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Abstract

With the increasing fault rate on high-end supercomputers, the topic of fault tolerance has been gathering attention. To
cope with this situation, various fault-tolerance techniques are under investigation; these include user-level, algorithm-
based fault-tolerance techniques and parallel execution environments that enable jobs to continue following node failure.
Even with these techniques, some programs with static load balancing, such as stencil computation, may underperform
after a failure recovery. Even when spare nodes are present, they are not always substituted for failed nodes in an effective
way. This article considers the questions of how spare nodes should be allocated, how to substitute them for faulty nodes,
and how much the communication performance is affected by such a substitution. The third question stems from the
modification of the rank mapping by node substitutions, which can incur additional message collisions. In a stencil com-
putation, rank mapping is done in a straightforward way on a Cartesian network without incurring any message collisions.
However, once a substitution has occurred, the optimal node-rank mapping may be destroyed. Therefore, these ques-
tions must be answered in a way that minimizes the degradation of communication performance. In this article, several
spare node allocation and failed node substitution methods will be proposed, analyzed, and compared in terms of
communication performance following the substitution. The proposed substitution methods are named sliding methods.
The sliding methods are analyzed by using our developed simulation program and evaluated by using the K computer, Blue
Gene/Q (BG/Q), and TSUBAME 2.5. It will be shown that when failures occur, the stencil communication performance on
the K and BG/Q can be slowed around 10 times depending on the number of node failures. The barrier performance on
the K can be cut in half. On BG/Q, barrier performance can be slowed by a factor of 10. Further, it will also be shown that
almost no such communication performance degradation can be seen on TSUBAME 2.5. This is because TSUBAME 2.5 has
an Infiniband network connected with a FatTree topology, while the K computer and BG/Q have dedicated Cartesian
networks. Thus, the communication performance degradation depends on network characteristics.
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amount in order to alleviate the I/O issue (e.g. Sato et al.,
2012). On the other hand, user-level checkpoints, where
each program implements its own checkpoint/restart strat-
egy, have been attracting attention as a possible alternative.
Since the user knows which data should be saved and which
data can be lost, the amount of checkpoint data can be
drastically reduced, and thus the I/O time can also be

l. Introduction

With the fault rate increasing on high-end supercompu-
ters, the topic of fault tolerance has been gathering
attention (Cappello et al., 2014), and jobs are being
aborted due to system errors (Di Martino et al., 2014).
To cope with this situation, various fault-tolerance tech-
niques have been investigated. Checkpoint and restart is
a well-known technique for parallel jobs, and enabling
jobs to continue execution from a previously defined
checkpoint (there are many studies and systems of
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checkpoint and restart, but the most notable one is
Checkpointing Libraries for the Intel Paragon (CLIP);
Chen et al., 1997).

With the increase in size of parallel applications, the
total amount of Input/Output (I/O) needed for checkpoint/
restart begun to be problematic. A lot of research is cur-
rently undertaken on techniques to reduce the checkpoint
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Figure |. Example of node failure and recovery.

greatly reduced, at the cost of only some additional pro-
gramming by the user.

Davies et al. (2011) presented a method that allows a
user program to be fault-tolerant without using checkpoint-
ing (Chen and Dongarra, 2008). In this technique, the parity
to recover the lost data can be embedded into an lower-
upper (LU) decomposition algorithm, and the user program
can recover from failure without checkpointing. Having the
opportunity to address the failure at the algorithm level
opens interesting perspective and new research topics.
With support from the programming paradigm and the exe-
cution environment, users could write applications which
can handle faults in the most optimal way.

The Message Passing Interface (MPI) is the most widely
used communication library, and its specifications are well
defined (Message Passing Interface Forum, 2012). Unfor-
tunately, in the current MPI standard, a fatal error handler is
raised upon process failure, preventing any user-level fault
handling to be implemented at this time. To define the
behavior of MPI when a fault occurs, User-Level Failure
Mitigation (ULFM) has been proposed and a prototype is
being developed, capable of handling both process and
node failures (Bland et al., 2013). ULFM provides the
application program interface (API) so that the modifica-
tions to the existing MPI specifications are minimized.
Even with ULFM, user-level fault handling is not straight-
forward, and various frameworks have been proposed to
simplify it. Falanx is a fault-tolerant framework for
master-worker programming (Takefusa et al., 2014). Local
Failure Local Recovery (LFLR) is another fault-tolerant
framework (Teranishi and Heroux, 2014), and it covers a
wider range of programming models than are supported by
Falanx. Both Falanx and LFLR are implemented by using
ULFM. Global View Resilience (GVR) is another user-
level fault mitigation system; it is based on partitioned
global address space programming model (Chien et al.,
2015; Fujita et al., 2014).

We believe that the user-level fault-handling code must
be as simple as possible. It is important to avoid situations
in which the code for handling the first node failure is
different from the code for handling subsequent failures,

because it is very hard to produce this type of situation
when testing a program. This type of complexity must be
hidden within the system software.

Figure 1 shows an example of a node failure in a 2D
network consisting of 36 nodes. Here, it is assumed that a
job is running on this machine, and the job is written with a
fail-stop-free runtime system, such as ULFM. When node
21 goes down (left panel in Figure 1), the job running on
those 36 nodes can take one of the following actions:

e abort the job and resubmit it (from a previous check-
point, if possible), or

e allow the remaining 35 nodes to continue to execute
the job.

In the first strategy, user-level fault handling is not
required. In the second strategy, the task allocated to the
failed node must be equally shared by the remaining 35
nodes, otherwise, a load imbalance occurs. If the job can
balance a dynamic load, which is a capability of master-
worker models and particle-in-cell simulations, then the
load can be rebalanced by the application itself, without
the need to extensively modify the code. However, if the
job is a stencil application, which, in most cases, does not
have dynamic load balancing capability, then fault han-
dling is more difficult. In most stencil applications, both
the communication pattern and the load balancing are sta-
tic. To preserve the communication pattern, one possibility
for handling a node failure is to exclude the row and col-
umn that include the failed node (middle panel in Figure 1);
this preserves the stencil communication pattern. However,
the task allocated to the failed node must be shared equally
by the remaining nodes (right panel in Figure 1). This load-
leveling requires additional code for handling the fault, and
this must be avoided if possible.

If a system software reserves a set of spare nodes in
advance, and the failed node is replaced by a spare node,
then the user-level handling of node failure is simplified,
because the number of nodes involved in the computation
remains the same. LFLR assumes the use of spare nodes,
and although the detailed recovery process is hidden from
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users, GVR may utilize spare nodes. However, to the best
of our knowledge, there has been no discussion of the best
way to reserve spare nodes or of how to use them to replace
failed nodes. As an evaluation index, we chose communi-
cation performance, because the use of spare nodes may
introduce extra message collisions.

The scenario we assumed to recover from a node failure
is; (1) user program detects a node failure, (2) select a spare
node from a spare node set to substitute the failed node, (3)
recover the process(es) on the spare node possibly from a
checkpoint, (4) rearrange the physical process-to-node map-
ping to minimize the communication performance degrada-
tion and MPI communicator(s) to minimize the change of
user program, (5) if the new process-to-node mapping
requires migration of some processes, do the migration, and
(6) finally, the user program resumes its execution.

This article presents the results of our investigations into
these issues. As a first step to address these issues, we
propose several methods for using spare nodes to replace
faulty ones in addition to the spare node allocations. The
proposed methods are discussed and compared from the
viewpoint of communication performance degradation.
The contributions of this article are as follows:

spare node allocation methods are proposed;
failure node substitution methods are proposed;
focusing on stencil communication and some collec-
tive performance, the behavior and characteristics of
proposed spare node allocation and substitution
methods are revealed by simulations; and

e cvaluations results on the two supercomputers hav-
ing a Cartesian network topology and one supercom-
puter having a FatTree network topology are shown
to how a network topology affects the communica-
tion performance degradation.

2. Using spare nodes

For the remainder of this article, we will assume that the
networks being considered have a multidimensional Carte-
sian (mesh and/or torus) topology, otherwise noticed. We
make this assumption because four of the top five machines
have networks with this topology (as listed on the TOP500
Supercomputer Site; Strohmaier et al., 2015); see Table 1.

From the programmers’ point of view, it is not compli-
cated to have spare nodes held ready or to have them sub-
stituted in for faulty nodes. With MPI, the modification is
as follows: (1) a new MPI communicator is created at the
location from which the faulty node is extracted (in ULFM,
the command MPTI_Comm_shrink will do this), and a
selected spare node replaces the faulty node; (2) the spare
node is set up to take over the functions of the failed node.
The remaining parts of the program can remain as they
were. This means that the logical topology provided by the
new MPI communicator can remain the same as it was
before the failure; however, the actual physical topology
is altered. New message collisions that would not have

Table I. Network topologies in the TOP500 list.

Rank  Name # Cores Topology

| Tianhe-2 3120K FatTree

2 Titan (Cray XK7) 561K 3D torus

3 Sequoia (BG/Q) 1573K 5D torus/mesh
4 The K computer 705K 6D torus/mesh
5 Mira (BG/Q) 786K 5D torus/mesh
I JUQUEEN (BG/Q) 459K 5D torus/mesh
25 TSUBAME 2.5 76K (+GPU)  FatTree

Source: Strohmaier et al., 2015.
BG/Q: Blue Gene/Q; GPU: graphics processing unit.

happened under the failure-free physical topology will hap-
pen under the recovered topology (Figure 4).

Therefore, replacing faulty nodes with spare nodes must
be done carefully in order to minimize the communication
performance degradation. There are many other aspects
that should be considered, such as system utilization, job
turnaround time, ease of user programming, and the frame-
work that needs to be developed. Unfortunately, almost no
research has been done on this topic, so in this article, we
will focus primarily on the communication performance.

Throughout this article, we will be concerned only with
the node failure. Network failures can also occur, but we
will assume that this recovery is the responsibility of the
network itself (Domke et al., 2014; see also Section 5). The
Tofu network, which is used by the K computer, uses
redundant links to detour around failed nodes (Ajima
et al., 2009; Sumimoto, 2012). We will assume that a job
can survive even with the failure of one or more nodes
when it is operating in a parallel computing environment
that provides a user-level fault mitigation mechanism, such
as ULFM, and any processes running on the failed node can
be recovered from a checkpoint or by using parity with
viable processes. Finally, we will assume that the processes
running on a node can be migrated to any other node.

In the next subsection, we will discuss the allocation of
spare nodes, and the possibility of this degrading the com-
munication performance will be shown. Then, three meth-
ods for substituting a spare node for a faulty node will be
proposed and compared.

2.1. Spare node allocation

In this section for simplicity, we will consider mostly 2D
networks with static XY routing (Zhang et al., 2009).
Figure 2 shows three different ways of allocating spare
nodes. Each small square represents a node. In the left
panel, the right-hand column is reserved for spare nodes;
this pattern is denoted as 2D(1,1). In the middle panel, two
sides (the right-hand column and the bottom row) are
reserved for spare nodes, denoted 2D(2,1). In the right-
hand panel, two two-node thick sides (the two right-hand
columns and two bottom rows) are reserved, denoted
2D(2,2). In this notation, “2D” means that the allocation
applies to the 2D plane, the first number in the brackets is
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Figure 2. Patterns for allocation of spare nodes.
the number of sides in which spare nodes are reserved, and 14
the second number is the thickness, number of columns or N — 3D(3,1)
rows, of a side of spare nodes reserved. On a 3D network, a 12 \ — 3D(2,1)
job is generally allocated on a cube. Here, 3D(2,*) means 10 3D(1.1)
two 2D side planes out of three dimensions of the cube are g 8 \ 2D(21)
allocated as spare nodes. If the allocated cube is regular, z \ 2000
having the same size in all dimensions, which side to be g°
allocated does not matter. Otherwise, the number of spare £ 4l
nodes in the two side planes matters. 5
Spare nodes are allocated at the side(s) of a 2D grid, as
shown in Figure 2; thus, a stencil application with non- 18000 100,000 1,000,000
periodic boundaries will not have any overhead. This will # Nodes

not be the case for stencil applications that have periodic
boundaries or for networks that have torus topology. How-
ever, the hop count is only increased by one, so the
increase in run time will be very small (100 ns per hop
on the K computer).

The percentage of the nodes that are reserved as spare
nodes in the 2D(2,2) case is as follows

2
R2D(2,2) = l - (Nl/z - 2> /N

where N is the number of nodes. In the more general
gD(r,s) case, the percentage of spare nodes can be
expressed as follows

(VY1 = )" x (N0
R =1-
qD(r.s) N

Here, < g and AHs < N'/?. Note that this expres-
sion is not precise, because the number of nodes is an
integer, and the flooring effect is ignored. However, this
information can be useful for determining how the spare
node percentage relates to the total number of nodes
used for a job.

Figure 3 shows the percentages of spare nodes to the
whole nodes allocated for a job over the various patterns of
spare node allocation. As shown in this figure, the more
dimensions the network has, the higher the percentage of
spare nodes. The percentage is almost proportional to the
number of sides allocated to the spare nodes. Most notably,

Figure 3. Percentage of spare nodes in a job.

the larger the job size, the lower the percentage. We will
discuss this point in Section 6.

It is possible to allocate spare nodes on four sides of
a 2D grid, but on a torus network, this is almost equal to
the 2D(2,2) case. In our investigation, we could not find
any significant difference between 2D(4,1) and 2D(2,2),
and so in this discussion, we will not further consider
cases in which r > ¢g. The thickness, s, does not affect
the nature of the spare node substitution method
described in the next section, so we will investigate only
cases of single-node thickness.

Having spare nodes can decrease the system utilization
ratio. However, this does not always happen. On the K com-
puter, the size of each dimension of a job must be in a Tofis
unit, which has 12 nodes. When a user submitsan 11 x 11 x
11 3D job, for example, it may be scheduled to have 12 x 12
x 12 nodes. This results in 3D(2,1) spare nodes. The same
situation can be seen with the other machines that have a
Cartesian topology network and are listed in Table 1. On
Blue Gene/Q (BG/Q) machines, the number of nodes for a
job must be a power of 2 (IBM, 2013b). On a Cray XK/7,
jobs are allocated to 428 blocks (Pena et al., 2013). Thus, the
gap between the number of nodes required by a job and the
number of nodes actually allocated can be allocated as spare
nodes, without requiring additional nodes.
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Figure 4. Message collisions.

2.2. Substitution of a spare node for a faulty node

Communication performance degradation can be
observed when a spare node that replaces a faulty node
can be located far from the original node. Figure 4
shows the 5P-stencil communication pattern (left). In
5P-stencil communication on a Cartesian topology, no
messages collide, because nodes communicate only with
their neighbors. Here, static XY routing is assumed. In
the right-hand panel of Figure 4, when a faulty node
(denoted as “F™) is replaced by a spare node (denoted
as “S”), the regularity of the stencil communication pat-
tern is lost. As shown in this figure, there are five mes-
sage routes crossing through the circled link, this means
that up to five messages can collide.

We propose three methods for substituting nodes, and
these are shown in Figure 5. We call these methods the 0D,
1D, and 2D sliding methods. With higher-dimension net-
works, those proposed methods can be augmented in a
natural way, but for simplicity, we will explain them on a
2D network. We will use a SP-stencil communication pat-
tern, in which messages from each node are sent up, down,
left, and right. In the 9P-stencil communication pattern,
there are an extra four directions, since messages can be
sent along the diagonals. However, in most cases, the
length of those diagonal messages is much shorter than
those in a 5P-stencil pattern, and so the effect on the com-
munication performance is expected to be small.

2.2.1. 0D sliding. The 0D sliding method is the simplest. The
faulty node is simply replaced by a spare node (as was
shown in Figure 5). There is a big drawback to this method,
however, when a node failure happens far from a spare
node: the hop distance from the failed node to the spare
node can be very large. This increases the possibility of
message collisions and results in a higher communication
latency due to the large number of hops. To minimize this,
the failed node should be replaced with the spare node to
which the Manhattan distance is the shortest.

Figure 6 shows examples of the results of replacing
multiple faulty nodes when using the 0D sliding method
with the 2D(1,1) allocation. In this figure, each rectangle

represents a node, assuming node space can be represented
in a 2D way. On the left-hand panel, nodes 1 through 5 have
failed and have been replaced by spare nodes 1’ through 5/,
respectively. The spare nodes were chosen so as to mini-
mize the number of hop counts between each faulty node
and its corresponding spare node. With nonperiodic
5P-stencil communication in the XY routing algorithm, the
messages from all of the spare nodes to the nodes
(A through F) adjacent to the failed nodes are routed
through node 1’ (because of the X direction routing of
the XY routing algorithm). Thus, there are 11 messages
in the network links between 1’ and A (these are shown
in the white boxes): these 10 plus the normal stencil com-
munication message between the nodes. This is the worst-
case scenario for the 0D sliding method, and the number of
faulty nodes is less than or equal to six.

The right-hand panel of Figure 6 shows a case for
which the network topology is a 2D mesh, spare nodes
are reserved in the 2D(1,1) pattern, and the faults hap-
pen within a row or column that is close to the side of
the network. Failed node 1 is replaced by spare node 1’,
and so on. In this case, the failures happen close to the
side of the network, and it is not possible to replace the
spare nodes as in the left-hand panel of Figure 6. In
nonperiodic 5P-stencil communication, all messages
from spare nodes 4’, 5’, 6, and 7’ to the neighbor nodes
A to V go through the link between 3’ and 4’. There are
16 messages, since each node sends 4 messages, one to
each of its neighbor nodes. This situation can happen
when the number of faults is greater than or equal to
seven. Below, we state the relation between the maxi-
mum number of possible message collisions (Cpax) and
the number of node failures (F,). Note that when Cax 18
equal to one, then there is only one message on each
network link, and there are no collisions

2xXF,+1
Crmax =
4 x (F,—3)

F, < 6 or torus topology
F, > 7 and mesh topology

This worst-case scenario can be relaxed by having spare
nodes allocated in the 2D(2,1) pattern. If the failures hap-
pen in the same row or column, then the spare nodes must
be chosen from alternating sides.

2.2.2. I D sliding. As described in the previous subsection, in
the 0D sliding method, even if the closest spare node is
chosen, the distance from the failed node is unlikely to
be small. The 1D sliding method can avoid this situation,
and it is shown in Figure 7. When node 21 fails, instead of
replacing it with a spare node, the nodes of the column (or
row) that include the failed node shift toward a spare node,
as shown in the upper left-hand panel of the figure. In this
way, the hop count in the 5P-stencil communication pattern
is increased by only one. This is much smaller than occurs
with the 0D sliding method.

In terms of hop counts, the 1D sliding method is super-
ior to the 0D sliding method; however, the recoverable
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Figure 5. Substitution methods for faulty nodes.

number of faulty nodes is limited in some cases. Let us
consider a case in which a second node (16) fails (again
using the 2D(2,1) pattern); this is shown in Figure 7. This
time, the sliding direction is along the column. If a third
node (15) fails, then there is no space left for the 1D
sliding (top row of Figure 7). This situation can be
avoided by sliding along the column direction after the
second failure (middle row of Figure 7).

The number of nodes below which a third failure cannot
be handled by the 1D sliding method is the product of the
number of slidings in each direction, when the thickness of
the spare node set is one. Thus, it is not a good idea to
evenly distribute the sliding directions; instead, they should
be as uneven as possible. Even when this is done, however,
the 1D sliding method may be limited to three failures
(bottom row in Figure 7).

The relation between the maximum number of message
collisions and the number of failed nodes with the 2D(2,1)
spare node allocation pattern can be expressed as shown
below. Note that there may be cases in which this method
cannot handle more than three node failures

Cmax :2+Fn

2.2.3. 2D sliding, 3 sliding, ..., gD sliding. In the 2D sliding
method, the rows and columns of the node space are shifted
by one unit to empty the row or column of the failed node
(bottom panel of Figure 5). This 2D sliding method can
handle only one node failure with the 2D(1,1) pattern or
two node failures with the 2D(2,1) pattern.

If the network has a higher-dimensional Cartesian topol-
ogy than 2D, then the 3D or higher-order sliding can take
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place in the same way. The highest degree of a sliding
method is equal to the number of dimensions of a Cartesian
network and this sliding method can handle up to the num-
ber of dimensions.

With the XY routing, the messages pass orthogonally
through the vacant rows or columns. All message routes are
the same as they were before the failure. Thus, unlike the
0D and 1D sliding methods, although the hop counts are
increased by one, message congestion can be avoided. Fur-
ther, this behavior is independent of the communication
pattern of the application.

2.3. Comparison of proposed methods

Figure 8 shows the number of possible message collisions
versus the number of failed nodes for the 0D sliding
method with the 2D(1,1) and 2D(2,1) spare node allocation
patterns, 1D sliding with the 2D(2,1) pattern, and 2D slid-
ing with the 2D(2,1) pattern. These numbers are obtained
by our developed simulation program with which every
possible combination of node failures is simulated so that
the number of message collisions in a 5P-stencil commu-
nication is counted at every link and the highest number of
message collisions is reported. In this simulation, it is
assumed that four messages of 5P-stencil communication
are sent simultaneously.

As already described, the number of possible message
collisions with 0D sliding with the 2D(1,1) allocation pat-
tern for a given number of failed nodes depends on the
network topology (mesh or torus) when the number of
faults is greater than six (upper left-hand panel in the fig-
ure). With 2D(2,1) case, up to five failures are simulated. It

is possible to handle more number of failures with the 0D
sliding method; however, the exponential growth of failure
combinations was the obstacle for us to simulate more.

The 1D sliding method with the 2D(2,1) spare node
allocation pattern can handle up to three failures perfectly.
More number of failures can be handled when the failures
happen at some specific locations. This is shown as a
dashed line in Figure 8.

The 1D sliding method can handle no more than the
number of spare nodes minus one, since the spare node at
the corner of the 2D(2,1) allocation cannot be used. The 2D
sliding with 2D(2,1) can handle only two failures as
described before.

The sliding method has a good characteristic where node
migration can take place in a pipeline fashion. Therefore,
the time to migrate nodes can be independent (O(1),
assuming the amount of data to be migrated are the same
over nodes) from the number of migrating nodes.

2.3.1. Hybrid method. The substitution methods described so
far are independent and can be applied in a combined way.
Figure 9 shows an example of a hybrid method. The first
and second failures are handled by using the 2D sliding
method (left-hand and middle panels), and the third failure
is handled by using the 1D sliding method (right-hand
panel). In this way, message collisions can be avoided even
up to two failures, and the job can survive even with a
greater number of failures.

Thus, a hybrid sliding method can be expressed with the
set of sliding methods and the order of their applications.
As described in Section 2.3, the higher-order sliding meth-
ods incur lower message collisions but the number of fail-
ure able to handle is smaller. Thus, the order of sliding
methods to be applied in a hybrid method should be a
descending order of the degree of sliding method. Herein-
after, a hybrid method will be expressed as “hybrid(2D +
1D + 0D),” for example, meaning 2D sliding is applied
whenever it is possible, then 1D sliding method is applied,
and finally 0D sliding method is applied. Since 0D sliding
method can be applied in any circumstances, any hybrid
method should have 0D sliding method as a last resort. In
this article, a hybrid sliding method combining all possible
sliding methods with the descending order of degrees is
also denoted as “hybrid(all)” for short. Another hybrid
method combining all possible methods except X is
denoted as “hybrid(-X).”

In the next section, some simulation results will be
shown followed by an evaluation section on the K com-
puter, BG/Q, and TSUBAME 2.5 (Endo et al., 2014). One
may argue that the numbers (percentages) of failed nodes
simulated and evaluated in this article are too many and not
realistic. However, those simulations and evaluations are
done to reveal the behavior and characteristics of the pro-
posed substitution methods. We believe that the research on
how to utilize spare nodes is a new frontier of fault
mitigation.
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3. Simulation (5) simulate a stencil communication and increment
. o . f all link h hs fi h

We developed a simulator to imitate the proposed slid- msg_count of & M §ont © paths from the source

. . . . nodes to the destination nodes, and

ing methods on a stencil communication with a Carte- .
(6) report the maximum value of msg_count at all net-

sian network and counted the maximum number of
possible message collisions. We made the assumption
that all stencil messages are sent on all stencil dimen-
sions simultaneously. Thus, the counted message colli-
sions is the theoretical maximum and the actual message
collisions on a real machine can be less than the simu-
lated numbers because of the skew of sending messages
to all dimensions. The skeleton of the simulation algo-
rithm is described below:

choose one alive node randomly,

mark the chosen node as failed and apply a sliding
method if the chosen node is not a spare node,
repeat above procedure until the number of failed
nodes reaches the specified number of failure,
save the node-rank mapping information to a file,

)
2

3)
“)

work links.

Since the number of combination of failed nodes is the
factorial of the number of failed nodes, it is impossible to
simulate all possible cases especially when the number of
nodes is large. Instead of having the exhaustive search, the
simulation results shown in this section are obtained with
random sampling. The resulting node-rank mapping pattern
is saved into a file so that we can evaluate it on the real
platform allowing the assessment of the quality of the eva-
luation with real data on a realistic scenario.

We chose the node spaces, 100 x 100 (2D), 12 x 12 x
12 (3D), and 24 x 24 x 24 (3D). We chose the base number
of 12 in 3D cases because the minimum unit of the K
computer network is 12 (called Tofu unit) to make the
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Figure 9. Example of hybrid(2D + ID) sliding.

simulation results comparable with the actual evaluation on
the K computer in the next section.

Figures 10 to 12 show this simulation results on 2D
network (5P-stencil, 100 x 100, 2D(2,1) spare node
allocation, 3,340,000 random cases), 3D network (7P-
stencil, 12 x 12 x 12, 3D(2,1) spare node allocation,
3,686,400 random cases), and 3D network (7P-stencil,
24 x 24 x 24, 3D(2,1) spare node allocation, 3,686,400

random cases), respectively. Each graph compares
hybrid sliding method (three thick lines, worst, average,
and best from top to down) and 0D sliding (three thin
lines, similarly, worst, average, and best from top to
down) method. “Best” in the legend means the lowest
number of message collisions, “Worst” means the larg-
est number of collisions and “Average” means the aver-
age of all cases.
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Figure 10. Hybrid(all) versus 0D, 2D network (100 x 100),
2D(2,1) spare nodes.
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Figure 11. Hybrid(all) versus 0D, 3D network (12 x 12 x 12),
3D(2,1) spare nodes.

In the graphs in Figures 10 and 11, hybrid sliding
method outperforms 0D sliding method in terms of best,
average, and worst cases in the smaller number of node
failures. In Figure 12, however, the hybrid method outper-
forms 0D sliding not so much as in the cases of 100 x 100
and 12 x 12 x 12. Comparing the worst numbers, 0D
sliding is better in the range of the number of node failures
between 10 and 155. Comparing the average numbers, 0D
sliding is better in the range of the number of node failures
between 248 and 740.

It is obvious that stencil communication matches with
Cartesian topology and no message collisions happen if the
degree of the network is equal to or higher than the degree
of the stencil communication. When a sliding method
higher than 0D takes place, the network links connecting
the nodes adjacent to the sliding planes can result in mes-
sage congestion. Here, sliding plane is defined as the planes
which surround the sliding nodes, except 0D sliding. The
number of nodes (or the size of area of the plane) adjacent
to the 1D sliding plane is smaller than that of 2D sliding.
Although the maximum number of message collisions of

Figure 12. Hybrid(all) versus 0D, 3D network (24 x 24 x 24),
3D(2,1) spare nodes.
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Figure 13. Hybrid(all) versus hybrid(-2D), 3D network (24 x 24
% 24), 3D(2,1) spare nodes.

1D sliding and 2D sliding are the same, the number of
network links having collisions caused by the 2D sliding
is bigger than that of 1D. So, the possibility of adding more
message collision(s) to the link(s) gets higher. From this
viewpoint, 1D sliding might be better than 2D sliding.
Based on this idea, hybrid(-2D) or hybrid(3D + 1D +
0D) might outperform hybrid(all).

Figure 13 shows the simulation results of hybrid(all),
already shown in Figure 12, and hybrid(-2D) to compare.
In this figure, the lines of hybrid(-2D) are thick. When
attention is paid to the average lines, hybrid(all) outper-
forms hybrid(-2D) at the rages at the leftmost part, from
1 to 18, and the rightmost part, from 993 to 1128 which is
the number of spare nodes. Middle part excepting those
ranges, however, hybrid(-2D) performs very well.

Figure 14 shows the rates of which sliding methods are
used in the sampling set. Figure 15 shows the accumulated
selection rate. As shown in these figures, the first two node
failures are substituted by using the 3D sliding method.
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Figure 14. Selection rate of hybrid(all) sliding, 3D network (24 x
24 x 24), 3D(2,1) spare node allocation.
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Figure 15. Accumulated selection rate of hybrid(all) sliding, 3D
network (24 x 24 x 24), 3D(2,1) spare node allocation.

Because spare node allocation is 3D(2,1), two is the max-
imum number of 3D sliding methods. 2D sliding method
dominates until having 38 node failures. Then, 1D sliding
method takes over until 915 node failures. Finally, 0D slid-
ing method takes the rest. As shown in Figure 15, when all
the spare nodes are substituted, 0D, 1D, and 2D sliding
methods occupy 25%, 71%, and 5%, respectively.

4. Evaluations on K, BG/Q,
and TSUBAME 2.5

In this section, the sliding methods described so far are
evaluated by using the actual supercomputers; the K com-
puter JUQUEEN (Stephan, 2012), a BG/Q machine, and
TSUBAME 2.5 listed in Table 1. This experimental cam-
paign will characterize the difference between the theore-
tical analysis and observed practical consequences.

The stencil communication is simulated by replicating
the usual communication pattern in an MPI-based stencil:
non-blocking communications with the neighbors
(MPI_Isend,MPI_Irecv,and MPI_Wait functions);all
send and receive buffers are contiguous and no MPI-
derived datatype is used. Processes were placed such that
a single MPI process per compute node was used. In addi-
tion to the point-to-point communications, we simulate

widely used collective operations, MPI_Barrier and
MPI_Allreduce, which were measured by repeating the
collective call. The message size of the stencil communi-
cation was set to 4 MiB and the message size of allreduce
communication is set to 64 KiB. A node failure was simu-
lated by excluding a node from the computation. It was
almost impossible to have a real node failure since all the
machines we used were in operation and a real node fail-
ure, even if it could be simulated by making it offline, may
affect the jobs of the other users running at that time. On
the K computer and BG/Q, the MPI implementations pro-
vided by the vendors were used. Supposedly, those col-
lective operations are tuned for their network topology
and mapping. This would reveal how the spare node allo-
cation and sliding substitution would affect the collective
performance. On TSUBAME 2.5, MVAPICH2, an open-
source MPI implementation, was used.

We have focused our analytical effort on the maximum
number of message collisions, which has the implicit
assumption that all messages are sent from nodes simulta-
neously, thereby always resulting in collisions if their path
follows the same link. However, the number of message
that can be sent simultaneously is dependent on network
hardware features (i.e. the number of Direct Memory
Access (DMAs)). When the actual number of simultaneous
sends is only one, for example, the number of messages
injected into the network is decreased and the number of
collisions is also reduced.

The rank mapping after the node failure(s) used in this
evaluation are the same as the ones used in the simulation
in the previous section. We measured the latency of those
communication operations and the slowdown ratio is cal-
culated based on the latency having spare nodes without
having any node failure.

Ri = Lnoisub/L;ub

where L. ; is the measured communication latency after ith
substitution, Ly, sub is the latency without having any node
failure but having spare node set, and the R' is the slow-
down ratio at that time.

The proposed sliding methods have been explained and
discussed by using a 2D Cartesian network; however, the
actual physical network can be more complex, having five
or more number of dimensions, as shown in Table 1. Even
if users require their jobs to run in 2D node spaces, those
2D node spaces are folded to fit in the actual network
topologies. On the K computer, any 2D Cartesian node
planes are mapped to the 6D Tofu network so that the
neighbor relationship of the 2D or 3D Cartesian topology
can be preserved. On the BG/Q system, the node-rank map-
ping is the user’s responsibility. To preserve the neighbor
relationship of the 2D or 3D Cartesian topology, “snake-
like pattern” is recommended (IBM, 2013a). On TSU-
BAME 2.5, the physical node space is one-dimensional,
dare to say. Anyhow, the mapping or folding of users’
topologies to fit into a physical network topology may
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affect the communication performance in different ways
discussed so far.

Table 2 lists some characteristics of the K computer,
BG/Q, and TSUBAME 2.5. The K computer has four DMA
engines and up to four messages can be sent simultane-
ously. BG/Q has 11 FIFOs and up to 10 messages can be
sent simultaneously. On the other hand, the network of
TSUBAME 2.5 is Infiniband (Infiniband Trade Associa-
tion, n.d.). TSUBAME has two Infiniband Host Channel
Adapters (HCAs) on a node, one of them is used in this
article to avoid the interference with the other jobs. So,
TSUBAME 2.5, in this evaluation, can send only one mes-
sage at a time.

The rightmost two columns of this table show the ratios
to send multiple messages simultaneously, four messages
with 5P-stencil, six messages for 7P-stencil, based on the
time to send one message. These values, except TSU-
BAME 2.5, are measured by our program. In theory, five
message collisions, for example, means the communica-
tion time gets slower five times. On the K computer, only
three times slower communication time was observed
because simultaneous four message sending takes
1.7 times of the time of sending one message
(3~ 5/1.7) (Hori et al., 2015). One possible reason to
explain this slowness (1.7 with 5P-stencil and 3.7 with
7P-stencil) is the insufficient bandwidth between the
memory and the network controller chip.

In the following subsection, the evaluation results of the
K computer and BG/Q are shown, followed by the evalua-
tion results of TSUBAME 2.5. This is because they have
Cartesian network topologies while TSUBAME 2.5 has
FatTree network topology. And the behavior of the K and
BG/Q is very different from that of TSUBAME 2.5.

4.1. Evaluations on K and BG/Q

4.1.1. Stencil communication. Figure 16 shows the simula-
tion results on the 3D (12 x 12 x 12) network and the
evaluation results of the K computer with the 12 x 12 x
12 node allocation. Spare nodes are allocated in the way
of 2D(2,1). The upper graph in this figure shows and
compares the results using hybrid(all) sliding method,
and the lower graph shows the results of using
hybrid(-2D) sliding method. The 768 failure patterns
(the set of failed nodes) are chosen from the worst cases
in the simulation.

As shown in both graphs, the average lines observed on
the K computer is almost always better than the result of the
simulations. This is considered as that the actual network
degree of the K computer (6D) is higher than the degree of
the simulation (3D). The links provided by the additional
dimensions give the paths to bypass resulting lower mes-
sage collisions. Comparing the best lines, the simulation
outperforms in the rage of less than or equal to 10 node
failures. This is because of the sampling effect, the number
of simulation cases is much bigger than that of evaluation
and the best cases found in the simulation could not be
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Figure 16. Stencil communication on K (12 x 12 x 12), 3D(2,1)
spare node allocation.
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Figure 17. Hybrid(all) versus hybrid(-2D) on K (12 x 12 x 12),
3D(2,1) spare node allocation.

found in the evaluations. The same situation happens on
the worst cases.

To compare hybrid(all) and hybrid(-2D), Figure 17
shows the evaluation results of them (the same data used
in Figure 16). The effect of hybrid(-2D) shown in this
figure is very similar to the one found in Figure 13.

Figure 18 shows the simulation results on the 3D (16 x 8
x 8) network and the evaluation on BG/Q computer with
the 16 x 8 x 8 node allocation. Spare nodes are allocated in
the way of 2D(2,1). As in the previous graphs, the upper
graph in this figure shows and compares the results using
hybrid(all) sliding method, and the lower graph shows the
results of using hybrid(-2D) sliding method. Here again, the
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Figure 18. Stencil communication on BG/Q (16 x 8 x 8),
3D(2,1) spare node allocation. BG/Q: Blue Gene/Q.
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Figure 19. Hybrid(all) versus hybrid(-2D) on BG/Q (16 x 8 x 8),
3D(2,1) spare node allocation. BG/Q: Blue Gene/Q.

768 failure patterns (the set of failed nodes) are chosen
from the worst cases in the simulation.

Comparing the BG/Q results and the K computer results
(Figure 16), the differences between the evaluation and the
simulation in the range of less than or equal to 10 node
failures are very small. This might come from the fact that
the network degree of the BG/Q (5) is less than the degree
of the K computer (6) and/or that the network topology of
BG/Q and the K computer are different. The BG/Q network
topology is full five dimensions, while the K computer, the
last three dimensions (A, B, C links out of X, Y, Z, A, B, C)
are used to form a 2 x 3 x 2 subnetwork unit (Tofu unit).

Figure 19 shows the evaluations of hybrid(all) and
hybrid(-2D) (the same data used in Figure 18). Unlike the

case on the K computer (Figure 17), the difference between
hybrid(all) and hybrid(-2D) is very small.

4.1.2. Collective communication. Up to now, the peer-to-peer
(P2P) communication performance in 5P-stencil communi-
cation pattern has been the primary focus. In this subsec-
tion, we will extend to the case of collective
communication performance. The communication patterns
of collective communications are more varied than the
stencil pattern, thereby providing a wider insight about less
regular P2P communication patterns as well.

On the K computer, the Tofu network supports hardware
barrier. The other various collective communications are
tuned so that the best performance can be obtained based on
the Tofu network topology and characteristics. The tuning
of collective protocols is also very important for the Cray’s
Gemini network (Pefa et al., 2013). However, it is very
difficult to predetermine optimized collective protocols for
any possible set of node failures.

In order to use the tuned collective protocol for the Tofu
network, each MPI collective communication has some
conditions for the physical shape of the communicator.
Some of the conditions come from the special protocol
tuned for the Tofu network, and the others come from
implementation issues. When a substitution is made for a
failed node, one or more of these conditions cannot be met
and generic algorithms are used. Thus, the performance of
the collective communication can degrade much more than
that of the stencil communication, because the special
tuned protocols cannot be applied in addition to the colli-
sion issue.

Figure 20 shows the relative performance of barrier
(upper graph) and allreduce (lower graph) collective
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Figure 21. Barrier and allreduce on BG/Q (16 x 8 x 8), 3D(2,1)
spare node allocation. BG/Q: Blue Gene/Q.

communications based on the performance of no substitu-
tions are made. Nodes of the evaluation job are allocated in
3D (12 x 12 x 12) and the sampling set is the same as the
evaluation of stencil on the K computer in the previous
subsection.

In the allreduce case, the slowdown cannot be seen with
one node failure and two node failures. In this evaluation,
the hybrid sliding methods are used and spare nodes are
allocated in 3D(2,1), so 3D sliding method can be applied
up to two node failures. The sliding method having the
largest degree happens with no message collision. And this
property of the sliding method with the largest degree does
not break the conditions where the optimized allreduce
protocol on the K computer can be applied.

Figure 21 shows the barrier and allreduce performance
on BG/Q. We found that the collective performance on the
node set having spare nodes is slower than the cases with-
out having any spare node; 8.2 times slower with the barrier
operation and 1.8 times slower with the allreduce opera-
tion. Such slowdown cannot be seen on the K computer.

To make sure, we evaluated the barrier performance
without the snake-like pattern mapping. When the spare
nodes were allocated on one specific physical dimension out
of the five dimensions of the BG/Q network, such barrier
performance degradation could not be seen. However, when
one node was excluded from MPI_COMM_WORLD, then the
barrier performance was slowed down to one-tenth. Appar-
ently, the barrier operation on BG/Q is optimized for MPI_-
COMM_WORLD. Thus, the best way is to apply the snake-like
pattern only to the nodes not reserved for spares.

Unlike the K computer collective cases, the barrier and
allreduce performance of BG/Q is quite stable over the
number of node failures independently from the hybrid

Table 2. K, BG/Q, and TSUBAME 2.5.

Ratio to |
message sending

Machine Name Topo. # DMAs  5P-stencil 7P-stencil

K 6D Cart. 4 1.7 37

BG/Q (Chen etal., 5D Cart. 10 1.1 1.3
2011)

TSUBAME FatTree I 4° 6°

BG/Q: Blue Gene/Q.

*TSUBAME 2.5 has two IB networks but only one of them is used to avoid
interference with the other jobs.

®Estimated values.

methods. The 3D sliding method which is effective up to
two node failures in this case does not help to improve the
situation.

4.2. Evaluations on TSUBAME 2.5

We ran the same evaluation programs used in the previous
subsection on TSUBAME 2.5, 7 x 7 x 7 node space with
2D(2,1) spare node allocation. Unlike the K and BG/Q
cases, we could not see any significant slowdown. The
communication performance is almost constant within the
range of 1.0-1.2 over the sliding methods and the number
of node failures, without obvious correlation. To make sure
of this phenomenon, we additionally evaluated the sliding
methods with random node-rank mapping. As far as we
tried, no obvious performance degradation can be seen.

One possible reason for this phenomenon is that the
network topology of TSUBAME 2.5 is two-stage FatTree.
The node space is expressed in one-dimensional way for
the sake of convenience. However, there is no significance
on the node numbers of the nodes connecting to the same
“edge” switch. Any changes on node-rank mapping on
those nodes have no effect.

The other factor for this phenomenon is that the network
of TSUBAME 2.5 is Infiniband. Indeed, TSUBAME 2.5
has two network sets so that the communication bandwidth
can be doubled by utilizing them in the multi-rail way (Liu
et al., 2004). One of the network sets is also used for Lustre
file system and it is likely to have /O traffics of the other
jobs. So we decided to use the other network set to avoid
the interference with the other jobs. Each Infiniband HCA
has one DMA engine and, unlike the K computer and BG/
Q, only one message can be sent from an HCA at a time. In
a stencil communication, in theory, multiple messages can
be sent simultaneously, however, TSUBAME 2.5 has the
capability of sending only one message in this case. This
situation is very different from the K computer able to send
up to 4 messages and BG/Q able to send up to 10 messages
simultaneously (Table 2). This leads to have less injected
messages in the network and to have less chance to have
message collisions. This may happen also with the collec-
tive communications.
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5. Related work

Shadow replication proposes another replication scheme
for fault handling to meet service level agreement (SLA)
(Mills et al., 2014). Their unique feature is to minimize the
additional power consumption by having replication
(shadow) processes. The authors mind the cloud service
providers, SLA, and the cost for power consumption. They
assume that the speed and power consumption of applica-
tion execution running as the shadow processes can be
controlled by using Dynamic Voltage and Frequency Scal-
ing (DVFS). In HPC, unlike cloud computing, applications
are supposed to run as fast as they can. Further, most super-
computer users do not make SLA contracts. Having any
sort of replication process consumes twice hardware
resource. In our proposed spare node utilization model, the
additional resource for fault mitigation is far less than twice
as shown in Figure 3.

Ferreira et al. (2011) indicated that dual hardware redun-
dancy while utilizing only 50% of the hardware resource,
might be under some assumptions more efficient than the
traditional checkpoint and restart method in Exascale
systems. These redundancies can be thought of as spare
nodes. The difference is that the redundant nodes are hot-
ter-standby than the hot-standby nodes waiting for
the intermediate computational results. The spare nodes
can be substituted for the failed nodes, and they can almost
immediately take over the computations.

Domke et al. (2014) showed the difference in commu-
nication performance between the presence or absence of
network failure (link or switch) over different network
topologies and routing algorithms. They analyzed the com-
munication performance degradation when network links
or switches failed; this was done by simulation using TSU-
BAME 2.0. In the K computer, the Tofu direct network has
redundant routes to bypass failed nodes. However, a job is
aborted and resubmitted by the operating system if it uses a
failed part. In this work we focus on node failures rather
than network failures. There is a long way to go until we
reach the goal where any kind of failures, node and/or
network, can be mitigated.

Brown et al. (2015) proposed a visualizing system of
message traffics in a communication network and they suc-
ceeded to identify hot spots. In their case study using the
samplesort program running on TSUBAME 2.5, 5% perfor-
mance gain was obtained by avoiding the hot spots which
they discovered by using their tool. Conversely speaking,
their paper reveals that finding an optimal node-rank map-
ping to level hot spots according to network topology and
communication pattern of an application is not an easy task.

Fang et al. (2015) argued about the shrinking and non-
shrinking post-recovery strategies. Although they use the
spare node for the non-shrinking strategy, they did not
propose any strategy on how to allocate a spare node set,
how to select a spare node from the spare node set, nor how
the failed node is substituted. Further, their evaluation was
done only with BG/Q, whereas we evaluated three different

supercomputers, the K, BG/Q, and TSUBAME 2.5, and
revealed that the communication performance degradation
depends on the network. They focused on the increased hop
counts after the recovery, but we focused on the number of
message collisions. As already described, the modern high
performance network exhibits very small latency per hop
(below 100 ns). The point here is that the larger the number
of hops, the higher the possibility of having message colli-
sions, and therefore an increased impact on the communi-
cation performance. It should be noted that they reported
the non-shrinking strategy by using spare nodes as superior,
in terms of efficiency, to the shrinking strategy if failure
rate is high. We believe the non-shrinking strategy pro-
posed in this article would be accepted by users in terms
of ease of programming and performance.

As reported so far, our proposed sliding methods are to
reduce the additional latency for the communication after
the failed node substitution. There are ongoing works to
reduce the communication time by introducing new algo-
rithms to improve the communication time in parallel pro-
grams. Communication avoiding algorithms (Demmel
et al., 2012) for linear algebra and temporal blocking algo-
rithm for stencil computation (Muranushi and Makino,
2015) are the examples of this approach. These algorithms
could improve both of the program execution time without
having any failed nodes and the execution time after having
failed node substitution. An application that succeeds to
hide communication latency perfectly may fail to hide the
increased latency due to the spare node substitutions. Thus,
it is important to explore the way to minimize the latency
introduced by spare node substitutions.

ULFM proposed by Bland et al. (2013) supports
both shrinking and non-shrinking recovery. Upon the
occurrence of a failure, instead of aborting the application
like in legacy MPI, ULFM produces an error code from the
impacted communication routines at surviving processes.
Surviving processes may then continue to operate using
point-to-point routine between themselves, or interrupt the
communication pattern of the application with MPIX_-
Comm_revoke and rebuild fully functional communicators
excluding failed processes with MPIX_Comm_shr ink.
When deploying this shrinking recovery model with
ULFM, the underlying implementation has no notion of
active and spare ranks. From the ULFM perspective, all
ranks are application processes, with the same features. Our
work expands on this basic framework by adding at the user
level an initial spare allocation strategy as well as a sub-
stitution strategy that avoids communication hot spots in
the recovered application. The non-shrinking recovery in
ULFM builds on top of the previously described shrinking
model. Once a new communicator fit for issuing collective
operation has been reconstructed with the shrink routine,
spawning additional processes can be achieved with tradi-
tional MPI-2 dynamic process management routines (e.g.
MPI_Comm_spawn). The ULFM spawn accepts nonstan-
dard arguments to finely select where to allocate additional
processes; it is possible to select, from the application,
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which node will host the supplementary processes. It is
important to note however that the default policy in ULFM
is a simple round-robin among the available slots in the
existing allocation. The user remains in charge of the
decision-making for advanced placement policy making
even in non-shrinking cases.

Fenix proposed by Gamell et al. (2014) is a framework
to automate the procedure to substitute failed node(s) with
spare node(s) and to resume execution from a checkpoint.
Laguna et al. (2014) proposed Reinit API which is an exten-
sion of existing MPI for bulk synchronous applications to
survive from node failure. Fenix and Reinit provide easier-
to-use API than ULFM and support a non-shrinking strat-
egy by assuming a spare node set. Both works depend on
the MPI_Comm_spawn* functions to substitute failed nodes.
This means that the selection of a spare node and definition of
a spare node set depend on the system and choosing a spare
node according to a specific substitution strategy is out of
control of applications. Further, both did not take into account
the possibility of communication performance degradation
after the recovery. In contrast, this article focused on the
possibility of such performance degradation and proposed
sliding substitution methods to minimize the degradation.
Our proposed sliding methods can be integrated into such
frameworks to improve the performance after recovery.

6. Discussion
6.1. Node utilization in a multijob environment

The possibility that a job has a failed node is proportional to
the number of nodes assigned to the job and execution time.
Thus, the number of spare nodes must also be proportional
to the number of nodes assigned and execution time. There-
fore, the number of spare nodes allocated by the proposed
method may be excessive when only a small number of
nodes are required by a given job. Ideally, the curves
shown in Figure 3 would be a horizontal line at the height
determined by node failure rate, if the execution times are
the same.

Figure 22 shows a countermeasure for this. Large jobs
should have a higher-order spare node allocation method,
and smaller jobs should have a lower-order method; this
will allow the spare node percentage to approximate a
horizontal line. In the example shown in Figure 22, the
spare node percentage is kept in the range from 2% to 5%
by using a combination of the 3D(2,1), 3D(2,1), and
3D(1,1) methods.

6.2. User-level versus system-level substitutions

So far in this article, we have considered methods in which
the spare nodes are allocated by the job. We would like to
develop a framework that uses something like ULFM and that
framework automatically replaces faulty nodes with spare
nodes, so that users do not need to be concerned with how
failures are handled. GVR supporting versioned data
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Figure 22. Combinations of spare node allocation methods.

backup and providing higher abstraction than that of ULFM
might be able to support the proposed spare node substitution.
When spare nodes are allocated and substitutions are
determined by user programs, this is called as user-level
substitution; when this is done at a lower system software
level, it is called system-level substitution. With the user-
level substitution, the user program is also invoked at each
spare node, and it waits in hot-standby mode for the data to
migrate from the failed node. This means that calling
MPI_Comm_spawn is not required. On the other hand,
system-level substitution can reduce the percentage of
spare nodes, because spare nodes can be shared by several
jobs. For example, spare nodes can be allocated at the
boundaries of jobs, and these can be used to replace failed
nodes on every side of the job boundaries. However, it is
not possible to have spare nodes on hot-standby, as with
user-level substitution. If the spare nodes are not adjacent
to the job in which they are needed, this can result in
uncontrollable message collisions with other jobs, and
unexpected communication performance degradation.

6.3. Job resubmission versus fault mitigation

One may argue that a job can be aborted and then resub-
mitted using a checkpoint, instead of mitigating the fault. In
this way, the problem of utilizing spare nodes and the degra-
dation of communication performance, described above, can
be avoided. Job resubmission, however, may incur a long
turnaround time, especially when the system is heavily
loaded, and user-level fault mitigation techniques, such as
those described in Davies et al. (2011), cannot be utilized.
When considering which is better, there are many aspects to
be considered. In this article, we considered only the effect
on communication performance. It is still an open question if
it is better to resubmit a job or mitigate the fault.

6.4. Worm-eaten node space

So far in this article, a job is allocated with a node space
where there is no node failure at the beginning. Usually,
when a node failure happens, the failed node is to be phy-
sically replaced with a new healthy node. To replace the
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failed node, firstly this node is unplugged from a rack and
or chassis and then sanity node is plugged in. When a node
is unplugged from a rack or chassis and if its network is a
direct network, then the network switch (router) associated
with the node is also gone. Thus, unplugging a node simu-
lates a network switch failure. When a switch failure hap-
pens, network routing must be changed to bypass the failed
switch and this may affect the other running jobs. So, the
physical node replacement cannot take place soon after the
node failure happens.

It is expected that Mean Time Between Failure (MTBF)
is increasing in the future. And there will be the case where
node failure happens much more frequently. Thus, the
number of node failures will increase within the interval
of repairing nodes. This may result in the situation where
large jobs might be allocated with a “worm-eaten” node
space at the beginning, instead of having a healthy contig-
uous node space. In this case, node substitution methods
described in this article and/or algorithms to find an opti-
mal node-rank mapping can be applied at the beginning of
job execution. Therefore we believe the research on node
substitution and the algorithm to find (sub)optimal node-
rank mapping will be very important.

7. Summary and future work

In this article, we considered methods for allocating
spare nodes and replacing failed nodes in jobs whose
rank-node mapping is critical to performance. We com-
pared these methods in terms of communication perfor-
mance following substitutions. The substitution methods
are 0D, 1D, 2D, and higher sliding methods. In the
stencil communication, the higher the order of the slid-
ing method, the fewer message collisions but more fail-
ure distributions are unrecoverable for lack of spares.
Thus, a combination of these methods would seem to
be the best strategy. We also extended the evaluation to
widely used collective operations.

We also revealed that such performance degradation
after the substitution may depend on network charac-
teristics and node-rank mapping. If the high failure rate
becomes reality, a network might be designed in such a
way to minimize the performance degradation after the
substitution.

Utilizing spare nodes influences various fields in high
performance computer design, hardware and software. As
shown in the evaluations, a network topology plays an
important role. It is expected that the communication per-
formance degradation found in the substitutions can be
relaxed by having a dynamic routing. The mapping of
applications’ communication patterns and optimizations
of collective communication patterns to fit in the available
network topology becomes very difficult with the presence
of failed node substitutions. Because there is no regular
pattern where node failure happens and the number of node
failure patterns is explosive. Therefore the assumption to

have spare nodes has a significant impact on hardware and
software design.

The research on this failed node substitution with spare
nodes has just begun. We will continue investigating on
this research topic.

A part of the results in this article is obtained by using
the K computer at the RIKEN Advanced Institute for Com-
putational Science (HPCI Project ID hp150240).
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