NONCOMMUTATIVE RATIONAL FUNCTIONS INVARIANT
UNDER THE ACTION OF A FINITE SOLVABLE GROUP

IGOR KLEP!, JAMES ELDRED PASCOE?, GREGOR PODLOGAR, AND JURIJ VOLCIC?

ABSTRACT. This paper describes the structure of invariant skew fields for linear
actions of finite solvable groups on free skew fields in d generators. These invariant
skew fields are always finitely generated, which contrasts with the free algebra case.
For abelian groups or solvable groups G with a well-behaved representation theory it
is shown that the invariant skew fields are free on |G|(d — 1) + 1 generators. Finally,
positivity certificates for invariant rational functions in terms of sums of squares of
invariants are presented.
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1. INTRODUCTION

Classical invariant theory studies polynomials that are preserved under linear group
actions [Kra84, Stu08, DK15]. By the Chevalley-Shepard-Todd theorem [Stu08, The-
orem 2.4.1] for a finite group G C GL,,(C), the ring of invariants Clzy, ..., x,]%
morphic to a polynomial ring (in the same number of variables) if and only if G is a com-
plex reflection group. Similarly, one considers the rational invariants C(z1,...,x,)%.
Noether’s problem asks when this invariant field is rational, that is, isomorphic to a
field of rational functions. This is a subtle question which heavily depends on the struc-
ture of the group; however, in recent years much progress has been made along the lines
of [Sal84, CTS07, Pey08, CHKK10, Mor12, CHHK15, JS]. Examples of invariant fields
give the simplest negative answers to the Liiroth problem, i.e., examples of unirational
varieties which are not rational [AM72, Sal84]. Liiroth’s problem has a positive answer
in one variable (every field between K and K (z) must be K or purely transcendental
over K), and in two variables over C. In complex analysis, these problems pertain to
complex automorphisms and holomorphic equivalence of domains, geometry of symmet-
ric domains and realizations of symmetric analytic functions [GR08, Sat14, AY17]. On
the practical side, symmetries are regularly applied in control system design to analyze
a system by decomposing it into lower-dimensional subsystems [GM85, vdS87, Kwa95].

We study the free noncommutative analogue of the above program over an alge-
braically closed field F of characteristic 0. Let x = (27 ..., x4) be a tuple of noncommut-
ing indeterminates. A noncommutative polynomial is a formal linear combination
of words in x with coefficients in F. For example,

18 1so-

1728 + 132129 — 92011 + 39.

We denote the free associative algebra of noncommutative polynomials on d genera-
tors by F<zy,...,x4>. A noncommutative rational expression is a syntactically
valid combination of noncommutative polynomials, arithmetic operations -+, -, 7!, and
parentheses, e.g.
(216252327 — (w122 — To1) ™" + 3)8)71.

These expressions can be naturally evaluated on d-tuples of matrices. An expression is
called nondegenerate if it is valid to evaluate it on at least one such tuple of matrices.
Two nondegenerate expressions with the same evaluations wherever they are both
defined are equivalent. A noncommutative rational function is an equivalence class
of a nondegenerate rational expression. They form the free skew field F€z1, ..., 24>,
which is the universal skew field of fractions of the free algebra F<zq,...,zs>. We
refer the reader to [BGMO05, Coh06, HMV06, BR11, KVV12, Vol18] for more on the
free skew field.

We analyze the invariants in a free skew field under the action of a finite solvable
group. For example, a symmetric noncommutative rational function r in two variables
satisfies the equation

r(z,y) =r(y,z).
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Naturally, this corresponds to an action of the symmetric group with two elements,
Sy, and we denote the ring of symmetric noncommutative rational functions in two
variables by F€z, y3°2. Similarly, F <z, y >*? is the ring of symmetric noncommutative
polynomials. By a theorem of Wolf, see e.g. [Coh06, §6.8], we have

F<z,y>% = F<uy,us,...>.

In fact, the polynomial invariants F<xzy,...,24>% are, except in some trivial cases,
always isomorphic to a free algebra in countably infinitely many variables [Coh06,
§6.8]. As was observed by Agler and Young [AY14] (see also [CPTD18] and [AMY18]),

F<z,y>" CFtx+y,(z—y)? (. —y)(z+y)(x — )Y,

where F€z+y, (x—y)?, (x—y)(z+y)(x—y)} denotes the subfield of F{x, y3 generated
by z + vy, (x —y)?, and (x — y)(z + y)(z — y). What is perhaps less clear, and follows
from our Theorem 4.1, is that

F€z,y3® =F€a+y, (x—y)% (@ —y) (@ +y) (@ —y)>
= F<£a, b, c>.

Moreover, the isomorphism ¢ : F€a, b, ¢y — F{z, y3>°2 satisfies p(a) = z +y, p(b) =
(z —y)? and p(c) = (z —y)(z + y)(z — y).

The equality and further isomorphism are remarkable for a few reasons. First, in
the noncommutative case, it is nontrivial to show that the set of symmetric noncom-
mutative polynomials generate the free skew field of symmetric rational functions. For
example, expressions for relatively simple symmetric rational functions may require
complicated expressions in terms of the generators, as is shown by the equalities ex-
pressing 27! +y 71 :

ey =ty — (- (@ -y +y)(z—y) (-
= g((a—be D)™

(It is somewhat hard to even find an elementary way of showing the equality; we man-
ufactured it using realization theory which will be a key ingredient of the proof of our
main result.) Secondly, it is interesting that = + v, (z — y)?, (z — y)(z + y)(z — v)
satisfy no hidden rational relations, which follows from a result of Lewin [Lew74, The-
orem 1]. Unlike in the commutative case, it does not suffice to test only polynomial
relations; for example, x, zy, vy? satisfy no polynomial relations and generate a proper
free subalgebra in F < z,y > while they satisfy a rational relation and the skew field
they generate in F€xz,y> is F€x, y> itself. The theory of symmetric noncommuta-
tive functions was first initiated through quasideterminants in [GKL95], and their
combinatorial aspects were further studied in [RS06, BRRZ08]. For the construction
of a noncommutative manifold corresponding to symmetric analytic noncommutative
functions, and associated Waring—Lagrange theorems and Newton—Girard formulae,
see [AMY18].
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There are also potential applications of understanding invariant subfields of the
free skew field in theoretical control theory. Noncommutative rational functions nat-
urally arise as transfer functions of linear systems that evolve along free semigroups
[BGMO05, BGMO06]. When such a system admits additional symmetries (described by
a group action), so does its associated transfer function. If the generators for this
group action are known, then the transfer function can be expressed in terms of in-
variant building blocks. Thus it is likely that, as with classical discrete-time linear
systems, this decomposition of the transfer function leads to a decomposition of the
linear system into lower-dimensional subsystems, which make for a simpler analysis.

1.1. Main results. Let G C GL4(F) be a finite group. The skew field of rational
invariants, denoted by F€zy, ..., 2437, is the skew field of elements of F€xy, ..., 24}
that are invariant under the action of GG, that is,

Fay, ..., 203 = {r e F€ay, ..., xg¥: r(g-x) = r(z) for all g € G}.

Our first main result states that for solvable groups the skew field of rational invari-
ants is always finitely generated:

Theorem 1.1. Let G C GL4(F) be a finite solvable group. Then the skew field of
invariants F€xy, ..., xq> is finitely generated.

For solvable groups G with a well-behaved representation theory we can give a finer
structure of the invariant skew field F€zy, ..., 243

Definition 1.2. Let G be a finite group.

(1) Let N be a nontrivial normal abelian subgroup. We say that G is unramified
over N if for every irreducible representation 7 of G, 7|y is trivial or 7|y splits
into distinct irreducible representations of V.

(2) We say a group G is totally unramified if either G is the trivial group or
there exists a nontrivial normal abelian subgroup N such that G is unramified
over N and G//N is totally unramified.

Theorem 1.3. Let G be a totally unramified group acting on FC wia the left reqular
representation. Then

FLay, .. J\G]}G > FLuy, ... 7U\G|(\G|—1)+1}'

Examples of totally unramified groups include abelian groups, S3, S4, and dihe-
dral groups; furthermore, all groups of order < 24 are totally unramified. For these,
noncommutative Noether’s problem is tractable in the sense that for left regular rep-
resentations the answer is affirmative. In fact, we conjecture that invariant skew fields
of finite groups are always free.

The smallest non-example of a totally unramified group is the group SLy(F3) of order
24. The next non-examples are given by eight groups of order 48: the four groups in
the isoclinism class of (Z4 X D4) X Zs, the isoclinism class of GLy(F3) with two groups,
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and the isoclinism class of Zy x SLy(F3) again containing two groups. Then we find 32
groups that are not totally unramified among the 267 groups of order 64. The smallest
odd order examples are found among groups with 243 elements.

Finally, we present applications of the above results (for F = C) to real algebraic ge-
ometry. We provide positivity certificates for invariant noncommutative rational func-
tions in terms of invariant weighted sums of squares. We say that r € C€zy, ..., 24>
is positive if for every n € N and a tuple of hermitian matrices X € M,(C)4, r is
defined at X and r(X) is a positive semidefinite matrix. The following is a solution of
the invariant free rational Hilbert’s 17th problem.

Theorem 1.4. Let G C Uy(C) be a finite solvable group. Then there are qi,...,qn €
C4ay, ..., 243 such that every positive rational function r € C€x1, ..., 243 is of

the form
r=> 8,5
J

for some 5; € C€xy, ..., x4>C.

Furthermore, we establish Positivstellensatze for invariant semialgebraic sets of bounded
operators on a separable Hilbert space. Corollary 6.5 treats strict positivity when the
invariant constraints satisfy an Archimedean condition, and Corollary 6.6 certifies pos-
itivity on convex domains (i.e., those given by linear matrix inequalities).

1.2. Reader’s guide. The paper is organized as follows. After Section 2 with prelim-
inaries we establish Theorem 1.1 in Section 3. Theorem 1.3 for abelian groups G is
proved in Section 4, followed by the proof of the theorem itself, and a strengthening
thereof (Theorem 5.1) in Section 5. Finally, Section 6 discusses relationships with real
algebraic geometry; positivity certificates for invariant positive rational functions can
be chosen to be invariant themselves.

Acknowledgment. The authors thank Primoz Moravec and John Shareshian for in-
sightful discussions on finite groups, and the anonymous referee for suggestions that
vastly improved the presentation of the paper.

2. PRELIMINARIES ON GROUP REPRESENTATIONS

In this section we give some background and introduce notions which will be neces-
sary for the sequel.

2.1. Pontryagin duality. Let N be a finite abelian group. Define N* to be the
group of multiplicative homomorphisms y : N — F*. The group N* is non-canonically
isomorphic to N. Every representation 7 of N decomposes into a direct sum of elements
of N*, that is, N* consists of all the irreducible representations of N. For more details
see [Ser77, Rud90].
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2.2. Complete representations. A faithful representation 7 of a group G is com-
plete if there is a direct summand 7 of 7 (i.e., 7 decomposes as mg @® 7, for some
subrepresentation 7;) and there is a nontrivial normal abelian subgroup N C G such
that:

(1) mp|n contains exactly the nontrivial representations of N as direct summands
with multiplicity 1;
(2) The representation

TN- D (M RTOTRmE)N D (Tp QT R Tp)Nr

is a complete representation of G/N. Here, for a representation g, on- denotes
the summands of ¢ which are trivial on N and thus naturally gives rise to a
representation of G/N.

The notion of a complete representation is rather technical; the proper motivation
is unveiled in Lemma 5.2, where completeness ensures linearity of certain induced
group actions. In any case, complete representations should be viewed as a companion
concept to the more natural definition of an unramified group. Namely, as seen in
the proof of Theorem 1.3 below, the left regular representation of a totally unramified
group is complete.

2.3. Unramified groups. The interplay between subgroups and representations is
the subject of Clifford theory, see e.g. [Isa76]. We now give a reinterpretation of what
it means for G to be unramified over a normal abelian subgroup N. There is a natural
action of G/N on N* given by

gN : x = (n— x(g7'ng)) = x*.

Let m an irreducible representation of G, such that 7|y decomposes as €D, x;. For any
gN € Stab x;, we have that 7(g)e; € span e;, where e; form the basis corresponding
to the decomposition of 7|y into one-dimensional representations €D, x;. That is, G/N
acts on the characters composing 7, so if they are all distinct, as in the case of a totally
unramified group, it permutes them.

Example 2.1. We show that Sy is totally unramified. The maximal abelian normal
subgroup is given by {e, (12)(34), (13)(24), (14)(23)} which is an isomorphic copy of
the Klein four group V = Zy x Zs. The character tables of the representations of V
and S, are given by:

{r {2} {22} {3} {4}
e o1 1 1 1 1
nl1 1 1 1 -1

|1 -1 1 -1
M3 01 -1 0 -1

|1 1 -1 -1
L4 a |3 1 a1 0 1

Tt oo =2 0 2 -
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The only irreducible characters of S, that are nontrivial on V' are 73 and 74. From the
tables we see 73|y = Ty|y = 7o + w3 + m4. Therefore Sy is unramified over V.

Now it remains to see that S;/V = S is totally unramified. The group S5 has three
irreducible representations, two of which are one-dimensional. The two-dimensional
representation restricted to the Zz subgroup has two distinct characters on the diagonal.

Example 2.2. The dihedral groups D, = (a,b: a" = b* = abab = e¢) are totally
unramified. The irreducible two-dimensional representations 7 are given by

'|_>w0 b»—>01
T o W) 10

where w is a primitive n-th root of unity. The restriction of 7 to (a) splits into two
distinct irreducible representations. For n > 4 such a representation is clearly not
complete.

3. SOLVABLE GROUPS AND THEIR INVARIANTS

In this section we prove Theorem 1.1. A main technical ingredient are realizations
of noncommutative rational functions, i.e., a canonical-type forms for them.

3.1. Realizations. Each rational function can be written in the form
r=c"L'b (3.1)

where b, c € F", and

d
L=Ag+ )Y A
i=1
for some A; € M, (F). This formula is nondegenerate if and only if L admits an in-
vertible matrix evaluation. For a comprehensive study of noncommutative rational
functions we refer to [Coh06, BR11] or [BGMO05, KVV12]. We will need the realiza-
tion formula in (3.1) to prove for abelian groups (and thus for solvable groups via a
later inductive argument) that the noncommutative polynomial invariants generate the
rational invariants.

3.2. Proof of Theorem 1.1. We prove that if G/H is abelian and F€zy, ...,z
is finitely generated, then F€xy, ..., 243 is finitely generated. Note that this suffices
for proving Theorem 1.1 by a simple inductive argument.

Lemma 3.1. Let H be a normal subgroup of G such that G/H = N is abelian. Suppose
there are finitely many q; € F€xy, ..., 2437 such that every r € F€xy, ..., a3 is of
the form

r(z) = ¢* (AO + Z Aiqi(x)) b, (3.2)



8 I. KLEP, J. E. PASCOE, G. PODLOGAR, AND J. VOLCIC

where the formula on the right-hand side is nondegenerate. Then, there exist finitely
many G; € F€xy, ..., 243 such that for every 7 € F€xy, ..., 2,3 we have

P(z) = & (210 + Z A;; (x)) b, (3.3)

and the formula on the right-hand side is nondegenerate.

Proof. Let V = span {n - ¢;(x): n € N}. By Pontryagin duality there exists a basis
{v;}; for V such that n - v; = x;(n)v;. Without loss of generality, ¢; = v;. For each
nontrivial x in the subgroup of N* generated by the x;, pick a monomial m, in the g;
such that n - m, = x(n)m,. Without loss of generality, the subgroup generated by the
X; is the whole of N*.

The representation y; — @®nenyi(n) is conjugate to the left regular representation
of N*. Denote Y; = P(®nenxi(n)) P~ where x; is the permutation matrix that maps
ey, to ey, . Define vectors

s*=(10~0)P and t=P ' (10-0)".

Index the rows of vectors s,t with elements of N. Observe that s*t =" _\ spt, = 1.
Let 7(x) be a G-invariant rational function. Then it is in particular H-invariant, and
by assumption it admits a realization as in (3.2). From it one derives a new realization

of 7(x),

r(z) = Z Sptnc* (Ao + ZAiqi(n . x)) b

neN

=(s®c)" (I ® Ao + Pnen ZAiQi(n . ZL“)) (t®0b)

=(s®c)" (1 ® Ay + Pren Z AzXz(n)Qz($)> (t®0b)

=<0> (I®A0+Z>&®Aiqi(x)> <0>
=: ¢ <[®A0+Z§(i®Aiqi(:p)> b.

Let M be a diagonal matrix with columns indexed by elements of N* (starting with the
identity) such that the diagonal entries are m, for nontrivial y and 1 otherwise. Sim-
ilarly, let M be diagonal with diagonal entries m, -1 for nontrivial x and 1 otherwise.
Observe that & (M ®@ I) = ¢ and (M @ I)b = b
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Then,

r(x)=2¢c" <I®A0 +Z>~<i ®Az~qi(x)) b

-1
=F (MM ' ®1I) <A;‘E'N +) e Aiqi(x)) (MM & I)b

1

Note that MM is invariant. Now we need to show that A Xiqi(z)M is invariant. The
nonzero elements of My;q;(x)M are M (y)-1¢i ()M, which are clearly invariant by the
choice of ¢; and m,,. Let ¢; € F€xy,...,243° be the nonconstant entries of matrices
MM and M¥;q;(x)M (they do not depend on b, ¢, A; from (3.2)). So there are constant
matrices flj such that

i J
This concludes the proof since the new form (3.3) is defined wherever M was invertible,
and thus non-degenerate. 0

4. THE ABELIAN CASE

The next theorem shows that the invariant fields for abelian groups are free and can
be explicitly described.

Theorem 4.1. Let G C GL4(F) be abelian. Then

F{xla s 7xd}G = F{ula s 7U\G|(d71)+1}'

If G is diagonal, that is G = @x; where x; € G*, then any minimal set of generators
for the subgroup of the free group on d generators given by the words lel . wf’; with
lel e xi,’j =1 can serve as the preimage of the u;.
Proof. We note that every linear action of an abelian group G can be diagonalized
with an appropriate linear change of coordinates. Hence there exist linear polynomials
wy, ..., wq such that

g - wi = xi(g)wi,
where x; belongs to the character group of G, denoted é, and w; form an orthonormal
basis (in the sense that the coefficients are orthogonal) for the space of all linear poly-
nomials in F<z, ..., z4>. By [CPTDI18, Theorem 7.4] the elements of F<xy, ..., z4>¢
are spanned by monomials of the form wj, ... w;, such that x;, ... x;, = 1. By embed-
ding F<x1,...,xs> into the group algebra of the free group on d generators by mapping
the w; to the said group generators, one obtains that the invariants in the free group
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algebra (of noncommutative Laurent polynomials) are generated by |G|(d — 1) + 1
elements via the Nielsen-Schreier theorem [LS01, Section 1.3 as in [CPTD18, Theo-
rem 7.5]. Concretely, we have a surjective homomorphism from the free group with
d generators to G which is itself non-canonically isomorphic to GG. The kernel of this
homomorphism is a subgroup of the free group with d generators, which must be free
and have |G|(d — 1) 4+ 1 generators via the Nielsen-Schreier formula. The generating
elements can satisfy no rational relations by [Lew74] (see also [Lin00]), that is, their
rational closure is a free skew field on these generators.

Therefore it suffices to show that polynomial invariants F<a1, ..., 24>% generate the
skew field of rational invariants F€x1, ..., 243, This follows a similar line of reasoning
as used in the proof of Lemma 3.1. Let r € F€xy, ..., 743 By the realization theory,
one can write any element of the free skew field as r = ¢*(Ag + >, Ajw;)~'b. Now
g-r =r,s0 as in the proof of Lemma 3.1, we have

-1 c\ * -1 b
0
r=c <A0+ZAiXi(g>wi> b= <> <I®A0+Z>~(z‘®z4¢wi> <?>7
i 0 i 0

where x; is the permutation matrix that maps e, to e,,,.

Fix polynomials v, such that g - v, = x(¢)vy, and v, = 1, where 7 is the trivial
representation. Let V' be a diagonal matrix whose diagonal entries are the v,. Similarly,
let V be diagonal with diagonal entries v,-1. Now

e\ * —1 b
0
0 i 0

c\ * -1 b
0 ~ ~

=|.| Vv'eI (I®A0+Z>~Ci®Aiwi> (V1V®I)<?>
0 i 0

*

b

c -1
0 ~ ~ 0
= (. (VV ® Ao+ Y _(ViwV) @ Ai> ( : ) .

0 0

As in the proof of Lemma 3.1, V'V and V y,w;V are invariant under the action of G.
We get (Xi)p, = 1if n = x;v and 0 otherwise. Now, (VX;w;V)y,vp = v, -1,1w;0, is
clearly invariant, so we are done. 0

Corollary 4.2. Let G be an abelian group acting on F¢ via a complete representation
m =g ®mw;, where mg acts on FC MY and 7 denotes the trivial representation. Let b,
and j; diagonalize mg and 7y, respectively. Then

F{xla B 7xd}G = F{ula s 7u\G|(d—1)+1}7

and preimages of the u; are of the form b, byby)-1,byJibn,)-1, where b, = 1.



INVARIANT NONCOMMUTATIVE RATIONAL FUNCTIONS 11

Proof. For v, from the proof of Theorem 4.1 we take b,, while for w; we take b, and j;
fori=1,...,d — |G|+ 1, where d — |G| + 1 is the dimension of 7;. Clearly

{bnbn—l, bxbﬁb(xn)_l? ijib(Xm‘)_I: X € G, ne G* \ {7‘}, 1< < t} \ {1}
generate F€xy, ..., 143, Since byby-1 = b byb,-1 = byb,-1b,, there are
G =D+ (G =G| =2) +[Gl(d = |G|+ 1) = |G|(d —1) + 1
generators. By [Coh95, Corollary 5.8.14] they are free generators of the free skew field

of invariants. U

Example 4.3. Let w be a third root of unity and ¢ a generator of Z3. Define a
representation of Zs on F? by cx = wx and cy = w?y. Then we have

Féx, y3™ = Fga®, ay, ya,y*>.
5. UNRAMIFIED GROUPS AND THEIR INVARIANTS
The following is our main structure theorem for invariant fields of solvable groups.

Theorem 5.1. Let G C GLy4(F) be a finite group acting on T via a complete repre-
sentation. Then

F{xla s 7wd}G = F{ula s 7U\G|(d71)+1}'
A key step in the proof of Theorem 5.1 will be the following lemma.

Lemma 5.2. Let 7 = g @ 7y be a complete representation of G on F? and let N be
a normal abelian subgroup as in the definition of complete representation in Section
2.2. Then G/N acts linearly on the free generators of F€xy, ..., xq>" constructed in
Corollary 4.2 (when applied to the abelian group N ).

Proof. Let b, and jj,, diagonalize 7|y and 7 |n, respectively. Here b, are indexed by
N*\{7}. Then ng - b, = x(97'ng)(g - by) = x?(n)(g - by), so g - b, is a scalar multiple
of ng.

Denote V;, = span {j;: n-j; = x(n)j:}. Since ng-j; = x(9~'ng)(g-j:) = x?(n)(g- i),
v eV, implies g - v € V}o. O

Proof of Theorem 5.1. Let m be a complete representation of G and N a nontrivial
abelian normal subgroup corresponding to it. Then G/N acts linearly on

F{%, e ,xd}N = F{ulv ce 7U\N|(d71)+1}

by Lemma 5.2; furthermore, by the description of the generators u; in Corollary 4.2,
this action is precisely the representation

TN D (MpRTETRTp)N- B (T @ T QTE)N-.

Since it is a complete representation of G/N by assumption, induction implies

Féar, ..., 2a3® 2 F€ur, .. unaen1 37N 2 FLa, .o g a-1)11 3 O
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Proof of Theorem 1.5. We prove that the left regular representation of a totally un-
ramified group is complete. Let G be unramified over N. By Clifford’s theorem [Isa76,
Theorem 6.2], irreducible representations of N partition into orbits and each orbit is
represented by an irreducible representation of G. Take the nontrivial representatives
and define mp as their sum. The left regular representation of G/N is then contained
in my- and we are done by recursion. 0

Example 5.3. Define a representation of S on 3 via oz; = Ts(;)- The representation
of the normal subgroup N generated by (1 2 3) is diagonalized in the basis v; =
X1+ To + T3, Vo = 21 + wro + wirs, v3 = T + wW?Ty + wrs, where w is the third
root of unity. By Corollary 4.2, we obtain the invariant skew field F€xy, xo, 233" =
F€vy, vav3, U309, VaU1 U3, U3V Vg, Vs, Vs F = F€2y, ..., 27

The action of G/N = Zy on FLzy, ..., 27> is given by the action of (2 3) (or any
other transposition) on the initial variables. We get a representation given by

21> 21,29 > 23,23 > 29,24 F> 25,25 > 24,26 b 27,27 b Zg,
which is diagonalized by
W1 = 21, Wq = 29+ 23, W3 = 29 — 23, Wy = 24+ 25, W5 = 24— 25, We = Zg+ 27, W7 = Zg — 27.

Finally, applying Corollary 4.2 again, the obtained free generators of F{x1, xo, 133
are

w1, W2, Wy, Weg, w%, W3Ws, W3Wy7, WsW3, Wrws, W3wWi1Wsz, WzwWaW3, WzW4aW3, W3zWegWs3.
Example 5.4. Even though the standard two-dimensional representation of Dy =
Zy X Lo given by a-x =1x, a-y = —iy, b-x =y and b-y = x is not complete, we
can still compute its invariants. The invariants of N = (a) = Z,4 are freely generated
by 21 = zy, 20 = yx, 23 = 2%y?, 2z = y*x? and z = x*. Then we replace 2L by
25 = zbz; ' = 2%y ~2. The action of Dy/N = Z, on these generators is

21 W 2o, o> 21, 23> 24, 24> 23, 25> 25_1.
Observe that this action is linearized and diagonalized with respect to
=2z, Wy = 2 — 2, wy = 2 2y Wy = 2 — 20, w5 = (14 25)(1— 25) ]
W = 21 T 22, W2 = 21 — 22, W3 = &3 T 24, Wy = 23 — 24, W5 = z5 z5) -
Finally we get nine free generators of the rational invariants of Dy:
2
Wi, Wy, W2W1W2, WaW3W2, W2W4W, W2Ws5, W3, WaW2, W5W3.

Example 5.5. The smallest example of a not totally unramified group is SLy(F3). It
has only one nontrivial normal abelian subgroup N = Z,; it is generated by diag(2, 2).
Every irreducible representation restricted to N is trivial or contains two copies of the
sign representation.

Let us describe problems arising in the computation of a generating set for the
skew field of invariants. We start with a two-dimensional irreducible representation of
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SLy(F3) on F?, for instance defined by

)= (5 5) oG

The generator of N is mapped to diag(—1,—1). Hence the free generators of N-
invariants are 22, zy and yx.

The group G/ N has one abelian normal subgroup N /N’; it is isomorphic to Zg X Zs.
Representatives of its generators are mapped to

0 w —w —1
(—w2 0) and (w w>'
The action of these two on N-invariants is given by
22 = wy? = w(yz) (@) Hay), 2y — —yz, yr = —2y, (5.1)
and
= w(z+y)?, oy = —w(r +y)(wy — 1), yr = —wlwy —z)(x + ). (5.2)

Now the problem is to find a set of free generators of N-invariants that simultaneously
linearizes and diagonalizes both mappings as we have done in Example 5.4. It is
straightforward to linearize (5.1) by using a linear fractional transformation in zy~! =
2?(yx)~! (cf. Example 5.4), but then the action (5.2) becomes unwieldy. We have been

unable to determine if F€a, y352() is free (on 25 generators).

6. POSITIVITY OF INVARIANT RATIONAL FUNCTIONS

In this section we investigate positive invariant noncommutative rational functions
and prove an invariant rational Positivstellensatz in Theorem 6.2 for solvable groups
G. A finer structure of constraint positivity is proved in Subsection 6.1. Positiv-
ity certificates for invariants are ubiquitous in real algebraic geometry literature, see

g. [PS85, CKS09, Riel6, Bro98]. Throughout this section let F = C be the field of
complex numbers. We endow C{x1, ..., 243 with the natural involution fixing the z;
and extending the complex conjugation on C.

Lemma 6.1. Let G C Uy(C) be a finite solvable group, H its normal subgroup,
and assume that N = G/H is abelian. There exists an invertible matriv Ry €

My (CLa, . ... ,xaX> ) such that for every Qg € M,,(C€xy, ..., x43"),

Qc = (Ry @ I)* (@n QH> (Ry ® I) € Miyn(CLy, ..., 243 %)

and every r € C€axy, ..., 243 of the form

*

r(z) =c" (Ao + Z AiQi(x)> Qu (Ao - Z Aiqi(:c)) , (6.1)
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where the ¢; € CLxy, ..., 243", can be rewritten as

—1\ * -1
J J
with (jj € (C{ZL‘l, ce ,JZd}G.

Proof. Consider r(z) as in (6.1). Tracing through the proof of Theorem 1.1 we see that
r(z) admits a realization

- ~ -1\ - - -1
& ((Ao + 35 A () ) ) (M) & 1) (Ben - Q) (DM) @ 1) (Ao + 5, Ay (1)) ¢,
where I' is a unitary change of basis matrix (more precisely, columns of I'* are eigen-

vectors for the left regular representation of N*). Note that we can take M = M*.
Hence Ry = I'M is the desired matrix. O

Theorem 6.2. Let G C Uy(C) be a finite solvable group. There ezists an invertible
matriz Rg € Mig)(CLxy, ..., 2q>) such that for every Q € M,,(CLxy,...,243),

Qa = Rc;®] (@g Q) RG(X)I) € M‘GW(C{I‘l,...,ZEd}G)

geG

and every r € CLaxy, ..., 243 of the form

r(z) =c" (Ao + Z Aiqi(:v)> Q (Ao + Z Aiqi(x)> ¢, (6.2)

where the q; € CLxy, ..., 24>, can be rewritten as

r(z) =¢ <z‘~10 + ZAJQJ(JJ)) Qa (Ao + ZAJ‘C]J‘(@) c

with (jj S C{:xl, ce ,l‘d}G.

o
—~

o

w
~~—

Proof. Apply Lemma 6.1 and induction on the derived series of G. U

Corollary 6.3. Let G C Uy(C) be a finite solvable group. Then there are qi,...,qn €
C{ar,. .., 2q3C such that for every r € CLxy, ..., xq>C, if r = >, stsi, then

-
r= E 87 n; 55,
J
P G
where §; € CLxq, ..., 243"

Proof. 1f s; = ¢ L; 'b; is a realization of s;, then

-1
« o (¢ L} 0
sisi= (0 8) (—Li O) (bz>
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-1 -1
1 . cic; L7 cic; —Lj 0
o0 (5 5) (1)) 6)
-1 -1
1 (() b’»‘) cic; L} cic; L; 4 ([ L; cic; —L; 0
2 YA\-L; O —-L; 0 L, 0 L, 0 b;
0 ) (oS L e O\ (e —LY\ (0
N YA\-L; 0 0 0 L, 0 bi)

Therefore r can be written as in (6.2) for a constant positive semidefinite () = P*P.
By Theorem 6.2, r can be written as in (6.3) with Qg = (Rg ® P)*(Rg ® P), which
then yields the desired G-invariant sum of hermitian squares presentation for r. 0

Recall that a rational function r is positive if for every n € N and X = X* €
M, (C)?, r is defined at X and r(X) is positive semidefinite. We are now ready to
prove Theorem 1.4.

Proof of Theorem 1./. Since r is positive semidefinite, it is a sum of hermitian squares
by [KPV17, Theorem 4.5]. The conclusion now follows from Corollary 6.3. U

6.1. Quadratic modules and free semialgebraic sets. The quadratic module
associated to a symmetric matrix @ € M,,(CLxy, ..., 24%) is

.....

The associated free semialgebraic set is
Do ={X = X" € B(H)": Q(X) = 0},
where H is a separable Hilbert space.

Corollary 6.4. Let G C Uy(C) be a finite solvable group. Then

,,,,,,,,,,

Proof. Use Theorem 6.2. O

Let v be a formal rational expression. We say that v is (strictly) positive on D
if for every X € Dy, v is defined at X and v(X) is a positive semidefinite (definite)
operator. In this case we write vt = 0 (v > 0) on D,.

The reason for using formal rational expressions is that rational functions (as ele-
ments of the free skew field) do not admit unambiguous evaluations on B(#H)?. For
example, the expression v = z(z211) ‘29 — 1 represents the zero element of the free
skew field, but admits nonzero evaluations on operators, namely t(.S, S*) # 0 where S
is the unilateral shift on ¢*(N).
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Corollary 6.5. Let G C Uy(C) be a finite solvable group. Suppose Q = Q* €
M, (C<xy, .. xd>) is such that QMcy,, ..5(Q) is Archimedean. If v is a formal

.....

.....

.....

proof 0

When the semialgebraic set Dy is convex, in which case one can assume that @ is
a symmetric affine matrix by the renowned Helton—-McCullough theorem [HM12], one
can certify (non-strict) positivity on Dy,.

Corollary 6.6. Let G C Uy(C) be a finite solvable group. Assume @ = Q* €
M, (C<ay,...,xq>) is linear with Q(0) = I. If v is a formal rational expression
such that v = 0 on DQ and v induces a G-invariant rational function r, then r €

.....

Proof. By [Pas18, Theorem 3.1], 7 € QMc¢,, .. (Q). Now apply Corollary 6.4. [

.....

Example 6.7. Let G = Sy act on CLz,y>F. Then

a=x+y, b=(x—y)? c=@—y)(z+y(r—y)

are free generators of C€{z,y>“. The matrix Rg from Theorem 6.2 equals

)

By computing the invariant middle matrix ()¢ we obtain the following Positivstel-
lensatze.

(1) (Entire space) If @ = 1 then Qs = diag(1,b). By Theorem 1.4, every positive
G-invariant rational function 7 is of the form

r= Zuju] + Zvjbv;, uj, v € Cgz,y>°.
J J

(2) (Disk) If @ =1 — 2? — y* then
Q¢ = diag (1 — 2(a® +b),b— L(cb ™ c+ V7)) .

Since @) clearly generates an Archimedean quadratic module, every G-invariant
rational expression strictly positive on the disk

{(X,Y): X?+Y? <1}

induces a rational function of the form

Zu uJ+ZUJ (1—3(a®+b))v] +Zw3 s(cb e+ 0%)w;
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for u;,v;,w; € C€x,y> by Corollary 6.5. On the other hand, the disk also
admits a linear matrix representation given by

1 0 z
Q=101y],
z y 1
which yields
2 0 a 0 0 b
0 2 a 0 0 -=b
Q :1 a a 2 b —=b 0
79210 0 b 20 0 ¢
0O 0 —-b 0 2b

b -b 0 ¢ ¢ 2b

Note that the free semialgebraic set associated with ), as a matrix in variables
a,b, c is also convex. By Corollary 6.6 we can use (J; to describe G-invariant
positivity on the disk.

(3) (Bidisk) If @ = diag(1 — z*,1 — y?) then

2 —1(a®+0b) 0 —2(c+ab) 0
0 1 0 2—1(a®+0b) 0 S(c+ab)
79 —3(c+ba) 0 2b — L(cb e+ b?) 0
0 s(c+ba) 0 2b — $(cb™te+ b?)

Note that 2Q)¢ is unitarily similar to a direct sum of two copies of
G- (2—%(a2+b) S(c+ab) )
s(c+ba)  20—1L(cble+b?))”
Every G-invariant rational expression strictly positive on the bidisk
{(X,)Y): X?=2T&Y?* <1}

induces a rational function in QMc, ,5¢(S) by Corollary 6.5. As in the case
of the disk, bidisk can also be represented by a monic linear matrix inequality,
which by Corollary 6.6 then gives a description of invariant expressions positive
on the bidisk.

(4) (Positive orthant) If @ = diag(z,y) then 2Q¢ is unitarily similar to a direct

sum of two copies of
a b
5= (b c) '

{(X,Y): X=0&Y =0}

The positive orthant

is a convex semialgebraic set, and after a scalar shift it admits a monic linear ma-
trix representation. Hence rational expressions positive on the orthant induce
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rational functions in QMcg, 5 (@) by [Pas18, Theorem 3.1]. The G-invariant
rational functions among them then lie to QM¢, 3¢ (S) by Corollary 6.4.

Example 6.8. Let G = Z3 act on C€z,y, 2. Let w=—1 + z‘/Tg and

Then

G =wr+wy+z, @=wttwytz

1 1 1 1
Re=—F4%|w w1 diag(l»%,(h)-
\/§ w? w1

For @ = 1 we get Qg = diag(1l, ¢1¢2,q2q1). Therefore all positive semidefinite G-
invariant rational functions in C{z,y, 23 are of the form

[AMT72]

[AMY18]

[AY14]

[AY17]

[BGMOS5]

[BGMOG]

[BR11]

[Bro9s]

[BRRZ08]

[CHHK15]

[CHKK10]

Z uiuy + Z V;q1G2V; + Z W;Gaqr Wy, uj, v, w; € CLx,y, 23°.
J J J
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