain adaptation that does not require label information in
the target domain, and solely rely on the label information of
source domain and correlation between the source and target
domain to build the model and make the prediction.

Furthermore, in domain adaptation, training on target do-
main with target labels is the gold standard in many domain
adaptation applications as that is the best a model can achieve.
So domain adaptation’s performance is upper bounded by the
performance on the target domain dataset (i.e., trained on the



target data and labels). However, typically in real applications
target domain labels are unreliable or unavailable. Our problem
setup is slightly different as the target domain labels are
obtained from a different satellite (source domain) with co-
located latitudes and longitudes.

VI. CONCLUSIONS

With the advances in remote sensing, we are seeing more
and more satellites orbiting the Earth. By utilizing data from
multiple satellites jointly, we could achieve better information
retrieval for the targeted geophysics variables. Towards this
goal, we presented a deep domain adaptation method with
heterogeneous domain mapping and correlation alignment to
employ both active and passive sensing data in cloud type
detection. We further extended the domain adaptation model
with weak supervision by using the noisy label from the target
domain. Our experiments show that our proposed models can
achieve higher accuracy in classifying the challenging passive
remote sensing dataset by transferring the knowledge from the
active sensing to the passive sensing dataset.

For future work, we plan to investigate taking into account
the information of neighboring pixels and use of deep learning
models that can capture spatial information (e.g., CNN and
graph neural networks) could improve cloud type prediction.
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