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The free multiplicative Brownian motion bt is the large-N
limit of Brownian motion BN

t on the general linear group 
GL(N ; C). We prove that the Brown measure for bt—which 
is an analog of the empirical eigenvalue distribution for 
matrices—is supported on the closure of a certain domain Σt

in the plane. The domain Σt was introduced by Biane in the 
context of the large-N limit of the Segal–Bargmann transform 
associated to GL(N ; C).
We also consider a two-parameter version, bs,t: the large-N
limit of a related family of diffusion processes on GL(N ; C)
introduced by the second author. We show that the Brown 
measure of bs,t is supported on the closure of a certain planar 
domain Σs,t, generalizing Σt, introduced by Ho.
In the process, we introduce a new family of spectral domains 
related to any operator in a tracial von Neumann algebra: the 
Lp

n-spectrum for n ∈ N and p ≥ 1, a subset of the ordinary 
spectrum defined relative to potentially-unbounded inverses. 
We show that, in general, the support of the Brown measure 
of an operator is contained in its L2

2-spectrum.
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1. Introduction

One of the core theorems in random matrix theory is the circular law. Suppose CN

is an N × N complex matrix whose entries are independent centered normal random 
variables of variance 1

N . Then the empirical eigenvalue distribution of CN (the random 
probability measure placing points of equal mass at the eigenvalues) converges almost 
surely to the uniform probability measure on the unit disk as N → ∞. This theorem 
is due to Ginibre [17] and CN is often called a Ginibre ensemble. The circular law has 
been incrementally generalized to its strongest form where the entries are independent 
but can have any distribution with two finite moments [1,18,19,38].

We can recast Ginibre’s result as a theorem about matrix-valued Brownian motion. In 
a finite-dimensional real Hilbert space, there is a canonical Brownian motion, constructed 
by adding independent standard real Brownian motions in all the directions of any 
orthonormal basis. (See Section 2.1.1 below.) Let us regard the space MN (C) of complex 
N × N matrices as a real vector space of dimension 2N2, and equip it with the inner 
product

〈X, Y 〉N = N Re Trace(X∗Y ). (1.1)

Then the associated Brownian motion CN
t has the same law as the Ginibre ensemble, 

scaled by a factor of 
√

t. (The factor N in front of the Hilbert–Schmidt inner product is 
the correct choice to give the entries variance of order 1/N .) Hence, the matrix-valued 
Brownian motion CN

t has eigenvalues that concentrate uniformly in the disk of radius √
t as N → ∞.
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In this paper, we are interested in the Brownian motion BN
t on the general linear 

group GL(N ; C). One nice geometric way to define this object is by the rolling map. The 
tangent space to the identity in GL(N ; C) (i.e., the Lie algebra of this Lie group) is all 
of MN (C). Take the Brownian paths in the tangent space, and roll them onto the group; 
this yields the paths of BN

t . Since the paths are not smooth this rolling is accomplished 
by a stochastic differential equation for BN

t in terms of CN
t (cf. (2.2)). In particular, for 

small time, BN
t and CN

t are “close”, and so it is natural to expect that the eigenvalues 
of BN

t should follow a deformation of the circular law of radius 
√

t when t is close to 0.
For a normal matrix A, the eigenvalues are encoded in the matrix moments 

{Trace[Ak(A∗)�]}k,�∈N . However, the ensembles BN
t and CN

t are almost surely non-
normal for any t > 0; in fact, a stronger statement is true: with probability 1, BN

t and 
CN

t are non-normal for all t > 0 [30, Proposition 4.15]. The lack of normality presents 
significant hurdles to understanding the limit behavior of eigenvalues, whose connec-
tion to matrix moments is quite a bit more subtle. Nevertheless, the ∗-moments of CN

t

and (CN
t )∗ (i.e., traces of all words in these non-commuting matrices) do have a mean-

ingful large-N limit: in the language of free probability, the ensemble CN
t converges in 

∗-distribution to an operator ct, cf. [39] (see Section 2.1.2).
This circular Brownian motion ct, living in noncommutative probability space, does 

not have eigenvalues, and is not normal, so it does not have a spectral resolution. Nev-
ertheless, there is a construction, known as the Brown measure, that reproduces the 
spectral distribution in the normal case but is also valid for non-normal operators. Each 
operator a in a tracial von Neumann algebra has an associated Brown measure μa, which 
is a probability measure supported in the spectrum of a in C. If a is normal, μa is the 
usual spectral measure inherited from the spectral theorem; if A is an N × N matrix, 
its Brown measure is simply its empirical eigenvalue distribution. We discuss the Brown 
measure in general in Section 2.3 below. Girko’s proof [18] of the general circular law 
essentially began by proving that the Brown measure of c1 is uniform on the unit disk, 
and then showed that the empirical eigenvalue distribution of CN actually converges to 
the Brown measure of the large-N limit (his proof had some technical gaps which took 
nearly three decades to fill completely, cf. [1,38]).

Meanwhile, the Brownian motion BN
t on the group GL(N ; C) also has a large-N limit 

in terms of ∗-distribution: an operator bt known as the free multiplicative Brownian 
motion. It was introduced by Biane [3,4] and conjectured by him to be the large-N
limit of BN

t ; this conjecture was proven by the second author in [30]. The first step in 
understanding the large-N behavior of the eigenvalues of BN

t is to determine the Brown 
measure μbt

of bt. It is a probability measure supported in the spectrum of bt; but bt is 
a complicated object, and in particular its spectrum is completely unknown.

In this paper, we identify a closed set Σt (see Section 2.2) which contains the support 
of the Brown measure μbt

. The region Σt was introduced by Biane in [4] in the context 
of the Segal–Bargmann transform (or “Hall transform”) associated to the unitary group 
U(N) and its complexification GL(N ; C) (cf. [23]). Biane introduced a free Hall transform
Gt, which he understood as a sort of large-N limit of the Hall transform for U(N). The 
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transform Gt is an integral operator which maps functions on the unit circle to a space 
At of holomorphic functions on the region Σt ⊂ C, whose definition falls out of the 
complex analysis used in Biane’s proofs.

The meaning of the region Σt and its relation to the free multiplicative Brownian 
motion bt have remained mysterious. One clue to its origin comes from the holomorphic 
functional calculus. Using the metric properties of Gt, Biane showed that one can make 
sense of F (bt), as a possibly unbounded operator, for any F ∈ At. Now, if the spectrum 
of bt were contained in Σt, properties of the holomorphic functional calculus would show 
that F (bt) is a bounded operator for all F in H(Σt) and thus for all F in At, which is 
(presumably) not the case. On the other hand, the fact that F (bt) can be defined at 
all — even as an unbounded operator — suggests that the spectrum of bt is at least 
contained in the closure of Σt. Such a result would then imply that the support of the 
Brown measure of bt is contained in Σt. The latter statement is the main theorem of this 
paper.

Theorem 1.1. For all t > 0, the support of the Brown measure μbt
of the free multiplicative 

Brownian motion bt is contained in Σt.

We expect that the large-N limit of the empirical eigenvalue distribution of the 
Brownian motion BN

t on GL(N ; C) coincides with the Brown measure μbt
of the free 

multiplicative Brownian motion. If that is the case, the eigenvalues of BN
t should con-

centrate in Σt for large N ; this claim is supported by numerical evidence. Fig. 1 shows 
simulations of BN

t with N = 2000 and four different values of t, plotted along with the 
domains Σt. (The domain for t ≥ 4 has a small hole around the origin, which can be 
seen in the bottom two images in the figure.)

We also consider a two-parameter version bs,t of the free multiplicative Brownian mo-
tion and show that its Brown measure is supported on the closure of a certain domain 
Σs,t, introduced by Ho [29]. These domains similarly arise in the large-N limit of the two-
parameter Segal–Bargmann transform in the Lie group setting. The precise statement 
and proof can be found in Section 5.

After this paper was submitted for publication, we became aware of two papers in 
the physics literature that address the large-N limit of Brownian motion in GL(N ; C). 
The first, by Gudowska-Nowak, Janik, Jurkiewicz, Nowak [21] addresses only the one-
parameter case (what we call BN

t ). The second, by Lohmayer, Neuberger, and Wettig 
[32] addresses the full two-parameter case (what we call BN

s,t in Section 5). Using non-
rigorous methods, both papers identify the region in which the eigenvalues should 
live in the large-N limit. The domains they identify are precisely what we call Σt

(in the one-parameter case in [21]) and what we call Σs,t (in the two-parameter case 
in [32]).

Our results are rigorous and use completely different methods from those in [21,32]. 
Our approach also has the conceptual advantage of connecting the Brown measure of the 
free multiplicative Brownian motion to the previously known results on the distribution 
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Fig. 1. Simulations of the eigenvalues of BN
t shown with the domain Σt, for N = 2000 and t = 2, t = 3.9, 

t = 4, and t = 4.1.

of the free unitary Brownian motion. Finally, we develop a general result about Brown 
measures and the notion of L2

2 spectrum. (For more details on the relationship between 
[21,32] and our results, see Remark 5.5 below.)

The strategy we employ to prove Theorem 1.1 is of independent interest, as it provides 
a new restriction on the support of the Brown measure of an operator, in terms of a family 
of spectral domains associated to the operator. Let (A, τ) be a tracial von Neumann 
algebra and let a ∈ A. As noted, the Brown measure μa is supported in the spectrum 
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of a; in fact, its support set may be a strict subset of the spectrum. Recall that the 
spectrum of a is the complement of the resolvent set of a, which is the set of λ ∈ C

for which a − λ is invertible (meaning that (a − λ)−1 is a bounded operator). The rich 
structure of A and the trace τ give a natural generalization of these spaces: we may ask 
that the inverse (a − λ)−1 exist but not necessarily be bounded, instead insisting that 
it is in Lp(A, τ) for some p ≥ 1. (The p = ∞ case coincides with the usual resolvent 
set.) What is more, given the often bizarre algebraic properties of non-normal operators 
(which can, for example, be nilpotent), we may ask that some power (a − λ)n have an 
inverse in Lp(A, τ). (Unless a is normal, this is not equivalent to a − λ having an inverse 
in Lnp(A, τ).) The set of λ ∈ C for which (a − λ)n has an inverse in Lp (and for which 
certain uniform local bounds hold) is called the Lp

n-resolvent set of a, and its complement 
is specp

n(a), the Lp
n-spectrum of a.

Our key observation leading to the proof of Theorem 1.1 is the following new descrip-
tion of (a closed set containing) the support of the Brown measure.

Theorem 1.2. For any operator a in a tracial von Neumann algebra, the support of the 
Brown measure μa is contained in spec2

2(a), which is a subset of the spectrum of a.

A detailed discussion of these generalized spectral domains, and the proof of Theo-
rem 1.2, can be found in Section 6.1. Once this result is established, we use Biane’s free 
Hall transform Gt to show that spec2

2(bt) = Σt, which proves that the support of μbt
is 

contained in Σt, establishing Theorem 1.1.
A more detailed version of this outline of the proof is contained in Section 4 (cf. 

Theorems 4.1 and 4.2); the complete proofs can then be found in Section 6.

2. Preliminaries

In this section, we provide background on the objects in the statement of our main 
theorem—the free multiplicative Brownian motion, the Brown measure, and the domains 
Σt.

2.1. Lie group Brownian motions and their large-N limits

2.1.1. Lie group Brownian motions
Let H be a finite-dimensional real Hilbert space. The Brownian motion on H, W H

t , 
is the diffusion process defined by

W H
t =

d∑
Bj

t ej (2.1)

j=1
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where {e1, . . . , ed} is an orthonormal basis for H, and {Bj
t }d

j=1 are i.i.d. standard (real) 
Brownian motions. The law of this process is invariant under rotations, and hence does 
not depend on which orthonormal basis is chosen.

Let G ⊂ GL(N ; C) be a matrix Lie group, and let g ⊂ MN (C) be its Lie algebra. 
A choice of inner product on g induces a left-invariant Riemannian metric on G. As a 
Riemannian manifold, then, G has a well-defined Brownian motion: the diffusion with 
infinitesimal generator given by half the Laplacian. In the Lie group setting there is a 
simple description of the Brownian motion BG

t in terms of the Brownian motion W g
t on 

the Lie algebra (as in (2.1)):

dBG
t = BG

t ◦ dW g
t , BG

0 = I. (2.2)

The ◦ denotes the Stratonovich stochastic differential. This Stratonovich SDE can be 
converted to an Itô SDE; the form of the resulting equation depends on the structure of 
the group (cf. [33, p. 116]).

For our purposes, the two relevant Lie groups are the unitary group U(N) whose Lie al-
gebra is u(N) = M s.a.

N (C) (self-adjoint matrices), and the general linear group GL(N ; C)
whose Lie algebra consists of all complex matrices gl(N ; C) = MN (C). (In the unitary 
case, we follow the physicists’ convention; mathematicians typically use skew-self-adjoint 
matrices.) Using the inner product (1.1) on both these Lie algebras, we obtain Brownian 
motions which we will denote thus:

W
u(N)
t = XN

t and W
gl(N ;C)
t = CN

t .

To be more explicit, CN
t is the Ginibre Brownian motion, which has i.i.d. entries that 

are all complex Brownian motions of variance t/N , and XN
t is the Wigner Brownian 

motion, which is Hermitian with i.i.d. upper triangular entries, with complex Brownian 
motions above the diagonal and real Brownian motions on the diagonal, each of variance 
t/N .

The Brownian motions on the groups, which we denote BU(N)
t = UN

t and BGL(N ;C)
t =

BN
t , then satisfy Stratonovich SDEs given by (2.2). These equations can be written in 

Itô form as follows:

dUN
t = iUN

t dXN
t − 1

2UN
t dt and dBN

t = BN
t dCN

t (2.3)

(both started at the identity matrix). These defining SDEs play the role of the rolling 
map described in the introduction.

2.1.2. The large-N limits
The four processes XN

t , CN
t , UN

t , and BN
t all have large-N limits in the sense of 

free probability theory. (For a thorough introduction to free probability theory and its 
connection to random matrix theory, the reader is directed to [34] and [35].) The limits 



8 B.C. Hall, T. Kemp / Advances in Mathematics 355 (2019) 106771
are one-parameter families of operators xt, ct, ut, and bt all living in a noncommutative 
probability space (B, τ). (More precisely, B is a finite von Neumann algebra and τ is a 
faithful, normal, tracial state.) The sense of convergence is almost sure convergence of 
the finite-dimensional noncommutative distributions, defined as follows.

Definition 2.1. Let AN
t be a sequence of MN (C)-valued stochastic processes (all defined 

on the same sample space). Let (A, τ) be a noncommutative probability space, and let 
at ∈ A for each t > 0. We say AN

t converges to at in finite-dimensional noncommutative 
distributions if, for each n ∈ N and times t1, . . . , tn ≥ 0, and each noncommutative 
polynomial P in 2n indeterminates, the following limit holds almost surely:

lim
N→∞

1
N Trace

[
P (AN

t1
, . . . , AN

tn
, (AN

t1
)∗, . . . , (AN

tn
)∗)

]
= τ

[
P (at1 , . . . , atn

, a∗
t1

, . . . , a∗
tn

)
]

.

The limit of XN
t was identified by Voiculescu [39]; it is known as free additive Brow-

nian motion xt, and can be constructed on a Fock space. From here, one can derive the 
CN

t case by noting that CN
t = 1√

2(XN
t + iY N

t ) where Y N
t is an independent copy of 

XN
t . Given the independence and rotational invariance, it follows by standard results on 

asymptotic freeness that the large-N limit of CN
t can be represented as ct = 1√

2(xt + iyt)
where {xt, yt} are freely independent free additive Brownian motions; we call ct a free 
circular Brownian motion.

Since the unitary and general linear Brownian motions UN
t and BN

t are defined as 
solutions of SDEs involving XN

t and CN
t , good candidates for their large-N limits are 

given by free SDEs involving xt and ct. (Free stochastic analysis was introduced in [6]
and further developed in [7,31]; the reader may also consult the background sections 
of [11,30] for succinct summaries of the relevant concepts.) The free unitary Brownian 
motion ut and free multiplicative Brownian motion bt are defined as solutions to the free 
SDEs

dut = iut dxt − 1
2ut dt and dbt = bt dct (2.4)

(both started at 1), mirroring the matrix SDEs of (2.3).
The free unitary Brownian motion ut was introduced by Biane in [3], wherein he also 

showed that it is the large-N limit of the unitary Brownian motion UN
t as a process (as in 

Definition 2.1). In particular, in the case of a single time t (n = 1 in the definition, t1 = t), 
since u∗

t = u−1
t , the statement is simply that the trace moments 1

N Trace[(UN
t )k], k ∈ Z, 

converge almost surely as N → ∞ to τ [uk
t ]. The numbers νk(t) := τ [uk

t ], meanwhile, are 
the moments of a probability measure νt on the unit circle. Biane computed these limit 
moments, which had already appeared in work of Singer [37] in Yang–Mills theory on 
the plane in an asymptotic regime. They are given by

νk(t) :=
∫

ωk νt(dω) = e− |k|
2 t

|k|−1∑
j=0

(−t)j

j! |k|j−1
(

|k|
j

)
(2.5)
∂D
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for n ∈ Z \ {0}, with ν0(t) = 1.
From here, using complex analytic techniques, Biane completely determined the mea-

sure νt. For t > 4, the support of νt is the whole unit circle while for t ≤ 4 its support 
is the following arc:

supp νt =
{

eiθ : |θ| ≤ 1
2

√
t(4 − t) + arccos

(
1 − t

2

)}
, t ≤ 4. (2.6)

Biane also gave an implicit description of the measure νt, which has a real analytic 
density on the interior of its support, but we do not need this description presently.

The key to analyzing νt was determining a certain analytic transform of νt in the unit 
disk D. Let

ψt(z) :=
∫

∂D

ωz

1 − ωz
νt(dω), z ∈ D

denote the moment generating function (with no constant term). The function ψt has 
a continuous extension to the closed disk D; this is tantamount to the fact, as Biane 
proved, that νt possesses a continuous density on ∂D. Of greater computational use is 
the following function:

χt(z) := ψt(z)
1 + ψt(z) (2.7)

which also has a continuous extension to D. In fact, χt is one-to-one on the open disk, 
and its inverse is analytic, with the following simple explicit formula:

ft(z) := χ
〈−1〉
t (z) = ze

t
2

1+z
1−z . (2.8)

It is from this identity that the explicit formulas (2.5) and (2.6) are derived.
Biane also introduced the free multiplicative Brownian motion process bt in [4], where 

he conjectured that it is the large-N limit of the GL(N ; C) Brownian motion BN
t . Given 

the non-normality of the matrices and operators involved, this turned out to be a difficult 
problem that took nearly two decades to solve; the second author proved this in [30]. 
Now, the “holomorphic” moments τ [bk

t ] are easily shown to have the value 1 for all k
(see also (5.6)). But since the process bt is not normal, these moments do not determine 
much of the noncommutative distribution. The free SDE (2.4) that defines bt allows for 
any mixed moment in bt and b∗

t to be computed (iteratively) given enough patience; 
see [30, Proposition 1.8] for some notable examples. There is, at present, no known 
simple description of the full noncommutative distribution of this complicated object. 
Its spectrum is also unknown.
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2.2. The domains Σt

In this section, we describe the family of domains Σt ⊂ C, introduced by Biane in [4], 
which enter into the statement of our main result. They arose in the context of the free 
Segal–Bargmann transform (see Section 3), which connects ut and bt. For this reason, 
they are related to the function ft in (2.8), which is the inverse of the shifted moment 
generating function of the spectral measure νt of the free unitary Brownian motion.

It is easily verified that if |z| = 1, then |ft(z)| = 1. There are, however, points z with 
|z| 
= 1 for which |ft(z)| is nevertheless equal to 1.

Proposition 2.2. For all t > 0, consider the set

Et = {z ∈ C ||z| 
= 1, |ft(z)| = 1}

and define Σt to be the connected component of the complement of Et containing 1. Then 
Σt is bounded for all t > 0, Σt is simply connected for t ≤ 4, and Σt is doubly connected 
for t > 4. In all cases, we have

∂Σt = Et.

These properties of the region Σt were proved by Biane in [4]; see especially pp. 
273–274. See also [29, Section 4.2]. The closure in the definition of the set Et is needed 
to fill in the points (at most two of them) where ∂Σt intersects the unit circle. In recent 
joint work between the present authors and Driver [14, Theorem 4.1], we found a simpler 
description of the regions Σt. They are the sublevel sets of a certain explicit function: 
Σt = {λ ∈ C : T (λ) < t} and ∂Σt = {λ ∈ C : T (λ) = t}, where

T (λ) = |λ − 1|2 log(|λ|2)
|λ|2 − 1 .

(It is easy to compute that this expression has a limit as |λ| → 1. Indeed, T extends to 
a real analytic function on C \ {0}, and for |λ| = 1, we have T (λ) = |λ − 1|2.) Fig. 2
shows the domain Σt with t = 3 and t = 4.05, with the unit circle shown for comparison. 
Fig. 3 then shows the transitional case t = 4 in more detail. In all cases, 1 is in Σt and 
0 is not in Σt.

An important property of the region Σt, which follows from the just-cited results of 
Biane [4], involves the support arc of the spectral measure νt of free unitary Brownian 
motion. This result is crucial to the proof of our main theorem.

Proposition 2.3. For all t > 0, the function ft maps C \ Σt injectively onto C \ supp νt.

This is a typical “slit plane” conformal map; see Fig. 4.
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Fig. 2. The domains Σt with t = 3 and t = 4.05, with the unit circle (dashed) shown for comparison.

Fig. 3. The region Σt with t = 4 (left) and a detail thereof (right).

2.3. Brown measure

We work in the context of a sufficiently rich noncommutative probability space: a 
tracial von Neumann algebra.

Definition 2.4. A tracial von Neumann algebra is a finite von Neumann algebra A to-
gether with a faithful, normal, tracial state τ : A → C.

Recall that a state τ is norm-1 linear functional taking non-negative elements to 
non-negative real numbers. (Such a functional necessarily satisfies τ(1) = ‖τ‖ = 1.) A 
state τ is called faithful if τ(a∗a) > 0 for all a 
= 0, it is called normal if it is continuous 
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Fig. 4. The map ft takes C \ Σt (left) injectively onto C \ supp νt (right). Shown for t = 3.

with respect to the weak∗ topology on A (cf. [8, Theorem III. 2.1.4, p. 262]), and it is 
called tracial if τ(ab) = τ(ba) for all a, b ∈ A.

Let (A, τ) be a tracial von Neumann algebra. For each element a of A, it is possible 
to define a probability measure μa on C called the Brown measure of a, which should 
be interpreted as something like an empirical eigenvalue distribution for the operator a. 
The definitions and properties stated in this section may be found in Brown’s original 
paper [9] and in [34, Chapter 11].

We first recall the notion of the Fuglede–Kadison determinant of a [15,16], denoted 
Δ(a), which is most easily defined by a limiting process:

log Δ(a) = lim
ε→0

1
2τ [log(a∗a + ε)]. (2.9)

In general, log Δ(a) may have the value −∞, in which case, Δ(a) = 0. If, for example, 
A = MN (C) and τ is the normalized trace, then Δ(a) = |det a|1/N , where det a is the 
ordinary determinant of a.

For a tracial von Neumann algebra (A, τ), the Brown measure of an element a ∈ A is 
then defined as

μa = 1
2π

∇2
λ log(Δ(a − λ)),

where ∇2
λ is the Laplacian with respect to λ, computed in the distributional sense. It can 

be shown that this distributional Laplacian is a represented by a probability measure on 
the plane.

Proposition 2.5. Let a be an element of A and let μa be its Brown measure. Then the 
following results hold.
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(1) The measure μa is a probability measure on the plane.
(2) The support of μa is contained in the spectrum of a, but the two sets do not coincide 

in general.
(3) For all non-negative integers n,

∫
zn dμa(z) = τ [an],

and if a is invertible, the same result holds for all integers n.

Although the support of the Brown measure can be a proper subset of the spectrum, 
there are many interesting examples in which the two sets coincide.

Using the limiting formula (2.9) for the Flugede–Kadison determinant, we may give 
a limiting formula for the Brown measure. With the notation

aλ := a − λ,

we have

μa = 1
4π

lim
ε→0

{
∇2

λτ [log(a∗
λaλ + ε)] d2λ

}
, (2.10)

where d2λ is the two-dimensional Lebesgue measure on C and the limit is in the weak 
sense. Furthermore, the Laplacian on the right-hand side of (2.10) can be computed 
explicitly [34, Section 11.5], giving still another formula for the Brown measure:

μa = 1
π

lim
ε→0

{
ε τ [(a∗

λaλ + ε)−1(aλa∗
λ + ε)−1] d2λ

}
. (2.11)

The following result follows easily from (2.11).

Corollary 2.6. Suppose the quantity

τ [(a∗
λaλ + ε)−1(aλa∗

λ + ε)−1] (2.12)

is bounded uniformly for all ε > 0 and all λ in a neighborhood of some value λ0. Then 
λ0 does not belong to the support of the Brown measure μa.

In particular, if λ0 belongs to the resolvent set of a, it is not hard to see that the 
quantity (2.12) has a finite limit as ε → 0, for all λ in a neighborhood of λ0, so that 
the corollary applies. Thus, Corollary 2.6 implies Point (2) of Proposition 2.5. But the 
corollary is stronger, in the sense that it may apply even if λ0 is in the spectrum of a.

We close this section by noting three important special cases of the Brown measure.
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• When A = MN (C) and τ is the normalized trace, the Brown measure of a matrix A
is its empirical eigenvalue distribution. That is,

μA = 1
N

n∑
j=1

δλj
,

where λ1, . . . , λN are the eigenvalues of A, listed with their algebraic multiplicity.
• For a normal element a of A, Brown measure coincided with the spectral measure; 

μa is just the composition of the projection-valued spectral resolution with τ :

μa(V ) = τ(Ea(V )), V ∈ Borel(C),

where Ea is the projection-valued measure associated to a by the spectral theorem.
• R-diagonal operators form an important class of (generally) non-normal elements 

of a tracial von Neumann algebra; these include the circular operators ct and Haar 
unitaries. An element a ∈ A is R-diagonal if it has the same non-commutative 
distribution as ua for any Haar unitary operator u freely independent from a; see 
[35, Lecture 15] for more details. In [22], Haagerup and Larsen proved that the 
Brown measure of an R-diagonal operator is rotationally invariant, with a radial 
real analytic density supported on a certain annulus (or circle) determined by a; see 
the discussion following Theorem 6.2 below for more details.

Since the free multiplicative Brownian motion bt is not finite-dimensional, normal, or 
R-diagonal, none of the preceding cases applies. We will see, however, that some of the 
ideas related to the support of the Brown measure of R-diagonal operators are useful in 
the present context.

3. Free Segal–Bargmann transform

Recall from the Section 2.1 that the law νt of free unitary Brownian motion is a 
probability measure on the unit circle that represents the limiting empirical eigenvalue 
distribution for Brownian motion in the unitary group. In [4], Biane introduced a “free 
Hall transform” Gt that maps L2(∂D, νt) into H(Σt), the space of holomorphic functions 
on the domain Σt. In this section, we recall both the original construction of Gt given by 
Biane and a realization given by the authors together with Driver [13] and Cébron [10]. 
The transform Gt will be a crucial tool in the proof of our main theorem.

3.1. Using free probability

Let ut be a free unitary Brownian motion and bt a free multiplicative Brownian motion 
that is freely independent from ut, both living in a tracial von Neumann algebra (B, τ). 
In the approach pioneered by Biane and further developed by Cébron, the map Gt is 
characterized by the requirement that for each Laurent polynomial p, we have



B.C. Hall, T. Kemp / Advances in Mathematics 355 (2019) 106771 15
(Gtp)(bt) = τ [p(btut)|bt], (3.1)

where τ [ · |bt] is the conditional trace with respect to the algebra generated by bt. (Com-
pare [4, Theorem 8] for a strictly unitary analog, and [10, Theorem 3] for the precise 
statement of (3.1).) If, for example, p is the polynomial p(u) = u2, then it is not hard to 
compute (cf. [34, p. 55]) that

τ [btutbtut|bt] = τ(ut)2b2
t + (τ(u2

t ) − τ(ut)2)τ(bt)bt.

We may then use the moment formulas τ(ut) = e−t, τ(u2
t ) = e−t(1 − t), and τ(bt) = 1. 

(The moments of ut are the constants νk(t) of (2.5), while the moments of bt are the 
s = t case of (5.6).) We therefore obtain

τ [btutbtut|bt] = e−t(b2 − tb).

Thus, in this case, Gtp is also a polynomial, given by

(Gtp)(b) = e−t(b2 − tb). (3.2)

As explained in Section 3.3, the map Gt can be viewed as the large-N limit of the 
generalized Segal–Bargmann transform over U(N) introduced by the first author in [23]. 
The motivation for Biane’s definition of Gt is the stochastic approach to the generalized 
Segal–Bargmann transform developed by Gross and Malliavin [20].

3.2. As an integral operator

Using the subordination method developed in [5], Biane realized Gt as an integral 
operator mapping L2(∂D, νt) into H(Σt). Explicitly,

(Gtf)(z) =
∫

∂D

f(ω) |1 − χt(ω)|2

(z − χt(ω))(z−1 − χt(ω))
dνt(ω), z ∈ Σt, (3.3)

where χt was defined in (2.7). (See [4, Theorem 8] and the computations that follow it, 
along with Proposition 13.) Here, for ω ∈ ∂D, χt(ω) denotes the value of the unique 
continuous extension of χt to D; in other words, it is the limiting value of χt(ζ) as ζ ∈ D

approaches ω from inside the unit disk. Note that for ω ∈ ∂D both χt(ω) and 1/χt(ω)
lie on the boundary of Σt, so that the integrand in (3.3) is a holomorphic function of z
for z in the open set Σt. Biane showed that, for t 
= 4, the map Gt is injective, so that it 
is possible to identify L2(∂D, νt) with its image:

At := Image(Gt) ⊂ H(Σt).
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Now, let us define L2
hol(bt, τ) to be the closure in the noncommutative L2 space 

L2(B, τ) of the space of elements of the form p(bt), where p is a Laurent polynomial 
in one variable. That is to say, L2

hol(bt, τ) is the closure of the span of the positive and 
negative integer powers of bt, not including any powers of b∗

t . (Biane used a slightly 
different definition that is easily seen to be equivalent to this one.) Biane showed that 
for t 
= 4, there is a bijection between At and L2

hol(bt, τ) uniquely determined by the 
condition that for each Laurent polynomial p, we have

p �→ p(bt).

Note that for t 
= 4, the space L2
hol(bt, τ) is identified with the space At of holomorphic 

functions. Nevertheless, the noncommutative L2 norm on L2
hol(bt, τ) does not correspond 

to an L2 norm on At with respect to any measure on Σt. (It is, instead, the Hilbert space 
norm induced by a certain reproducing kernel on At which is defined by the integral 
kernel of G t, cf. (3.3).)

For a general f ∈ At, we will write the corresponding element of L2
hol(bt, τ) sugges-

tively as f(bt) and think of the map f �→ f(bt) as a variant of the usual holomorphic 
functional calculus. That is to say, we think of the map from At to L2

hol(bt, τ) as “eval-
uation on bt.” Note, however, that elements of L2

hol(bt, τ) are in general unbounded 
operators.

Theorem 3.1 (Biane’s Free Hall Transform). For all t > 0 with t 
= 4, the map Gt

is a unitary isomorphism from L2(∂D, νt) to At, where the norm on At is defined by 
identification with L2

hol(bt, τ). In particular, we have

‖f‖L2(∂D,νt) = τ{[(Gtf)(bt)]∗[(Gtf)(bt)]}

for all f ∈ L2(∂D, νt).

When t = 4, the preceding theorem is not known to hold, because it is not known that 
Gt is injective. But one still has a theorem, as follows. One considers at first the map 
p �→ Gtp on polynomials and then constructs a map from the space of polynomials into 
L2

hol(bt, τ) by mapping p to (Gtp)(bt). This map is isometric for all t > 0 and it extends 
to a unitary map of L2(∂D, νt) onto L2

hol(bt, τ); see Section 6.2 for details.
In light of the preceding discussion, we expect that, at least for t 
= 4, the spectrum 

of bt will not be contained in Σt. After all, if such a containment held, the operator 
f(bt), f ∈ At ⊂ H(Σt) would presumably be computable by the holomorphic functional 
calculus, in which case f(bt) would be a bounded operator. But actually, every element 
of L2

hol(bt, τ) arises as f(bt) for some f ∈ At, and the elements of L2
hol(bt, τ) are in general 

unbounded operators.
On the other hand, since we are able to define f(bt) for any f ∈ At, at least as an 

unbounded operator, it seems reasonable to expect that the spectrum of Σt is contained 
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in the closure of Σt. Our main result, that the Brown measure of bt is supported in Σt, 
is a step toward establishing this claim; compare Proposition 2.5.

3.3. From the generalized Segal–Bargmann transform

In 1994, the first author introduced a generalized Segal–Bargmann transform for com-
pact Lie groups [23]. In the case of the unitary group U(N), the transform, which 
we denote here as G N

t , maps L2(U(N), ρt) to the space of holomorphic functions in 
L2(GL(N ; C), γt). (Note: in [23] and follow-up work such as [13], the transform was of-
ten denoted Bt; to avoid clashing with our present notation BN

t for the Brownian motion 
on GL(N ; C), we use G N

t instead for the Segal–Bargmann transform here.) Here ρt and 
γt are heat kernel measures—that is, the distributions at time t of Brownian motions on 
the respective groups, starting at the identity. The transform is defined as

G N
t f = (etΔ/2f)C, (3.4)

where Δ is the Laplacian on U(N), etΔ/2 is the associated (forward) heat operator, 
and (·)C denotes the holomorphic extension of a sufficiently nice function from U(N) to 
GL(N ; C). See also [25] for more information. The transform can easily be “boosted” 
to map matrix-valued functions on U(N) to holomorphic matrix-valued functions on 
GL(N ; C) (by acting component-wise; i.e., via G N

t ⊗ 1MN (C)).
A stochastic approach to the transform was developed by Gross and Malliavin in [20]; 

this approach played an important role in Biane’s paper [4]. See also [26,28] for further 
development of the ideas in [20]. Let UN

t and BN
t be independent Brownian motions 

in U(N) and GL(N ; C) (cf. (2.3)), and let f be a function on U(N) that admits a 
holomorphic extension (also denoted f) to GL(N ; C). Then we have

E[f(BN
t UN

t )|BN
t ] = (G N

t f)(BN
t ). (3.5)

This result, by itself, is not deep. After all, in the finite-dimensional case, the conditional 
expectation can be computed as an expectation with respect to UN

t , with BN
t treated as 

a constant. Since UN
t is distributed as a heat kernel on U(N), the left-hand side of (3.5)

becomes a convolution of f with the heat kernel, giving the heat kernel in the definition 
(3.4) of the transform G N

t .
The crucial next step in [20] is to regard UN

t and BN
t as functionals of Brownian 

motions in the Lie algebra, by solving the relevant versions of the stochastic differential 
equation (2.2). Using this idea, Gross and Malliavin are able to deduce the properties of 
the generalized Segal–Bargmann from the previously known properties of the classical
Segal–Bargmann transform for an infinite-dimensional linear space, namely the path 
space in the Lie algebra of U(N). (We are glossing over certain technical distinctions; 
the preceding description is actually closer to [28, Theorem 18].) The expression (3.5)
was the motivation for Biane’s formula (3.1) in the free case, and just as in [20], Biane 
was able to obtain properties of the transform Gt from the corresponding linear case.
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In [4], Biane conjectured, with an outline of a proof, that the free Hall transform 
Gt can be realized using the large-N limit of G N

t . This conjecture was then verified 
independently by the authors and Driver in [13] and by Cébron in [10]; see also the 
expository paper [27].

The limiting process is as follows. Consider the transform G N
t on matrix-valued func-

tions of the form f(U), where f is a function on the unit circle and f(U) is computed by 
the functional calculus. If, for example, f is the function f(u) = u2 on the circle, then 
we can consider the associated matrix-valued function f(U) = U2 on the unitary group 
U(N). For any fixed N , the transformed function G N

t (f) on GL(N ; C) will no longer be 
of functional-calculus type. Nevertheless, in the large-N limit, G N

t will map f(U) to the 
functional-calculus function (Gtf)(Z), Z ∈ GL(N ; C).

Specifically, if p is a Laurent polynomial, then Gtp is also a Laurent polynomial, and 
(abusing notation slightly)

G N
t (p(U)) = (Gtp)(Z) + O(1/N2), Z ∈ GL(N ;C),

where O(1/N2) denotes a term whose norm is bounded by a constant times 1/N2. See 
[13, Theorem 1.11] and [10, Theorem 4]. In particular, if f(U) = U2, then in light of 
(3.2), we have

(G N
t f)(Z) = e−t(Z2 − tZ) + O(1/N2), Z ∈ GL(N ;C).

(See also Example 3.5 and the computations on p. 2592 of [13].)

4. An outline of the proof of Theorem 1.1

As we pointed out in Proposition 2.5, the Brown measure of an operator a is supported 
in the spectrum of a. We strengthen this result, as follows. Given a noncommutative 
probability space (A, τ), we can construct the noncommutative L2 space L2(A, τ), which 
is the completion of A with respect to the noncommutative L2 inner product, 〈a, b〉 =
τ(b∗a). It makes sense to multiply an element of the noncommutative L2 space L2(A, τ)
by an element of A itself, and the result is again in L2(A, τ). We say that a ∈ A has an 
inverse in L2 if there exists some b ∈ L2(A, τ) such that ab = ba = 1.

Theorem 4.1. Let (A, τ) be a tracial von Neumann algebra and let λ0 be in C. Suppose 
that (a −λ)2 has an inverse—denoted (a −λ)−2—in L2(A, τ) for all λ in a neighborhood 
of λ0 and that 

∥∥(a − λ)−2
∥∥

L2(A,τ) is bounded near λ0. Then λ0 does not belong to the 
support of the Brown measure μa.

Note that if a − λ0 has a bounded inverse—that is, an inverse in A—then a − λ also 
has an inverse for all λ in a neighborhood of λ0, and 

∥∥(a − λ)−1
∥∥

A is bounded near λ0. 
In that case, we have
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∥∥(a − λ)−2∥∥
L2(A,τ) ≤

∥∥(a − λ)−2∥∥
A ≤

∥∥(a − λ)−1∥∥2
A ,

which shows that 
∥∥(a − λ)−2

∥∥
L2(A,τ) is bounded near λ0. Thus, we can recover from 

Theorem 4.1 the result that the support of μa is contained in the spectrum of a. In 
general, however, Theorem 4.1 could apply even if a − λ0 does not have a bounded 
inverse.

We now briefly indicate the proof of Theorem 4.1. Using the notation

aλ = a − λ,

we make the following intuitive but non-rigorous estimates: for all ε > 0,

τ [(a∗
λaλ + ε)−1(aλa∗

λ + ε)−1] ≤ τ [(a∗
λaλ)−1(aλa∗

λ)−1] = τ [a−2
λ (a−2

λ )∗]

=
∥∥(a − λ)−2∥∥2

L2(A,τ) .

(The given estimate actually does hold; the proof is in Section 6.1.) If the hypotheses 
of the theorem hold, this last expression is bounded for λ near λ0. Corollary 2.6 then 
shows that λ0 is not in the support of the Brown measure of a.

We now apply Theorem 4.1 to the case of interest to us, in which a is taken to be a 
free multiplicative Brownian motion bt in a tracial von Neumann algebra (B, τ). Recall 
that L2

hol(bt, τ) denotes the closure in L2(B, τ) of the space of Laurent polynomials in 
the element bt.

Theorem 4.2. For all t > 0, if λ ∈ C \ Σt, then the element (bt − λ)n has an inverse 
in L2

hol(bt, τ) ⊂ L2(B, τ) for all n = 1, 2, 3, . . ., with local bounds on the L2 norm of the 
inverse.

When t 
= 4, the proof of this lemma draws on the transform Gt in Theorem 3.1. We 
will show that the function 1/(z−λ)n belongs to the space At of holomorphic functions on 
Σt, at which point Theorem 3.1 tells us that there is a corresponding element (bt −λ)−n, 
which will be the inverse of (bt − λ)n. We demonstrate this key fact — that 1/(z − λ)n

belongs to the space At = Image(Gt) — by explicitly constructing the preimage of 
1/(z − λ)n in L2(∂D, νt). Specifically, using results from [4] or [13] about the generating 
function of the transform Gt, we will show that, for all ω ∈ supp(νt) ⊂ ∂D,

(Gt)−1
(

1
( · − λ)n

)
(ω) = 1

(n − 1)!

(
∂

∂λ

)n−1 [
ft(λ)

λ

1
ω − ft(λ)

]
.

Recall from Section 2.2 that ft maps the complement of Σt to the complement of supp νt. 
It follows that the function on the right-hand side is bounded—and therefore square 
integrable—on supp νt, for all λ ∈ C \ Σt. When t = 4, the proof is very similar, except 
that now we have to bypass the space At and go directly from L2(∂D, νt) to L2

hol(bt, τ).
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The n = 2 case of Theorem 4.2 shows that Theorem 4.1 applies, and we conclude that 
the Brown measure of bt is supported in Σt.

5. The two-parameter case

In this section, we discuss the generalization of the process bt and the Segal–Bargmann 
transform to the two-parameter setting bs,t of [13,29,30]; since bt = bt,t, we will prove the 
single-time theorems as stated as special cases of the general two-parameter framework. 
We mostly follow the notation in [29, Section 2.5].

5.1. Brownian motions

Fix positive real numbers s and t with s > t/2. Let {xr}r≥0 and {yr}r≥0 be freely 
independent free additive Brownian motions in a tracial von Neumann algebra (B, τ), 
with time-parameter denoted by r. Now define

ws,t(r) =
√

s − t

2 xr + i

√
t

2 yr,

which we call a free elliptic (s, t) Brownian motion. The particular dependence of the 
coefficients on s and t is chosen to match the two-parameter Segal–Bargmann transform, 
which will be discussed below. Note: when s = t,

wt,t(r) =
√

t

2(xr + iyr) =
√

tcr

in terms of the free circular Brownian cr motion in Section 2.1.
We now define a “free multiplicative (s, t) Brownian motion” bs,t(r) as a solution to 

the free stochastic differential equation

dbs,t(r) = i bs,t(r) dws,t(r) − 1
2(s − t)bs,t(r) dr (5.1)

subject to the initial condition bs,t(0) = 1. (The second term on the right-hand side 
of (5.1) is an Itô correction term that can be eliminated by writing the equation as a 
Stratonovich SDE.) We also use the notation

bs,t = bs,t(1). (5.2)

When s = t, (5.1) becomes

dbt,t(r) = bt,t(r) i
√

t dcr.

Using the fact (from the usual Brownian scaling and rotational invariance) that the 
process i

√
tcr has the same law as the process ctr, we see that bt,t = bt,t(1) has the 
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same noncommutative distribution as the free multiplicative Brownian motion bt. On 
the other hand, the limiting case (s, t) = (1, 0) gives a free unitary Brownian motion 
b1,0(r) = ur, cf. (2.4).

We can regard bs,t(r) as the large-N limit of a certain Brownian motion on the general 
linear group GL(N ; C) as follows. We define an inner product 〈·, ·〉s,t on the Lie algebra 
gl(N ; C) by

〈X1 + iY1, X2 + iY2〉s,t = N√
s − t/2

〈X1, X2〉 + N√
t/2

〈Y1,Y2〉 ,

where X1, X2, Y1, and Y2 are in the Lie algebra u(N) of U(N) and where the in-
ner products on the right-hand side are the standard Hilbert–Schmidt inner product 
〈X, Y 〉 = Trace(Y ∗X). We extend this inner product to a left-invariant Riemannian 
metric on GL(N ; C) and we then let

BN
s,t(r)

be the Brownian motion with respect to this metric. In [30], the second author showed 
that the process BN

s,t(·) converges (in the sense of Definition 2.1) to the process bs,t(·), 
for all positive real numbers s and t with s > t/2. (We are translating the results of [30]
into the parametrizations used in [29].)

5.2. Segal–Bargmann transform

Meanwhile, the first author and Driver introduced in [12] a “two-parameter” Segal–
Bargmann transform; see also [24]. In the case of the unitary group U(N), the transform 
is a unitary map

G N
s,t : L2(U(N), ρs) → HL2(GL(N ;C), γs,t),

where ρs is the same heat kernel measure as in the one-parameter transform, but evalu-
ated at time s, and where γs,t is a heat kernel measure on GL(N ; C). Specifically, γs,t is 
the distribution of the Brownian motion BN

s,t(r) at r = 1. The transform itself is defined 
precisely as in the one-parameter case:

G N
s,tf = (etΔ/2f)C;

only the inner products on the domain and range have changed. When s = t, the trans-
form G N

s,t coincides with the one-parameter transform G N
t .

In [13], the authors and Driver showed that the transform G N
s,t has limiting properties 

as N → ∞ similar to those of G N
t . Specifically, for each Laurent polynomial p in one 

variable, we showed that there is a unique Laurent polynomial qs,t in one variable such 
that (abusing notation slightly)
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G N
s,t(p(U)) = qs,t(Z) + O(1/N2), Z ∈ GL(N ;C).

As an example, if p(u) = u2, then qs,t(z) = e−t(z2 − te−(s−t)/2z), so that the transform 
of the matrix-valued function F : U �→ U2 on U(N) satisfies

(G N
s,tF )(Z) = e−t(Z2 − te−(s−t)/2Z) + O(1/N2), Z ∈ GL(N ;C).

(See [13, p. 2592].)
In [29], Ho then constructed an integral transform Gs,t mapping L2(∂D, νs) into a 

space of holomorphic functions on a certain domain Σs,t in the plane. Ho’s transform 
Gs,t is uniquely determined by the fact that

Gs,t(p) = qs,t

for all Laurent polynomials p. Ho gave a description of Gs,t in terms of free probability 
similar to the description of Biane’s transform Gt given in Section 3.1, and he proved a 
unitary isomorphism theorem similar to Biane’s result described in Theorem 3.1.

5.3. The domains Σs,t

Ho’s domains have the property that fs−t maps the complement of Σs to the comple-
ment of Σs,t. That is to say, Σs,t is the complement of fs−t(C \ Σs):

Σs,t = C \ fs−t(C \ Σs)). (5.3)

(See Fig. 5 along with [29, Figures 2 and 3].) Note that Σt,t is the same as Σt. The 
topology of the domain Σs,t is determined by s; it is simply connected for s ≤ 4 and 
doubly connected for s > 4.

We need a two-parameter version of Proposition 2.3. To formulate the correct gener-
alization, we first note that the function fs satisfies

fs(0) = 0; f ′
s(0) = es/2 
= 0.

Thus, fs has a local inverse defined near zero, which we denote by χs. Recall from (2.6)
that the support of the measure νs is a proper arc inside the unit circle for s < 4 and 
the whole unit circle for s ≥ 4.

Proposition 5.1. For all s > 0, χs can be extended uniquely to a holomorphic function 
on C \ supp νs satisfying

χs(1/z) = 1/χs(z). (5.4)
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Fig. 5. The domain Σs with s = 3 (left) and the domain Σs,t with s = 3, t = 1 (right). The map fs−t = f2
takes the complement of the domain on the left to the complement of the domain on the right.

Note that when s ≥ 4, the support of νs is the entire unit circle, in which case 
C \ supp νs is a disconnected set. For such values of s, the proposition is really asserting 
just that χs extends from a neighborhood of the origin to the open unit disk, at which 
point (5.4) serves to define χs(z) for |z| > 1.

For s > t/2, define a function χs,t by

χs,t = fs−t ◦ χs. (5.5)

Since χs maps C \ supp νs holomorphically to a region that does not include 1, we see 
that χs,t can also be defined holomorphically on C \ supp νs. Ho established the follow-
ing result, generalizing Proposition 2.3. (See [29, Section 4.2], including the discussion 
following Remark 4.7.)

Proposition 5.2. For all positive numbers s and t with s > t/2, define Σs,t by (5.3). Then 
the function χs,t maps C \ supp(νs) injectively onto the complement of Σs,t. We denote 
the inverse function by fs,t, so that

fs,t : C \ Σs,t → C \ supp νs.

Note that, at least for sufficiently small z, we have fs,t(z) = fs(χs−t(z)), by taking 
inverses in (5.5).

5.4. The main result

We are now ready to state the two-parameter version of Theorem 1.1.
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Fig. 6. Simulations of the Brownian motions BN
s,t for N = 2000 and (s, t) = (3, 1) (left) and (s, t) = (5, 3)

(right), plotted against the domains Σs,t.

Theorem 5.3. Let bs,t be the free multiplicative Brownian motion with parameters (s, t), 
as in (5.2). Then the support of the Brown measure μbs,t

is contained in Σs,t.

As in the one-parameter case, we expect that the limiting empirical eigenvalue distri-
bution for BN

s,t := BN
s,t(1) will also be supported in Σs,t. This is supported by simulations; 

see Fig. 6. More generally, we expect that the empirical eigenvalue distribution of the 
Brownian motion BN

s,t in GL(N ; C) will converge almost surely to μbs,t
as N → ∞. This 

question will be explored in a future paper.

Remark 5.4. While they do not determine the Brown measure, it is worth noting that 
the values of the holomorphic moments of bs,t were computed in [30]:

τ ((bs,t)n) = νn(s − t) (5.6)

for all n ∈ Z and all s > t/2 > 0; here νn(r) are the moments of ur, cf. (2.5). In particular, 
when s = t, since νn(0) = 1 for all n, this recovers the fact that all holomorphic moments 
of bt are 1.

Remark 5.5. Now having fully defined the two-paramer Brownian motion and associated 
notation, we show how to connect the formulas in the physics papers [21,32] to our 
formulas. In [21], the boundary of the domain is given by Eq. (83), which is easily seen 
to be equivalent to our condition for the boundary of Σt, namely |ft(λ)| = 1 with |λ| 
= 1. 
In [32], the boundary of the domain in the one-parameter case is given by Eq. (5.31), 
which agrees with Eq. (83) in [21]. In [32], meanwhile, the boundary of the domain in 
the two-parameter case is given by Eq. (6.37), which is equivalent to saying that their 
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variable ẑ should belong to the boundary of the domain Σt+ . Meanwhile, using Eqs. 
(6.30) and (6.36) and a bit of algebra, we find that ẑ is related to z by the equation

z = ft−(ẑ).

We conclude that the boundary of their domain is computed as ft−(∂Σt+). This agrees 
with the boundary of our domain Σs,t, provided we identify their parameters t+ and t−
with our s and s − t, respectively.

6. Proofs

In this final section, we present the complete proof of Theorem 5.3, which includes 
the main Theorem 1.1 as the special case s = t. We follow the outline of Section 4, and 
will therefore provide proofs of Theorem 4.1 and (a two-parameter generalization of) 
Theorem 4.2. We begin with the former.

6.1. A general result on the support of the Brown measure

In this subsection, we work with a general operator in a tracial von Neumann algebra 
(A, τ). For 1 ≤ p < ∞, the noncommutative Lp norm on A is

‖a‖p = (τ [|a|p])1/p.

The noncommutative Lp space Lp(A, τ) is the completion of A with respect to this norm; 
it can be concretely realized as a space of (largely unbounded, densely-defined) operators 
affiliated to A.

For a, b ∈ A we have the inequality

‖ab‖p ≤ ‖a‖ ‖b‖p .

This shows that the operation of “left multiplication by a” is bounded as an operator 
on A with respect to the noncommutative Lp norm. Thus, by the bounded linear trans-
formation theorem (e.g. [36, Theorem I.7]), left multiplication by a extends uniquely to 
a bounded linear map (with the same norm) of Lp(A, τ) to itself. We may easily verify 
that

(ab)c = a(bc) (6.1)

for a, b ∈ A and c ∈ Lp(A, τ); this result holds when c ∈ A and then extends by 
continuity. Similar results hold for right multiplication by a.

Similarly, since

‖ab‖1 ≤ ‖a‖2 ‖b‖2 , (6.2)
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for all a, b ∈ A, the product map (a, b) �→ ab can be extended by continuity first in a and 
then in b, giving a map from L2(A, τ) × L2(A, τ) → L1(A, τ) satisfying (6.2). We then 
observe a simple “associativity” property for the actions of A on L1 and L2: for a ∈ A
and b, c ∈ L2,

a(bc) = (ab)c; (bc)a = b(ca). (6.3)

For any 1 ≤ p < ∞, we say that an element a ∈ A has an inverse in Lp if there is an 
element b of the noncommutative Lp space Lp(A, τ) such that ab = ba = 1.

Definition 6.1. Let a ∈ A, n ∈ N, and p ≥ 1. We say that λ0 belongs to the Lp
n-resolvent 

set of a if (a − λ)n has an inverse, denoted (a − λ)−n, in Lp for all λ in a neighborhood 
of λ0 and ‖(a − λ)−n‖Lp is bounded near λ0. We say that λ0 is in the Lp

n-spectrum of a

if λ0 is not in the Lp
n-resolvent set of a. We denote the Lp

n-spectrum of a by specp
n(a).

Note that if a −λ0 has a bounded inverse, then so does a −λ for all λ sufficiently near 
λ0, and 

∥∥(a − λ)−1
∥∥

A—and therefore ‖(a − λ)−n‖A—is automatically bounded near λ0. 
It follows that any point in the ordinary resolvent set of a is also in the Lp

n-resolvent set; 
equivalently,

specp
n(a) ⊂ spec(a),

where spec(a) is the ordinary spectrum of a. Theorem 4.1 may then be restated as follows, 
strengthening the standard result that the Brown measure is supported on spec(a).

Theorem 6.2. The support of the Brown measure μa of a is contained in spec2
2(a).

The concept of “L2 spectrum” has come up in prior literature, most notably in the 
previously mentioned paper [22] of Haagerup and Larsen on the Brown measures of 
R-diagonal operators. As noted at the end of Section 2.3, if a is R-diagonal, its Brown 
measure is rotationally invariant. What is more, Haagerup and Larsen show (1) that the 
support of the Brown measure of a is the closed disk of radius of ‖a‖2, if a does not
have an inverse in L2, and (2) that the support of the Brown measure of a is the closed 
annulus with inner radius 1/‖a−1‖2 and outer radius ‖a‖2, if a does have an inverse in 
L2.

Thus, in the notation introduced above, for an R-diagonal element a, the point 0
belongs to the support of the Brown measure if and only if 0 is in the L2

1-spectrum of 
a. It is, at first, surprising that Haagerup and Larsen’s result is for the L2

1-spectrum, 
whereas Theorem 6.2 is for the L2

2-spectrum. There is, however, a simple explanation for 
this apparent discrepancy. In the case that a is R-diagonal, the restricted form of the 
free cumulants (cf. [35, Lecture 15]) implies that ‖a−2‖2 = ‖a−1‖2

2; hence 0 ∈ spec2
1(a)

if and only if 0 ∈ spec2
2(a).
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Thus, our condition in Theorem 6.2 is closely related to the one in [22]. Indeed, 
Theorem 6.2 can be thought of as an extension of the line of reasoning in [22] to general, 
non-R-diagonal operators.

It is natural to wonder, from the above definitions, how far the Lp
n-spectra of an 

operator may differ from each other, and from the actual spectrum. To this end, Haagerup 
and Larsen give examples where spec2

1(a) 
= spec(a). Let h be a positive semi-definite 
operator that is not invertible in A but is invertible in L2(A, τ) (i.e. its distribution μh

has mass in every neighborhood of 0, but 
∫

x−2μh(dx) < ∞). If u is a Haar unitary 
operator freely independent from h, then a = uh is an R-diagonal operator for which 
a−1 ∈ L2(A, τ) \ A; in other words 0 ∈ spec(a) \ spec2

1(a), so spec2
1(a) � spec(a). What’s 

more, in this case, spec(a) is the full closed disk of radius ‖a‖2, while spec2
1(a) is the 

afore-mentioned annulus, cf. [22, Proposition 4.6]. Hence, the support of the Brown 
measure, and more generally the sets specp

n(a), may be substantially smaller than the 
spectrum of a.

To prove Theorem 6.2, we need the following.

Proposition 6.3. Suppose a ∈ A and a2 has an inverse, denoted a−2, in L2(A, τ). Then 
for all ε > 0, we have

τ [(a∗a + ε)−1(aa∗ + ε)−1] ≤
∥∥a−2∥∥2

L2(A,τ) . (6.4)

Theorem 6.2 follows immediately from Proposition 6.3 together with Corollary 2.6. 
To prove the proposition, we need the following lemmas.

Lemma 6.4. For a, b ∈ A, if a is invertible in A and b is invertible in Lp, then ab and 
ba are invertible in Lp with inverses b−1a−1 and a−1b−1, respectively. If a and b are 
invertible in L2 then ab is invertible in L1 with inverse b−1a−1. Finally, if a is invertible 
in Lp then a∗ is invertible in Lp with inverse (a−1)∗.

Proof. For a, b ∈ A with b invertible in Lp, we have

b−1a−1(ab) = ((b−1a−1)a)b = ((b−1(a−1a))b

= b−1b = 1,

where we have used (6.1) twice, and similarly for the product in the other order. A similar 
argument, using both (6.1) and (6.3), verifies the second claim. Finally, the identity 
(ab)∗ = b∗a∗, which holds initially for a, b ∈ A, extends by continuity to the case a ∈ A, 
b ∈ Lp(A, τ). Thus, if a is invertible in Lp, then a∗(a−1)∗ = (a−1a)∗ = 1 and similarly 
for the product in the reverse order. �
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Lemma 6.5. Let x be a non-negative element of A and suppose x has an inverse in L1. 
Then

lim
ε→0+

τ [(x + ε)−1] = τ [x−1].

Proof. We begin by noting that

x−1 − (x + ε)−1 = x−1((x + ε) − x)(x + ε)−1

= εx−1(x + ε)−1.

Now, ‖(x + ε)−1‖ is at most 1/ε, by the equality of norm and spectral radius for self-
adjoint elements. Thus,

‖x−1 − (x + ε)−1‖1 ≤ ε‖(x + ε)−1‖‖x−1‖1 ≤ ‖x−1‖1.

It follows that ‖(x + ε)−1‖1 ≤ 2‖x−1‖1 for all ε > 0.
Let Ex be the projection-valued measure associated to x by the spectral theorem. 

Then

‖(x + ε)−1‖1 =
∞∫

0

1
λ + ε

τ [Ex(dλ)] ≤ 2‖x−1‖1.

Thus, by monotone convergence, we have

∞∫
0

1
λ

τ [Ex(dλ)] ≤ 2‖x−1‖1 < ∞.

Once this is established, we note that for λ > 0,

∣∣∣∣ 1
λ

− 1
λ + ε

∣∣∣∣ = ε

λ(λ + ε) ≤ 1
λ

.

Thus, by dominated convergence, 1/(λ + ε) converges in L1((0, ∞), τ ◦ Ex) to 1/λ as 
ε → 0. It follows that for any sequence {εn} tending to zero, the operators (x +εn)−1 form 
a Cauchy sequence with respect to the noncommutative L1 norm. Since, by dominated 
convergence, the functions λ/(λ + εn) converge to 1 in L1((0, ∞), τ ◦ Ex), we can easily 
see that the limit of (x + εn)−1 in the Banach space L1(A, τ) is the inverse in L1 of x.

We have shown, then, that the (unique) inverse in L1 of x is the limit in L1 of 
(x + εn)−1. Applying τ to this result gives the claim, along any sequence {εn} tending 
to zero. �
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Lemma 6.6. Let x, y ≥ 0 be positive semidefinite operators in A, and suppose that they are 
invertible in L1(A, τ). If x ≤ y (i.e., x −y is positive semidefinite) then τ(y−1) ≤ τ(x−1).

Proof. For all ε > 0, the elements x + ε and y + ε are invertible in A and x + ε ≥ y + ε. 
Thus, by the (reverse) operator monotonicity of the inverse [2, Prop. V.1.6], we have

τ((y + ε)−1) ≥ τ((x + ε)−1). (6.5)

By Lemma 6.5, the claimed result then follows. �
Lemma 6.7. Let a ∈ A and suppose that a2 has an inverse in L2(A, τ). Then a and a∗

have inverses in L2; and hence a∗a and aa∗ have inverses in L1(A, τ).

Proof. Let b = a−2 denote the L2(A, τ) inverse of a2. First, note that a(ab) = a2b = 1
and (ba)a = ba2 = 1. Since ab and ba are in L2(A, τ), it follows that a is both left and 
right invertible in L2(A, τ). Hence, a is invertible in L2(A, τ), by the usual argument and 
(6.1). Taking adjoints shows that a∗ is also invertible in L2(A, τ). Thus aa∗[(a∗)−1a−1] =
1 = [(a∗)−1a−1]aa∗. Since (a∗)−1 and a−1 are in L2(A, τ), their product is in L1(A, τ)
by Hölder’s inequality; this shows aa∗ is invertible in L1(A, τ). An analogous argument 
holds for a∗a. �

We are now ready for the proof of Proposition 6.3.

Proof of Proposition 6.3. We begin by arguing formally and then fill in the details. We 
start by noting that

(a∗a + ε)1/2(aa∗ + ε)(a∗a + ε)1/2 − (a∗a + ε)1/2(aa∗)(a∗a + ε)1/2 = ε(a∗a + ε)

≥ 0.

Thus, by Lemma 6.4 and the cyclic property of the trace, we have

τ [(a∗a + ε)−1(aa∗ + ε)−1] = τ [(a∗a + ε)−1/2(aa∗ + ε)−1(a∗a + ε)−1/2]

≤ τ [(a∗a + ε)−1/2(aa∗)−1(a∗a + ε)−1/2]

= τ [(aa∗)−1(a∗a + ε)−1]. (6.6)

We then use the same argument again. We note that

a∗(a∗a + ε)a − a∗(a∗a)a = εa∗a ≥ 0, (6.7)

from which we obtain
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τ [(aa∗)−1(a∗a + ε)−1] = τ [a−1(a∗a + ε)−1(a∗)−1]

= τ [(a∗(a∗a + ε)a)−1]

≤ τ [((a∗)2a2)−1]

= τ [a−2(a−2)∗].

=
∥∥a−2∥∥2

L2(A,τ) (6.8)

Combining (6.6) and (6.8) gives the desired inequality.
To make the argument rigorous, we need to make sure that all the relevant inverses 

exist in L1(A, τ), so that Lemma 6.4 is applicable. The operator (a∗a + ε)1/2(aa∗ +
ε)(a∗a + ε)1/2 is invertible in A and thus in L1(A, τ). On the other hand, by assumption 
a2 is invertible in L2(A, τ). It then follows from Lemma 6.7 that aa∗ is invertible in 
L1(A, τ), so that (a∗a +ε)1/2(aa∗)(a∗a +ε)1/2 is also invertible in L1(A, τ), by Lemma 6.4. 
Thus, Lemma 6.4 is applicable in (6.6).

We now consider the two terms on the left-hand side of (6.7). By Lemma 6.7, both a
and a∗ are invertible in L2; it then follows from Lemma 6.4 that a∗(a∗a +ε) is invertible in 
L2 and that a∗(a∗a +ε)a is invertible in L1. Meanwhile, a2 is, by assumption, invertible in 
L2; it then follows from Lemma 6.4 that (a∗)2 is invertible in L2. Thus, using Lemma 6.4
one last time, we conclude that (a∗)2a2 is invertible in L1. Thus, Lemma 6.5 is also 
applicable in (6.8). �
6.2. Computing the L2

2 spectrum

We consider the free multiplicative (s, t) Brownian motion bs,t defined in (5.2) as an 
element of a tracial von Neumann algebra (B, τ). Recall that when s = t, the operator bs,t

has the same noncommutative distribution as the ordinary free multiplicative Brownian 
motion bt described in Section 2.1. Our goal is to prove a two-parameter version of 
Theorem 4.2 from Section 4, by constructing an L2 inverse to (bs,t − λ)n for λ in the 
complement of Σs,t, with local bounds on the norm of the inverse. This will, in particular, 
show that

spec2
n(bs,t) ⊂ Σs,t (6.9)

for all n. (Recall Definition 6.1.) If we specialize (6.9) to the case n = 2, Theorem 6.2
will then tell us that the support of the Brown measure of bs,t is contained in Σs,t.

Our tool is the two-parameter “free Hall transform” Gs,t (cf. Section 5), which includes 
the one-parameter transform Gt = Gt,t (cf. Section 3) as a special case. To avoid technical 
issues for the case s = 4, we introduce a variant of the transform Gs,t, denoted Ss,t. Define

L2
hol(bs,t, τ)

to be the closure in the noncommutative L2 norm of the space of elements of the form 
p(bs,t), where p is a Laurent polynomial in one variable.
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If P denotes the space of Laurent polynomials in one variable, then [13, Theorem 1.13]
shows that Gs,t maps P bijectively onto P. We then define Ss,t initially on P by evalu-
ating each polynomial Gs,t(p) on the element bs,t:

Ss,t(p) = Gs,t(p)(bs,t) ∈ L2
hol(bs,t, τ).

By [29, Theorem 5.7, Part 2], Ss,t maps P ⊂ L2(∂D, νs) isometrically into L2
hol(bs,t, τ). 

(Although some parts of the just-cited theorem implicitly assume that s 
= 4, Part 2 of 
the theorem does not depend on this assumption.) Furthermore, since Gs,t maps onto P, 
the image of Ss,t is dense in L2

hol(bs,t, τ). Thus, Ss,t extends to a unitary map

Ss,t : L2(∂D, νs) → L2
hol(bs,t, τ).

For λ ∈ C \ Σs,t, we will then construct an inverse (bs,t − λ)−n to (bs,t − λ)n in 
L2

hol(bs,t, τ) by constructing the preimage of (bs,t − λ)−n under Ss,t. Note that in Sec-
tion 4, we outlined the proof in the case s = t, with t 
= 4. In that case, [4, Lemma 17]
allows us to identify L2

hol(B, τ) with the space At, in which case, it is harmless to work 
with Gs,t instead of Ss,t.

Recall the definition of the function fs,t in Proposition 5.2.

Theorem 6.8. Define a function rs,t
λ ∈ L2(∂D, νs) by the formula

rs,t
λ (ω) = fs,t(λ)

λ

(
1

ω − fs,t(λ)

)
, ω ∈ supp(νs), (6.10)

for all λ ∈ C \ Σs,t. Then for all such λ, we have

Ss,t(rs,t
λ ) = (bs,t − λ)−1.

That is to say, Ss,t(rs,t
λ ) is an inverse in L2 of (bs,t − λ).

Recall from Proposition 5.2 that fs,t(λ) is outside the support of νs for all λ in the 
complement of Σs,t. Thus, rs,t

λ (ω) is bounded and is therefore a νs–square integrable 
function of ω for all λ ∈ C \ Σs,t.

When λ = 0, we interpret rs,t
λ to be the limit of the right-hand side of (6.10) as λ

approaches zero, which is easily computed to be rs,t
0 (ω) = et/2ω−1.

Proof. For the case λ = 0, we compute that Gs,t(ω−1) = e−t/2z−1, as may be verified 
from the behavior of Gs,t with respect to inversion [13, Eq. (5.2)] and the recursive 
formula in [13, Proposition 5.2]. Thus, by definition, we have Ss,t(ω−1) = e−t/2b−1

s,t so 
that Ss,t(et/2ω−1) = b−1

s,t , which is the λ = 0 case of the theorem. The subsequent 
calculations assume λ 
= 0.

We start by considering large values of λ. For |λ| > ‖bs,t‖, the element bs,t − λ has a 
bounded inverse, which may be computed as a power series:
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(bs,t − λ)−1 = − 1
λ

(1 − bs,t/λ)−1 = − 1
λ

∞∑
k=0

λ−k(bs,t)k,

with the series converging in the operator norm and thus also in the noncommutative 
L2 norm. Applying S −1

s,t term by term gives

S −1
s,t

(
(bs,t − λ)−1)

(ω) = − 1
λ

∞∑
k=0

λ−kps,t
k (ω) (6.11)

= − 1
λ

[1 + Π(s, t, ω, 1/λ)] , (6.12)

where ps,t
k is the unique polynomial such that

Gs,t(ps,t
k )(z) = zk, k ∈ Z,

and where Π is the generating function in [13, Theorem 1.17].
Meanwhile, according to [13, Eq. (1.21)], we have the following implicit formula for Π:

Π(s, t, ω, fs−t(z)) = 1
1 − ωfs(z) − 1.

(This result extends a formula of Biane in the s = t case.) Then, at least for sufficiently 
small z, we may replace z by χs−t(z), where χs,t is the inverse function to fs−t. This 
substitution gives

Π(s, t, ω, z) = 1
1 − ωfs(χs−t(z)) − 1. (6.13)

Plugging this expression into (6.12) gives

rs,t
λ (ω) = − 1

λ

1
1 − ωfs(χs−t(1/λ)) ,

for λ sufficiently large, which simplifies—using (5.4) and the identity fs(1/z) = 1/fs(z)—
to the expression in (6.10).

Similarly, for 0 < |λ| < 1/ 
∥∥b−1

s,t

∥∥, we use the series expansion

(bs,t − λ)−1 = b−1
s,t (1 − λb−1

s,t )−1

= b−1
s,t

∞∑
k=0

λkb−k
s,t

= 1
λ

∞∑
k=1

λkb−k
s,t .
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Since ps,t
−k(ω) = ps,t

k (ω−1) (see [13, Eq. (5.2)]), we may apply S −1
s,t term by term to obtain

S −1
s,t

(
(bs,t − λ)−1)

(ω) = 1
λ

∞∑
k=1

λkps,t
k (ω−1)

= 1
λ

Π(s, t, ω−1, λ).

Using the formula (6.13) for Π (for sufficiently small λ) and simplifying gives the same 
expression as for the large-λ case.

Finally, for general λ ∈ C \ Σs,t we use an analytic continuation argument. The com-
plement of the closure of Σs,t has at most two connected components, the unbounded 
component and, for s ≥ 4, a bounded component containing 0. Now, for all λ ∈ C \ Σs,t, 
the function rs,t

λ in (6.10) is a well-defined element of L2(∂D, νs), because (by Proposi-
tion 5.2) fs,t maps C \ Σs,t into C \ supp νs. Furthermore, it is evident from (6.10) that 
rs,t

λ is a weakly holomorphic function of λ ∈ C \ Σs,t, with values in L2(∂D, νs), meaning 
that λ �→ φ(rs,t

λ ) is a holomorphic for each bounded linear functional on L2(∂D, νs).
Thus, since Ss,t is unitary (hence bounded), Ss,t(rs,t

λ ) is a weakly holomorphic func-
tion of λ ∈ C \ Σs,t, with values in L2

hol(B, τ). It is then easy to see that

(bs,t − λ)Ss,t(rs,t
λ ) = bs,tSs,t(rs,t

λ ) − λSs,t(rs,t
λ ) (6.14)

is also weakly holomorphic. After all, applying a bounded linear functional φ gives

φ(bs,tSs,t(rs,t
λ )) − λφ(Ss,t(rs,t

λ )). (6.15)

Since multiplication by bs,t is a bounded linear map on L2
hol(B, τ), the linear functional 

φ(bs,t·) is bounded, so both terms in (6.15) are holomorphic in λ.
Meanwhile, we have shown that (6.14) is equal to 1 on a nonempty, open subset of 

each connected component of C \ Σs,t. Since, also, (6.14) is weakly holomorphic, it must 
be equal to 1 on all of C \ Σs,t. �

We emphasize that, although for very large and small λ the standard power-series 
argument gives an inverse of bs,t − λ in the algebra B, the analytic continuation takes 
place in L2

hol(B, τ), which is the range of the transform Ss,t. Thus, for general λ ∈ C\Σs,t, 
we are guaranteed that bs,t − λ has an inverse in L2, but not necessarily in B.

Corollary 6.9. For all λ ∈ C \ Σs,t and all positive integers n, the operator (bs,t − λ)n

has an inverse (bs,t − λ)−n in L2(B, τ). Specifically,

(bs,t − λ)−n = Ss,t

(
1

(n − 1)!

(
∂

∂λ

)n−1

rs,t
λ

)
, (6.16)
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where rs,t
λ is as in (6.10). Furthermore, ‖(bs,t − λ)−n‖L2(B,τ) is locally bounded on C \

Σs,t.

Proof. We let

rs,t,n
λ (ω) = 1

(n − 1)!

(
∂

∂λ

)n−1

rs,t
λ (ω).

If we inductively compute the derivatives in the definition of rs,t,n
λ (ω), we will find 

that the result is polynomial in 1/(ω − fs,t(λ)), with coefficients that are holomorphic 
functions of λ ∈ C \ Σs,t. Thus, for each n, the quantity rs,t,n

λ (ω) is jointly continuous 
as a function of ω ∈ supp(νt) and λ ∈ C \ Σs,t. Thus, ‖rs,t,n

λ ‖L2(∂D,νs) is finite and 
depends continuously on λ. Thus, once (6.16) is verified, the local bounds on the norm 
of (bs,t − λ)−n will follow from the unitarity of Ss,t.

We establish (6.16) by induction on n, the n = 1 case being the content of Theorem 6.8. 
Assume, then, the result for a fixed n and recall that rs,t,n

λ (ω) is a polynomial in 1/(ω −
fs,t(λ)), with coefficients that are holomorphic functions of λ. It is then an elmentary 
matter to see that for each fixed λ ∈ C \ Σs,t, the limit

lim
h→0

rs,t,n
λ+h (ω) − rs,t,n

λ (ω)
h

exists as a uniform limit on supp νs, and thus also in L2(∂D, νs). Applying Ss,t and 
using our induction hypothesis gives

Ss,t

(
∂

∂λ
rs,t,n

λ (ω)
)

= lim
h→0

1
h

[(bs,t − (λ + h))−n − (bs,t − λ)−n], (6.17)

where the limit is in L2
hol(bs,t, τ).

We now multiply both sides of (6.17) by (bs,t−λ)n+1, which we write as (bs,t−λ)(bs,t−
λ)n. Since multiplication by an element of B is a continuous linear map on L2(B, τ), we 
obtain

(bs,t − λ)n+1Ss,t

(
∂

∂λ
rs,t,n

λ (ω)
)

= lim
h→0

(bs,t − λ) 1
h

[(bs,t − λ)n(bs,t − (λ + h))−n − 1]. (6.18)

In the first term on the right-hand side of (6.18), we write

(bs,t − λ)n = (bs,t − (λ + h) + h)n =
n∑

k=0

(
n

k

)
(bs,t − (λ + h))n−khk. (6.19)

Upon substituting (6.19) into (6.18), the k = 0 term cancels with the existing term of 
−1, while the k = 1 term gives
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(bs,t − λ) 1
h

· nh(bs,t − (λ + h))−1 = n(bs,t − λ)(bs,t − (λ + h))−1. (6.20)

If we again write (bs,t − λ) = (bs,t − (λ + h) + h), we see that (6.20) tends to n · 1 as 
h → 0. Finally, all terms with k ≥ 2 will vanish in the limit, leaving us with

(bs,t − λ)n+1Ss,t

(
∂

∂λ
rs,t,n

λ (ω)
)

= n · 1.

Thus,

Ss,t

(
1
n

∂

∂λ
rs,t,n

λ (ω)
)

= (bs,t − λ)−(n+1),

which is just the level-(n + 1) case of the corollary. �
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