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Abstract—Physical or geographic location proves to be an important 

feature in many data science models, because many diverse natural and 

social phenomenon have a spatial component. Spatial autocorrelation 

measures the extent to which locally adjacent observations of the same 

phenomenon are correlated. Although statistics like Moran’s I and 

Geary’s C are widely used to measure spatial autocorrelation, they are 

slow: all popular methods run in Ω(n2) time, rendering them unusable 

for large data sets, or long time-courses with moderate numbers of 

points. We propose a new SA statistic based on the notion that the 

variance observed when merging pairs of nearby clusters should 

increase slowly for spatially autocorrelated variables. We give a linear-

time algorithm to calculate SA for a variable with an input agglomeration 

order (available at https://github. com/aamgalan/spatial 

autocorrelation). For a typical dataset of n ≈ 63,000 points, our SA 

autocorrelation measure can be computed in 1 second, versus 2 hours 

or more for Moran’s I and Geary’s C. Through simulation studies, we 

demonstrate that SA identifies spatial correlations in variables generated 

with spatially-dependent model half an order of magnitude earlier than 

either Moran’s I or Geary’s C. Finally, we prove several theoretical 

properties of SA: namely that it behaves as a true correlation statistic, 

and is invariant under addition or multiplication by a constant. 

Index Terms—Algorithm design and analysis, Computational 

efficiency, Autocorrelation, Biomedical informatics, Magnetic 

resonance, Clustering algorithms 

I. INTRODUCTION 

Geographic features such as longitude/latitude, zip codes, 

and area codes are often used in predictive models to capture 

spatial associations underlying properties of interest. Some of 

this is for physical reasons: the current temperature at location 

p1 is likely to be similar to that at p2 if p1 is near p2, and the 

synchrony between two regions in the brain is a function of the 

network of physical connections between them. But social and 

economic preferences in what people like, buy, and do also 

have a strong spatial component, due to cultural self-

organization (homophily) as well as differential access to 

opportunities and resources. 

Correlation measures (including the Pearson and Spearman 

correlation coefficients) are widely used to measure the degree 

of association between pairs of variables X and Y . By 
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convention, the corr(X,Y ) = 0 signifies that X and Y are 

independent of each other. The strength of dependency, and our 

ability to predict X given Y , increases with |corr(X,Y )|. 

Autocorrelation of time series or sequential data measures the 

degree of association of zi and sequence elements with a lag-l, 

i.e. zi+l. Spatial autocorrelation measures the extent to which 

locally adjacent observations of the same phenomenon are 

correlated. 

Spatial autocorrelation proves more complex to measure 

than sequence autocorrelation, because the association is multi-

dimensional and bi-directional. Social scientists and geoscience 

researchers have developed a rich array of statistics which 

endeavor to measure the spatial correlation of a variable Z, 

including Moran’s I [1], Geary’s C [2], and Matheron variogram 

[3]. For example, political preferences are generally spatially 

autocorrelated, as reflected by the notion of “Red” states and 

“Blue” states in the U.S. There is a general sense that political 

preferences are increasingly spatially concentrated. Spatial 

autocorrelation statistics provide the right tool to measure the 

degree to which this and related phenomena may be happening. 

These statistics are widely used, particularly Moran’s I and 

Geary‘s C, yet our experience with them has proven 

disappointing. First, they are slow: all popular methods run in 

Ω(n2) time, rendering them unusable for large data sets, or long 

time-courses with moderate numbers of points. Second, 

although they are effective at distinguishing spatial correlated 

variables from uncorrelated variables from relatively few 

samples, they appear less satisfying in comparing the degree of 

spatial association among sets of variables. Other inroads to 

efficient spatial data analysis primarily concern with detection 

of outliers and anomalies [4], [5]. In this paper, continuing the 

naming tradition of Moran’s I and Geary’s C, we humbly 

propose a new spatial autocorrelation statistic: Skiena’s A or 

SA. We will primarily consider a dataset of 47 demographic and 

geospatial variables, measured over roughly 3,000 counties in 

the United States [6]–[10], with results reported in Table I. The 
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dataset was previously used in identification of 

sociodemographic variables determining county level 

substance abuse statistics in the U.S. [11]. With our preferred 

statistic, the median-clustered SA, the six geophysical variables 

measuring sunlight, temperature, precipitation, and elevation 

all scored as spatially autocorrelated above 0.928, whereas the 

strongest demographic correlation (other language) came in at 

0.777, reflecting the concentration of Hispanic-Americans in 

the Southwestern United States. 

Our statistic is based on the notion that spatially 

autocorrelated variables should exhibit low variance within 

natural clusters of points. In particular, we expect the variance 

observed when merging pairs of nearby clusters should increase 

less the more spatially autocorrelated the variable is. The 

withincluster sum of squares of single points is zero, while the 

sum of squares of the single cluster after complete 

agglomerative clustering is (n−1)σ2. The shape of this 

trajectory from 0 to (n − 1)σ2 after n − 1 merging operations 

defines the degree of spatial autocorrelation, as shown in Fig. 

1. 

Our major contributions in this paper include: 

• Linear-time spatial correlation – The complexity to 

calculate SA for a variable defined by n points and an input 

agglomeration order is O(n), where traditional measures 

such as Moran’s I and Geary’s C require quadratic time. 

This matters: for a typical dataset of n ≈ 63,000 points, 

our SA autocorrelation measure can be computed in 1 

second, vs. 2 hours for Moran’s I and Geary’s C. Times 

shown are in seconds. 

 ≤ ≤ ≤ ≤ ≤ 

For points in two dimensions, the single-linkage 

agglomeration order can be computed in O(nlogn). 

Constructing more robust agglomeration orders like 

median-linkage may take quadratic time, however this 

computation needs to be performed only once when 

performing spatial analysis over m distinct variables or 

time points. We demonstrate the practical advantages of 

this win in an application on a brain fMRI time series data 

– analyzing the results of a dataset roughly 36,000 times 

faster than possible with either Moran’s I or Geary’s C, 

had they not run out of memory in the process. 

• Greater sensitivity than previous methods – We assert that 

the median-clustered SA captures spatial correlations at 

least as accurately as previous statistics. Through 

simulation studies, we demonstrate that it identifies spatial 

correlations in variables generated with 

spatiallydependent model half an order of magnitude 

earlier than either Moran’s I or Geary’s C (Fig. 7). On the 

U.S. county data, we show that median-clustered SA 

correlates more strongly with Geary’s C (-0.943) and 

comparably with Moran’s I (0.879) than they do with 

themselves (- 

0.922). 

• Theoretical analysis of statistical properties – We 

demonstrate a variety of theoretical properties concerning 

SA. We prove that it behaves as a true correlation statistic, 

ranging from [−1,1) with an expected value of 0 for any 

i.i.d. random variable generated independent of location. 

We show that SA(X) = SA(a + X) = SA(a · X), meaning it is 

invariant under addition or multiplication by a constant. 

Further, we show that SA measures increased spatial 

correlation as the sampling density increases, as should be 

the case for samples drawn from smooth functions – but 

is not true for either Moran’s I or Geary’s C. 

The implementation of our statistic is available at https: 

//github.com/aamgalan/spatial autocorrelation. This paper is 

organized as follows. Section II introduces previous work on 

spatial autocorrelation statistics, with descriptions of four such 

statistics including the popular Moran’s I and Geary’s C. Our 

new SA agglomerative clustering statistic, with a fast algorithm 

to compute it, is presented in Section III. Theoretical and 

experimental results are presented in Sections IV and V, 

respectively. 

II. PREVIOUS WORK 

A. Moran’s I 

The most well-known of spatial autocorrelation metrics, 

Moran’s I [1] has been around for more than 50 years. 

Originally proposed as a way of capturing the degree of spatial 

correlation between neighboring elements on a 2-dimensional 

grid data from agricultural research, it calculates the following 

in its current form: 

 
where zi is the value of random variable z at each of the N spatial 

locations, wij is the weight between spatial locations i and j, with 

 . Moran’s I provides a 

global measure of whether the signed fluctuations away from 

the mean of quantity of interest z at a pair of spatial locations 

correlates with the weight (frequently the inverse distance is 

used) between the locations. The metric found extensive use in 

fields that concern mapped data: econometrics [12], ecology 

[13], health sciences [14], geology, and geography [15]. 
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Statistical distributions or their moments for Moran’s I under 

various conditions have been derived 

[16]–[18]. 

B. Geary’s C 

Another early contender in the field is the Geary’s C, 

originally named the contiguity ratio [2]. First demonstrated as 

a viable metric of spatial correlation on the example of 

demographic and agricultural data from counties of Ireland, it 

is defined: 

 
Moran’s I and Geary’s C have several features in common: both 

take the form of an outer product weighted by the spatial 

weights between the locations and both are normalized by the 

observed variance of z and the sum of all spatial weights. The 

distinction between them is the exact outer product operations 

carried out: Moran’s I multiplies the signed fluctuations away 

from the mean of z: (zi−z)(zj−z), whereas Geary’s C takes the 

square of differences between values of 

Table I: Spatial autocorrelation for 47 geophysical and demographic variables on U.S. counties, sorted by their median-clustered 

SA value. We note that the median-linkage agglomeration order produced the most satisfying ranking of variables by spatial 

autocorrelation compared to classical statistics and the weaker single-linkage aggregation order. Median-clustered SA ranks all 

geophysical variables as more spatially autocorrelated than any demographic variable, and exhibits a stronger correlation with 

Geary’s C (-0.943) and comparable with Moran’s I (0.879) than they do with themselves (-0.922). For both SA metrics, the 

agglomeration order was computed only once and reused for all variables. 
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Moran's I 

Geary's C 

Geary's C 

Figure 2: Scatter of variables 

Moran’s I, Geary’s C, and SA. U.S. 

counties dataset. 

 

Time (number of merge events) 

  Geary Moran SA 

variable n C I single median 
maxtemp 3106 0.678 0.272 0.540 0.966 

sunlight 3106 0.684 0.258 0.519 0.965 
mintemp 3106 0.674 0.273 0.555 0.962 

precipitation 3106 0.651 0.273 0.722 0.942 
max heat index 3106 0.688 0.268 0.550 0.930 

elev 3142 0.662 0.250 0.802 0.928 

other language 3142 0.778 0.130 0.598 0.777 

med house val 3141 0.752 0.161 0.434 0.772 
log med house val 3141 0.782 0.170 0.378 0.749 

log pop density 3141 0.758 0.190 0.438 0.688 
main protestant 3113 0.820 0.162 0.395 0.675 

percent black 3142 0.835 0.194 0.049 0.672 
rep sen 2010 2115 0.804 0.161 0.406 0.668 
foreign born 3142 0.811 0.102 0.401 0.654 

percent white 3142 0.853 0.131 0.155 0.635 
evan protestant 3122 0.838 0.169 0.231 0.625 

percent physically inactive chr 3137 0.826 0.152 0.325 0.616 
rep pre 2012 3128 0.843 0.107 0.332 0.608 

catholic 2958 0.861 0.111 0.330 0.605 
total pop 3142 0.846 0.032 0.552 0.602 

percent obese chr 3137 0.837 0.131 0.350 0.588 
high school 3142 0.851 0.143 0.213 0.582 

rep pre 2008 3112 0.864 0.114 0.281 0.566 
year potential life lost rate chr 2861 0.856 0.131 0.222 0.558 
percent excessive drinking chr 2591 0.860 0.145 0.252 0.539 

log med house income 3141 0.895 0.104 0.089 0.531 
percent fair or poor chr 2738 0.874 0.150 0.126 0.525 

med house income 3141 0.888 0.104 0.073 0.515 
rep hou 2010 3091 0.914 0.075 0.212 0.512 

separated 3142 0.847 0.154 0.130 0.500 
motorvehicle mortality rate chr 2828 0.888 0.086 0.281 0.493 

below poverty 3141 0.904 0.099 0.117 0.464 
percent smokers chr 2502 0.889 0.103 0.219 0.414 

divorced 3142 0.907 0.071 0.237 0.391 
physically unhealthy days chr 2954 0.917 0.116 0.044 0.388 

med age 3142 0.930 0.031 0.287 0.375 
bac 3142 0.918 0.075 0.074 0.357 

mentally unhealthy days chr 2953 0.924 0.096 0.100 0.321 
grad 3142 0.910 0.078 0.043 0.319 

married 3142 0.908 0.086 0.118 0.307 
agasltrate 2056 0.967 0.058 -0.021 0.179 
ls 10 avg 2004 0.945 0.033 0.069 0.165 

percent male 3142 0.937 0.030 0.134 0.164 
same sex 3142 0.958 0.026 0.087 0.120 

pop density 3141 0.906 0.073 -0.598 0.116 
robberyrate 2056 0.971 0.052 -0.098 0.085 
murderrate 2056 1.029 0.019 -0.172 -0.092 
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Figure 1: Representative traces of the single-linkage SA statistic (sum of squared deviations SS(t) scaled with L(x) = 2(1 − x) − 1 

to be in range [-1, 1]) as a function of the number of merging events, for selected U.S. county variables. The area under the curve 

shows Elevation as strongly spatially correlated (SA=0.802), Median Income as uncorrelated (SA=0.073), and Population Density 

as spatially anti-correlated (SA=-0.598). 

z at spatial locations i and j: (zi − zj)2. As such, Geary’s C takes 

on a large value for a variable that displays large variation 

among closely neighboring (large weight wij) spatial locations, 

whereas Moran’s I is large when the neighboring values 

fluctuate from the mean in the same direction. 

C. Matheron’s Variogram and γ 

Another metric is the variogram method of Matheron [3] 

intended to quantify the typical variation of the spatial data 

points as a function of the distance separating them. Empirical 

variogram is often utilized in practice and is defined as follows: 

 

where h is the distance between spatial locations with allowed 

tolerance δ, N(h±δ) is set of all pairs of points (i,j) such that 

distance between them lies in range h±δ, and zi and zj are the 

values of the variable of interest at locations indexed i and j, 

respectively. Variogram analysis results in intuitive quantities: 

sill and range extracted from the curve of γˆ(h±δ), where sill 

indicates the eventual level of variability reached at asymptotic 

length scales, and range denotes the length scale required to 

reach variability indistinguishable from the eventual sill. 

Variogram is extensively used in geology as part of kriging in 

mineral surveillance process [19]. 

D. Anselin’s LISA and local Moran and Geary 

Anselin proposed a generalized procedure for localizing the 

contribution of individual measurements on the global measure 

of spatial autocorrelation termed local indicators of spatial 

association (LISA). The method also serves to identify hot-spots 

or pockets of local variation in the mapped variable. LISA, 

broadly defined using two requirements: i) the statistic for a 

specific measurement should report whether similar values are 

clustered around it and ii) sum over all measurements should be 

proportional to a global statistic of spatial autocorrelation, 

generalizes the localized Moran’s Ii and Geary’s ci statistics, also 

defined by Anselin [20]: 

 

Both local statistics are, in fact, proportional to their global 

counterparts with straight-forward proportionality constants, 

when summed up over all spatial locations. LISA’s 

(specifically local Moran’s Ii) first demonstrated usage was on 

dataset of international conflict among African nations, 

quantitatively identifying the hotbed of instability in 

Northeastern Africa. See Getis [21] for a thorough history of 

spatial autocorrelation analysis. 

III. THE SA ALGORITHM AND STATISTIC 

Our proposed method, which we term SA, produces a 

measure of spatial autocorrelation given a particular 

agglomeration order of n locations {xˆi} embedded in 

Euclidean space and values of random variable {zi} (with 

variance σ2) paired with them. SA is agnostic to the exact 

clustering used, provided it is agglomerative and two clusters 

of spatial locations are merged at each step. 

SA exploits the fact that the total sum of squared deviations 

(SS(t)) from the cluster mean of the variable zi increases 

monotonically as clusters are joined (proof in section IV-A). 

This quantity is traced at a cost of constant time per merge 

event, starting when the first pair of observations are joined 

into a cluster and reaching (n − 1)σ2 when all observations are 

in a single cluster. We are interested in how quickly during the 

agglomeration process this trace of sum of within-cluster 

squares takes off and reaches its eventual value of (n−1)σ2. 

Formally, computation of SA starts with all coordinates as their 

own singleton clusters and keeps track of the geographic 

 

centroids of clusters (xˆC1 and xˆC2), their sizes (|C1| and |C2|), 

means (zC1 and zC2), and the total sum of squares over all 

clusters:  where C(t) 

denotes the set of all clusters at time t of the agglomeration 

order. During a merge event, clusters C1 and C2 are joined into 

a new cluster C12 (C12 ← C1 ∪ C2), with size |C12| ← 

|C1| + |C2|, coordinate centroid 
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and mean z  ← C z |C |z 

)/|C |. The trace of sum of squares is updated as 

SS(t) ← SS(t−1)+|C1|(zC12 −zC1)2 +|C2|(zC12 −zC2)2 It is then 

normalized by its final value, averaged over all agglomeration 

steps, and linearly transformed with L(x) = 2(1 − x) − 1 to give 

the SA value: 

 

with n − 1 indicating the total number of merge events. 

Just like conventional correlation coefficients, SA can range in 

the interval from -1 to 1. It will take 0 value when there is no 

spatial structure, larger value when similar values of zi are 

spatially nearby and negative values if neighboring values are 

anti-correlated. Intuitively, both nearby locations with very 

different values of feature zi and distant locations with similar 

values will decrease SA, while nearby locations with similar 

values and distant locations with differing values will contribute 

to the increase in SA. We note here that each update in the total 

sum of within-cluster squares due to a joining event is done in 

constant time, making calculation of SA for variable zi and any 

particular pre-specified agglomeration order an O(n) algorithm. 

The required pre-computation of an agglomeration order can be 

performed in O(nlogn) time, using single-linkage clustering in 

the plane. 

A. Dependence on Agglomeration Order 

Multiple agglomerative clustering criteria are in common use, 

reflecting a trade-off between computational cost and 

robustness. In this paper, we investigate four distinct criteria and 

their impact on observed spatial autocorrelations: 

• Single linkage – Here the distance between clusters C1 and 

C2 is defined by the closest pair of points spanning them: 

 

This is akin to the criteria of Kruskal’s algorithm for 

finding minimum spanning trees, and runs in O(nlogn) 

time for the primary use case of points in the plane. The 

O(nlogn) time is due to the disjoint set data structure with 

complexity bound of O(α(n)) on merge/search operations. 

α is an extremely slowly increasing inverse Ackermann 

function and is a small constant for all practical purposes. 

• Average linkage – Here we compute distance between all 

pairs of cluster-spanning points, and average them for a 

more robust merging criteria than single-link: 

 

This will tend to avoid the skinny clusters of singlelink, but 

at a greater computational cost. The straightforward 

implementation of average link clustering is O(n3), 

because each of the n merges will potentially require 

touching O(n2) edges to recompute the nearest remaining 

cluster. 

• Median linkage – Here we maintain the centroid of each 

cluster, and merge the cluster-pair with the closest 

centroids. The new merged cluster’s centroid is given by 

the average of the centroids of the clusters being merged. 

This has two main advantages. First, it tends to produce 

clusters similar to average link, because outlier points in a 

cluster get overwhelmed as the cluster size (number of 

points) increases. Second, it is much faster to compare the 

centroids of the two clusters than test all |C1||C2| point-

pairs in the simplest implementation. 

• Furthest linkage – Here the cost of merging two clusters is 

the farthest pair of points between them: 

 

This criteria works hardest to keep clusters round, by 

penalizing mergers with distant outlier elements. 

Efficient implementations of furthest linkage clustering 

are known to run in O(n2) time. 

All linkage methods except for single linkage, produce 

similar results, while single linkage produces a slightly lower 

SA autocorrelation. This is natural as single linkage method 

merges only locally and suffers from what is known as the 

chaining phenomenon. The larger linear dimensions of the 

single linkage clusters reach the variability of the variable zi 

earlier driving the sum of squares up and the SA down (Fig. 3). 

Linkage dependence (US elevation) 

 

Random subsample size 

Figure 3: SA calculated on subsample of the elevation data with 

different agglomeration methods. All methods considered 

produce similar values of SA, except for single linkage. 

B. Comparison with Moran’s I and Geary’s C 

The comparison of median clustered SA with Geary’s and 

Moran’s can be seen in the scatter plot of the Fig. 2 with each 
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point representing a feature in the U.S. counties dataset. All 3 

pairwise comparisons show large magnitude correlations |r| > 

0.8. In the bottom panel, single and median linkage methods 

are compared for SA. 

IV. ANALYSIS OF STATISTICAL PROPERTIES 

In this section, we prove three important properties of SA, 

namely monotonicity under merging, that it is a well-defined 

correlation measure with zero corresponding to no spatial 

correlation, and invariance under addition and multiplication 

by a constant. 

A. Monotonicity 

For demonstration of the monotonicity of the total sum of 

within-cluster squared deviations from the mean of variable zi, 

it suffices to show that an arbitrary cluster C1 merging with 

another (C2) would have non-decreasing squared deviation from 

the new cluster’s mean zC12 compared to the original mean zC1. 

Setting the mean shift equal to δz = zC12−zC1, we compute the 

difference between the sum of square deviations from mean for 

zi values in cluster C1 before and after the merge event as: 

 

Substituting the mean shift δz and simplifying, we obtain: 

 

where we have used the definition of mean to eliminate zi and 

zC1. The change in sum of squared deviations for the clusters C1 

and C2 being merged is, therefore, non-negative for all merge 

events, making the trace of SS(t) a monotonic quantity. Its 

monotonicity, coupled with a suitable agglomeration order, 

which merges close-by coordinates earlier on, enables us to 

single out the area under its curve as a measure of spatial 

autocorrelation indicating how early/late in the agglomeration 

the variability increases from 0 to (n − 1)σ2. 

B. Expected Value 

Intuitively, SA is mean of the (monotonically increasing) sum 

of squared deviations of values of zi from their cluster means 

while the observations are gradually merged into a single cluster 

made up of all coordinates Xˆ. Under lack of spatial dependence, 

the sum of squared deviations will increase in even steps with 

no particular time structure and produce a mean over time equal 

to half its eventual value ((n−1)σ2/2). After normalization and 

a linear transformation to flip the sign and adjust the range (L(x) 

= 2(1−x)−1), we will obtain 0. 

For a formal proof, let us first consider n real numbers Z = 

{z1,...zn} with mean z and Euclidean coordinates Xˆ = {xˆ1,...xˆn}. 

Let A(Xˆ) = {e1,...en−1} a merge order that determines an 

agglomerative clustering on the symmetric weighted graph 

(with no self-edges) induced by a similarity metric on 

coordinates Xˆ. Define the stages of this agglomeration at time t 

as A(X,tˆ ) = {e1,...et} (with a shorthand A(t)) such that A(X,nˆ −1) 

= A(Xˆ). Let C(t) denote the set of disjoint clusters present at 

time t of agglomeration process such that C(0) = {{1},{2},...{n}} 

and C(n−1) = {{1,2,...n}}. Definition 4.1: SA. Define the SA 

statistic as: 

 

where  (with a 

shorthand notation SS(t)) denotes the sum of within-cluster 

squared deviations at time t of the agglomeration given by A(t). 

Theorem 4.1: Let Z = {z1,z2,...zn} be a set of normal i.i.d. 

random variables with mean 0 and variance σ2 and Xˆ = 

{xˆ1,xˆ2,...xˆn} their coordinates in Euclidean space. Then the 

random variable SA(A(Xˆ),Z) converges to zero in limit of large 

n: 

lim E[SA(A(Xˆ),Z)] = 0 
n→∞ 

Summation in SA shown horizontally with slab height equal to 

E[SS(t)]=2and width equal to n-t 

8 
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 4 

2 

0 

 1 2 3 4 5 6 7 8 9 

Time (number of merge events) 

Figure 4: Summation carried out in “horizontal slabs”, each 

with height in expectation equal to σ2 and deterministic width 

of n − t. 

Proof 1: We proceed by considering the contribution of each 

cluster joining event on the eventual metric SA. During a given 

merge event, clusters C1 and C2 with sizes n1 and n2 and means 

zC1 and zC2 join to make the cluster C12 with size n12 = n1 + n2 and 

mean zC12. At the same time the running sum of within-cluster 

squares changes as follows (see Section IV-A): 

 

The expectation of change in sum of squared deviations due to 

merge event E[δSS(t+1)] is then given by the difference in the 

expectations of sum of squares before and after the merge. 

E[δSS(t + 1)] = E[SSC12(t + 1)] − (E[SSC1(t)] + E[SSC2(t)]) 

= (n12− 1)σ2− ((n1− 1)σ2 + (n2− 1)σ2) 

= (n12− n1− n2 + 1)σ2 = σ2 

Here we use the fact that for a given cluster C, SSC – its 

sum of squared deviations from mean, is an estimate of the 

population variance biased by a factor of n−1. The summation 

in definition of SA can then be carried out “horizontally”, by 

considering the jump in the global sum of squares times the 

number of time intervals for which this jump contributes to the 

metric as shown in Fig. 4. It then follows that: 

 

Here we use the fact that the distribution of overall sum of 

squares in the denominator is related to the sampling 

distribution of sample variance: 

 

making SS(A(Xˆ),Z) a self-averaging quantity with mean 

(n−1)σ2 and variance 2(n−1)σ4, and hence vanishing relative 

variance in the limit of large n: 

 

This lets us treat SS(A(Xˆ),Z) in denominator as a constant factor 

and taking the limit of large n of E[SA(A(Xˆ),Z)], we obtain: 

 
as desired. 

C. Invariance 

The SA statistic has the nice property of invariance under 

addition and multiplication by a constant. Letting Z a spatial 

variable with SA(Z) = s and considering SA(Z + c) with c ∈ R, we 

note that the sum of squared deviations is unaffected by addition 

of a constant, making our statistic invariant to addition of a 

constant c. 

 

Considering multiplication of variable Z by an arbitrary constant 

c ∈ R, we note that a factor of c2 appears both in denominator 

and numerator due to the squared deviation from the mean being 

 

E[SS(7)]=2 ...  

E[SS(6)]=2 

... 

E[SS(5)]=2 E[Area]=2(n-5) 

E[SS(4)]=2 E[Area]=2(n-4) 

E[SS(3)]=2 E[Area]=2(n-3) 

... E[Area]=2(n-2) 

... E[Area]=2(n-1) 

SS 
( t 
) 
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considered, canceling each other and returning the same value 

as the original variable SA(c · Z) = SA(Z). 

V. EXPERIMENTAL EVALUATION 

Here we present the results of simulations which 

demonstrate (1) the running time of SA is indeed an order of 

magnitude faster to compute than competing statistics, (2) SA 

identifies substantially weaker spatial correlations in synthetic 

data than Moran’s and Geary’s statistics, (3) SA appears to be 

influenced less by non-uniform sampling than competing 

statistics, and finally (4) SA appropriately reports increased 

autocorrelation with greater sampling density while still 

converging to a limit below the perfect autocorrelation of 1. 

A. Running Time 

SA substantially outperforms both Moran’s and Geary’s 

metrics in computation time, both in establishing the 

agglomerative merging order to use and to compute the 

statistics. In our experiments, computing a single median-

linkage agglomeration order costs approximately 10% of a 

single Moran or Geary computation on the same points, as 

shown in Fig. 5 (left). By reusing this agglomeration order we 

can save a linear factor of running time on subsequent 

autocorrelation analyses. Fig. 5 (right) shows that for a typical 

dataset of n ≈ 63,000 points, our SA autocorrelation measure 

can be computed in 1 second, versus 2 hours or more for 

Moran’s I and Geary’s C. To compute merge order To compute statistic 

 

 0 30 000 60 000 0 30 000 60 000 

Size n 

Figure 5: Experiments concerning running time. Single-link 

and median-link agglomeration orders cost less to compute 

than single runs of Moran I and Geary’s C metrics. SA 

outperforms I and C drastically given the merge order on a 

dataset of size ≈ 63000. 

Timing experiments were done as follows: starting from 

coordinates, agglomeration order was computed using 

Kruskal’s routine with disjoint set structure (for SA single), 

scipy’s linkage tool (for SA median) and numpy’s linear algebra 

toolbox with vectorization (for weight matrix of Moran’s I and 

Geary’s C) and metrics were computed using our streaming 

tool (SA) and pysal library for python (Moran’s I and Geary’s 

C). All tools were written in python 3.7. 

B. Reusing agglomeration order: fMRI time series analysis 

Much of the efficiency gains SA accrue from its ability to reuse 

a once-computed agglomeration order for new data 

points arriving from the same spatial coordinates. We 

demonstrate this with an application to functional neuroimaging 

data (fMRI), which gives a time series readout for each spatial 

location in the brain. In order to study the dynamics of brain 

networks, neuroscience is concerned with extracting summary 

statistics from the brain images of potentially > 106 voxels (3D 

pixels) at the resolution of sampling period. The statistics are 

then used in downstream prediction and classification tasks of 

clinical significance. In this experiment, we used a publicly 

available fMRI neuroimaging dataset with 36 fMRI scans (12 

human subjects × 3 experimental conditions) with each scan 

consisting of 2 × 2,320 = 4,640 repeated measurements of the 

entire brain at 0.8s sampling period [22]. We focused on the 

grey matter data, which consists of readings from n = 

133,000±13,000 (mean ± std) voxels at each time point. To 

compute SA, we constructed a single agglomeration order for 

each scan, using k-d tree structure by treating the grey matter 

voxels of brain as points in space to be partitioned into 

singletons. We cycled through the three axes of brain 

recursively, splitting each partition between its median pair of 

planes perpendicular to the axis until all partitions reached size 

of 1. The splitting events then define an agglomeration order in 

reverse. The time complexity of partitioning space using k-d tree 

structure is O(n) in case of unbalanced tree, and O(nlogn) for a 

balanced tree with median finding subroutine. Due to the highly 

irregular shape of the grey matter, we resorted to finding the 

medians for balanced partitions, with the average time to 

establish the agglomeration order of two minutes, but it can be 

reused for each of the m time points of a given scan. This 

reduces the run time from O(mn2) for Moran’s I and Geary’s C 

to O(nlogn + mn). In our case, with m = 4640 time points and 

n ≈ 133000 coordinates, SA took 3500 ± 300 seconds, or 0.75 

± 0.07 seconds per feature (time step). On the other hand, we 

were not able to compute Moran’s I and Geary’s C for 133,000 

coordinates on an average workstation hardware using the 

standard implementation (pysal), due to space limitations. 

Extrapolation from computations of Moran’s I and Geary’s C on 

smaller samples indicate that if memory requirements were 

lifted, it would take more than 7.5 and 13.5 hours respectively 

for each time step of the time series data, or roughly 36,000 

times longer than SA. Fig 6 shows representative autocorrelation 

time series from brain fMRI data. This shows that SA not only 

improves computation for each data feature, but also processes 

each additional feature in linear time by reusing the 

agglomeration order once it is computed. SA’s complexity for 

each time step is comparable to the sampling period of the fMRI 

data. This permits future applications in closedloop systems that 



21 

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on March 26,2021 at 17:54:03 UTC from IEEE Xplore.  Restrictions apply.  

process data and provide feedback stimuli or electromagnetic 

stimulation to the brain in real-time for improved clinical 

intervention. 

C. Sensitivity to True Autocorrelation: Synthetic Data 

Ground truth on the degree of spatial autocorrelation can only 

be obtained from simulation results, where we explicitly 

generate data with specified amount of spatial autocorrelation 
subject 01 

 

 

 

Figure 6: Spatial autocorrelation (measured by SA) time series 

for fMRI data, showing visibly different degrees of coherence 

on two different human subjects. We estimate that this 

computation would have taken roughly 36,000 times as long 

using either the Moran’s I or Geary C statistic. The two colors 

indicate the two halves of the scanning session, with short 

break in the middle. 

and see how much bias must be added for statistics to identify 

the phenomenon. For this purpose, we carry out a 

diskaveraging experiment, whereby a normally distributed 

independently sampled random variable zi is assigned to 

uniformly distributed coordinates and undergoes an averaging 

procedure. The averaging takes all values of zj for locations 

within disk of radius r around coordinate xˆi, and reassigns the 

average of the within disk values to it: zi ← mean({zj |d(xˆi−xˆj) 

< r}). The SA statistic of the disk-averaged zi values were 

computed and compared to Moran’s I and Geary’s C. Random 

sampling, disk-averaging and statistic computation were each 

repeated 100 times. 

Fig. 7 summarizes the results of these experiments for 1000 

points. SA (both single and median-linkage) demonstrates far 

greater sensitivity, identifying significant and rapidly 

increasing amounts of spatial autocorrelation for disk radii 

half an order of magnitude smaller than that of Geary’s C and 

Moran’s I. Although both Moran and Geary statistics support 

problemspecific weight matrices to tune their sensitivity, the 

interesting autocorrelation distance scales are a priori 

unknown and difficult to determine, so methods without 

tunable parameters are preferred. 

D. Sensitivity to Sample Size and Coordinate Subsampling: 

U.S. Elevation Data 

Spatial autocorrelation depends on the exact sampling of the 

coordinates as well as the spatial distance/weight matrix. 

 

Disk radius 

Figure 7: SA is more sensitive to true autocorrelation than 

Moran’s I and Geary’s C, on a “disk-averaging” generative 

model as a function of disk radius. Moran’s I, Geary’s C values 

are rescaled to match the range of SA. SA detects the 

autocorrelation > 0.5 order of magnitude earlier. Note the entire 

range of [0,0.9] is covered with SA within 2 orders of magnitude 

of the disk radius. Vertical dashed lines indicate disk radii where 

metrics reach half of their ranges. 

 

Figure 8: SA reveals autocorrelation independent of the exact 

coordinates sampled. The random subsampling experiment on 

1km2 scale US elevation data carried out up to subsample size 

40000. Vertical and horizontal lines indicate the number of 

counties in the U.S. counties dataset and the value of metric 

computed from them, respectively. 

S 
A 
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We note that for historical and demographic reasons, U.S. 

counties are not of equal size and shape, but generally smaller 

and more irregular in the east rather than the west. A spatial 

autocorrelation statistic should ideally report similar values on 

the same underlying geographic variable regardless of the 

details of the sampling method. 

To interrogate whether SA computed on subsamples of real 

data differs from Moran and Geary’s statistics in its dependence 

on the exact subsample of coordinates, we use the following 

procedure. n random data points are drawn from the U.S. 

elevation data (itself sampled at 1km2) [23], and SA, Moran’s I 

and Geary’s C are computed from their coordinates xˆi and 

elevation values zi. Performing the experiment at sample sizes 

up to 40,000 points (limited by the O(n2) running time of Moran 

and Geary’s), we compute autocorrelation metrics, and compare 

them to the values obtained from the elevation column of the 

U.S. counties dataset at sample size of 3142. Results shown in 

Fig. 8. 

Both Moran’s I and Geary’s C report different values when 

the coordinates are sampled uniformly, compared to the 

irregular sample of coordinates given by U.S. counties’ 

locations. On the other hand, both single- and median-linkage 

SA report similar values with equal number of uniformly 

sampled coordinates as it did with coordinates of U.S. 

counties, showing robustness to changes in the exact 

subsampling of coordinates. 

E. Convergence Evaluation and Analytical Fit 

To test convergence of SA, Moran’s, and Geary’s metrics we 

perform the following sampling procedure on grids of random 

values of varying sizes. For a rectangular grid of finite size e.g. 

k-by-k, we assign a uniformly random zij value to each of the 

k2 grid cells, then randomly sample n real valued coordinates 

from the support given by [0,k]2, and take their corresponding 

cell’s zij values to compute SA. This procedure locks a particular 

correlation length into the data by choosing the number of grid 

cells, and forces the metrics to capture it as number of sample 

coordinates increases. We expect 1/k2th of all samples to fall 

in each grid cell, thus taking on the same z value, and raising 

the autocorrelation as the number of samples increases to a 

natural limit, because there will also be nearby pairs of points 

that sit across a grid boundary and take different z values. Thus 

a meaningful metric should converge to a large value (but less 

than the maximum possible 1) that decreases for shorter 

autocorrelation lengths induced by larger number of grid cells. 

Fig. 9 (left) reports that Moran’s I converges to values 

increasingly closer to 0 as the grid size increases, indicating it 

captures the de-correlated structure of large number of random 

grid cell entries zij. Geary’s C does similarly, reporting values 

increasingly closer to 1. But SA clearly sees the coarser, more 

correlated structure of smaller grids with fewer samples, 

reporting earlier increase for 10-by-10 grid than for 100-by-

100 (Fig. 9, right panel). 

In order to estimate the asymptotic value of the SA metric, we 

fit the following log-sigmoidal functional form to the observed 

values of SA as a function of samples taken: SA(n) = 

Smax/(1+e−a(logn−b)). The parameter Smax has a natural 

interpretation of the asymptotic value of SA , turning the task of 

finding the asymptote into a parameter estimation for Smax. We 

report that with sample size > 105, the confidence interval for 

estimated Smax includes the eventually best estimate computed 

using 107 samples. None of the estimates of Smax includes the 

value of 1. 
Moran's I Geary's C SA 
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Figure 9: Asymptotic behavior of spatial correlation metrics. 

Random coordinates are sampled at increasing sample size from 
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square grid of independent random values from [0, 1] interval. 

Left: Moran’s I, center: Geary’s C, and right: SA, solid lines 

represent best fit of log-transformed sigmoid curves for data 

drawn from grids of size 10 x 10. Note the asymptote of single-

linkage S converging to values < 1: S10 = 0.925, 

 A max 

S32 = 0.905, and S100 = 0.87. max
 max 

VI. CONCLUSION 

The Skiena’s A (SA) algorithm and statistic we propose 

provides an efficient, improved sensitivity procedure for 

computing the spatial autocorrelation, running in linear time 

after computing the agglomeration order (implementation 

available at https://github.com/aamgalan/spatial 

autocorrelation). Separating the computation into two steps: i) 

obtaining the agglomeration order and ii) computing of the 

statistic, provides additional improvements by reusing the 

agglomeration order for new data that arrive from the same 

coordinates. SA achieves run time of O(nlogn+mn) for m 

separate features, improving upon the standard O(mn2). As 

demonstrated in the fMRI example, it can be thousands of times 

faster in natural time series applications of spatial 

autocorrelation than previous methods. Even for single-shot 

applications in the plane where we can compute single-linkage 

agglomeration in O(nlogn) run time, we beat previous O(n2) 

algorithms. We have also shown that SA has the convenience of 

converging to 0 for random data, invariance under linear 

transforms uniformly applied to data, making it an attractive 

addition to standard toolbox for analysis of spatial data 

irrespective of the domain. 
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