PLURISUBHARMONIC NONCOMMUTATIVE RATIONAL FUNCTIONS
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AND JURLJ VOLCIC*

ABSTRACT. A noncommutative (nc) function in 1,...,zg, 27, ... , T is called plurisubhar-

monic (plush) if its nc complex Hessian takes only positive semidefinite values on an nc
neighborhood of 0. The main result of this paper shows that an nc rational function is plush
if and only if it is a composite of a convex rational function with an analytic (no x7) rational
function. The proof is entirely constructive. Further, a simple computable necessary and
sufficient condition for an nc rational function to be plush is given in terms of its minimal
realization.

1. INTRODUCTION

This article establishes a representation theorem (Theorem 1.3) for free noncommuta-
tive (nc) plurisubharmonic rational functions and an effective criterion (Theorem 1.4) for
an nc rational function to be plurisubharmonic. Plurisubharmonic functions are multivari-
ate analogs of subharmonic functions and are central objects in several complex variables
[DAn93, Forl7], in part because of their connection to pseudoconvex domains. Our inter-
est in nc plurisubharmonic rational functions stems from their connection to free domains
that can be transformed, via a proper nc rational mapping, to a convex free domain. Free
domains and free maps are basic objects studied in free analysis [AM15b, BMV18, MT16,
MS08, PT-D17, Pop08, Pop10, SSS18], a quantized analog of classical analysis.

1.1. Basic notation and terminology. Let (z,x*) denote the free monoid generated by
the 2g freely noncommuting variables z1, ..., xg, 27, ..., ;. Elements of (x,x*) are words.
There is a natural involution * on (z,r*) determined by z; + 2} and, (uv)* = v*u* for
words u,v € (x,z*). Let C(x,z*) denote the free algebra of finite C-linear combinations of
elements of (x,xz*). Elements of C(z,z*) are (nc) polynomials. Thus an nc polynomial p
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has the form
(1.1) Z P W
we(z,xz*)
where the sum is finite and p,, € C. The involution * extends to an involution on C(z,z*).
For p of the form (1.1),
p=) Puw

A polynomial p € C(z,x*) is symmetric if p* = p and is analytic if it contains only the z
variables and none of the z* variables. In this latter case we write p(z) € C(z) instead of
p(x,z*) € Clz, z*).

Differentiation of elements of C(z,z*) is described as follows. Let hq,..., hg, b}, ..., hy
denote a second 2g-tuple of freely noncommuting variables. For p € C(z, z*), the partial
of p with respect to x and the partial of p with respect to z* are, respectively,

pa(, ) [, ] = Tim p(z + th,z*) — p(x, x*)

t—0 t )
px*(w,x*)[h,h*]:1£%< ($+th)t) pla,z%)

There are four second order partial derivatives. Each lies in C(z, z*, h, h*). The mixed partial

(12) Do (i, 2, 7] = timg 220 )R P = e, &) B, 1]

t—0 t

is the complex Hessian of p.

Example 1.1. Consider the polynomial ¢(z,z*) = 142z 25z 2. Its derivative with respect
to x is,

Qe (z, )[R, B*] = 2hya5aiwy + 2x x50 he € Clx, 2%, h, h").
and its complex Hessian is,

Qoo (T, )[Ry, B*] = 2h hyxizg + 2hixshizy + 2x1hixThe + 22125 R ho. O

Example 1.2. As a general example, given analytic polynomials f;(z), the complex Hessian

of
DA

Q.o (2, 2%)[h, ] = Zg )[A). O

Let M, (C)& denote the set of g-tuples X = (Xi,..., X,) of n x n matrices over C. Let
M (C)& denote the sequence (M,,(C)g),. An element p of C(x,z*) is naturally evaluated at
a tuple X € M(C)# by simply replacing z; by X; and x} by X7. The involution on C(x, z*)
and evaluation on M(C)Y is compatible with matrix adjoint; that is,

p (X, X™) = p(X, X™)".
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Moreover, it is well known and easy to see that p is symmetric if and only if p(X, X*)* =
p(X, X*) for all X € M(C)e.

The derivatives of p involve both x and h variables and are thus evaluated at pairs
(X, H) € M(C)%. Moreover, the derivatives of p are compatible with differentiation after
evaluation. For example,

pe(X, XY [H, H] = limg P UL XD = p(X, X)
T 3 3 {50 n .

A polynomial p € C(x,z*) is (matrix) positive if p(X, X*) = 0 for all X € M(C)s.
Here T > 0 indicates the selfadjoint matrix 7" is positive semidefinite. For example, for the
polynomial () of Example 1.2,

Qoo (X, X*)[H, H'] = > (G(X)[H])" G (X)[H] = 0.

J
Thus @, .+ is matrix positive.
A polynomial p € C(x,z*) is plurisubharmonic, abbreviated plush, if its complex
Hessian is matrix positive. By the main result of [Grel2] (see also [GHV11]), if p € C(z, z*)
is plush, then p has the (canonical) form,

N M

(1.3) pla,x*) = L)+ 0x)" + > Ga) Gl) + > mela)m(x)*,

j=1 k=1
for some affine linear analytic ¢ and analytic ¢;, n, € C(x).
A symmetric polynomial f € C({x,z*) is convex if
F(X)—;F(Y) _F(X;FY) -
for all XY, where F(X) = f(X, X*). The (full) Hessian of f is
(1.4) [ @, @) [h, h] o= fop(@, ™) [h, ] + 2 fo 0 (2, %) [h, 1] + for o (2, 27) [R, B7],
Convexity of f is equivalent to matrix positivity of its full Hessian [HM04, Theorem 2.4].

Furthermore, by [HM04, Theorem 3.1], f is convex if and only if there exists an affine linear
analytic polynomial ¢ € C(z) and linear polynomials ¢; € C(x,z*) such that

fx,2™) = £(z) + £(z)" + Z i, 27) p;(x, 7).

J

Hence, writing ¢;(x, 2*) = w;(z) + y;(x)*, if f is convex, then there exists an analytic
(quadratic) polynomial u(z), a positive integer M, and linear analytic polynomials w; and
v; such that

fx,2") = u(w) +u(z)” + Z wj ()" w; () + Zyj(x)yj(fﬂ)*-
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There is an intimate connection between convex and plush polynomials. Using variables
z = (u,wy,...,wWN,Y1,...,yn) and the formal adjoints 2* = (u*, wi, ..., wh, v, ..., yn), the
discussion above shows

N M
(1.5) f(z,2%) :u+u*+2w;wj+2yjy;
j=1 j=1

is convex. Further, for the polynomial p of (1.3) and f from (1.5),
p(z,z%) = fq(x), q(x)"),

where ¢ is the analytic mapping,

Q(x) = [ﬁ(:)ﬁ), Cl(x)7 cey CN('I% nl(x)7 sy nM(x)} .

Thus, if p is plush, then p is the composition of an analytic polynomial map with a convex
polynomial. The converse is evidently true. The main result of this paper establishes the
analog of this result for nc rational functions.

1.2. Noncommutative rational functions. A descriptor realization [BGMO05, HMV06,
K-VV09] of an nc rational function r € C{xz, z*3 [BR11, Coh95] regular at 0 is an expression
of the form

(1.6) r(z, ") = c*(J — Aa(z) — Ap(x*))'b,

where, for some positive integer d, the d x d matrix .J is invertible, b,c € C?, A, B € My(C)e
and

g
j=1

As an example,

. -1
(1 0) <1 N x1*+ " " > ((1)) = (1 —r1 + 1y — 2p(—1+ m)_lx;)_l .

The d x d matrix-valued polynomial Aa(z) € My(C(x)) is evaluated at a g-tuple X €
M (C)# via the tensor product. Thus if X € M, (C)g, then

The descriptor realization of (1.6) is naturally evaluated at any tuple X € M,,(C)# for which
J — As(X) — Ap(X™) is invertible as

(X, X)) =(¢"®1,) (JR I, — As(X) = Ap(X*) " (b® ).

In particular 0 € C& is in the domain of r, a property we glorify by saying r is regular at 0.
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If r from (1.6) is symmetric in that r = r*, then it admits a symmetric descriptor
realization

(1.7) r(z,2%) = (K — Ag(z) — Ap-(z%)) e,

where the d x d matrix K is a signature matrix (K? = I;, K* = K). If r from (1.6) is
analytic, i.e., has no z* variables, then we may take B = 0 in which case

r(z) = c*(J — Aa(z)) 0.

For the purposes of this article, nc rational functions that are regular at 0 can be
identified with any one of their descriptor realizations.

The definitions of derivatives for polynomials naturally extend to symmetric and analytic
rational functions. Formulas for the derivative, Hessian and complex Hessian of a symmetric
descriptor realization are given in Subsection 2.1. In particular, a (symmetric) rational
function r is defined to be plush in a neighborhood of 0 if its complex Hessian is matrix
positive in a neighborhood of 0. Likewise the notion of convexity for nc polynomials extends
to nc rational functions.

1.3. Main results. We now state the main results of this article.

Theorem 1.3. A symmetric nc rational function r in g variables that is reqular at 0 is plush
in a neighborhood of 0 if and only if there exists a positive integer h, a convexr nc rational
function f in h variables and an analytic nc rational mapping q : M(C)& --» M(C)* such
that r = foq.

The realization of (1.7) is minimal if
span{w(B1K, ..., B;K,BiK, ..., BiK)c:w € <z,i>} = C,

where (z, Z) is the free monoid on the 2g freely noncommuting variables (x1, ..., Zg, 1, . .., Zg).
An nc rational function regular at 0 admits a minimal realization, which is readily computable
and unique up to similarity and in the symmetric case unique up to unitary similarity; see
[HMV06, Section 4] or [Voll8, Section 6], Remark 1.7.

Given a tuple E € M,(C)g, let rng £ denote the span of the ranges of the £;. We can

now state our second main result.

Theorem 1.4. Assuming the realization of (1.7) is minimal, r is plush in a neighborhood
of 0 if and only if PKP and P,K P, are both positive semidefinite, where P and P, are the
orthogonal projections onto rng B and rmg B* respectively.

Remark 1.5. Since minimal realizations for nc rational functions are efficiently computable,
Theorem 1.4 implies that so is determining whether an nc rational function is plush. 0

There is one further result that merits inclusion in this introduction. In [HMV06] and
[PT-D] (see also [PT-D17]) nc rational functions that are convex in a neighborhood of 0 are
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characterized in terms of butterfly representations. Below is an alternate characterization in
the spirit of Theorem 1.4.

Theorem 1.6. Assuming the realization of (1.7) is minimal, r is convez in a neighborhood
of 0 if and only if QKQ is positive semidefinite, where () is the orthogonal projection onto
rng B 4+ rng B*.

1.4. Background and motivation. Given ¢, a perhaps matrix-valued symmetric nc ratio-
nal function, let P, (n) = {X € M,(C)&: p(X) > 0}. Let B, denote the sequence (P, (n)), .
In the case ¢ is a polynomial, B, is the free analog of a basic semialgebraic set. In sev-
eral complex variables, Levi pseudoconvex sets are described in terms of plurisubharmonic
functions. Pushing this analogy, if ¢ is plush, then we say B, is a free pseudoconvex
set. Free pseudoconvex sets are natural for the free analog of several complex variables,
particularly as domains for uniform polynomial approximation [AM15a, AM15b] (see also
[BMV18, AHKM18]). However, our primary motivation for studying nc plush functions and
free pseudoconvex sets arises in another way.

Given a tuple B € M, (C)8 and X € M, (C)E, let
Lp(X)=L®1,-Y B®X;—Y B ®X]
and let
‘,BB(n) = {X S Mn((C)g : LB(X) - 0}

It is evident that each Pp(n) is a convex subset of M, (C)8. The set Pp(1) C C& is a spec-
trahedron. Thus spectrahedra form a class of convex subsets more general than polytopes,
but yet with a type of finitary representation. Spectrahedra appear in several branches of
mathematics, such as convex optimization and real algebraic geometry [BPR13]. They also
play a key role in the solution of the Kadison-Singer paving conjecture [MSS15], and the
solution of the Lax conjecture [HV0T7]. It is natural to call the sequence Bp = (Pr(n))n
a free spectrahedron. Free spectrahedra arise naturally in applications such as systems
engineering [IOHMP09] and control theory [HKMS19]. They are also intimately connected

to the theories of matrix convex sets, operator algebras and operator systems and completely
positive maps [EW97, HKM17, Pau02, PSS18].

By the main result of [HM14] and also [HM12], each B, (n) is convex if and only if B,
is a free spectrahedron; that is, there exists a d and tuple B € My(C)& such that B, = Pp.
In particular, a basic free semialgebraic set is convex if and only if it is a free spectrahedron.

Motivated by systems engineering considerations [SIG96], a problem is to determine,
given a free semialgebraic set B, that is not necessarily convex, if there is a free spectrahedron
Bp and an analytic nc rational mapping ¢ : B, — Pp that is proper, or better still
bianalytic. Informally, the problem is to achieve convexity via change of variables. Note that,
in any case, the matrix-valued rational function ¢» = Lp o q is plush and if ¢ is bianalytic,
then B, = Py. On the other hand, if ¢ is plush, then by Theorem 1.3 there exists a convex
function f in h variables and an analytic rational mapping ¢ : M(C)& --» M(C)* such
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that ¢ = f o q. Now the set B_; C M(C)" is convex and hence, by [HM14], there exists
A € My(C)8 such that ‘B_; = Pa. Further, ¢ : P, — P4 is proper. Summarizing, there is
a proper analytic rational change of variables from B, to a convex set if and only if there is
a plush rational function % such that ‘B, = ‘P_,.

Of course, in the case there exist distinct bianalytic rational mappings q : ‘B, — Bp,
and s : B, — Pg, then there is a non-trivial bianalytic rational mapping ¢ : ‘Bp — Pg. The
articles [AHKM18, HKMV20] classify, up to some mild hypotheses, the triples (B, Pg, )
where t : B — PE is an nc rational bianalytic mapping. Automorphisms of free domains
such as balls have been considered by a number of authors including [MT16, MS08, Pop10,
SSS18].

1.5. Readers’ guide. Beyond this introduction, the paper is organized as follows. Formu-
las for various derivatives of a symmetric descriptor realization, a canonical decomposition
of the complex Hessian and a preliminary version of Theorem 1.4 are collected in the next
section, Section 2. Theorem 1.4 is proved in Section 3. Theorem 1.6 is proved in Section 4
and the half of Theorem 1.3 that says the composition of a convex rational function and an
analytic rational function is plush is obtained as a corollary. The proof of Theorem 1.3 is
completed in Section 5. We conclude this introduction with the following remark.

Remark 1.7. Throughout the text we will refer to several existing realization theoretic
structural theorems, for example on convex polynomials, rational functions, etc., that are
scattered across the literature. However, in this paper we consider functions in variables
x and z*, while in the existing literature most statements involve symmetric or hermitian
variables, or variables z and z” evaluated on real matrices. The reason these results can
be applied in the present setting has two justifications. Firstly, for each of the required
statements, the version for symmetric variables (and symmetric matrix functions) and the
version for hermitian variables (and hermitian matrix functions) have essentially the same
proofs; in some cases, e.g. [Voll8], this was outlined explicitly. Secondly, to each function
[ in g variables x1,. .., 24 and their adjoints 27, ..., x, one can associate a function s in 2g
hermitian variables yi, ..., ys via

(W1, Y2g) = F(WL + Weg1s -, Yg + WW2g, Y1 — Wet1, -5 Yg — 1Y2g),

* * * _ *
% N Ty + X3 Tg+ Ty 21 — 2] Tg — T
flzy, o xg,27, .. 0y) = 8 5 T g T g T o )

These transforms then enable us to freely move between the (z,x*)-setting and the
hermitian setting from the preceding papers. 0

2. PLUSH PRELIMINARIES

Let r denote a symmetric descriptor realization as in (1.7). As preliminary results and
background, this section contains formulas for the derivative, complex Hessian and (full)
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Hessian of r; a precisely stated preliminary version of Theorem 1.3; and a discussion of
minimal descriptor realizations.

2.1. Derivatives and the Hessians. Given r asin (1.7), let
(2.1) A(r) = (K — Ap(x) — Ap(z*)) 7,
and given X € M, (C)& and assuming the inverse exists,

(2.2) AX)=(K® I, — Ap(X) — Ap-(X*)) .

Thus r(z) = ¢*A(x)c and 7(X, X*) = (¢ ® ,)*A(X)(c ® I,). Straightforward direct calcu-
lation shows that the derivative r, with respect to z, the complex Hessian 7, .- and the full
Hessian 7 of r are given by

re(x, x*)[h, b = ¢ A(z) Ag(h) A(x) ¢
(2.3) Tea (T, )[R, '] = ¢ A(z) Ag(h)" A(x) Ap(h) A(z) ¢
+ ¢ A(z) Ag(h) A(x) Ag(h)* A(z) ¢,
and
r(x,x*)[hy Y] = 1y [hy B*] + 2rg g [hy Y] 4 e 2 [, B
2.4 =2 [C*A(x)AB(h)A(w)AB(h)A(m)c + " A(x)Ag(h)"A(x)Ag(h)A(x)c
| + " A(@)Ap(h)A(z)Ap(h)" A(z)c + C*A(SC)AB(h)*A(x)AB(h)*A(iE)C]

= 2¢"A(z) (Ap(h) + Ag(h)*) A(x) (Ag(h) + Ag(h)*) A(x)c,

respectively.

2.2. Decomposing the complex Hessian. A subset 2 C M(C)& is a sequence 2 =
(Q(n))n, where Q(n) € M,(C)e. The set €2 is closed with respect to direct sums if
X € Q(n) and Y € Q(m) implies

wor-fe - (F 1)

0 YgD € Q(n+m).

Recall, by definition, the descriptor realization r asin (1.7) is plush on Q if r, .« (X, X*)[H, H*] =

0 for each n, each X € Q(n) and each H € M,,(C)&. (See equation (1.2).) That is, r is plush
on  if its complex Hessian takes positive semidefinite values on Q. Given X, X, H € M,,(C)g,
let

C*A(X)Ap(H)* AX)Ap(H)A(X)C,
r+(X, X)[H] = C*A(X)Ap(H)A(X)Ag(H)*A(X)C,

B

s

E
!

where C = ¢c® I,,.
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Proposition 2.1. Suppose Q@ C M(C)8 is closed with respect to direct sums. Then the nc
rational function r as in (1.7) is plush on Q if and only if

(2.5) r (X, X)[H] =0 and r(X,X)[H] =0
for all X, X € Q and H € M(C).
Proof. Given X, X € Q(n) and H € M, (C)E, define
R
Since € is clgsed WitNh respect to direct sums, X e (2n). For notational convenience, let
A=A(X), A=A(X) and C = c¢® I,, and observe

Tz,x*()?a)?*”ﬁa fl*] -
0

5 & fo sl 0T o &l Laim o] o 5[5 &

o5 ) [0 8] Lastn o5 8] 0 57T 51 5 €]

and thus

Ojrxz*()?7)?*)[ﬁ7ﬁ*] = Ti(X’X)[H] O'V )
’ 0 (X, X)[H]
an identity from which the result immediately follows. U

Let P, P, : C* — C? denote the orthogonal projections onto rng B and rng B* respec-
tively.

Corollary 2.2. If Q C M(C)# is closed with respect to direct sums and both PA(X)P and
P.A(X) P, are positive semidefinite for each tuple X € Q, then r is plush on SQ.

Proof. For X € Q(n) and H € M, (C)8, since the range of Ag(H)A(X) lies in rng BRQC", the
result follows from Proposition 2.1 by choosing X = X and using either of the inequalities

of (2.5). O

For k a positive integer and ¢ > 0, the (column) free ball B, C M(C)* of radius ¢ is
the sequence B, = (B.(n)),, given by

B.(n) = {X € M,(C)*: Zk:Xij < 521n} C M,(C)~.

j=1
Evidently free balls are closed with respect to direct sums. An nc rational mapping ¢ :
M(C)* --» M(C)* regular at 0 takes the form ¢ = [¢1 g2 ... @u|, Where each ¢; € C€z)
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is regular at 0. Let g,(z)[h] = [(q1)z(x)[h] ... (gu)o(2)[R]]. Thus ¢,(X)[H] € M,(C)* for
X,H € M,(C)e.

Corollary 2.3. Ifr is a symmetric nc rational function in h variables that is plush on some
free ball and if ¢ : M(C)& --» M(C)® is an nc rational mapping that is reqular at 0 with
q(0) =0, then ¢ = r o q is plush on some free ball.

Proof. We assume r is given in (1.7) and is plush on B, C M(C)*. By (2.3) and the chain
rule for X, H € M, (C),

(p:v,z*(Xu X*)[H7 H*]
= C"A(q(X))Ap (g2 (X)[H])" A(q(X))Ap(g=(X) [H]) A(q(X))C
+ C"A(q(X)Ap(g2(X)[H]) A(q(X)) A (g (X) [H]) A(q(X))C

= C"AY)Ap(E)" A(Y)A(E)A(Y)C + C*A(Y)A(E)A(Y)Ap(E)"A(Y)C

— 1 (Y, V) [E] 71 (Y, Y ) [E),
where Y = ¢(X) and F = ¢,(X)[H] and C = ¢ ® I,. Since ¢(0) = 0, there is a § > 0 such
that for each n and each X € Bs(n) C M, (C)&, we have Y = ¢(X) € B.(n) C M,(C)". By
Proposition 2.1, r (Y, Y)[E],r+(Y,Y)[E] = 0 and hence ¢, ,-(X, X*)[H, H*] > 0 for all n,
X € Bs(n) and H € M,(C)&. Thus ¢ is plush on B;. O

3. A REALIZATION THEORETIC CHARACTERIZATION OF PLUSH NC RATIONAL FUNCTIONS

This section is devoted to the proof of Theorem 1.4, restated as Theorem 3.1 below. A
free neighborhood of 0 in M(C)8 is a sequence 2 = (2(n)),, where Q(n) C M,(C)8 is
open and that contains some free ball. In particular, a free ball is a free neighborhood of 0.

Throughout this section r is a symmetric descriptor realization (of size d) as in (1.7)
and P and P, are the orthogonal projections onto rng B and rng B* respectively.

Theorem 3.1. If P,KP, and PK P are positive semidefinite, then r is plush on a free ball;
that is, there is an € > 0 such that r,.«(X,X*)[H,H*] = 0 for all n, X € B.(n) and
H e M,(C).

Conwersely, if v is plush on a free ball and the realization (1.7) is minimal, then P,K P,
and PK P are both positive semidefinite.
Theorem 3.1 follows by combining Propositions 3.4 and 3.5 below. Recall the notations
A(z) and A(X) from (2.1) and (2.2).
Lemma 3.2. If the realization (1.7) is minimal, then for every € > 0 there exists an n, an
X € B.(n) and a vector v € C" such that
z=AX)(c®v) e CloC"

has d linearly independent components in C"; that is, writing z = >
{z1,..., 24} C C" is linearly independent.

d

j=1€j ® zj, the set



PLUSH NONCOMMUTATIVE RATIONAL FUNCTIONS 11

Proof. Substitute z; = y; + iy to obtain the matrix-valued symmetric nc rational function

A(y,y') = A(z) in 2g symmetric variables and apply a hermitian version of [HMV06, Lem-
mas 7.2 and 7.4] (which hold because the local-global principle of linear dependence also
works in hermitian settings, cf. [BK13]) to obtain the desired conclusion. O

Lemma 3.3. Let {ey,...,eq} denote a basis for C* and k be a positive integer. If z =
27:1 e; ®2 € CE@C™ and {z1,..., 24} is a linearly independent set of vectors in C", then
for any E € My(C)¥,

{Ap(H)z: H € M,(C)*} =g E ®C".

Proof. We have

k k

=1 j=1 i=1
Fix 1 <iyp<d, 1 <jo<kandan f € C" Let H; =0 for j # jy and let Hj, be such that
Hjyz; = 0 for © # 19 and Hj,z;, = f. Then

AE(H)Z = Ejoeio ® f

Since § = {Ap(H)z: H € M,(C)*} C C?® C" is a subspace, it follows that & D [rng E;,] ®
C" and finally that S O [rng E] ® C". Since the reverse inclusion is evident, the proof is
complete. 0

Proposition 3.4 (Necessity). Suppose r as in (1.7) is a minimal realization. If there is
an ¢ > 0 such that r (X,0)[H] = 0 for all n, all X € B.(n), and all H € M, (C)8, then
PKP > 0. In particular, if r is plush on some free ball, then PKP and P,K P, are both
positive semidefinite.

Proof. Since the realization (1.7) is assumed minimal, Lemma 3.2 implies there exists an n,
a tuple X € B.(n), and a vector v such that z = A(X)(c® I)v € C? ® C" has d linearly
independent components in C". By assumption, for this X and v and all H,

(3.1) vr (X,0)[H]v = 2"Ap(H)" (K ® I)Ap(H)z > 0.

By Lemma 3.3, {Ag(H)z : H € M,,(C)8} = [rng B] ® C". Thus PKP = 0 by (3.1). O
Proposition 3.5 (Sufficiency). Let Q and R denote the inclusions of rng B and rng B* into
C? respectively. If PKP and P,K P, are both positive semidefinite, then there is an € > 0
such that, for eachn and X € B.(n), both (Q®IL,)*A(X)(Q®I,) and (RR1,)*A(X)(R®1,)

are positive semidefinite and r is plush on B..

Proposition 3.5 can be deduced as a consequence of the construction in Section 5. A
direct proof follows and starts with some geometric definitions.

For the d x d signature matrix K, a subspace N' C C¢ is K-nonnegative if

(Kh,h) >0
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for all h € M. Note that the hypothesis PK P is positive semidefinite in Proposition 3.5 is
equivalent to Q*KQ > 0 and to the condition that the range of B is K-nonnegative. If N
is K-nonnegative, then [h, g] = (Kh, g) defines a semi-inner product on A. In particular, if
h € N and [h,h] = 0, then [h, f] = 0 for all f € A and hence

N ={heN:(Khh)=0}CN

is a subspace, called the K-neutral subspace of . Now suppose N+ C N is a complemen-
tary subspace to N0; that is NTNNY = {0} and N = NT+NC. If h € N and h # 0, then

(Kh,h) > 0.
Because N is finite dimensional, it follows that there is an > 0 such that
(Kh,h) > n||h]]%,
for h € N*. Thus, letting V : NT — C¢ denote the inclusion, we have V*KV = nly+ > 0.
Proof of Proposition 3.5. For notational purposes, let R and R, denote rng B and rng B*

respectively. Let R° denote the K-neutral subspace of R. There is a1 > n > 0 and a
subspace Rt C R such that,

(Ql) R®+RT =R and R°NR*T = {0};
(Q2) Q2 KQ4 = nlg+, where Q denotes the inclusion of R™ into C*.

Likewise (after changing 1 > n > 0 if needed) there exists a subspace R} C R, such that

(R1) R2+ RS =R, and RONR} = {0};
(R2) R* KR, = nlgs, where R, denotes the inclusion of R} into C*.

Let ®(x,2*) = Ap(xz) + Ap(x)*. There is an € > 0 such that if X € B., then
> 19(X, X[V < 3. Tt suffices to prove, if X € B.(n), then (Q ® I,)*A(X)(Q ® I,,) = 0
and (R® L,)*A(X)(R® I,) = 0.

Suppose X € B.(n) and thus || ®(X, X*)|| < Z < 1. In particular, Iy, —®(X, X*)(K®I,)
is invertible and
(3.2) AX)= (KL, —®X, X)) '=[K® LI -®X,X)K®IL]) "

Note, if v € R? and 6 € C¢, then B;6 € R and hence 0*B;K~ = 0. Thus BiKy =0
and hence, for z € C",

X, XK@ 1) (Y®2) = (X, X7)(Ky®2)
=Y BiKy®X;z+ Y BEKy®X;z
= ZBjK'y®ij e R®C"

It follows that
Lan — (X, X*)(K @ L,)|(y®z2) e RaC".
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Hence
Sx =g — (X, X*) (K ® In)]RO QC"CRC".

Since Iy, — ®(X, X*)(K ® I,,) is invertible, dimSx = n dim R°. Furthermore, using (3.2)
and (Q X In)SX = Sx,

(Q* @ IL)A(X)(Q® I,)Sx
=(Q* @ L)A(X) Iy — (X, X*) (K ® I,)]R° @ C"
= (Q*K®1,)R°®C"=[Q*KR" @ C" = {0},

since RY is the K-neutral subspace of R. Thus
Sx Cker(Q* @) A(X)(Q®I) CR®C"

Using [|®(X, X*)[| < 2 and (Q4+ ® [,)* (K ® I,)(Q+ ® I,,) = nlg+, as well as since n < 1,
(3.3)
=L ®L)K (I -®(X,X")K)" (Q} ®1,)

—(Q} © L)K(Q, ® L) + (@ © 1) ZK >"] Q@ 1)

= QLKQ+ ® L= Y |0(X, X)[*Irs = Ll
k=1
In particular, Sx N (RT ® C") = {0}.
Summarizing,
(1) Sx, R* @ C" C R® C"
(2) (@& 1) A(X)(Q & I,,)Sx = {0};
(3) dimSy =n dimR® and dim R+ ® C" = n (dim R — dim R");
(1) (@} © L)AX)Q+ 0 L) = - (see (33))
(5) Sx N (Rt ®C") = {0}.
It follows that Sy +[RT ® C"] =R and if § € Sy and v € R @ C", then

(Q" @ L)AX)Q @ )6 +7),0 +7)

= (@@ L)AX)(Q @ )y, 7) = —|!7||2 > 0.
Hence (Q* ® I,,)A(X)(Q ® I,,) = 0 as desired. By symmetry, (R* ® I,)A(X)(R® I,,) = 0.

Thus Q*A(z)Q and R*A(z)R are both positive semidefinite in a neighborhood of 0. Thus r
is plush by Corollary 2.2. O



14 H. DYM, J.W. HELTON, I. KLEP, S. MCCULLOUGH, AND J. VOLCIC

4. CONVEX NC RATIONAL FUNCTIONS

Recall that, by definition, a symmetric rational function f is convex on a set Q@ C M (C)¢
if (X, X*)[H,H*] = 0 for all n, X € Q(n) and H € M,(C)?. (See equation (1.4).) The
main result of this section is Theorem 1.6, restated and proved as Proposition 4.1 below.
An immediate consequence is the fact that if a symmetric nc rational function is convex in
a free ball, then it is plush in a free ball. Thus, combined with Corollary 2.3, Theorem 1.6
establishes one-half of Theorem 1.3.

Throughout this section, f denotes the symmetric descriptor realization,
(4.1) f(x) = v*(J = Aa(z) = Aa(2)") "o,
where h is a positive integer, A € My(C)® and 0 # v € C%.

Proposition 4.1. If rng A + rng A* is a J-nonnegative subspace of C?, then f is convex in
a neighborhood of 0.

Conversely, if the realization (4.1) is minimal and f is convez in a neighborhood of 0,
then tng A + rng A* is a J-nonnegative subspace of C?.

Corollary 4.2. If f is convex, then f is plush.

Proof. By Proposition 4.1 both rng A and rng A* are J-nonnegative subspaces. An applica-
tion of Theorem 3.1 completes the proof. 0

Corollary 4.3. Suppose f is a symmetric nc rational function in h wvariables, and q :
M(C)g --» M(C)* is an analytic nc rational mapping. If f is conver in a neighborhood
of 0, then r = f o q s plush in a neighborhood of 0.

Proof. By Corollary 4.2, since f is convex it is plush. The result now follows from Corollary
2.3. 0

The proof of Proposition 4.1 uses Lemma 4.4 below.

Lemma 4.4. Let J € My(C) be a signature matriz. If N C C%isa J -nonnegative subspace,
then there is a 6 > 0 such that if n is a positive integer, T € My(C) ® M, (C) is selfadjoint,
mgT CN ®@C" and |T|| <6, then

PeL)(JTL -T)' (P®I,) =0,

where P is the orthogonal projection onto N.

Proof. Let Ny denote the [J-neutral subspace of A/. In particular, PJw, = 0 for wy € No.
Let A, denote the orthogonal complement of Ny in /. Hence Ny ® N = N and N, is
a J-strictly positive subspace. In particular, there is an > 0 such that if w € N, then
(Jw,w) = n{w,w). Choose § = - < 1 and note Do 0 =1
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Now let n be given Let j J ® I,, and note that N =N QC" is j nonnegative and
Ny := Ny@C" is its J-neutral | subspace. Since P = - P®1, is the orthogonal projection onto
the j nonnegatlve subspace N and /\/0 is neutral, PJ wo = 0 for wy € Ny ® C*. Moreover,
if we N,, then (Jw,w) > n{w, w).

Fix T as in the statement of the lemma. Since § < 1, J —T is invertible with the inverse
given by the convergent series

(JT-T)'=T+T> (TT).
j=1
If wy € '/S/O and w, € N, then, since (Jwp,v) = 0 = (wy, Jv) for v € N and since
mgT CN, o o
(wo, T(TTYwy) = 0= (wo, T (TT Y wo),

for all nonnegative integers j. Hence

(T = T)Hwo +wy), wo + wy) = (Jwy,wy) + ZJ (TTYw,w.)
7=1

- Z I[P [l 1
j=1

> (n—n)wi|*=0
and the conclusion of the lemma follows. O
Proof of Proposition J.1. Let ®(x) = Aa(x) + Aa(x)* and let
D(z) = (J = Aa(z) — Aa(2)) 7,
and for X € M, (C)* for which the inverse exists,
N(X)=(J®I, — As(X) = Aa(X)) ",
By (2.4),
f(x,2*)[h, h*] = 20" T (2)®(h)T(2)®(h)T(z)v.

Moreover, f is convex in a neighborhood of 0 if and only if there is a n > 0 such that for all
n,all X € B,(n) and all H € M, (C)9,

f(X, XHH,H| =2(v* @ L)I'(X)o(H)I(X)(H)['(X)(v® I,,) = 0,
by [HMVO06, Proposition 5.1], Remark 1.7, and equations (1.4) and (2.4).

Now suppose N/ = rng A + rng A* is J-nonnegative. By Lemma 4.4, there is a § > 0
such that for each n and each tuple X € Bs(n),

(P I, T'(X)(P®I,)
=(P*®1,) (J @I, — Aa(X) — Au(X)) (P @ I,) = 0,
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where P is the orthogonal projection onto N. Since ®(H) maps into the range of P ® I,,, it
follows that f”(X, X*)[H, H*] is positive semidefinite for X € Bs. Thus f is convex on Bs.

Conversely, suppose there is an ¢ > 0 such that f is convex on B, C M(C)™.
For H,H € M(C)® let
U(H,H) = A (H) + A (H)*.

Given X, X, H, H € M,(C)®, let
~ [X 0] ~ [0 H
£=5 5 =17 o)

U, X)[H, H] = T(X)W(H, H)T(X)U(H, H)'T(X),

Fr(X, X)[H, H) = T(X)V(H, H)'T(X)¥(H, HI'(X),

let

and observe

and therefore

~ X,X)[H, H] 0

FU(X,XHH HY =20 @ Iny)* [fi( 0 1% KA. ] (v ® Iy).

Hence, since f”()A(,)A(*)[fAI, f[*] is positive semidefinite for X € B.(2n) and H € My, (C)?,
(v® L) f(X, X)[H,H| (v® I,) = 0,
(v® L) f(X, X)[H, H| (v®I,) = 0,

for all X,)z € B.(n) and H,f] € M,(C)*. In particular, for each X € B.(n) and H,ﬁ €
M, (C)8,

0= (v® L) fi(X,0)[H,H(veI,)
= (v® L) T(X)V(H, H)(J ® L,)V(H, H'T(X)(v & I,).

Using minimality of the realization for f, by Lemmas 3.2 and 3.3 there exist X € B.(n) and
u € C" such that the set

(U(H, H)T'(X)(v®u) : H H € M,(C)"}

spans (rng A + rng A*) ® C". Hence PJP = 0, where P is the orthogonal projection onto
rng A + rng A*. O
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5. PLUSH RATIONALS ARE COMPOSITE OF A CONVEX WITH AN ANALYTIC

In this section we prove Theorem 1.3, restated as Theorem 5.1 below. It is the main
result of this paper.

Theorem 5.1. Suppose r is a symmetric nc rational function. If r is plush in a neighborhood
of the origin, then there exists a positive integer h, a convexr nc rational function f in h
variables, and an analytic nc rational mapping q : M(C)& --» M(C)* such that r = f oq.
Moreover, a choice of f and q is explicitly constructed from a minimal realization of r. See
formulas (5.11) and (5.13) and Subsection 5.5.5.

5.1. A formal recipe for f and ¢q. We may assume r is a minimal descriptor realization
as in formula (1.7). There exist nonnegative integers a and b such that

I, 0

K=" .

{0 —Ib]
Since r is, by assumption, plush in a neighborhood of 0, both rng B and rng B* are K-
nonnegative by Theorem 3.1. Hence we may assume a > 1 (as otherwise r is constant).
Likewise, we may assume b > 1 as otherwise r is convex in a neighborhood of 0 by Propo-
sition 4.1, and therefore plush by Corollary 4.2, and the conclusion of the theorem follows
upon choosing g(x) = z. and f =r.

A subspace P is a maximal K-nonnegative subspace if P is K-nonnegative and if N
is nonnegative with P C N, then N' = P. It is well known that, in this case, the dimension
of P is a and moreover, there is a contraction p : C* — C°, known as the angular operator
for P [And79], such that P is the range of the map

[Ipa] C* = C* g C.

Let p,p, : C* — C® denote the angular operators for maximal K-nonnegative sub-
spaces P and P, containing rng B and rng B* respectively. Let P, P, denote the orthogonal
projections onto P and P, respectively. Let (x) denote the set of words in z1,...,z, and
(z)y = (x) \ {1}; these are analytic words (no x7s).

If @) is a positive semidefinite matrix, then, up to unitary equivalence, it is of the form
@+ @ 0, where () is positive definite. Hence, again up to unitary equivalence, the Moore-
Penrose pseudoinverse Qf of ) takes the form erl ®0. In particular, the ranges of Q and QT
are the same. Let D and D, denote the positive (semidefinite) square roots of I, — p*p and
I, — ptp., respectively. Define ¢ : C¢™0 — C*pC*@CHC and ), : C*pC* ¢ CHC — Cr+°
by
D' [I, p*]

I
P = Oaxc(f+b) and 1, = [0(a+b)><a {pa} DI ¢ c} .

C*
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The definition of the formal representation (J, A, v) of £ is as follows.
(1) Define, for each w € (z),
Ay == w(KB) P.Kv, = w(KB) Kb, € My (C).

(51) J=1, 1,1 —-1¢€ M2a+2((C)

eC*dC*®CqC =C?2

v =

0
0
s
t

Here we take s,t € C such that s —¢ =1 and s+t = ¢*Kc¢ (hence s*> — t* = ¢*Kc).

The expression
-1

-1

defines a formal power series in mﬁmtely many variables v,y ; more precisely, it is an
element of the completion of C(y,,y% : w € (x);) with respect to the descending chain of

4
Jn = (ywl Yy, - Z’wk’ :TL>
k=1

In the spirit of Proposition 4.1 one could say that f is formally convex. Let

ideals

q<x17 s 7Ig) = q(]?) = (w)we(x)+'

Thus q is an analytic polynomial mapping with infinitely many outputs.

Theorem 5.2. Viewing y, = q,(z) = w(zx) and composing £ with q gives

r(z) = £(q(z)),
in the ring of formal power series.

Theorem 5.2 is proved in Subsection 5.2 and it is used in the proof of Theorem 5.1

appearing in Subsection 5.3. Referring to the variables y,,, y; as intermediate variables,
f depends on infinitely many intermediate variables and g, while a function of the variables
x, outputs the intermediate variables. In Subsection 5.3 as part of the proof of Theorem 5.1,
rational f and ¢ are constructed using only finitely many intermediate variables.
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5.2. Proof of Theorem 5.2. Let &~ denote the set of strictly alternating words in two
letters {x,y}. Hence, xyxy, xyxyx, and yxyxy are examples of such words. We do not
include the empty word in &~. Using the fact that ¢,Jiy = 0, and hence A, JA, = 0 for
u,w € (r),, compute

£(q(z)) = v* (I — Aa(a(2)) — Aga-(a(2)") " Jv

=v" | (Asaa(@) + Agae(a(@))" | Jv + 0" Jo
(5.2) =1

=t Z w(Aya(q(x)), Asa-(q(z)) | Jv + v* Jo.

LweS— |

The next and longest part of the argument simplifies w(Aj4(q(x)), Aja(q(z)*)) for w € &~

Lemma 5.3. For 1 <j,{ <g,
B;K [¢*Ji] KB; = B; KB,
K [, JY;] KB} = BJKB;.

The proof of Lemma 5.3 uses the following construction. First note that the orthogonal
projection P onto P is given by

1 . .
P= M (I+pp)" [T p]
and a similar formula holds for P, the orthogonal projection onto P,. Set

I
Ej={I+pp) ' [I p*] B; [p

*

] (I + pip.)~' € M,(C).
Thus,
[l 510 )

Finally, since (ker B;)* = rng B} C P, it follows that PB; P, = B;. Hence,

(5.3 %IM@Uﬂ]

Proof of Lemma 5.5. Compute,
. I )
wwzuwwwﬂ-
Thus, using formula (5.3), (I — p*p)(D")2(I — p*p) = D*(DV)2D? = I — p*p and

]a *
[l p'] K {01 =1-p'p,
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it follows that

BRI B = | BT g o) DV = B 1 ]

[ﬂ E{(I—p"p)E; [T pi]
—B;KB,.

The other identity can be proved in a similar fashion. We omit the details.

For notational purposes, let Q and T denote the formal power series

[e.o]

Q) =D (KAp(x)"= > w ZK ;Y w(KB) zjw(x)

n=1 wWE(T) 4 we(z)

and

D) =Y (K(Ap(2)))" = > Kuw(KB)'Kw(x) = KQ(z)'K.

n=1 WE(x) 4
With these notations,
Asalq }: JA Qw2 §2J¢UJKIQP}(¢* w(x)
(5.4) :JMEZMKBm@ﬂﬁKm:J¢M@RKm
= Jy Q(z) Kb,

and

Apac(q(@)) = Y JALqu(z) }:ﬁprszB)¢ w(z)*
(5.5) ne

— JYIKP, Q) ¢

= JYIK Q(z)" v* = Jy; T(a") Ky,
Further, using Lemma 5.3,
(5.6) T(a") K [0 T¢Q(x) = T(x*) Q(x).
Combining (5.4), (5.5) and (5.6) gives

A (a(@))Asa(a(@) = Jvi D) K¢* T Q)] Ky,
= JYL D) ()] K.

Similarly,

Q(z) Ky JyT(z*) = Qz)T(z").
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Thus,
Asa(q(@))Asa-(q(@)) = J (), JY T (*)] Ko

= JY [Q(x) T'(2")] Ky

Next turn to an alternating word, say w(x,y) = xy ---xy where x and y each appear
N times. Writing © and I instead of Q(z) and I'(2*) and computing as above,

w(Ayalq(z)), Asa-(q(x))) = JY QT Q---T QT K¢

(5.7) .
= JY w(Q,T) Ky*.

The last step in the proof of Theorem 5.2 is to match moments as follows. The right
hand side of (5.7) is the sum over all terms of the form

T = Jy (KAp(x))" (KAp(x)")™ - (KAp(x))"™ (KAp(x)")™ Ky,
for positive integers n;, m;. Further,
v*TJv = c"(KAg(x))" (KAg(z)*)™ -« (KAp(x))"™ (KAp(x)" )™ Kc

and
viIv =82 —t2 =" Ke.

Hence, letting 7 denote all possible products of the form T (save for the empty product)
and (z,z*), the nonempty words in (x,z*),

v¥[ Z w(Aja(q()), Asas(q(z)*)]Jv + v*Jv = Z v T Jv +v*Ju
weG™ TeT
(5.8) =c¢'[ Y w(EB,KB")|Kc+c'Ke
u€ (x,x*) 4

=" (K — Ag(z) — Ap(2)") ¢,

since the sum over w € &~ gives all possible products of KAg(z), KAg(x)* save for the
empty product (/). Combining (5.8) and (5.2) completes the proof of Theorem 5.2.

5.3. Proof of Theorem 5.1. In this section Theorem 5.1 is deduced from Theorem 5.2. It
is possible to prove Theorem 5.1 directly.

5.3.1. A recipe for f and q having finitely many intermediate variables. In the construction
of £ and q in Subsection 5.1 the intermediate space has infinitely many variables. In this
subsection that construction is refined, under the additional assumption that {B, ..., Bg}
is linearly independent, to produce rational convex f and analytic ¢ having an intermediate
space with finitely many variables that are shown, in Subsection 5.3.2, to satisfy the conclu-
sion of Theorem 5.1. Finally, Subsection 5.3.3 shows how to pass from linear dependence to
independence of the set {B1,..., Bg}.
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To construct f and ¢, let {Cq,...,Cy} denote a basis for the algebra generated by
{KB, ..., KB;} and, without loss of generality, assume C; = KB; for 1 < j < g (since we
are assuming { By, ..., B} is linearly independent) and for g+ 1 < j <h, that

Cj = WV](KB)
for some (non-empty) word w;. Note that h < (a+b)? as KB; € M,,(C). In particular, we
can set w; = x; for 1 <j < g.
There is an h-tuple = € M, (C)® such that for each 1 < j,k <h,
h

(5.9) C;Cy = Z(Ek)j7scsv

s=1
though we will be mostly interested in 1 < j,k < g. Moreover, for 1 < j < h and a word w
n (zy,...,an),

(5.10) Ciw(C) = w(ZE);.Cs,

by [HKMV20, Lemma 2.5].
Define f and q as follows.

(1) Let J denote the signature matrix defined in (5.1) and, for 1 < s < h, define
A, = Ay, = ¥ wy(KB) P.Kt, = ¢ wy(KB) K.

Set
(5.11) fly) =v"(J = Aa(y) — Aa(y)) ',
where A = (Ay,... Ap) € Moy 2(C)* and y = (y1,. .., Un)-
Since
DT I, p]u
g A +mg A* C { Dl pi)= S ZGC“@Cb}
—_ (u + Z) ) Y
c(u+ z)
it follows that rng A + rng A* is J-nonnegative and therefore f is convex, by Propo-
sition 4.1.
(2) Let b(y) = [bi(y) ... bu(y)] denote the map associated to = by
(5.12) b(y) = y(I — As(y))™"
For 1 < s <hn, let
g
(5.13) qs(x) = bs(z1,...,24,0,... = Z ))jsTw

j=1 we(m

Evidently ¢ = [ql e qh} is analytic and rational.
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Remark 5.4. The nc rational mapping b(y) of (5.12), associated to a tuple Z satisfying (5.9),
is a convexotonic map, see [HKMV20, Section 1.1 and Lemma 2.5]. Up to linear change of

variables and an irreducibility assumption, convexotonic maps are the only bianalytic maps
between free spectrahedra [AHKM18, HKMV20).

5.3.2. Proof that r = f o q. Since r = £ o q by Theorem 5.2, both f and q are rational, f is
convex and ¢ is analytic, Theorem 5.1 in the case that {B,..., B} is linearly independent
is a consequence of Proposition 5.5.

Proposition 5.5. f(q(x)) = f(q(x)).

Proof. Since

and

fla(@) = v* (I = Agala(x)) = Aga-(a(2)") " To,

the conclusion follows from Lemma 5.6 below. O

Lemma 5.6. With notations as above,

Aalg(z)) = Aalq(2)).

Recall the notation C; = w;(KB) for 1 < j < h and that C; = KB; for 1 < j < g.
Thus, by (5.10), for 1 < j < g and w € (x),

=3
=3

(5.14) KB; w(KB) =Y w(E);, wi(KB) =Y w(E);.C..

s=1 s=1
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Proof. Using the identity in (5.14) in the fourth equality

Anla(=) =¥ A, KB)) (a(z)) P.KY,
= Z (z) PKY,

we(x

=9 Z > [KBw(KB)] z,w(x) P.K,

Ule)

P Z Z Z (2)u;C; ]| vyw(x) P K1,

u=1 we(z) j=1

- Zw Cy P, D> (w(E))ujza w()]

j=1 u=1 we(:p

=) ¢ [w;(KB) P.Kv,] ¢;()

j=1

— 2:/%qﬂm)==AAQﬂ$»~ -

5.3.3. Linearly dependent B;. To complete the proof of Theorem 1.3, suppose, without loss
of generality, that 1 <k < g and {By,..., By} is a basis for the span of {Bi,..., Bg}. Let

N —1
?(y)=C<K—ZBjyj—ZB;y;> c.
=1

Thus 7 is a symmetric descrlptor realization. There is a g X k matrix M such that r(x) =

r(Mx). Moreover, since rng B = g B and g B* = tng B* and since r is assumed plush,
Theorem 3.1 implies 7 is also plush. Thus, by what has already been proved, there exists a
positive integer h, an analytic nc rational mapping ¢ : M(C)* --» M(C)* and a convex nc
rational function f (in h variables) such that 7(y) = (f 0 q)(y). Set q(z) = g(Mz). Thus ¢ is
an analytic nc rational mapping and r = f o q.
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