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1. Introduction

One of the core theorems in random matrix theory is the circular law. Suppose CN
is an N x N complex matrix whose entries are independent centered normal random
variables of variance +. Then the empirical eigenvalue distribution of CV (the random
probability measure placing points of equal mass at the eigenvalues) converges almost
surely to the uniform probability measure on the unit disk as NV — oo. This theorem
is due to Ginibre [17] and OV is often called a Ginibre ensemble. The circular law has
been incrementally generalized to its strongest form where the entries are independent
but can have any distribution with two finite moments [1,18,19,38].

We can recast Ginibre’s result as a theorem about matriz-valued Brownian motion. In
a finite-dimensional real Hilbert space, there is a canonical Brownian motion, constructed
by adding independent standard real Brownian motions in all the directions of any
orthonormal basis. (See Section 2.1.1 below.) Let us regard the space My (C) of complex
N x N matrices as a real vector space of dimension 2/N?, and equip it with the inner
product

(X,Y)y = NReTrace(X"Y). (1.1)

Then the associated Brownian motion C}¥ has the same law as the Ginibre ensemble,
scaled by a factor of Vt. (The factor N in front of the Hilbert—Schmidt inner product is
the correct choice to give the entries variance of order 1/N.) Hence, the matrix-valued
Brownian motion C}¥ has eigenvalues that concentrate uniformly in the disk of radius
Vtas N — co.
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In this paper, we are interested in the Brownian motion B}¥ on the general linear
group GL(N; C). One nice geometric way to define this object is by the rolling map. The
tangent space to the identity in GL(N;C) (i.e., the Lie algebra of this Lie group) is all
of My (C). Take the Brownian paths in the tangent space, and roll them onto the group;
this yields the paths of B}Y. Since the paths are not smooth this rolling is accomplished
by a stochastic differential equation for B} in terms of C}¥ (cf. (2.2)). In particular, for
small time, BN and C}¥ are “close”, and so it is natural to expect that the eigenvalues
of BY should follow a deformation of the circular law of radius v/t when ¢ is close to 0.

For a normal matrix A, the eigenvalues are encoded in the matrix moments
{Trace[A*(A*)!]}1.en. However, the ensembles B¥ and C¥ are almost surely non-
normal for any ¢ > 0; in fact, a stronger statement is true: with probability 1, BY and
C} are non-normal for all ¢ > 0 [30, Proposition 4.15]. The lack of normality presents
significant hurdles to understanding the limit behavior of eigenvalues, whose connec-
tion to matrix moments is quite a bit more subtle. Nevertheless, the x-moments of C}¥
and (CN)* (i.e., traces of all words in these non-commuting matrices) do have a mean-
ingful large-N limit: in the language of free probability, the ensemble C}¥ converges in
x-distribution to an operator ¢, cf. [39] (see Section 2.1.2).

This circular Brownian motion c;, living in noncommutative probability space, does
not have eigenvalues, and is not normal, so it does not have a spectral resolution. Nev-
ertheless, there is a construction, known as the Brown measure, that reproduces the
spectral distribution in the normal case but is also valid for non-normal operators. Each
operator ¢ in a tracial von Neumann algebra has an associated Brown measure p,, which
is a probability measure supported in the spectrum of ¢ in C. If @ is normal, u, is the
usual spectral measure inherited from the spectral theorem; if A is an N x N matrix,
its Brown measure is simply its empirical eigenvalue distribution. We discuss the Brown
measure in general in Section 2.3 below. Girko’s proof [18] of the general circular law
essentially began by proving that the Brown measure of ¢; is uniform on the unit disk,
and then showed that the empirical eigenvalue distribution of CV actually converges to
the Brown measure of the large-N limit (his proof had some technical gaps which took
nearly three decades to fill completely, cf. [1,38]).

Meanwhile, the Brownian motion B} on the group GL(N; C) also has a large-N limit
in terms of *-distribution: an operator b; known as the free multiplicative Brownian
motion. It was introduced by Biane [3,4] and conjectured by him to be the large-IN
limit of B}Y; this conjecture was proven by the second author in [30]. The first step in
understanding the large-N behavior of the eigenvalues of B} is to determine the Brown
measure pp, of by. It is a probability measure supported in the spectrum of b;; but b; is
a complicated object, and in particular its spectrum is completely unknown.

In this paper, we identify a closed set ¥; (see Section 2.2) which contains the support
of the Brown measure pyp,. The region ¥; was introduced by Biane in [4] in the context
of the Segal-Bargmann transform (or “Hall transform”) associated to the unitary group
U(N) and its complexification GL(N; C) (cf. [23]). Biane introduced a free Hall transform
%,, which he understood as a sort of large-N limit of the Hall transform for U(N). The
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transform % is an integral operator which maps functions on the unit circle to a space
a7, of holomorphic functions on the region ¥; C C, whose definition falls out of the
complex analysis used in Biane’s proofs.

The meaning of the region ¥; and its relation to the free multiplicative Brownian
motion b; have remained mysterious. One clue to its origin comes from the holomorphic
functional calculus. Using the metric properties of ¥;, Biane showed that one can make
sense of F'(b;), as a possibly unbounded operator, for any F' € ;. Now, if the spectrum
of b; were contained in ¥;, properties of the holomorphic functional calculus would show
that F(b;) is a bounded operator for all F' in H(X;) and thus for all F' in <, which is
(presumably) not the case. On the other hand, the fact that F(b;) can be defined at
all — even as an unbounded operator — suggests that the spectrum of b; is at least
contained in the closure of 3;. Such a result would then imply that the support of the
Brown measure of b; is contained in ;. The latter statement is the main theorem of this

paper.

Theorem 1.1. For allt > 0, the support of the Brown measure pp, of the free multiplicative
Brownian motion by is contained in 3y.

We expect that the large-N limit of the empirical eigenvalue distribution of the
Brownian motion Bf¥ on GL(N;C) coincides with the Brown measure y;, of the free
multiplicative Brownian motion. If that is the case, the eigenvalues of B} should con-
centrate in ¥, for large N; this claim is supported by numerical evidence. Fig. 1 shows
simulations of BY with N = 2000 and four different values of ¢, plotted along with the
domains ¥;. (The domain for ¢ > 4 has a small hole around the origin, which can be
seen in the bottom two images in the figure.)

We also consider a two-parameter version b, ; of the free multiplicative Brownian mo-
tion and show that its Brown measure is supported on the closure of a certain domain
Y51, introduced by Ho [29]. These domains similarly arise in the large-N limit of the two-
parameter Segal-Bargmann transform in the Lie group setting. The precise statement
and proof can be found in Section 5.

After this paper was submitted for publication, we became aware of two papers in
the physics literature that address the large-N limit of Brownian motion in GL(N; C).
The first, by Gudowska-Nowak, Janik, Jurkiewicz, Nowak [21] addresses only the one-
parameter case (what we call B}). The second, by Lohmayer, Neuberger, and Wettig
[32] addresses the full two-parameter case (what we call BY, in Section 5). Using non-
rigorous methods, both papers identify the region in which the eigenvalues should
live in the large-N limit. The domains they identify are precisely what we call 3
(in the one-parameter case in [21]) and what we call ¥, (in the two-parameter case
in [32]).

Our results are rigorous and use completely different methods from those in [21,32].
Our approach also has the conceptual advantage of connecting the Brown measure of the
free multiplicative Brownian motion to the previously known results on the distribution
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Fig. 1. Simulations of the eigenvalues of BtN shown with the domain X;, for N = 2000 and ¢t = 2, t = 3.9,
t=4,and t =4.1.

of the free unitary Brownian motion. Finally, we develop a general result about Brown
measures and the notion of L spectrum. (For more details on the relationship between
[21,32] and our results, see Remark 5.5 below.)

The strategy we employ to prove Theorem 1.1 is of independent interest, as it provides
a new restriction on the support of the Brown measure of an operator, in terms of a family
of spectral domains associated to the operator. Let (A, 7) be a tracial von Neumann
algebra and let a € A. As noted, the Brown measure p, is supported in the spectrum
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of a; in fact, its support set may be a strict subset of the spectrum. Recall that the
spectrum of a is the complement of the resolvent set of a, which is the set of A € C

!is a bounded operator). The rich

for which a — A is invertible (meaning that (a — \)~
structure of A and the trace 7 give a natural generalization of these spaces: we may ask
that the inverse (a — \)~! exist but not necessarily be bounded, instead insisting that
it is in LP(A,7) for some p > 1. (The p = oo case coincides with the usual resolvent
set.) What is more, given the often bizarre algebraic properties of non-normal operators
(which can, for example, be nilpotent), we may ask that some power (a — A\)” have an
inverse in LP(A, 7). (Unless a is normal, this is not equivalent to a — A having an inverse
in L""(A,7).) The set of A € C for which (a — A\)™ has an inverse in LP (and for which
certain uniform local bounds hold) is called the LP-resolvent set of a, and its complement
is spec? (a), the LP-spectrum of a.

Our key observation leading to the proof of Theorem 1.1 is the following new descrip-
tion of (a closed set containing) the support of the Brown measure.

Theorem 1.2. For any operator a in a tracial von Neumann algebra, the support of the
Brown measure p, is contained in spec3(a), which is a subset of the spectrum of a.

A detailed discussion of these generalized spectral domains, and the proof of Theo-
rem 1.2, can be found in Section 6.1. Once this result is established, we use Biane’s free
Hall transform %, to show that spec3(b;) = X, which proves that the support of u, is
contained in ¥, establishing Theorem 1.1.

A more detailed version of this outline of the proof is contained in Section 4 (cf.
Theorems 4.1 and 4.2); the complete proofs can then be found in Section 6.

2. Preliminaries

In this section, we provide background on the objects in the statement of our main
theorem—the free multiplicative Brownian motion, the Brown measure, and the domains
.

2.1. Lie group Brownian motions and their large-N limits

2.1.1. Lie group Brownian motions
Let H be a finite-dimensional real Hilbert space. The Brownian motion on H, W},
is the diffusion process defined by

d
W =3 Ble; (2.1)
j=1
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where {e1,...,eq} is an orthonormal basis for H, and {Bg}‘j:l are i.i.d. standard (real)
Brownian motions. The law of this process is invariant under rotations, and hence does
not depend on which orthonormal basis is chosen.

Let G C GL(N;C) be a matrix Lie group, and let g C My (C) be its Lie algebra.
A choice of inner product on g induces a left-invariant Riemannian metric on G. As a
Riemannian manifold, then, G has a well-defined Brownian motion: the diffusion with
infinitesimal generator given by half the Laplacian. In the Lie group setting there is a
simple description of the Brownian motion B in terms of the Brownian motion W on
the Lie algebra (as in (2.1)):

dBf = Bf odW?,  BS =1 (2.2)

The o denotes the Stratonovich stochastic differential. This Stratonovich SDE can be
converted to an I1t6 SDE; the form of the resulting equation depends on the structure of
the group (cf. [33, p. 116]).

For our purposes, the two relevant Lie groups are the unitary group U(N) whose Lie al-
gebra is u(N) = M3* (C) (self-adjoint matrices), and the general linear group GL(N; C)
whose Lie algebra consists of all complex matrices gl(N;C) = My(C). (In the unitary
case, we follow the physicists’ convention; mathematicians typically use skew-self-adjoint
matrices.) Using the inner product (1.1) on both these Lie algebras, we obtain Brownian
motions which we will denote thus:

wrM = xN and WO =N,

To be more explicit, C¥ is the Ginibre Brownian motion, which has i.i.d. entries that
are all complex Brownian motions of variance ¢/N, and X}V is the Wigner Brownian
motion, which is Hermitian with i.i.d. upper triangular entries, with complex Brownian
motions above the diagonal and real Brownian motions on the diagonal, each of variance
t/N.

The Brownian motions on the groups, which we denote BE N) = U}N and BtG LINC) =
BY, then satisfy Stratonovich SDEs given by (2.2). These equations can be written in
1t6 form as follows:

avy =iUN dx) —iuNdt  and  dBY = BN dCN (2.3)

(both started at the identity matrix). These defining SDEs play the role of the rolling
map described in the introduction.

2.1.2. The large-N limits

The four processes X}, CN, UYN, and B} all have large-N limits in the sense of
free probability theory. (For a thorough introduction to free probability theory and its
connection to random matrix theory, the reader is directed to [34] and [35].) The limits
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are one-parameter families of operators xy, ¢, us, and b; all living in a noncommutative
probability space (B, 7). (More precisely, B is a finite von Neumann algebra and 7 is a
faithful, normal, tracial state.) The sense of convergence is almost sure convergence of
the finite-dimensional noncommutative distributions, defined as follows.

Definition 2.1. Let AY be a sequence of My (C)-valued stochastic processes (all defined
on the same sample space). Let (A, 7) be a noncommutative probability space, and let
a; € A for each t > 0. We say AN converges to a; in finite-dimensional noncommutative
distributions if, for each n € N and times ty,...,t, > 0, and each noncommutative
polynomial P in 2n indeterminates, the following limit holds almost surely:

I\}iinoo %Trace[P(Ag, .. ,Ai\i, (Ai\lf)*, ce (Ai\i)*)} = T[P(atl,. c @AY ,a,’;n)} .

The limit of XY was identified by Voiculescu [39]; it is known as free additive Brow-
nian motion z;, and can be constructed on a Fock space. From here, one can derive the
C} case by noting that CN = %(X{V + iY,N) where Y}V is an independent copy of
XN . Given the independence and rotational invariance, it follows by standard results on
asymptotic freeness that the large-N limit of C}¥ can be represented as ¢; = % (x¢+iye)
where {z;,y:} are freely independent free additive Brownian motions; we call ¢; a free
circular Brownian motion.

Since the unitary and general linear Brownian motions U and B} are defined as
solutions of SDEs involving XV and C}, good candidates for their large-N limits are
given by free SDEs involving z; and ¢;. (Free stochastic analysis was introduced in [6]
and further developed in [7,31]; the reader may also consult the background sections
of [11,30] for succinct summaries of the relevant concepts.) The free unitary Brownian
motion u; and free multiplicative Brownian motion b; are defined as solutions to the free
SDEs

dut = iut dl‘t — %’U,t dt and dbt = bt dCt (24)

(both started at 1), mirroring the matrix SDEs of (2.3).

The free unitary Brownian motion u; was introduced by Biane in [3], wherein he also
showed that it is the large- N limit of the unitary Brownian motion UY as a process (as in
Definition 2.1). In particular, in the case of a single time ¢ (n = 1 in the definition, ¢; = t),
since uf = u; ', the statement is simply that the trace moments + Trace[(UN)*], k € Z,
converge almost surely as N — oo to 7[uf]. The numbers v (t) := 7[uF], meanwhile, are
the moments of a probability measure v; on the unit circle. Biane computed these limit
moments, which had already appeared in work of Singer [37] in Yang—Mills theory on

the plane in an asymptotic regime. They are given by

k| —1

vi(t) ::/ ky(dw) = e 2 > (_]—t')J k! <|k,|> (2.5)

oD J=0 J
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for n € Z \ {0}, with vy(¢) = 1.

From here, using complex analytic techniques, Biane completely determined the mea-
sure v;. For t > 4, the support of 14 is the whole unit circle while for ¢t < 4 its support
is the following arc:

. 1 t
supp vy = {619; 10| < 5 t(4 — t) + arccos (1 - 5) } , t<A4. (2.6)
Biane also gave an implicit description of the measure v;, which has a real analytic
density on the interior of its support, but we do not need this description presently.
The key to analyzing v, was determining a certain analytic transform of v; in the unit
disk D. Let

Vi (2) 12/ - v (dw), zeD

1—wz
oD

denote the moment generating function (with no constant term). The function v, has
a continuous extension to the closed disk D; this is tantamount to the fact, as Biane
proved, that v, possesses a continuous density on dD. Of greater computational use is
the following function:

() = o5 2.7

which also has a continuous extension to D. In fact, y; is one-to-one on the open disk,
and its inverse is analytic, with the following simple explicit formula:

fi(z) = X§71>(z) — ze21o:, (2.8)

It is from this identity that the explicit formulas (2.5) and (2.6) are derived.

Biane also introduced the free multiplicative Brownian motion process b; in [4], where
he conjectured that it is the large-N limit of the GL(N; C) Brownian motion B;¥. Given
the non-normality of the matrices and operators involved, this turned out to be a difficult
problem that took nearly two decades to solve; the second author proved this in [30].
Now, the “holomorphic” moments 7[b¥] are easily shown to have the value 1 for all k
(see also (5.6)). But since the process b; is not normal, these moments do not determine
much of the noncommutative distribution. The free SDE (2.4) that defines b; allows for
any mixed moment in b; and bf to be computed (iteratively) given enough patience;
see [30, Proposition 1.8] for some notable examples. There is, at present, no known
simple description of the full noncommutative distribution of this complicated object.
Its spectrum is also unknown.
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2.2. The domains ¥

In this section, we describe the family of domains ¥; C C, introduced by Biane in [4],
which enter into the statement of our main result. They arose in the context of the free
Segal-Bargmann transform (see Section 3), which connects u; and b;. For this reason,
they are related to the function f; in (2.8), which is the inverse of the shifted moment
generating function of the spectral measure v; of the free unitary Brownian motion.

It is easily verified that if |z| = 1, then |f;(2)| = 1. There are, however, points z with
|z| # 1 for which |f;(z)] is nevertheless equal to 1.

Proposition 2.2. For all t > 0, consider the set

E={zeCllz[#1, |fi(2)] =1}

and define ¥¢ to be the connected component of the complement of E; containing 1. Then
34 is bounded for allt > 0, ¥, is simply connected fort <4, and ¥y is doubly connected
fort > 4. In all cases, we have

oY, = E.

These properties of the region 3; were proved by Biane in [4]; see especially pp.
273-274. See also [29, Section 4.2]. The closure in the definition of the set E; is needed
to fill in the points (at most two of them) where %, intersects the unit circle. In recent
joint work between the present authors and Driver [14, Theorem 4.1}, we found a simpler
description of the regions Y;. They are the sublevel sets of a certain explicit function:
5, ={ e C:T(\) <t} and 95, = {A € C: T(\) = t}, where

2 log(|A]%)
T =|A—1| |>\|24_1
(It is easy to compute that this expression has a limit as |A| — 1. Indeed, T extends to
a real analytic function on C \ {0}, and for |A\| = 1, we have T(\) = |\ — 1]2.) Fig. 2
shows the domain ¥; with t = 3 and ¢ = 4.05, with the unit circle shown for comparison.
Fig. 3 then shows the transitional case t = 4 in more detail. In all cases, 1 is in ¥; and
0 is not in %;.

An important property of the region ¥;, which follows from the just-cited results of
Biane [4], involves the support arc of the spectral measure v; of free unitary Brownian
motion. This result is crucial to the proof of our main theorem.

Proposition 2.3. For all t > 0, the function f; maps C \ Xy injectively onto C \ supp v;.

This is a typical “slit plane” conformal map; see Fig. 4.
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4L

Fig. 2. The domains ¥; with ¢ = 3 and ¢t = 4.05, with the unit circle (dashed) shown for comparison.

1.0

0.5

51

. . . -1.0
0 5 10 -15 -1.0 -05 0.0 05

Fig. 3. The region X; with ¢t = 4 (left) and a detail thereof (right).

2.3. Brown measure

We work in the context of a sufficiently rich noncommutative probability space: a
tracial von Neumann algebra.

Definition 2.4. A tracial von Neumann algebra is a finite von Neumann algebra A to-
gether with a faithful, normal, tracial state 7 : A — C.

Recall that a state 7 is norm-1 linear functional taking non-negative elements to
non-negative real numbers. (Such a functional necessarily satisfies 7(1) = ||7|| = 1.) A
state 7 is called faithful if 7(a*a) > 0 for all a # 0, it is called normal if it is continuous
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Fig. 4. The map f; takes C \ I; (left) injectively onto C \ supp v; (right). Shown for ¢ = 3.

with respect to the weak* topology on A (cf. [8, Theorem III. 2.1.4, p. 262]), and it is
called tracial if 7(ab) = 7(ba) for all a,b € A.

Let (A, 7) be a tracial von Neumann algebra. For each element a of A, it is possible
to define a probability measure p, on C called the Brown measure of a, which should
be interpreted as something like an empirical eigenvalue distribution for the operator a.
The definitions and properties stated in this section may be found in Brown’s original
paper [9] and in [34, Chapter 11].

We first recall the notion of the Fuglede-Kadison determinant of a [15,16], denoted
A(a), which is most easily defined by a limiting process:

1 .
log A(a) = ;g% §T[log(a a+e)l. (2.9)

In general, log A(a) may have the value —oo, in which case, A(a) = 0. If, for example,
A = Mpy(C) and 7 is the normalized trace, then A(a) = |det a|1/N7 where deta is the
ordinary determinant of a.
For a tracial von Neumann algebra (A, 7), the Brown measure of an element a € A is
then defined as
1

o = 5= V3 log(A(a - V),

™
where V3 is the Laplacian with respect to A, computed in the distributional sense. It can
be shown that this distributional Laplacian is a represented by a probability measure on

the plane.

Proposition 2.5. Let a be an element of A and let p, be its Brown measure. Then the
following results hold.
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(1) The measure p, is a probability measure on the plane.

(2) The support of pg is contained in the spectrum of a, but the two sets do not coincide
in general.

(3) For all non-negative integers n,

[ = duate) = rla),

and if a is invertible, the same result holds for all integers n.

Although the support of the Brown measure can be a proper subset of the spectrum,
there are many interesting examples in which the two sets coincide.

Using the limiting formula (2.9) for the Flugede-Kadison determinant, we may give
a limiting formula for the Brown measure. With the notation

a):=a— M\,
we have
1 . 2 * 2
Ha = 7~ lim {Virllog(ayax +¢)] d°A}, (2.10)

where d?) is the two-dimensional Lebesgue measure on C and the limit is in the weak
sense. Furthermore, the Laplacian on the right-hand side of (2.10) can be computed
explicitly [34, Section 11.5], giving still another formula for the Brown measure:

_ 1 . * —1 * —1 2
fa = — lim {e t[(ajar + &) H(ara} + )7 d*A}. (2.11)

The following result follows easily from (2.11).

Corollary 2.6. Suppose the quantity
m[(akax + )" Hanal +¢)7Y (2.12)

is bounded uniformly for all € > 0 and all A in a neighborhood of some value \y. Then
Ao does not belong to the support of the Brown measure fiq.

In particular, if Ay belongs to the resolvent set of a, it is not hard to see that the
quantity (2.12) has a finite limit as ¢ — 0, for all A in a neighborhood of Ao, so that
the corollary applies. Thus, Corollary 2.6 implies Point (2) of Proposition 2.5. But the
corollary is stronger, in the sense that it may apply even if )\ is in the spectrum of a.

We close this section by noting three important special cases of the Brown measure.
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o When A = My(C) and 7 is the normalized trace, the Brown measure of a matrix A
is its empirical eigenvalue distribution. That is,

1 n
HA = N;@w

where A1, ..., Ay are the eigenvalues of A, listed with their algebraic multiplicity.
e For a normal element a of A, Brown measure coincided with the spectral measure;
lhe 18 just the composition of the projection-valued spectral resolution with 7:

e (V) = 7(E4(V)), V € Borel(C),

where E¢ is the projection-valued measure associated to a by the spectral theorem.

o Z#-diagonal operators form an important class of (generally) non-normal elements
of a tracial von Neumann algebra; these include the circular operators ¢; and Haar
unitaries. An element a € A is #-diagonal if it has the same non-commutative
distribution as ua for any Haar unitary operator w freely independent from a; see
[35, Lecture 15] for more details. In [22], Haagerup and Larsen proved that the
Brown measure of an Z#-diagonal operator is rotationally invariant, with a radial
real analytic density supported on a certain annulus (or circle) determined by a; see
the discussion following Theorem 6.2 below for more details.

Since the free multiplicative Brownian motion b; is not finite-dimensional, normal, or
Z-diagonal, none of the preceding cases applies. We will see, however, that some of the
ideas related to the support of the Brown measure of #Z-diagonal operators are useful in
the present context.

3. Free Segal-Bargmann transform

Recall from the Section 2.1 that the law 14 of free unitary Brownian motion is a
probability measure on the unit circle that represents the limiting empirical eigenvalue
distribution for Brownian motion in the unitary group. In [4], Biane introduced a “free
Hall transform” %, that maps L?(0D), ;) into H(%;), the space of holomorphic functions
on the domain 3. In this section, we recall both the original construction of ¥, given by
Biane and a realization given by the authors together with Driver [13] and Cébron [10].
The transform ¢, will be a crucial tool in the proof of our main theorem.

3.1. Using free probability

Let uy be a free unitary Brownian motion and b; a free multiplicative Brownian motion
that is freely independent from w;, both living in a tracial von Neumann algebra (B, 7).
In the approach pioneered by Biane and further developed by Cébron, the map %; is
characterized by the requirement that for each Laurent polynomial p, we have
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(%p)(be) = T[p(beur)|be], (3.1)

where 7[ - |b;] is the conditional trace with respect to the algebra generated by b;. (Com-
pare [4, Theorem 8] for a strictly unitary analog, and [10, Theorem 3] for the precise
statement of (3.1).) If, for example, p is the polynomial p(u) = u?, then it is not hard to
compute (cf. [34, p. 55]) that

T[btutbtut|bt] = T(Ut)2b$ + (T(U%) — T(Ut)2)7'(bt)bt.
We may then use the moment formulas 7(u;) = =%, 7(u?) = e7t(1 — t), and 7(b;) = 1.

(The moments of u; are the constants vy (t) of (2.5), while the moments of b; are the
s =1 case of (5.6).) We therefore obtain

T[bsusbyus by = e7H(b? — tb).
Thus, in this case, ¥;p is also a polynomial, given by
() (b) = e~ (b? — tb). (3.2)
As explained in Section 3.3, the map ¥; can be viewed as the large-N limit of the
generalized Segal-Bargmann transform over U(N) introduced by the first author in [23].

The motivation for Biane’s definition of ¥; is the stochastic approach to the generalized
Segal-Bargmann transform developed by Gross and Malliavin [20].

3.2. As an integral operator

Using the subordination method developed in [5], Biane realized ¥, as an integral
operator mapping L?(0D, ;) into H(X;). Explicitly,

1= @)l
(“.f) — dii(w), z€X 3.3
ne /f @)t ey M EE &

where x; was defined in (2.7). (See [4, Theorem 8] and the computations that follow it,
along with Proposition 13.) Here, for w € 9D, yx¢(w) denotes the value of the unique
continuous extension of y; to D; in other words, it is the limiting value of y;(¢) as ¢ € D
approaches w from inside the unit disk. Note that for w € 0D both x:(w) and 1/x:(w)
lie on the boundary of ¥;, so that the integrand in (3.3) is a holomorphic function of z

for z in the open set ¥;. Biane showed that, for ¢ # 4, the map ¥, is injective, so that it
is possible to identify L?(0D, ;) with its image:

o, :=Image(94,) C H(Z,).
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Now, let us define L? (b;,7) to be the closure in the noncommutative L? space
L?(B,7) of the space of elements of the form p(b;), where p is a Laurent polynomial
in one variable. That is to say, L (b, ) is the closure of the span of the positive and
negative integer powers of b;, not including any powers of b;. (Biane used a slightly
different definition that is easily seen to be equivalent to this one.) Biane showed that
for t # 4, there is a bijection between % and Li (b, 7) uniquely determined by the
condition that for each Laurent polynomial p, we have

p = p(by)-

Note that for ¢ # 4, the space L2 (b, 7) is identified with the space 7 of holomorphic
functions. Nevertheless, the noncommutative L? norm on L (b, ) does not correspond
to an L? norm on <7 with respect to any measure on ¥;. (It is, instead, the Hilbert space
norm induced by a certain reproducing kernel on &% which is defined by the integral
kernel of 4%, cf. (3.3).)

For a general f € , we will write the corresponding element of L2 (b;, T) sugges-
tively as f(b;) and think of the map f — f(b;) as a variant of the usual holomorphic
functional calculus. That is to say, we think of the map from @ to LZ (b:, T) as “eval-
uation on b;” Note, however, that elements of L2 ,(b;,7) are in general unbounded
operators.

Theorem 3.1 (Biane’s Free Hall Transform). For all t > 0 with t # 4, the map %
is a unitary isomorphism from L*(0D,1;) to <%, where the norm on <7 is defined by
identification with L2 ,(bs, 7). In particular, we have

£l 2 (om ) = T L) O] [(F: ) (0]}
for all f € L*(0D,v,).

When t = 4, the preceding theorem is not known to hold, because it is not known that
%, is injective. But one still has a theorem, as follows. One considers at first the map
p — %p on polynomials and then constructs a map from the space of polynomials into
L%, (bs, 7) by mapping p to (4p)(b:). This map is isometric for all ¢ > 0 and it extends
to a unitary map of L?(9D, ;) onto LZ (bs, T); see Section 6.2 for details.

In light of the preceding discussion, we expect that, at least for ¢ # 4, the spectrum
of b; will not be contained in ;. After all, if such a containment held, the operator
f(by), f € o C H(XZ;) would presumably be computable by the holomorphic functional
calculus, in which case f(b;) would be a bounded operator. But actually, every element
of L ,(bs, 7) arises as f(b;) for some f € A;, and the elements of L? (b, 7) are in general
unbounded operators.

On the other hand, since we are able to define f(b;) for any f € o, at least as an
unbounded operator, it seems reasonable to expect that the spectrum of ¥; is contained
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in the closure of ¥;. Our main result, that the Brown measure of b, is supported in X,
is a step toward establishing this claim; compare Proposition 2.5.

3.8. From the generalized Segal-Bargmann transform

In 1994, the first author introduced a generalized Segal-Bargmann transform for com-
pact Lie groups [23]. In the case of the unitary group U(N), the transform, which
we denote here as 4V, maps L?(U(N),p;) to the space of holomorphic functions in
L?(GL(N;C),~). (Note: in [23] and follow-up work such as [13], the transform was of-
ten denoted By; to avoid clashing with our present notation B}Y for the Brownian motion
on GL(N;C), we use ¢4V instead for the Segal-Bargmann transform here.) Here p; and
¢ are heat kernel measures—that is, the distributions at time ¢ of Brownian motions on
the respective groups, starting at the identity. The transform is defined as

GNf = (22 f)e, (3.4)

where A is the Laplacian on U(N), €'~/ is the associated (forward) heat operator,
and (-)c¢ denotes the holomorphic extension of a sufficiently nice function from U(N) to
GL(N;C). See also [25] for more information. The transform can easily be “boosted”
to map matrix-valued functions on U(N) to holomorphic matrix-valued functions on
GL(N;C) (by acting component-wise; i.e., via ¥~ @ 1, ©))-

A stochastic approach to the transform was developed by Gross and Malliavin in [20];
this approach played an important role in Biane’s paper [4]. See also [26,28] for further
development of the ideas in [20]. Let U} and B} be independent Brownian motions
in U(N) and GL(N;C) (cf. (2.3)), and let f be a function on U(N) that admits a
holomorphic extension (also denoted f) to GL(N;C). Then we have

E[f(BNUMIBY] = (4" £)(BY). (3.5)

This result, by itself, is not deep. After all, in the finite-dimensional case, the conditional
expectation can be computed as an expectation with respect to U}¥, with BY treated as
a constant. Since U} is distributed as a heat kernel on U(N), the left-hand side of (3.5)
becomes a convolution of f with the heat kernel, giving the heat kernel in the definition
(3.4) of the transform ¥/ .

The crucial next step in [20] is to regard U} and B} as functionals of Brownian
motions in the Lie algebra, by solving the relevant versions of the stochastic differential
equation (2.2). Using this idea, Gross and Malliavin are able to deduce the properties of
the generalized Segal-Bargmann from the previously known properties of the classical
Segal-Bargmann transform for an infinite-dimensional linear space, namely the path
space in the Lie algebra of U(N). (We are glossing over certain technical distinctions;
the preceding description is actually closer to [28, Theorem 18].) The expression (3.5)
was the motivation for Biane’s formula (3.1) in the free case, and just as in [20], Biane
was able to obtain properties of the transform ¥, from the corresponding linear case.
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In [4], Biane conjectured, with an outline of a proof, that the free Hall transform
@, can be realized using the large-N limit of ¢/¥. This conjecture was then verified
independently by the authors and Driver in [13] and by Cébron in [10]; see also the
expository paper [27].

The limiting process is as follows. Consider the transform ¢V on matrix-valued func-
tions of the form f(U), where f is a function on the unit circle and f(U) is computed by
the functional calculus. If, for example, f is the function f(u) = u? on the circle, then
we can consider the associated matrix-valued function f(U) = U? on the unitary group
U(N). For any fixed N, the transformed function 4/ (f) on GL(NN;C) will no longer be
of functional-calculus type. Nevertheless, in the large-N limit, 4/ will map f(U) to the
functional-calculus function (4, f)(Z), Z € GL(N;C).

Specifically, if p is a Laurent polynomial, then ¥;p is also a Laurent polynomial, and
(abusing notation slightly)

GN(p(U)) = (%p)(Z) + O(1/N?),  Z € GL(N;C),

where O(1/N?) denotes a term whose norm is bounded by a constant times 1/N?2. See
[13, Theorem 1.11] and [10, Theorem 4]. In particular, if f(U) = U?, then in light of
(3.2), we have

@GN ) (2) = e (2% —tZ) + O(1/N?), Z e GL(N;C).
(See also Example 3.5 and the computations on p. 2592 of [13].)
4. An outline of the proof of Theorem 1.1

As we pointed out in Proposition 2.5, the Brown measure of an operator a is supported
in the spectrum of a. We strengthen this result, as follows. Given a noncommutative
probability space (A, T), we can construct the noncommutative L? space L?(A, 7), which
is the completion of A with respect to the noncommutative L? inner product, (a,b) =
7(b*a). It makes sense to multiply an element of the noncommutative L? space L?(A, )
by an element of A itself, and the result is again in L?(A, 7). We say that a € A has an
inverse in L? if there exists some b € L?(A, 1) such that ab = ba = 1.

Theorem 4.1. Let (A, 7) be a tracial von Neumann algebra and let Ay be in C. Suppose
that (a— \)? has an inverse—denoted (a — \)~2—in L*(A, 7) for all X in a neighborhood
of Ao and that ||(a — )\)_2HL2(A,T) is bounded near Ag. Then Ay does not belong to the
support of the Brown measure [ig.

Note that if a — A9 has a bounded inverse—that is, an inverse in A—then a — A also
has an inverse for all A in a neighborhood of g, and H(a - )t || 4 1s bounded near Ao.
In that case, we have
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@ =22l aam < la= 272 < =27

which shows that ||(a — )\)*QHLQ(A "
Theorem 4.1 the result that the support of u, is contained in the spectrum of a. In

is bounded near \y. Thus, we can recover from

general, however, Theorem 4.1 could apply even if a — Ay does not have a bounded
inverse.
We now briefly indicate the proof of Theorem 4.1. Using the notation

ax =a— A,
we make the following intuitive but non-rigorous estimates: for all € > 0,

Tl(a3ax +¢) " (aral + )7 < 7((akan) "M (ana}) 7] = Tlay* (a3 )]
= ||(a - /\)72’@2(“4;) :

(The given estimate actually does hold; the proof is in Section 6.1.) If the hypotheses
of the theorem hold, this last expression is bounded for A near A\g. Corollary 2.6 then
shows that A\ is not in the support of the Brown measure of a.

We now apply Theorem 4.1 to the case of interest to us, in which a is taken to be a
free multiplicative Brownian motion b; in a tracial von Neumann algebra (B, 7). Recall
that L2 ,(bs, 7) denotes the closure in L?(B,7) of the space of Laurent polynomials in
the element b;.

Theorem 4.2. For all t > 0, if A\ € C \ 3, then the element (by — \)" has an inverse
in L2 (by,7) C L*(B,T) for alln =1,2,3,..., with local bounds on the L* norm of the
inverse.

When t # 4, the proof of this lemma draws on the transform %; in Theorem 3.1. We
will show that the function 1/(z—\)™ belongs to the space 2% of holomorphic functions on
3¢, at which point Theorem 3.1 tells us that there is a corresponding element (b, —A)™",
which will be the inverse of (b — A)™. We demonstrate this key fact — that 1/(z — A\)"
belongs to the space o4 = Image(¥%,) — by explicitly constructing the preimage of
1/(z =A™ in L?(0D, 14). Specifically, using results from [4] or [13] about the generating
function of the transform %, we will show that, for all w € supp(v;) C 9D,

o ()@= () [PR—]

Recall from Section 2.2 that f, maps the complement of 3, to the complement of supp v;.
It follows that the function on the right-hand side is bounded—and therefore square
integrable—on supp v, for all A € C \ 3;. When ¢ = 4, the proof is very similar, except

that now we have to bypass the space « and go directly from L?(0D, v;) to L ,(bs, 7).
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The n = 2 case of Theorem 4.2 shows that Theorem 4.1 applies, and we conclude that
the Brown measure of b; is supported in ¥;.

5. The two-parameter case

In this section, we discuss the generalization of the process b; and the Segal-Bargmann
transform to the two-parameter setting by ¢ of [13,29,30]; since by = b; ¢, we will prove the
single-time theorems as stated as special cases of the general two-parameter framework.
We mostly follow the notation in [29, Section 2.5].

5.1. Brownian motions

Fix positive real numbers s and ¢ with s > ¢/2. Let {z,},>0 and {y,}r>0 be freely
independent free additive Brownian motions in a tracial von Neumann algebra (B, 1),
with time-parameter denoted by r. Now define

/ t Lt
ws,t(r): 8_5 xr"’_l\/; Yr,

which we call a free elliptic (s,t¢) Brownian motion. The particular dependence of the
coefficients on s and ¢ is chosen to match the two-parameter Segal-Bargmann transform,
which will be discussed below. Note: when s = ¢,

w4 (1) = \/g(xr +iy,) = Vi,

in terms of the free circular Brownian ¢, motion in Section 2.1.
We now define a “free multiplicative (s,t) Brownian motion” b, .(r) as a solution to
the free stochastic differential equation

dbs (1) =1 bs ¢ (1) dws ¢(r) — %(s —t)bs ¢ (r) dr (5.1)

subject to the initial condition bs;(0) = 1. (The second term on the right-hand side
of (5.1) is an It6 correction term that can be eliminated by writing the equation as a
Stratonovich SDE.) We also use the notation

bst = bst(1). (5.2)
When s =t, (5.1) becomes
dby 1 (r) = by (r) iVt de,.

Using the fact (from the usual Brownian scaling and rotational invariance) that the
process iv/tc, has the same law as the process ¢, we see that byt = by4(1) has the
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same noncommutative distribution as the free multiplicative Brownian motion b;. On
the other hand, the limiting case (s,t) = (1,0) gives a free unitary Brownian motion
b1,0(r) = u, cf. (2.4).

We can regard bs (1) as the large- NV limit of a certain Brownian motion on the general
linear group GL(N;C) as follows. We define an inner product (-, ~>S7t on the Lie algebra
gl(N;C) by

. ) N
<X1+ZY1,X2+1Y'2>$¢:7<X1,X2>+ (Y1,Y2),

N
7 N A

where X3, Xo, Y1, and Y> are in the Lie algebra u(N) of U(N) and where the in-
ner products on the right-hand side are the standard Hilbert—Schmidt inner product
(X,Y) = Trace(Y*X). We extend this inner product to a left-invariant Riemannian
metric on GL(N;C) and we then let

Bi\,rt(r)

be the Brownian motion with respect to this metric. In [30], the second author showed
that the process BY,(-) converges (in the sense of Definition 2.1) to the process bs(-),
for all positive real numbers s and t with s > ¢/2. (We are translating the results of [30]
into the parametrizations used in [29].)

5.2. Segal-Bargmann transform

Meanwhile, the first author and Driver introduced in [12] a “two-parameter” Segal—
Bargmann transform; see also [24]. In the case of the unitary group U(V), the transform
is a unitary map

@GN L*(U(N), ps) = HL*(GL(N;C), 754,

where p; is the same heat kernel measure as in the one-parameter transform, but evalu-
ated at time s, and where 7, ; is a heat kernel measure on GL(N; C). Specifically, 7, is
the distribution of the Brownian motion BY,(r) at 7 = 1. The transform itself is defined
precisely as in the one-parameter case:

GNf = (" f)c;

only the inner products on the domain and range have changed. When s = ¢, the trans-
form 42 coincides with the one-parameter transform %Y.

In [13], the authors and Driver showed that the transform %7 has limiting properties
as N — oo similar to those of 4V. Specifically, for each Laurent polynomial p in one
variable, we showed that there is a unique Laurent polynomial g, in one variable such
that (abusing notation slightly)
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G(p(U) = 4s4(Z2) + O(1/N?),  Z € GL(N;C).

As an example, if p(u) = u?, then g, (2) = e (2% — te~(571)/22), so that the transform
of the matrix-valued function F: U ~ U? on U(N) satisfies

(@GNF)(Z) = e (2% —te”*1/2Z) + O(1/N?), Z € GL(N;C).

(See [13, p. 2592].)

In [29], Ho then constructed an integral transform %;; mapping L?*(dD,vs) into a
space of holomorphic functions on a certain domain ¥, in the plane. Ho’s transform
9, + is uniquely determined by the fact that

gs,t(p) = (st

for all Laurent polynomials p. Ho gave a description of ¥ ; in terms of free probability
similar to the description of Biane’s transform ¢; given in Section 3.1, and he proved a
unitary isomorphism theorem similar to Biane’s result described in Theorem 3.1.

5.8. The domains X

Ho’s domains have the property that fs_; maps the complement of ¥ to the comple-
ment of ¥, ,. That is to say, X is the complement of f,_;(C \ X;):

Zs,t =C \fsft(C \Zs» (53)

(See Fig. 5 along with [29, Figures 2 and 3].) Note that ¥,; is the same as ;. The
topology of the domain ¥, ; is determined by s; it is simply connected for s < 4 and
doubly connected for s > 4.

We need a two-parameter version of Proposition 2.3. To formulate the correct gener-
alization, we first note that the function f, satisfies

£(0) =0;  f1(0) = e*/? £ 0.

Thus, fs has a local inverse defined near zero, which we denote by xs. Recall from (2.6)
that the support of the measure v, is a proper arc inside the unit circle for s < 4 and
the whole unit circle for s > 4.

Proposition 5.1. For all s > 0, xs can be extended uniquely to a holomorphic function
on C \ suppvs satisfying

Xs(1/2) = 1/xs(2). (5.4)
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Fig. 5. The domain X, with s = 3 (left) and the domain X, ; with s = 3, t = 1 (right). The map f._; = f2
takes the complement of the domain on the left to the complement of the domain on the right.

Note that when s > 4, the support of v, is the entire unit circle, in which case
C \ supp vs is a disconnected set. For such values of s, the proposition is really asserting
just that y, extends from a neighborhood of the origin to the open unit disk, at which
point (5.4) serves to define xs(z) for |z] > 1.

For s > t/2, define a function x,: by

Xs,t = fs—t o Xs- (55)
Since xs maps C \ supp vs holomorphically to a region that does not include 1, we see
that xs; can also be defined holomorphically on C \ supp v,. Ho established the follow-
ing result, generalizing Proposition 2.3. (See [29, Section 4.2], including the discussion
following Remark 4.7.)
Proposition 5.2. For all positive numbers s and t with s > t/2, define £, by (5.3). Then

the function xs: maps C \ supp(vs) injectively onto the complement of is,t- We denote
the inverse function by fs+, so that

fsi: C \is,t — C \ supp vs.

Note that, at least for sufficiently small z, we have f,.(2) = fs(xs—¢(2)), by taking
inverses in (5.5).

5.4. The main result

We are now ready to state the two-parameter version of Theorem 1.1.
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2L

Fig. 6. Simulations of the Brownian motions Bi\{t for N = 2000 and (s,t) = (3,1) (left) and (s,t) = (5,3)
(right), plotted against the domains X ¢.

Theorem 5.3. Let b, ; be the free multiplicative Brownian motion with parameters (s,t),
as in (5.2). Then the support of the Brown measure pu, , is contained in Yt

As in the one-parameter case, we expect that the limiting empirical eigenvalue distri-
bution for Bé\ft = Bé\ft(l) will also be supported in ¥, ;. This is supported by simulations;
see Fig. 6. More generally, we expect that the empirical eigenvalue distribution of the
Brownian motion Bé\ft in GL(N; C) will converge almost surely to p, , as N — oo. This
question will be explored in a future paper.

Remark 5.4. While they do not determine the Brown measure, it is worth noting that
the values of the holomorphic moments of b, ; were computed in [30]:

7 ((bst)") = vn(s —1t) (5.6)

foralln € Z and all s > ¢/2 > 0; here v, (r) are the moments of u,, cf. (2.5). In particular,
when s = t, since v,(0) = 1 for all n, this recovers the fact that all holomorphic moments
of b; are 1.

Remark 5.5. Now having fully defined the two-paramer Brownian motion and associated
notation, we show how to connect the formulas in the physics papers [21,32] to our
formulas. In [21], the boundary of the domain is given by Eq. (83), which is easily seen
to be equivalent to our condition for the boundary of ¥, namely | f;(\)| = 1 with [A] # 1.
In [32], the boundary of the domain in the one-parameter case is given by Eq. (5.31),
which agrees with Eq. (83) in [21]. In [32], meanwhile, the boundary of the domain in
the two-parameter case is given by Eq. (6.37), which is equivalent to saying that their
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variable £ should belong to the boundary of the domain 3;, . Meanwhile, using Eqs.
(6.30) and (6.36) and a bit of algebra, we find that 2 is related to z by the equation

z = ft_ (2)

We conclude that the boundary of their domain is computed as f;_ (9%, ). This agrees
with the boundary of our domain X ;, provided we identify their parameters ¢, and ¢_
with our s and s — ¢, respectively.

6. Proofs

In this final section, we present the complete proof of Theorem 5.3, which includes
the main Theorem 1.1 as the special case s = t. We follow the outline of Section 4, and
will therefore provide proofs of Theorem 4.1 and (a two-parameter generalization of)
Theorem 4.2. We begin with the former.

6.1. A general result on the support of the Brown measure

In this subsection, we work with a general operator in a tracial von Neumann algebra
(A, 7). For 1 < p < oo, the noncommutative L norm on A is

lall, = (rllal"])*/".

The noncommutative L? space LP(.A, 7) is the completion of .4 with respect to this norm;
it can be concretely realized as a space of (largely unbounded, densely-defined) operators
affiliated to A.

For a,b € A we have the inequality

llabll, < llall lIbl, -

This shows that the operation of “left multiplication by a” is bounded as an operator
on A with respect to the noncommutative LP norm. Thus, by the bounded linear trans-
formation theorem (e.g. [36, Theorem 1.7]), left multiplication by a extends uniquely to
a bounded linear map (with the same norm) of LP(A, ) to itself. We may easily verify
that

(ab)c = a(be) (6.1)

for a,b € A and ¢ € LP(A,7); this result holds when ¢ € A and then extends by
continuity. Similar results hold for right multiplication by a.
Similarly, since

lablly < llall; [ol5 (6.2)



26 B.C. Hall, T. Kemp / Advances in Mathematics 355 (2019) 106771

for all a,b € A, the product map (a, b) — ab can be extended by continuity first in a and
then in b, giving a map from L?(A,7) x L?(A,7) — L'(A, 1) satisfying (6.2). We then
observe a simple “associativity” property for the actions of A on L' and L?: for a € A
and b,c € L?,

a(be) = (ab)e;  (be)a = b(ca). (6.3)

For any 1 < p < oo, we say that an element a € A has an inverse in L? if there is an
element b of the noncommutative LP space LP(A, ) such that ab = ba = 1.

Definition 6.1. Let a € A, n € N, and p > 1. We say that A\g belongs to the LP-resolvent
set of a if (a — )™ has an inverse, denoted (a — A)~™, in L? for all A in a neighborhood
of Ao and ||(a — A)~"||, is bounded near Ag. We say that A¢ is in the L?-spectrum of a
if Ao is not in the LP-resolvent set of a. We denote the LP-spectrum of a by spec? (a).

Note that if a — ¢ has a bounded inverse, then so does a — A for all A sufficiently near
Ao, and |[(a — A) HA—and therefore ||(a — X)™"|| ,—is automatically bounded near \o.
It follows that any point in the ordinary resolvent set of a is also in the LP-resolvent set;
equivalently,

spech (a) C spec(a),

where spec(a) is the ordinary spectrum of a. Theorem 4.1 may then be restated as follows,
strengthening the standard result that the Brown measure is supported on spec(a).

Theorem 6.2. The support of the Brown measure i, of a is contained in spec3(a).

The concept of “L? spectrum” has come up in prior literature, most notably in the
previously mentioned paper [22] of Haagerup and Larsen on the Brown measures of
Z-diagonal operators. As noted at the end of Section 2.3, if a is #-diagonal, its Brown
measure is rotationally invariant. What is more, Haagerup and Larsen show (1) that the
support of the Brown measure of a is the closed disk of radius of ||alls, if a does not
have an inverse in L?, and (2) that the support of the Brown measure of a is the closed
annulus with inner radius 1/||a=!||2 and outer radius ||a||2, if a does have an inverse in
L2,

Thus, in the notation introduced above, for an %Z-diagonal element a, the point 0
belongs to the support of the Brown measure if and only if 0 is in the L?-spectrum of
a. It is, at first, surprising that Haagerup and Larsen’s result is for the L3-spectrum,
whereas Theorem 6.2 is for the L3-spectrum. There is, however, a simple explanation for
this apparent discrepancy. In the case that a is #Z-diagonal, the restricted form of the
free cumulants (cf. [35, Lecture 15]) implies that [Ja=2||2 = ||a~!||%; hence 0 € spec?(a)
if and only if 0 € spec3(a).
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Thus, our condition in Theorem 6.2 is closely related to the one in [22]. Indeed,
Theorem 6.2 can be thought of as an extension of the line of reasoning in [22] to general,
non-Z%-diagonal operators.

It is natural to wonder, from the above definitions, how far the LP-spectra of an
operator may differ from each other, and from the actual spectrum. To this end, Haagerup
and Larsen give examples where spec?(a) # spec(a). Let h be a positive semi-definite
operator that is not invertible in A but is invertible in L?(A,7) (i.e. its distribution py,
has mass in every neighborhood of 0, but [z~ 2y (dz) < co). If u is a Haar unitary
operator freely independent from h, then ¢ = uh is an #-diagonal operator for which
a=t € L?(A,7)\ A; in other words 0 € spec(a) \ spec?(a), so speci(a) C spec(a). What’s
more, in this case, spec(a) is the full closed disk of radius ||a||2, while spec?(a) is the
afore-mentioned annulus, cf. [22, Proposition 4.6]. Hence, the support of the Brown
measure, and more generally the sets specP (a), may be substantially smaller than the
spectrum of a.

To prove Theorem 6.2, we need the following.

Proposition 6.3. Suppose a € A and a® has an inverse, denoted a=2, in L*(A,7). Then
for all € > 0, we have

rl(a*a+e)"Maa® +¢)71] < [la~?|]3. (6.4)

(Ar)”
Theorem 6.2 follows immediately from Proposition 6.3 together with Corollary 2.6.
To prove the proposition, we need the following lemmas.

Lemma 6.4. For a,b € A, if a is invertible in A and b is invertible in LP, then ab and
ba are invertible in LP with inverses b= 'a~' and a~'b~!, respectively. If a and b are
invertible in L? then ab is invertible in L' with inverse b=*a~'. Finally, if a is invertible

in LP then a* is invertible in LP with inverse (a=1)*.

Proof. For a,b € A with b invertible in LP, we have

b~ ta7 (ab) = (b~ ta Y )a)b = (b~ (a " a))b
=b"1b=1,

where we have used (6.1) twice, and similarly for the product in the other order. A similar
argument, using both (6.1) and (6.3), verifies the second claim. Finally, the identity
(ab)* = b*a*, which holds initially for a,b € A, extends by continuity to the case a € A,
b € LP(A,7). Thus, if a is invertible in LP, then a*(a~!)* = (a~!a)* = 1 and similarly
for the product in the reverse order. O
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Lemma 6.5. Let = be a non-negative element of A and suppose x has an inverse in L*.
Then

i r((e+2) 7] = 7l

Proof. We begin by noting that

Tl —(zte) = (z+e)—a)(x+e)!

=ecx Nz +e)h

Now, |[(xz + )7 is at most 1/e, by the equality of norm and spectral radius for self-
adjoint elements. Thus,

-1

l2™ = (@ +e) 7 h <elll@+e) lla™ 1 < =71

It follows that ||(z +¢&)7 1|1 < 2|z~ 1 for all € > 0.
Let E” be the projection-valued measure associated to x by the spectral theorem.
Then

Iz +&)~ [l = TIET(dN)] < 2]z s

0

A+e

Thus, by monotone convergence, we have

[

Once this is established, we note that for A > 0,

T[E*(dN)] < 2[|lz 71 < oc.

>,|>—

1 1 € 1
- <
A A+e

T A te) A

Thus, by dominated convergence, 1/(\ + ¢) converges in L((0,00),7 o E®) to 1/) as
e — 0. It follows that for any sequence {¢,,} tending to zero, the operators (z+¢,)~! form
a Cauchy sequence with respect to the noncommutative L' norm. Since, by dominated
convergence, the functions A\/(\ + &,) converge to 1 in L!((0,00), 7 o E*), we can easily
see that the limit of (x 4+ &,)~! in the Banach space L!(A,7) is the inverse in L! of z.

We have shown, then, that the (unique) inverse in L' of z is the limit in L' of
(r +¢e,)7 L. Applying 7 to this result gives the claim, along any sequence {e,} tending
to zero. O
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Lemma 6.6. Let x,y > 0 be positive semidefinite operators in A, and suppose that they are
invertible in L' (A, 7). If v < y (i.e., x—y is positive semidefinite) then T(y~1) < 7(z~1).

Proof. For all ¢ > 0, the elements = + ¢ and y + ¢ are invertible in A and z +¢ > y + €.
Thus, by the (reverse) operator monotonicity of the inverse [2, Prop. V.1.6], we have

T((y+e) ™) =r((z+e)™). (6.5)
By Lemma 6.5, the claimed result then follows. 0O

Lemma 6.7. Let a € A and suppose that a® has an inverse in L*(A,7). Then a and a*
have inverses in L?; and hence a*a and aa* have inverses in L' (A, T).

Proof. Let b = a~2 denote the L?(A,7) inverse of a?. First, note that a(ab) = a?b = 1
and (ba)a = ba® = 1. Since ab and ba are in L?*(A,7), it follows that a is both left and
right invertible in L?(A, 7). Hence, a is invertible in L?(A, 7), by the usual argument and
(6.1). Taking adjoints shows that a* is also invertible in L?(A, 7). Thus aa*[(a*)"ta™!] =
1 = [(a*)"*a"!]aa*. Since (a*)~! and a~! are in L?(A,7), their product is in L*(A,7)
by Hélder’s inequality; this shows aa* is invertible in L!(A, 7). An analogous argument
holds for a*a. O

We are now ready for the proof of Proposition 6.3.

Proof of Proposition 6.3. We begin by arguing formally and then fill in the details. We
start by noting that

(a*a+¢e)?(aa* + ¢)(a*a + )% — (a*a+)Y*(aa*)(a*a 4 €)Y/? = e(a*a + ¢)

> 0.

Thus, by Lemma 6.4 and the cyclic property of the trace, we have

rl(a*a+¢e) " Haa* + )7 = 1[(a*a 4 )"V % (aa* + &) ata+ )7V

IA

rl(a*a+¢)"V%(aa*) " Ha*a + )71/
T[(aa*) " (a*a 4+ €)71). (6.6)

We then use the same argument again. We note that
a*(a*a+¢e)a—a*(a*a)a =ea*a > 0, (6.7)

from which we obtain
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Tla™ (@*a+e) 7 (a") 7]
[(a*(a*a +e)a)™]
[((a")?a®)7"]
Tla™*(a™?)"].

= |a

m[(aa*) " a*a + €)Y

T

IN

T

72”[42(./4,7') (68)

Combining (6.6) and (6.8) gives the desired inequality.

To make the argument rigorous, we need to make sure that all the relevant inverses
exist in L'(A,7), so that Lemma 6.4 is applicable. The operator (a*a + €)'/?(aa* +
g)(a*a+¢)/? is invertible in A and thus in L*(A, 7). On the other hand, by assumption
a? is invertible in L2(A, 7). It then follows from Lemma 6.7 that aa* is invertible in
LY(A, 1), s0 that (a*a+¢)'/?(aa*)(a*a+e)'/? is also invertible in L' (A, 7), by Lemma 6.4.
Thus, Lemma 6.4 is applicable in (6.6).

We now consider the two terms on the left-hand side of (6.7). By Lemma 6.7, both a
and a* are invertible in L?; it then follows from Lemma 6.4 that a*(a*a+c¢) is invertible in
L? and that a*(a*a+¢)a is invertible in L. Meanwhile, a? is, by assumption, invertible in
L?; it then follows from Lemma 6.4 that (a*)? is invertible in L2. Thus, using Lemma 6.4
*)2 2

one last time, we conclude that (a*)2a? is invertible in L!. Thus, Lemma 6.5 is also

applicable in (6.8). O
6.2. Computing the L3 spectrum

We consider the free multiplicative (s,t) Brownian motion b, defined in (5.2) as an
element of a tracial von Neumann algebra (5, 7). Recall that when s = ¢, the operator b ;
has the same noncommutative distribution as the ordinary free multiplicative Brownian
motion b; described in Section 2.1. Our goal is to prove a two-parameter version of
Theorem 4.2 from Section 4, by constructing an L? inverse to (bs¢ — A)" for A in the
complement of Es,ta with local bounds on the norm of the inverse. This will, in particular,
show that

speci(bsyt) C Xt (6.9)

)

for all n. (Recall Definition 6.1.) If we specialize (6.9) to the case n = 2, Theorem 6.2
will then tell us that the support of the Brown measure of b ; is contained in E&t-

Our tool is the two-parameter “free Hall transform” ¢; ; (cf. Section 5), which includes
the one-parameter transform ¢, = ¢, ; (cf. Section 3) as a special case. To avoid technical
issues for the case s = 4, we introduce a variant of the transform ¥; ;, denoted .%; ;. Define

Liol(bsﬂf’ T)

to be the closure in the noncommutative L? norm of the space of elements of the form
p(bs,1), where p is a Laurent polynomial in one variable.
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If P denotes the space of Laurent polynomials in one variable, then [13, Theorem 1.13]
shows that ¥; ; maps P bijectively onto P. We then define .7 ; initially on P by evalu-
ating each polynomial ¢; ;(p) on the element by ;:

ys,t(p) = gs,t(p)(bs,t) S Ll?lol(bs,ta T)'

By [29, Theorem 5.7, Part 2], .%; ; maps P C L?*(9D, v,) isometrically into L2 ;(bs¢, 7).
(Although some parts of the just-cited theorem implicitly assume that s # 4, Part 2 of
the theorem does not depend on this assumption.) Furthermore, since ¥, ; maps onto P,
the image of .%; ¢ is dense in L ,(bs ¢, 7). Thus, .7 ; extends to a unitary map

Fop s L2(OD,vg) — LE (bs, 7).

For A € C\ X,,, we will then construct an inverse (bs¢ — A)™" to (bss — A)" in
L2 ,(bs+,T) by constructing the preimage of (bs+ — A)~™ under .%; ;. Note that in Sec-
tion 4, we outlined the proof in the case s = t, with ¢ # 4. In that case, [4, Lemma 17|
allows us to identify L (B, 7) with the space <%, in which case, it is harmless to work
with ¥ ; instead of .7 ;.

Recall the definition of the function f,; in Proposition 5.2.

Theorem 6.8. Define a function rf\’t € L?(0D,v,) by the formula

ri’t(w) = fs’t)\o\) (w — ;S’t()\)) ,  w € supp(vy), (6.10)

for all \ € C\ X4 . Then for all such A\, we have
Tt (1Y) = (bsy — N7
That is to say, s (r3y") is an inverse in L? of (bsy — \).

Recall from Proposition 5.2 that fs,()) is outside the support of v, for all A in the
complement of X ;. Thus, ri’t(w) is bounded and is therefore a v,—square integrable
function of w for all A € C \ ¥y ;.

When A = 0, we interpret rf\’t to be the limit of the right-hand side of (6.10) as A
approaches zero, which is easily computed to be ré’t(w) =el/2w1,

Proof. For the case A = 0, we compute that 4, ;(w™') = e /2271 as may be verified
from the behavior of ¥, with respect to inversion [13, Eq. (5.2)] and the recursive
formula in [13, Proposition 5.2]. Thus, by definition, we have .7, ;(w™!) = e*t/zb;tl SO
that .7, +(et/?w™!) = b;tl, which is the A = 0 case of the theorem. The subsequent
calculations assume A # 0.

We start by considering large values of A. For |A| > ||bs,||, the element bs;, — A has a

bounded inverse, which may be computed as a power series:
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o

- 1 1
(boy = N7 = = (1= bye/N) XZ
k

with the series converging in the operator norm and thus also in the noncommutative
L? norm. Applying 5”5}1 term by term gives

S (b =N (@) = —1 DA (6.11)
k=0
_ —i (14 TI(s, £, 0, 1/0)] (6.12)

where p}i’t is the unique polynomial such that
gqs,iﬁ(piﬁt)(z) = Zkﬂ k S Za

and where IT is the generating function in [13, Theorem 1.17].
Meanwhile, according to [13, Eq. (1.21)], we have the following implicit formula for II:

1
(s, t,w, fs_¢(2) = ————— — 1.
( ) afs t( )) 1_0Jf5(2')
(This result extends a formula of Biane in the s = ¢ case.) Then, at least for sufficiently
small z, we may replace z by xs—:(2), where x,. is the inverse function to fs_;. This
substitution gives
1

(s, t,w, z) = ol toos(2) —1. (6.13)

Plugging this expression into (6.12) gives

s,t _ 1 1
(W) = DV —wfs(xs—t(1/N))’

for A sufficiently large, which simplifies—using (5.4) and the identity fs(1/z) = 1/ fs(z)—
to the expression in (6.10).
Similarly, for 0 < |A| < 1/ ||b;t1

(bs,e = N) ' =by(1— Ao y) !

=b,; Z Aeb oy

o0

1

DY
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Since p*} (w) = pp (w™!) (see [13, Eq. (5.2)]), we may apply sttl term by term to obtain
1 oo
S5 (bar = N7 (@) = £ 3 N )
k=1

= —TI(s,t,w 1, \).

> =

Using the formula (6.13) for II (for sufficiently small A) and simplifying gives the same
expression as for the large-)\ case.

Finally, for general A € C \ X5 ; we use an analytic continuation argument. The com-
plement of the closure of ¥, ; has at most two connected components, the unbounded
component and, for s > 4, a bounded component containing 0. Now, for all A € C \ X,
the function 75" in (6.10) is a well-defined element of L?(dD, vs), because (by Proposi-
tion 5.2) fs+ maps C\ X, into C \ supp vs. Furthermore, it is evident from (6.10) that
?"i’t is a weakly holomorphic function of A € C\ X, ;, with values in L?(9D, v), meaning
that X — ¢(r3") is a holomorphic for each bounded linear functional on L?(9D, vs).

Thus, since .75 ; is unitary (hence bounded), yswt(ri’t) is a weakly holomorphic func-
tion of A € C \ X, ;, with values in L2 ,(B,7). It is then easy to see that

(bs,t — )\)ys’t(ri’t) = bs’tysﬁt(rf\’t) — )\ys’t(ri’t) (614)

is also weakly holomorphic. After all, applying a bounded linear functional ¢ gives

D(bs - Tsa(r3")) = AS(Fs £ (151). (6.15)

Since multiplication by bs ¢ is a bounded linear map on LﬁOI(B, 7), the linear functional
¢(bs,¢+) is bounded, so both terms in (6.15) are holomorphic in A.

Meanwhile, we have shown that (6.14) is equal to 1 on a nonempty, open subset of
each connected component of C \ X ;. Since, also, (6.14) is weakly holomorphic, it must
be equal to 1 on all of C \is,t. O

We emphasize that, although for very large and small A the standard power-series
argument gives an inverse of bs; — A in the algebra B, the analytic continuation takes
place in L2, (B, 7), which is the range of the transform .%; ;. Thus, for general A € C\Z; 4,
we are guaranteed that bs; — A has an inverse in L?, but not necessarily in B.

Corollary 6.9. For all A\ € C\ X, and all positive integers n, the operator (bss — \)"
has an inverse (bs; — A\)~" in L*(B, 7). Specifically,

—-n 1 a nt s,t
(bs,t -A)" = s,t <m (8—)\) T ) ) (6.16)
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where ry" s as in (6.10). Furthermore, ||(bs; — )\)_”\|L2(B 1 s locally bounded on C \
Set-

Proof. We let

A= ot (B) T e

If we inductively compute the derivatives in the definition of rs’t’ (w), we will find
that the result is polynomial in 1/(w — fs+())), with coefﬁments that are holomorphic
functions of A € C \ X, ;. Thus, for each n, the quantity ry "( ) is jointly continuous
as a function of w € supp(r) and A € C \ X, Thus, |r}’ " L2(oD v, is finite and
depends continuously on A. Thus, once (6.16) is verified, the local bounds on the norm
of (bs; — A)~™ will follow from the unitarity of .7 ;.

We establish (6.16) by induction on n, the n = 1 case being the content of Theorem 6.8.

Assume, then, the result for a fixed n and recall that 75" (

w) is a polynomial in 1/(w —
fs.t(X)), with coefficients that are holomorphic functions of A. It is then an elmentary

matter to see that for each fixed A € C \is,t, the limit

-, ¢,
i rin (W) =y (w)
h—0 h

exists as a uniform limit on suppvs, and thus also in L?*(dD,vs). Applying .%; and
using our induction hypothesis gives

h—0

y <88Arit n(w)) = lim %[(b&t — ()\ —+ h))_" _ (bs,t _ )\)_n]7 (617)

where the limit is in LZ ,(bs.¢, 7).

We now multiply both sides of (6.17) by (bs ;— )", which we write as (bs ¢ —\)(bs,¢ —
A)™. Since multiplication by an element of B is a continuous linear map on L?(B, 1), we
obtain

= Jim (b, - A)%[(bs,t N (bes — A+ ) —1]. (6.18)

In the first term on the right-hand side of (6.18), we write
(bot = N)" = (bss — (A +h)+h)" =D ( ) (A +h)"kpF, (6.19)
k=0

Upon substituting (6.19) into (6.18), the k¥ = 0 term cancels with the existing term of
—1, while the £k = 1 term gives
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(bst = A)5 - nh(bs s — (A+h) " =n(bss — A)(bs,e — (A +h) 7 (6.20)

S| =

If we again write (bsy — A) = (bsy — (A + h) + h), we see that (6.20) tends to n -1 as
h — 0. Finally, all terms with & > 2 will vanish in the limit, leaving us with

8 S n
(bs,t - /\)nﬂys,t (57&7& (W)> =n-1

Thus,

L0 stm N —(p . _ n)-(ntD)
ys,t (na)\”')\ (UJ)> = (bs,t /\) 5

which is just the level-(n + 1) case of the corollary. O
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