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Abstract—Physical or geographic location proves to be an important
feature in many data science models, because many diverse natural and
social phenomenon have a spatial component. Spatial autocorrelation
measures the extent to which locally adjacent observations of the same
phenomenon are correlated. Although statistics like Moran’s [ and
Geary’s C are widely used to measure spatial autocorrelation, they are
slow: all popular methods run in Q(n?) time, rendering them unusable
for large data sets, or long time-courses with moderate numbers of
points. We propose a new Sa statistic based on the notion that the
variance observed when merging pairs of nearby clusters should
increase slowly for spatially autocorrelated variables. We give a linear-
time algorithm to calculate Sa for a variable with an input agglomeration
order  (available at  https:/github.  com/aamgalan/spatial
autocorrelation). For a typical dataset of n = 63,000 points, our Sa
autocorrelation measure can be computed in 1 second, versus 2 hours
or more for Moran’s [ and Geary’s C. Through simulation studies, we
demonstrate that Saidentifies spatial correlations in variables generated
with spatially-dependent model half an order of magnitude earlier than
either Moran’s [ or Geary’s C. Finally, we prove several theoretical
properties of Sa: namely that it behaves as a true correlation statistic,
and is invariant under addition or multiplication by a constant.

Index Terms—Algorithm design and analysis, Computational
efficiency, Autocorrelation, Biomedical informatics, Magnetic
resonance, Clustering algorithms

1. INTRODUCTION

Geographic features such as longitude/latitude, zip codes,
and area codes are often used in predictive models to capture
spatial associations underlying properties of interest. Some of
this is for physical reasons: the current temperature at location
p1is likely to be similar to that at pz if p1is near pz, and the
synchrony between two regions in the brain is a function of the
network of physical connections between them. But social and
economic preferences in what people like, buy, and do also
have a strong spatial component, due to cultural self-
organization (homophily) as well as differential access to
opportunities and resources.

Correlation measures (including the Pearson and Spearman
correlation coefficients) are widely used to measure the degree
of association between pairs of variables X and Y. By
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convention, the corr(X,Y ) = 0 signifies that X and Y are
independent of each other. The strength of dependency, and our
ability to predict X given Y , increases with |corr(X)Y )|.
Autocorrelation of time series or sequential data measures the
degree of association of z;and sequence elements with a lag-I,
i.e. zi+. Spatial autocorrelation measures the extent to which
locally adjacent observations of the same phenomenon are
correlated.

Spatial autocorrelation proves more complex to measure
than sequence autocorrelation, because the association is multi-
dimensional and bi-directional. Social scientists and geoscience
researchers have developed a rich array of statistics which
endeavor to measure the spatial correlation of a variable Z,
including Moran’s I[1], Geary’s C[2], and Matheron variogram
[3]. For example, political preferences are generally spatially
autocorrelated, as reflected by the notion of “Red” states and
“Blue” states in the U.S. There is a general sense that political
preferences are increasingly spatially concentrated. Spatial
autocorrelation statistics provide the right tool to measure the
degree to which this and related phenomena may be happening.

These statistics are widely used, particularly Moran’s I and
Geary‘s C, yet our experience with them has proven
disappointing. First, they are slow: all popular methods run in
Q(n?) time, rendering them unusable for large data sets, or long
time-courses with moderate numbers of points. Second,
although they are effective at distinguishing spatial correlated
variables from uncorrelated variables from relatively few
samples, they appear less satisfying in comparing the degree of
spatial association among sets of variables. Other inroads to
efficient spatial data analysis primarily concern with detection
of outliers and anomalies [4], [5]. In this paper, continuing the
naming tradition of Moran’s I and Geary’s C, we humbly
propose a new spatial autocorrelation statistic: Skiena’s A or
Sa. We will primarily consider a dataset of 47 demographic and
geospatial variables, measured over roughly 3,000 counties in
the United States [6]—[10], with results reported in Table I. The
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dataset was previously wused in identification of
sociodemographic  variables determining county level
substance abuse statistics in the U.S. [11]. With our preferred
statistic, the median-clustered Sa, the six geophysical variables
measuring sunlight, temperature, precipitation, and elevation
all scored as spatially autocorrelated above 0.928, whereas the
strongest demographic correlation (other language) came in at

0.777, reflecting the concentration of Hispanic-Americans in
the Southwestern United States.

Our statistic is based on the notion that spatially
autocorrelated variables should exhibit low variance within
natural clusters of points. In particular, we expect the variance
observed when merging pairs of nearby clusters should increase
less the more spatially autocorrelated the variable is. The
withincluster sum of squares of single points is zero, while the
sum of squares of the single cluster after complete
agglomerative clustering is (n-1)o2. The shape of this
trajectory from 0 to (n — 1)o? after n — 1 merging operations
defines the degree of spatial autocorrelation, as shown in Fig.
1.

Our major contributions in this paper include:

. Linear-time spatial correlation — The complexity to
calculate Safor a variable defined by n points and an input
agglomeration order is O(n), where traditional measures
such as Moran’s [ and Geary’s C require quadratic time.
This matters: for a typical dataset of n = 63,000 points,
our Sa autocorrelation measure can be computed in 1
second, vs. 2 hours for Moran’s I and Geary’s C. Times
shown are in seconds.

Number of data points

statistic 100 1000 10000 39810 63095
Moran I <11 S 1 60 1036 6784
Geary C Sa 169 3112 11901
single <1<
Samedian <11 s11 <11 <11

1

< < < < <

For points in two dimensions, the single-linkage

agglomeration order can be computed in O(nlogn).
Constructing more robust agglomeration orders like
median-linkage may take quadratic time, however this
computation needs to be performed only once when
performing spatial analysis over m distinct variables or
time points. We demonstrate the practical advantages of
this win in an application on a brain fMRI time series data
— analyzing the results of a dataset roughly 36,000 times
faster than possible with either Moran’s I or Geary’s C,
had they not run out of memory in the process.

. Greater sensitivity than previous methods — We assert that
the median-clustered Sa captures spatial correlations at
least as accurately as previous statistics. Through
simulation studies, we demonstrate that it identifies spatial
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correlations in variables generated with
spatiallydependent model half an order of magnitude
earlier than either Moran’s [ or Geary’s C (Fig. 7). On the
U.S. county data, we show that median-clustered Sa
correlates more strongly with Geary’s C (-0.943) and
comparably with Moran’s [ (0.879) than they do with
themselves (-
0.922).

. Theoretical analysis of statistical properties — We

demonstrate a variety of theoretical properties concerning
Sa. We prove that it behaves as a true correlation statistic,
ranging from [-1,1) with an expected value of 0 for any
i.i.d. random variable generated independent of location.

We show that Sa(X) = Sa(a + X) = Sa(a - X), meaning it is
invariant under addition or multiplication by a constant.
Further, we show that Sia measures increased spatial
correlation as the sampling density increases, as should be

the case for samples drawn from smooth functions — but

is not true for either Moran’s I or Geary’s C.

The implementation of our statistic is available at https:
//github.com/aamgalan/spatial autocorrelation. This paper is
organized as follows. Section II introduces previous work on
spatial autocorrelation statistics, with descriptions of four such
statistics including the popular Moran’s I and Geary’s C. Our
new Saagglomerative clustering statistic, with a fast algorithm
to compute it, is presented in Section III. Theoretical and
experimental results are presented in Sections IV and V,
respectively.

II. PREVIOUS WORK
A. Moran’s 1

The most well-known of spatial autocorrelation metrics,
Moran’s [ [1] has been around for more than 50 years.
Originally proposed as a way of capturing the degree of spatial
correlation between neighboring elements on a 2-dimensional
grid data from agricultural research, it calculates the following
in its current form:

N iz —2)(z - F)

W Sz —2)?

where z;is the value of random variable z at each of the N spatial
locations, wiis the weight between spatial locations i and j, with
W= 22 jwijand 2 =322/N  Morans 1 provides a

I

global measure of whether the signed fluctuations away from
the mean of quantity of interest z at a pair of spatial locations
correlates with the weight (frequently the inverse distance is
used) between the locations. The metric found extensive use in
fields that concern mapped data: econometrics [12], ecology
[13], health sciences [14], geology, and geography [15].
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Statistical distributions or their moments for Moran’s I under
various conditions have been derived
[16]-[18].

B. Geary’s C

Another early contender in the field is the Geary’s C,
originally named the contiguity ratio [2]. First demonstrated as
a viable metric of spatial correlation on the example of
demographic and agricultural data from counties of Ireland, it
is defined:

N — 1320, wij(zi — 2)?
2W Yoz —72)?

Moran’s I and Geary’s C have several features in common: both
take the form of an outer product weighted by the spatial
weights between the locations and both are normalized by the
observed variance of z and the sum of all spatial weights. The
distinction between them is the exact outer product operations
carried out: Moran’s I multiplies the signed fluctuations away
from the mean of z: (zi-2)(zj-2), whereas Geary’s C takes the
square of differences between values of

C =

Table I: Spatial autocorrelation for 47 geophysical and demographic variables on U.S. counties, sorted by their median-clustered
Savalue. We note that the median-linkage agglomeration order produced the most satisfying ranking of variables by spatial
autocorrelation compared to classical statistics and the weaker single-linkage aggregation order. Median-clustered Saranks all
geophysical variables as more spatially autocorrelated than any demographic variable, and exhibits a stronger correlation with
Geary’s C (-0.943) and comparable with Moran’s I (0.879) than they do with themselves (-0.922). For both Sa metrics, the
agglomeration order was computed only once and reused for all variables.
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Geary  Moran Sa
variable n C 1 single  median
maxtemp 3106  0.678 0.272 0.540 0.966
sunlight 3106  0.684 0.258 0.519 0.965
mintemp 3106  0.674 0.273 0.555 0.962
precipitation 3106  0.651 0.273 0.722 0.942
max heat index 3106  0.688 0.268 0.550 0.930 10°f 9| Moran'si
elev. 3142 0662 0250 0802  0.928 o8l r=omre
other language 3142 0778 0.130 0598  0.777 medianiinkage 6.3 °
med house val 3141  0.752 0.161 0.434 0.772 4O
log med house val 3141 0.782  0.170 0378  0.749 Mmedianlinkageg ko0 %
log pop density 3141 0758  0.190 0438  0.688 &880 ° &
main protestant 3113 0.820  0.162  0.395 0.675 Geary's E c
percentblack 3142 0.835  0.194 0049  0.672 X 025, 01 R
repsen2010 2115  0.804  0.161 0406  0.668 s o0 o
foreignborn 3142 0811  0.102 0401  0.654 07 08 09 10
percent white 3142 0.853 0.131 0.155 0.635
evan protestant 3122 0.838 0.169 0.231 0.625
percent physically inactive chr 3137 0.826 0.152 0.325 0.616 Geary's r=-0.943 c
rep pre 2012 3128  0.843 0.107 0.332 0.608 (@
catholic 2958  0.861 0.111 0.330 0.605
totalpop 3142 0.846 0.032 0.552 0.602 027 o O
percentobese chr 3137 0.837  0.131 0350  0.588 Moran's| 020%
high school 3142  0.851 0.143 0.213 0.582 04l o %
rep pre 2008 3112 0.864 0.114 0.281 0.566 )
year potential life lost rate chr 2861  0.856 0.131 0.222 0.558 ) ) © ‘Q o
percent excessive drinking chr 2591  0.860 0.145 0.252 0.539 0. 07 0.8 0.9 1.0
log med house income 3141  0.895  0.104  0.089 0.531 . .
percent fairorpoor chr 2738 0.874 0150 0126  0.525 Figure 2: Scatter of variables
med house income 3141  0.888  0.104  0.073 0.515 r=-0.922
rep hou2010 3091 0914 0.075 0.212 0.512 10F Q )
separated 3142  0.847 0.154 0.130 0.500 08 F o7
motorvehicle mortality rate chr 2828 0.888 0.086 0.281 0.493 median g o 9/
below poverty 3141 0.904 0.099 0.117 0.464 oafb &Q)/
percent smokers chr 2502  0.889  0.103 0.219 0.414 & o2k d?
divorced 3142 0.907 0.071 0.237 0.391 P O’W
physically unhealthy days chr 2954 0917  0.116  0.044 0388 oo o1
medage 3142 0930 0031 0287 0375 04 0. 04 o8
bac 3142 0918 0.075 0.074 0.357
mentally unhealthy days chr 2953 0.924  0.096  0.100  0.321 Sa single
grad 3142 0910 0.078 0.043 0.319 r=0.839
married 3142 0.908 0.086 0.118 0.307 Moran’s I, Geary’s C, and Sa. U.S.
agasltrate 2056  0.967 0.058  -0.021 0.179 .
Isl0ave 2004 0945 0033 0069 0165  counties dataset.
percent male 3142 0.937 0.030 0.134 0.164
samesex 3142 0.958 0.026 0.087 0.120
pop density 3141 0.906 0.073 -0.598 0.116
robberyrate 2056  0.971 0.052  -0.098 0.085
murderrate 2056 1.029 0.019 -0.172  -0.092
Elevation Median household income Population density
- 108 108«
= 05 LS —'w 0.5 L S s
= Il o
@ 00 s 0.0 s e
i S H‘kh Ss
= =05F "'-...... 1 E -0.5 - "'--__...
™ 10k . SSL -0k . . S -10 . . >
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

Time (number of merge events)
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Figure 1: Representative traces of the single-linkage Sa statistic (sum of squared deviations SS5(¢t) scaled with L(x) =2(1-x) -1

to be in range [-1, 1]) as a function of the number of merging events, for selected U.S. county variables. The area under the curve

shows Elevation as strongly spatially correlated (S4=0.802), Median Income as uncorrelated (54=0.073), and Population Density

as spatially anti-correlated (S4=-0.598).

z at spatial locations i and j: (zi— z))?. As such, Geary’s C takes
on a large value for a variable that displays large variation
among closely neighboring (large weight wij) spatial locations,
whereas Moran’s [ is large when the neighboring values
fluctuate from the mean in the same direction.

C. Matheron’s Variogram and y

Another metric is the variogram method of Matheron [3]
intended to quantify the typical variation of the spatial data
points as a function of the distance separating them. Empirical
variogram is often utilized in practice and is defined as follows:

i 1
5 e — — 2 —
Y0 = ma T Z B
(i,7)EN(h44)

2
zjl

where h is the distance between spatial locations with allowed
tolerance &, N(h%6) is set of all pairs of points (ij) such that
distance between them lies in range h*d, and ziand z;are the
values of the variable of interest at locations indexed i and j,
respectively. Variogram analysis results in intuitive quantities:
sill and range extracted from the curve of y"(h+6), where sill
indicates the eventual level of variability reached at asymptotic
length scales, and range denotes the length scale required to
reach variability indistinguishable from the eventual sill.
Variogram is extensively used in geology as part of kriging in
mineral surveillance process [19].

D. Anselin’s LISA and local Moran and Geary

Anselin proposed a generalized procedure for localizing the
contribution of individual measurements on the global measure
of spatial autocorrelation termed local indicators of spatial
association (LISA). The method also serves to identify hot-spots
or pockets of local variation in the mapped variable. LISA,
broadly defined using two requirements: i) the statistic for a
specific measurement should report whether similar values are
clustered around it and ii) sum over all measurements should be
proportional to a global statistic of spatial autocorrelation,
generalizes the localized Moran’s Iiand Geary’s cistatistics, also
defined by Anselin [20]:

I, =(z — %) Z wij(z; —Z) and ¢; = Z“"i.f(zi -

J i

2
zj)
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Both local statistics are, in fact, proportional to their global
counterparts with straight-forward proportionality constants,
when summed up over all spatial locations. LISA’s
(specifically local Moran’s ) first demonstrated usage was on
dataset of international conflict among African nations,
quantitatively identifying the hotbed of instability in
Northeastern Africa. See Getis [21] for a thorough history of
spatial autocorrelation analysis.

III. THE S4 ALGORITHM AND STATISTIC

Our proposed method, which we term Sa, produces a

measure of spatial autocorrelation given a particular

agglomeration order of n locations {x%;} embedded in
Euclidean space and values of random variable {z:} (with
variance ¢?) paired with them. Ss is agnostic to the exact
clustering used, provided it is agglomerative and two clusters
of spatial locations are merged at each step.

Saexploits the fact that the total sum of squared deviations
(85(t)) from the cluster mean of the variable z; increases
monotonically as clusters are joined (proof in section IV-A).
This quantity is traced at a cost of constant time per merge
event, starting when the first pair of observations are joined
into a cluster and reaching (n — 1)o? when all observations are
in a single cluster. We are interested in how quickly during the
agglomeration process this trace of sum of within-cluster
squares takes off and reaches its eventual value of (n-1)o?2.

Formally, computation of Sastarts with all coordinates as their
own singleton clusters and keeps track of the geographic

centroids of clusters (x"ciand x"c2), their sizes (|C1| and |Cz|),
means (#c: and #c2), and the total sum of squares over all

clusters: 25(t) = 2crecn 2iecy (7i — EC‘»‘)Q where C(t)
denotes the set of all clusters at time ¢ of the agglomeration
order. During a merge event, clusters C1and Cz are joined into
anew cluster C12 (C1z2 & C1U C2), with size |Ci2| <

|C1| + | C2]|, coordinate centroid
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E("12 A (|C1 |T(1 + |C‘2‘?C2)/|012|

andmean z ¢ (| 1fen+ 2 2 12 «Cz|C)|2

)/IC |. The trace of sum of squares is updated as

SS(t) « SS(t-1)+|C1|(Bciz —2c1)? +|C2|(2c1z —2c2)? It is then
normalized by its final value, averaged over all agglomeration
steps, and linearly transformed with L(x) = 2(1 - x) - 1 to give
the Savalue:

Sa=2[1-(Y SSH)/(n—1)-8S(n—1))| -1

t<n—1

with n - 1 indicating the total number of merge events.

Just like conventional correlation coefficients, Sacan range in
the interval from -1 to 1. It will take 0 value when there is no
spatial structure, larger value when similar values of z; are
spatially nearby and negative values if neighboring values are
anti-correlated. Intuitively, both nearby locations with very
different values of feature ziand distant locations with similar
values will decrease Sa, while nearby locations with similar
values and distant locations with differing values will contribute
to the increase in Sa. We note here that each update in the total
sum of within-cluster squares due to a joining event is done in
constant time, making calculation of Safor variable z;and any
particular pre-specified agglomeration order an O(n) algorithm.
The required pre-computation of an agglomeration order can be
performed in O(nlogn) time, using single-linkage clustering in
the plane.

A. Dependence on Agglomeration Order

Multiple agglomerative clustering criteria are in common use,
reflecting a trade-off between computational cost and
robustness. In this paper, we investigate four distinct criteria and
their impact on observed spatial autocorrelations:

. Single linkage — Here the distance between clusters C1and
C21s defined by the closest pair of points spanning them:
d(Cy,C3) = min
( : 2) 21€C1,22€C2 | l

Z1 — Zo

This is akin to the criteria of Kruskal’s algorithm for
finding minimum spanning trees, and runs in O(nlogn)
time for the primary use case of points in the plane. The
O(nlogn) time is due to the disjoint set data structure with
complexity bound of O(a(n)) on merge/search operations.
a is an extremely slowly increasing inverse Ackermann
function and is a small constant for all practical purposes.

. Average linkage — Here we compute distance between all
pairs of cluster-spanning points, and average them for a
more robust merging criteria than single-link:

1
d(C1.C3) = ———— 21 — 2
(C1,C2) ‘Cl‘|cg|:§lz§2l\ 1 — za|

This will tend to avoid the skinny clusters of singlelink, but
at a greater computational cost. The straightforward
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implementation of average link clustering is O(n?),
because each of the n merges will potentially require
touching O(n?) edges to recompute the nearest remaining
cluster.

. Median linkage — Here we maintain the centroid of each
cluster, and merge the cluster-pair with the closest
centroids. The new merged cluster’s centroid is given by
the average of the centroids of the clusters being merged.
This has two main advantages. First, it tends to produce
clusters similar to average link, because outlier points in a
cluster get overwhelmed as the cluster size (number of
points) increases. Second, it is much faster to compare the
centroids of the two clusters than test all |C1||C2| point-
pairs in the simplest implementation.

. Furthest linkage — Here the cost of merging two clusters is

the farthest pair of points between them:

1(C,Cq) = 2| — 2
dCLCo) = | max 21— 2]

This criteria works hardest to keep clusters round, by
penalizing mergers with distant outlier elements.
Efficient implementations of furthest linkage clustering
are known to run in O(n?) time.

All linkage methods except for single linkage, produce
similar results, while single linkage produces a slightly lower
Sa autocorrelation. This is natural as single linkage method
merges only locally and suffers from what is known as the
chaining phenomenon. The larger linear dimensions of the
single linkage clusters reach the variability of the variable z;
earlier driving the sum of squares up and the Sadown (Fig. 3).

Linkage dependence (US elevation)

1.0 T I \IIIII‘ T TTTTIT I T TTTTTT I \ﬁ:
08" ]
0.6 - =—O=_single _

o furthest 1
04 - 1
average 1

0.2 - —{— median ]
0.0 Ll | \IIIII‘ L L Ll | \IIIII‘ | \\-'

100 1000 10*

Random subsample size

Figure 3: Sacalculated on subsample of the elevation data with
different agglomeration methods. All methods considered
produce similar values of Sa, except for single linkage.

B. Comparison with Moran’s I and Geary’s C

The comparison of median clustered S4 with Geary’s and
Moran’s can be seen in the scatter plot of the Fig. 2 with each
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point representing a feature in the U.S. counties dataset. All 3
pairwise comparisons show large magnitude correlations |r| >
0.8. In the bottom panel, single and median linkage methods
are compared for Sa.

IV. ANALYSIS OF STATISTICAL PROPERTIES

In this section, we prove three important properties of Sa,
namely monotonicity under merging, that it is a well-defined
correlation measure with zero corresponding to no spatial
correlation, and invariance under addition and multiplication
by a constant.

A. Monotonicity

For demonstration of the monotonicity of the total sum of
within-cluster squared deviations from the mean of variable z;,
it suffices to show that an arbitrary cluster C1 merging with
another (C2) would have non-decreasing squared deviation from
the new cluster’s mean #ci; compared to the original mean zc;.
Setting the mean shift equal to 6z = Zci2—2c1i, we compute the
difference between the sum of square deviations from mean for
zivalues in cluster C1before and after the merge event as:

Z (Z, — ZCia )27(35 —Zcy )2 - ??'12 —2zZgy, 75?‘1 +2zZ¢,
ieCy

Substituting the mean shift 6-and simplifying, we obtain:
D 2E0, 0. 402 =228, = Y 62 =Cy)62 >0
1€Cy ieCy

where we have used the definition of mean to eliminate z;and
#c1. The change in sum of squared deviations for the clusters C1
and (2 being merged is, therefore, non-negative for all merge
events, making the trace of SS(t) a monotonic quantity. Its
monotonicity, coupled with a suitable agglomeration order,
which merges close-by coordinates earlier on, enables us to
single out the area under its curve as a measure of spatial
autocorrelation indicating how early/late in the agglomeration
the variability increases from 0 to (n - 1)o2.

B. Expected Value

Intuitively, Sais mean of the (monotonically increasing) sum
of squared deviations of values of zi from their cluster means
while the observations are gradually merged into a single cluster
made up of all coordinates X". Under lack of spatial dependence,
the sum of squared deviations will increase in even steps with
no particular time structure and produce a mean over time equal
to half its eventual value ((n-1)0?/2). After normalization and
a linear transformation to flip the sign and adjust the range (L(x)
=2(1-x)-1), we will obtain 0.

For a formal proof, let us first consider n real numbers Z =
{z1,...zn} with mean z-and Euclidean coordinates X~ = {x"1,...X"n}.
Let A(X) = {ey..en-1} a merge order that determines an
agglomerative clustering on the symmetric weighted graph

(with no self-edges) induced by a similarity metric on
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coordinates X . Define the stages of this agglomeration at time ¢t
as A(Xt") = {ex,...ec} (with a shorthand A(t)) such that A(X,;n" -1)
= A(X"). Let C(t) denote the set of disjoint clusters present at
time t of agglomeration process such that C(0) = {{1},{2},...{n}}
and C(n-1) = {{1,2,..n}}. Definition 4.1: Sa. Define the Sa

statistic as:

n—1
o SS(A(t), Z
S;;(A(X).Z):Q 1— t=1 ”( () _)2 1
(n—1)3" (2 — %)
whereSS(A(f)'Z) = Lcrecn 2iec, (7 — z(,'k)g, (with a
shorthand notation SS(t)) denotes the sum of within-cluster

squared deviations at time t of the agglomeration given by A(t).
Theorem 4.1: Let Z = {z1,22,...z»} be a set of normal i.i.d.

random variables with mean 0 and variance 02 and X* =
{x"1,X"2,...x"} their coordinates in Euclidean space. Then the
random variable Sa(A(X"),Z) converges to zero in limit of large
n:

lim E[Sa(A(X"),2)] = 0

—00

Summation in Sa shown horizontally with slab height equal to

E[ss(t)]=2and width equal to n-t
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6 E[ss(7)]=z
SE 4 Elss(6)]=>
2
0
E[ss(5)]=* | E[Area]=*(n-5)
E[ss(4)]=* | E[Area]=*(n-4)
E[ss(3)]= E[Area]=(n-3)
...| E[Areal=%(n-2)
...| E[Areal=*(n-1)
1 2 3 4 5 6 7 8

Time (number of merge events)

Figure 4: Summation carried out in “horizontal slabs”, each
with height in expectation equal to 02 and deterministic width
ofn-t.

Proof'1: We proceed by considering the contribution of each
cluster joining event on the eventual metric Sa. During a given
merge event, clusters C1and Cz with sizes n1 and nzand means
#ciand Zc2join to make the cluster C12 with size niz=n1+ nzand
mean Zci.. At the same time the running sum of within-cluster
squares changes as follows (see Section [V-A):

bss(t+1) = S0y, (t+ 1) — (5S¢, (1) + 55¢,(1))
=n1(Zcy, —20,)° + n2(Zen, — 20,)°
The expectation of change in sum of squared deviations due to
merge event E[ss(t+1)] is then given by the difference in the
expectations of sum of squares before and after the merge.

E[Oss(t + 1)] = E[SSciz(t + 1)] = (E[SSci(8)] + E[SScz(E)])

= (n12- 1)o2- ((n1- 1)o% + (n2- 1)0?)
= (n12- n1—- n2+ 1)o2= 02

Here we use the fact that for a given cluster C, SSc— its
sum of squared deviations from mean, is an estimate of the

population variance biased by a factor of n-1. The summation
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in definition of Sacan then be carried out “horizontally”, by

considering the jump in the global sum of squares times the

nl

2

=2|1-

number of time intervals for which this jump contributes to the
metric as shown in Fig. 4. It then follows that:
n—1 oo
t
E[SA(A(X).2)] =2 (1-B | —== 550 ) 4
(n—1)SS(A(X), Z)
E[ss()] \
(n - 1 bb(A(X) Z)
n— 1 ¢
— t)E[dss(t)]
2(1 n—l(n—l)r‘r2 -1
(n—1)n—(n—1n/2)c?) _1
(n—1)(n—1)o2
T on—1
Here we use the fact that the distribution of overall sum of
squares in the denominator is related to the sampling
distribution of sample variance:
SS(AX),2)  YI(z—2)?
a2 N a2

~xP(n = 1)

making SS(A(X"),Z) a self-averaging quantity with mean

(n-1)0? and variance 2(n-1)o*, and hence vanishing relative
variance in the limit of large n:
Var[SS(A(X), Z)]

1111 =

n—oo ]E[SS( ( ) ]’

This lets us treat SS(A(X"),Z) in denominator as a constant factor
and taking the limit of large n of E[Sa(A(X"),Z)], we obtain:

lim E[SA(A(X).Z)] = lim (f'” i 1) =0

n—roo n—Fo0
The Sa statistic has the nice property of invariance under
addition and multiplication by a constant. Letting Z a spatial
variable with S4(Z) = s and considering Sa(Z + c¢) with c € R, we
note that the sum of squared deviations is unaffected by addition
of a constant, making our statistic invariant to addition of a
constant c.

2(n — 1)t

= L
n.glrl:c (‘n — 1)2(‘1‘4

as desired.

C. Invariance

SS(T(t.X). Z +¢) =

>

(z, +c—
CreC()

e; €ECk
N 2
Die;cCy i )

2
Z(:J eCy ZI +c
|C|

2 |C|

Zi
CreC(t) (

e; €C

= SS(T(t.X).Z)

Considering multiplication of variable Z by an arbitrary constant
¢ € R, we note that a factor of c¢? appears both in denominator
and numerator due to the squared deviation from the mean being
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considered, canceling each other and returning the same value
as the original variable Sa(c - Z) = Sa(Z).
V. EXPERIMENTAL EVALUATION

Here we present the results of simulations which
demonstrate (1) the running time of Sais indeed an order of
magnitude faster to compute than competing statistics, (2) Sa
identifies substantially weaker spatial correlations in synthetic
data than Moran’s and Geary’s statistics, (3) Saappears to be
influenced less by non-uniform sampling than competing
statistics, and finally (4) Sa appropriately reports increased
autocorrelation with greater sampling density while still
converging to a limit below the perfect autocorrelation of 1.
A. Running Time

Sa substantially outperforms both Moran’s and Geary’s
metrics in computation time, both in establishing the
agglomerative merging order to use and to compute the
statistics. In our experiments, computing a single median-
linkage agglomeration order costs approximately 10% of a
single Moran or Geary computation on the same points, as
shown in Fig. 5 (left). By reusing this agglomeration order we
can save a linear factor of running time on subsequent
autocorrelation analyses. Fig. 5 (right) shows that for a typical
dataset of n = 63,000 points, our Sa autocorrelation measure
can be computed in 1 second, versus 2 hours or more for

Moran’s I and Geary’s C. To compute merge order To compute statistic

£ A 14 000 =—0— Geary's C
2500 12 000 |~~~ Moran's |
?2000 £ 10 000 - S, single
‘91500 - 8000 —C— Sa median
£ 1000 | o 6000
f 4000
500 - ye 4 2000
0 OO m—=—— 04
0 30 000 60 000 0 30 000 60 000
Size n

Figure 5: Experiments concerning running time. Single-link
and median-link agglomeration orders cost less to compute
than single runs of Moran [ and Geary’s C metrics. Sa
outperforms I and C drastically given the merge order on a
dataset of size ~ 63000.

Timing experiments were done as follows: starting from
coordinates, agglomeration order was computed using
Kruskal’s routine with disjoint set structure (for Sa single),
scipy’s linkage tool (for Samedian) and numpy’s linear algebra
toolbox with vectorization (for weight matrix of Moran’s [ and
Geary’s C) and metrics were computed using our streaming
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tool (Sa) and pysal library for python (Moran’s I and Geary’s
C). All tools were written in python 3.7.

B. Reusing agglomeration order: fMRI time series analysis

Much of the efficiency gains Saaccrue from its ability to reuse
a once-computed agglomeration order for new data
points arriving from the same spatial coordinates. We
demonstrate this with an application to functional neuroimaging
data (fMRI), which gives a time series readout for each spatial
location in the brain. In order to study the dynamics of brain
networks, neuroscience is concerned with extracting summary
statistics from the brain images of potentially > 106 voxels (3D
pixels) at the resolution of sampling period. The statistics are
then used in downstream prediction and classification tasks of
clinical significance. In this experiment, we used a publicly
available fMRI neuroimaging dataset with 36 fMRI scans (12
human subjects x 3 experimental conditions) with each scan
consisting of 2 x 2,320 = 4,640 repeated measurements of the
entire brain at 0.8s sampling period [22]. We focused on the
grey matter data, which consists of readings from n =
133,000£13,000 (mean * std) voxels at each time point. To
compute Sa, we constructed a single agglomeration order for
each scan, using k-d tree structure by treating the grey matter
voxels of brain as points in space to be partitioned into
singletons. We cycled through the three axes of brain
recursively, splitting each partition between its median pair of
planes perpendicular to the axis until all partitions reached size
of 1. The splitting events then define an agglomeration order in
reverse. The time complexity of partitioning space using k-d tree
structure is O(n) in case of unbalanced tree, and O(nlogn) for a
balanced tree with median finding subroutine. Due to the highly
irregular shape of the grey matter, we resorted to finding the
medians for balanced partitions, with the average time to
establish the agglomeration order of two minutes, but it can be
reused for each of the m time points of a given scan. This
reduces the run time from O(mn?) for Moran’s I and Geary’s C
to O(nlogn + mn). In our case, with m = 4640 time points and
n = 133000 coordinates, Satook 3500 £ 300 seconds, or 0.75
+ 0.07 seconds per feature (time step). On the other hand, we
were not able to compute Moran’s I and Geary’s C for 133,000
coordinates on an average workstation hardware using the
standard implementation (pysal), due to space limitations.
Extrapolation from computations of Moran’s [ and Geary’s C on
smaller samples indicate that if memory requirements were
lifted, it would take more than 7.5 and 13.5 hours respectively
for each time step of the time series data, or roughly 36,000
times longer than Sa. Fig 6 shows representative autocorrelation
time series from brain fMRI data. This shows that Sanot only
improves computation for each data feature, but also processes
each additional feature in linear time by reusing the
agglomeration order once it is computed. Sa’s complexity for
each time step is comparable to the sampling period of the fMRI
data. This permits future applications in closedloop systems that
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process data and provide feedback stimuli or electromagnetic Moran’s 1. Although both Moran and Geary statistics support
stimulation to the brain in real-time for improved clinical  problemspecific weight matrices to tune their sensitivity, the
intervention. interesting autocorrelation distance scales are a priori

unknown and difficult to determine, so methods without

C. Sensitivity to True Autocorrelation: Synthetic Data tunable parameters are preferred.

Ground truth on the degree of spatial autocorrelation can only
be obtained from simulation results, where we explicitly  D. Sensitivity to Sample Size and Coordinate Subsampling:

generate data with specified amount of spatial autocorrelation U.S. Elevation Data
0.48 subject 01 Spatial autocorrelation depends on the exact sampling of the
coordinates as well as the spatial distance/weight matrix.
10 N~ 3 -
0.46 3 g 08~ o
S N g6t Moran's |
e E 04: S, single
044 S 2 g~ Samedian
0 1000 2000 3000 4000 0.0 S S
g 0.001
subject 31
0.48 Disk radius
Figure 7: Sa is more sensitive to true autocorrelation than
0.46 Moran’s I and Geary’s C, on a “disk-averaging” generative
model as a function of disk radius. Moran’s I, Geary’s C values
‘ o - . . are rescaled to match the range of Sa. Sa detects the
044 0 1000 2000 3000 | 4000 autocorrelation > 0.5 order of magnitude earlier. Note the entire
Time [0.85] range of [0,0.9] is covered with Sawithin 2 orders of magnitude

of the disk radius. Vertical dashed lines indicate disk radii where

Figure 6: Spatial autocorrelation (measured by Sa) time series metrics reach half of their ranges.

for fMRI data, showing visibly different degrees of coherence Geary's C Moran's |
on two different human subjects. We estimate that this ggg 03f T T
. . .90 = L Ak
computation would have taken roughly 36,000 times as long 0.85 - —_
using either the Moran’s I or Geary C statistic. The two colors 0.80 | T 02 bl N
indicate the two halves of the scanning session, with short 0.75 1 HIE 0.1 H
break in the middle. 0.70 £ | [ L1 1o 0.0
0.65 L ‘ F
2 0.60 I 1 1 -0 == I I I
E 10 100 1000 10 000 10 100 1000 10 000
and see how much bias must be added for statistics to identify £ . . -
. 5 S, single linkage S, median linkage
the phenomenon. For this purpose, we carry out a = .
diskaveraging experiment, whereby a normally distributed 0.8 - s gg E o
independently sampled random variable z; is assigned to 0.6 ET—:‘LQT,_A%Z* 07
uniformly distributed coordinates and undergoes an averaging 04" L " g-g El
procedure. The averaging takes all values of z; for locations 0.2 _Ti 04"
within disk of radius r around coordinate x";, and reassigns the 0.0 = | ‘ gg ?’I ‘ .
average of the within disk values to it: zi«< mean({z;|d(x"i-x";) “ 10 100 1000 10 000 “ 10 100 1000 10 000

< r}). The Sa statistic of the disk-averaged zi values were
computed and compared to Moran’s [ and Geary’s C. Random
sampling, disk-averaging and statistic computation were each
repeated 100 times.

Fig. 7 summarizes the results of these experiments for 1000
points. Sa (both single and median-linkage) demonstrates far
greater sensitivity, identifying significant and rapidly
increasing amounts of spatial autocorrelation for disk radii
half an order of magnitude smaller than that of Geary’s C and

Sample size

Figure 8: Sareveals autocorrelation independent of the exact
coordinates sampled. The random subsampling experiment on
1km? scale US elevation data carried out up to subsample size
40000. Vertical and horizontal lines indicate the number of
counties in the U.S. counties dataset and the value of metric
computed from them, respectively.
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We note that for historical and demographic reasons, U.S.
counties are not of equal size and shape, but generally smaller
and more irregular in the east rather than the west. A spatial
autocorrelation statistic should ideally report similar values on
the same underlying geographic variable regardless of the
details of the sampling method.

To interrogate whether Sa computed on subsamples of real
data differs from Moran and Geary’s statistics in its dependence
on the exact subsample of coordinates, we use the following
procedure. n random data points are drawn from the U.S.
elevation data (itself sampled at 1km?) [23], and Sa, Moran’s [
and Geary’s C are computed from their coordinates x"; and
elevation values zi. Performing the experiment at sample sizes
up to 40,000 points (limited by the O(n?) running time of Moran
and Geary’s), we compute autocorrelation metrics, and compare
them to the values obtained from the elevation column of the
U.S. counties dataset at sample size of 3142. Results shown in
Fig. 8.

Both Moran’s I and Geary’s C report different values when
the coordinates are sampled uniformly, compared to the
irregular sample of coordinates given by U.S. counties’
locations. On the other hand, both single- and median-linkage
Sa report similar values with equal number of uniformly
sampled coordinates as it did with coordinates of U.S.
counties, showing robustness to changes in the exact
subsampling of coordinates.

E. Convergence Evaluation and Analytical Fit

To test convergence of Sa, Moran’s, and Geary’s metrics we
perform the following sampling procedure on grids of random
values of varying sizes. For a rectangular grid of finite size e.g.
k-by-k, we assign a uniformly random z;; value to each of the
k2 grid cells, then randomly sample n real valued coordinates
from the support given by [0,k]?, and take their corresponding
cell’s zjvalues to compute Sa. This procedure locks a particular
correlation length into the data by choosing the number of grid
cells, and forces the metrics to capture it as number of sample
coordinates increases. We expect 1/k%th of all samples to fall
in each grid cell, thus taking on the same z value, and raising
the autocorrelation as the number of samples increases to a
natural limit, because there will also be nearby pairs of points
that sit across a grid boundary and take different z values. Thus
a meaningful metric should converge to a large value (but less
than the maximum possible 1) that decreases for shorter
autocorrelation lengths induced by larger number of grid cells.

Fig. 9 (left) reports that Moran’s I converges to values
increasingly closer to 0 as the grid size increases, indicating it
captures the de-correlated structure of large number of random
grid cell entries zj. Geary’s C does similarly, reporting values
increasingly closer to 1. But Saclearly sees the coarser, more
correlated structure of smaller grids with fewer samples,
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reporting earlier increase for 10-by-10 grid than for 100-by-
100 (Fig. 9, right panel).

In order to estimate the asymptotic value of the Sametric, we
fit the following log-sigmoidal functional form to the observed
values of S4 as a function of samples taken: Sa(n) =
Smax/(1+e-a(logn-b)). The parameter Smax has a natural
interpretation of the asymptotic value of Sa, turning the task of
finding the asymptote into a parameter estimation for Smax. We
report that with sample size > 105, the confidence interval for
estimated Smaxincludes the eventually best estimate computed
using 107 samples. None of the estimates of Smax includes the

value of 1.
Moran's | Geary's C Sa
1.0
0.4 1.1
L = |
Ll;f E‘_b:ﬁ::xm |
2 02040 I : 0's
©
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@
= FH—
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e +
L L A . )
-0.2 Grid size2 x 2 0.8 0.0
10x 10
0.7
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Figure 9: Asymptotic behavior of spatial correlation metrics.
Random coordinates are sampled at increasing sample size from

nsed use limited to: SUNY AT STONY BROOK. Downloaded on March 26,2021 at 17:54:03 UTC from IEEE Xplore. Restrictions apply.



square grid of independent random values from [0, 1] interval.
Left: Moran’s I, center: Geary’s C, and right: Sa, solid lines
represent best fit of log-transformed sigmoid curves for data
drawn from grids of size 10 x 10. Note the asymptote of single-
linkage S converging to values < 1: S10= 0.925,

A max

532=0.905, and S1°0 = 0.87. max

max

VI. CONCLUSION

The Skiena’s A (Sa) algorithm and statistic we propose
provides an efficient, improved sensitivity procedure for
computing the spatial autocorrelation, running in linear time
after computing the agglomeration order (implementation
available at https://github.com/aamgalan/spatial
autocorrelation). Separating the computation into two steps: 1)
obtaining the agglomeration order and ii) computing of the
statistic, provides additional improvements by reusing the
agglomeration order for new data that arrive from the same
coordinates. Sa achieves run time of O(nlogn+mn) for m
separate features, improving upon the standard O(mn?). As
demonstrated in the fMRI example, it can be thousands of times
faster in natural time series applications of spatial
autocorrelation than previous methods. Even for single-shot
applications in the plane where we can compute single-linkage
agglomeration in O(nlogn) run time, we beat previous 0(n?)
algorithms. We have also shown that Sahas the convenience of
converging to 0 for random data, invariance under linear
transforms uniformly applied to data, making it an attractive
addition to standard toolbox for analysis of spatial data
irrespective of the domain.
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