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Fermionic terms in a class of locally supersymmetric theories called “liberated supergravity” are
nonrenormalizable interactions proportional to inverse powers of the supersymmetry breaking scale and
Planck mass Mpl. This property defines an intrinsic cutoff for liberated supergravities, which are therefore
effective theories valid only below energies that never exceed the cutoff. Requiring that the cutoff exceeds
current theoretical and observational bounds shows that the new scalar potential terms allowed by liberated
supergravity can neither change the cosmological constant predicted by supergravity by any observable
amount, nor give measurable contributions to particle masses. We show that it is nevertheless possible to
define a simple liberated supergravity model of slow roll inflation valid up to energy scales that are well
above the Hubble parameter during inflation and exceeds observable limits after inflation. The key to
constructing a viable model is to change the supersymmetry breaking scale, from a Planck-scale value
during inflation, to TeV-scale after inflation.
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I. INTRODUCTION

Supergravity strongly constrains the form of the scalar
potential [1], hence it makes the construction of specific
models of elementary interactions or inflation challenging.
The literature on supergravity inflationary potentials is vast
and somewhat unnecessary for this paper, which is devoted
instead to the study of a new model of supergravity, called
“liberated supergravity” [2]. As its name suggests, the
scalar potential of liberated supergravity need not be of the
special form given in [1]; it is in fact a completely general
function of the scalar fields.
As any other gravity theory, liberated supergravity con-

tains nonrenormalizable interaction, so it is by construction
an effective theory valid only up to a finite cutoff that cannot
exceed the (reduced) Planck scale Λcut ≲ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ≡Mpl.
Differently from models where supersymmetry is non-
linearly realized this scale can be parametrically larger than
the supersymmetry (SUSY) breaking scaleMS. This is also
different from the models described in [3–6], where the
cutoff is also only required to be OðMSÞ. In liberated
supergravity, instead, the cutoff can be parametrically larger
thanMS, because the latter is defined through the F- and/or

D-term expectationvalueswhile the former depends on both
the new terms present in the “liberated” scalar potential U
and the expectation values of the auxiliary fields.
For a given value of Λcut the corrections to the scalar

potential due to the new terms allowed by liberated super-
gravity are severely constrained by our Eq. (30), which
refine and make quantitative Eqs. (3.30)–(3.31) of Ref. [2].
These constraints are the first main result of our paper,
because they show that even in the least restrictive case
Λcut ∼MS the liberated corrections to the vacuum energy are
completely negligible. The same is true for liberated
corrections to particle masses.
Another question worth asking is whether liberated

supergravity can nevertheless produce a slow-roll infla-
tionary potential with a cutoff well above the Hubble scale
(the latter condition is necessary for the self-consistency of
an effective theory of inflation). We answer in the affirma-
tive by exhibiting a toy model with a simple, explicit
potential that can satisfy all constraints. The key feature that
makes it possible to describe Hubble scale physics in our
model is a change occurring in the supersymmetry breaking
potential from one that gives a fixed high value MS ≫ H
during slow roll to a no-scale potential after the end of
inflation.
Section II succinctly describes the construction of

liberated supergravity in the superconformal tensor calcu-
lus formalism. Section III describes the construction of its
fermionic terms and derives the key inequalities and
constraints that any such theory must obey. Section IV
presents a toy model of slow-roll inflation in liberated
supergravity.
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II. LIBERATED N = 1 SUPERGRAVITY IN
SUPERCONFORMAL TENSOR CALCULUS

In this section, we summarize the construction of
liberated N ¼ 1 supergravity [2] using superconformal
tensor calculus [7,8] that will be discussed in more details
in [9]. Liberated supergravity was described in [2] using the
superspace formalism, where a Kähler transformation is
introduced to remove the variation of the action under a
super-Weyl rescaling, while a super-Weyl-Kähler trans-
formation is promoted to an Abelian gauge symmetry to
produce the liberated supergravity. In the superconformal
formalism one instead introduces a conformal compensator
multiplet, called S0, which eliminates the variation while
keeping the Kähler potential invariant under superconfor-
mal symmetry. Hence, differently from the superspace case,
we need to define such a gauge transformation independ-
ently of superconformal symmetry.
To do this, it is useful to write the invariant actions in the

two different formalisms [10]:

½V�D ¼ 2

Z
d4θEV; ½S�F ¼

Z
d2θES þ

Z
d2θ̄ Ē S̄;

ð1Þ
where V is a composite superconformal real multiplet with
the Weyl/chiral weights (2, 0), S is a composite super-
conformal chiral multiplet with Weyl/chiral weights (3, 3),
while E and E are the corresponding D/F-term measure
densities [7]. The action must be invariant under a super-
Weyl-Kähler transformation that shifts the superspace den-
sities as E → Ee2Σþ2Σ̄ and E → Ee6Σ. This requires that the
corresponding superconformal multiplets transform as

V → Ve−2Σ−2Σ̄; S → Se−6Σ: ð2Þ
To describe the liberated supergravity in the superconformal
formalism, we therefore promote the super-Weyl-Kähler
transformation to a gauge symmetry under which the
compensator is inert, so that the transformation rules are
given by

K → K þ 6Σþ 6Σ̄; W →We−6Σ; W̄ → W̄e−6Σ̄;

T → e−4Σþ2Σ̄T; T̄ → e2Σ−4Σ̄T̄; S0 → S0;

Wα → e−3ΣWα; TðW̄2Þ → TðW̄2Þe−4Σ−4Σ̄; ð3Þ

whereΣ is a chiral superfield,W is the superpotential,Wα is
the field strength of a real vectormultiplet, andT is the chiral
projection. With these rules, a Lagrangian of the liberated
N ¼ 1 supergravity equivalent to that of Ref. [2] is

LNEW ≡
�
Y−2 W2ðKÞW̄2ðKÞ

Tðw̄2ðKÞÞT̄ðw2ðKÞÞUðZ
I; Z̄{̄Þ

�
D
: ð4Þ

In Eq (4), we have introduced the notations1

Y ≡ ðS0S̄0e−KðZI;Z̄{̄Þ=3Þ, w2ðKÞ≡W2ðKÞ=Y2, w̄2ðKÞ≡
W̄2ðKÞ=Y2; we denoted with UðZI; Z̄{̄Þ a generic function
of the matter chiral multiplets ZI’s and with KðZI; Z̄{̄Þ the
supergravity Kähler potential. We also callWαðKÞ the field
strength multiplet corresponding to the Kähler potential. By
denoting with ðw; cÞ the Weyl/chiral weights of a multiplet
we have the following assignment: (1, 1) for S0, (2, 0) for Y,
ð3=2; 3=2Þ for WαðKÞ, ð−1; 3Þ for w2ðKÞ, and (0, 0) for
Z;KðZI; Z̄{̄Þ; Tðw̄2ðKÞÞ; T̄ðw2ðKÞÞ;UðZI; Z̄{̄Þ. By assum-
ing that UðzI; z̄{̄Þ is inert under the gauge symmetry and
using w2 → w2e−2Σþ4Σ̄, T̄ðw2Þ → T̄ðw2Þ, we see that the
whole Lagrangian is invariant under the gauge symmetry,
so that it reproduces liberated supergravity.
Next we find the bosonic contribution to the scalar

potential. We define a composite superconformal multiplet
N made of the superconformal chiral multiplets Zi ≡
ðzi; PLχ

i; FiÞ (i ¼ 0; I;W; T), which can be ðz0 ≡ s0;
PLχ

0; F0Þ, ðzI;PL;χIÞ, ðzW≡W;PLχ
W;FWÞ,2 ðzT ≡ Tðw̄2Þ;

PLχ
T; FTÞ. The lowest component N of N, is given by

N ≡ ðs0s�0e−Kðz
I ;z̄{̄Þ=3Þ−2 WW̄

Tðw̄2ÞT̄ðw2ÞUðz
I; z̄{̄Þ; ð5Þ

and we get the component Lagrangian by using the D-term
formula. It reads as follows:

LNEW ≡ ½N�De−1 ¼ Ni|̄

�
−DμziDμz̄¯−

1

2
χ̄i=Dχ |̄ −

1

2
χ̄ |̄=Dχi þ FiF̄|̄

�
þ 1

2
½Nijk̄ð−χ̄iχjF̄k̄ þ χ̄ið=DzjÞχk̄Þ þ H:c:�

þ 1

4
Nijk̄ l̄χ̄

iχjχ̄k̄χ l̄ þ
�

1

2
ffiffiffi
2

p ψ̄ · γ

�
Ni|̄Fiχ |̄ − Ni|̄=Dz̄|̄χi −

1

2
Nijk̄χ

k̄χ̄iχj
�
þ 1

8
iεμνρσψ̄μγνψρ

�
NiDσzi þ

1

2
Ni|̄χ̄

iγσχ
|̄

þ 1ffiffiffi
2

p Niψ̄σχ
i

�
þ H:c:

�
þ 1

6
N

�
−RðωÞ þ 1

2
ψ̄μγ

μνρR0
νρðQÞ

�
−

1

6
ffiffiffi
2

p ðNiχ̄
i þ N{̄χ̄

{̄ÞγμνR0
μνðQÞ; ð6Þ

where Ni|̄, Nijk̄, and Nijk̄ l̄ are the derivatives with respect to zi; z{̄ for i; j ¼ 0; I;W; T: Ni ≡ ∂N=∂zi etc.. The gravitino is
denoted by ψ and other details will be given in [7]. As for the detailed structure of the fermions χi ≡ PLχ

i, we find [9]

1In superconformally invariant theories there are no dimensionless parameters and the Planck scale is introduced by the super-Weyl
gauge choice ϒ≡ s0s�0e

−K=3 ¼ M2
pl, where ϒ is by definition the lowest component of Y.

2Here, WðKÞ denotes the lowest component of the field strength multiplet W2ðKÞ. It is not the usual superpotential W.
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PLχ
i ¼

8>>>>>>>>><
>>>>>>>>>:

PLχ
0;

PLχ
I;

PLχ
W ¼ 4F̃K{̄J½ð=∂zJÞPRχ

{̄ − F̄{̄PLχ
J� þ � � � þ 7 fermion terms;

PLχ
T ¼ 1

ϒ2

�
4ð=∂F̃ ÞK{̄J½ð=∂zJÞPRχ

{̄ − F̄{̄PLχ
J� −

�
2
s�
0

=∂s�0 − 2
3
KK̄=∂z̄K̄ − 2γμðbμ þ iAμÞ

�

× 4F̃K{̄J½ð=∂zJÞPRχ
{̄ − F̄{̄PLχ

J�
�
þ � � � þ 9 fermion terms;

ð7Þ

where F̃ ¼ 2KI|̄ð−∂μzI∂μz̄|̄ þ FIF̄|̄Þ and

=∂F̃ ¼ 2ð=∂KI|̄Þð−∂μzI∂μz̄|̄ þ FIF̄|̄Þ þ 2KI|̄ð−ð=∂∂μzIÞ∂μz̄|̄ − ∂μzIð=∂∂μz̄|̄Þ þ ð=∂FIÞF̄|̄ þ FIð=∂F̄|̄ÞÞ: ð8Þ

Notice that χi contains not only the fundamental fermions
χ0 and χI but also two composite chiral fermions χW and χT .
A straightforward use3 of the superconformal tensor

calculus then gives the scalar potential in the form

VNEW ¼ ðs0s�0e−K=3Þ2UðzI; z̄{̄Þ: ð9Þ

The super-Weyl gauge choice ϒ ¼ s0s�0e
−K=3 ¼ M2

pl ≡
1 puts the action in the Einstein frame and reproduces the
scalar potential of Ref. [2]

VNEW ¼ UðzI; z̄{̄Þ: ð10Þ

This then implies that the total scalar potential generically is

V ¼ VD þ VF þ VNEW; ð11Þ

where VD, VF are the usual D/F-term potentials. The
additional contribution to the scalar potential, VNEW, is an
arbitrary function of the zIs; since it does not obey any
constraint it fully justifies the name “liberated” for the new
class of supergravities introduced in [2].

III. FERMIONIC TERMS IN LIBERATED
N = 1 SUPERGRAVITY

In this section, we investigate the fermionic terms in
liberated N ¼ 1 supergravity in the superconformal for-
malism.4 First of all, focusing only on matter couplings,
i.e., looking at terms independent of ψ , we read the
following terms from Eq. (6):

LF1 ≡−Ni|̄DμziDμz̄|̄jψ¼0; LF2 ≡−
1

2
Ni|̄χ̄

i=Dχ |̄jψ¼0;

LF3 ≡−Ni|̄FiF̄|̄jψ¼0; LF4 ≡−
1

2
Nijk̄χ̄

iχjF̄k̄jψ¼0;

LF5 ≡ 1

2
Nijk̄χ̄

ið=DzjÞχk̄jψ¼0; LF6 ≡ 1

4
Nijk̄ l̄χ̄

iχjχ̄ k̄χ l̄jψ¼0;

LF7 ≡−
N
6
RðωÞjψ¼0: ð12Þ

Here, we observe that the fermionic terms in the effective
Lagrangian contain couplings to the function U and its
derivatives since N ∝ U.
The general structure of the fermionic terms can be found

as a power series in derivatives of the composite multiplet
N (i.e., Ni; Ni|̄; Nijk̄, and Nijk̄ l̄). The rth derivative of N,

denoted with NðrÞ
i…l̄

has the following generic form:

NðrÞ
i…l̄

¼ Nðr¼qþpþmþkÞ
q;p;m;k ¼ ð∂q

0∂ðk−nÞ
I ϒ−2Þϒ4þ2m UðnÞ

F̃ 4þ2m W1−p1W̄1−p2

¼ ðð−1Þq1þq2ðq1 þ 1Þ!ðq2 þ 1Þ!s−ð2þq1Þ
0 s�0

−ð2þq2Þð∂ðk−nÞ
I e2K=3ÞÞϒ4þ2m UðnÞ

F̃ 4þ2m W1−p1W̄1−p2 ; ð13Þ

where

W ¼ −2K{̄J½χ̄Jð=Dz̄{̄Þ − F̄{̄χ̄J�K{̄0J0 ½ð=Dz̄{̄
0 ÞχJ0 − FJ0χ {̄

0 � − K{̄J½χ̄Jð=Dz̄{̄Þ − F̄{̄χ̄J�K{̄0 |̄0K0 ½χK0
χ̄ {̄

0
χ |̄

0 �

− K{̄ |̄K½χ̄ |̄χ {̄χ̄K�K{̄0J0 ½ð=Dz̄{̄
0 ÞχJ0 − FJ0χ {̄

0 � − 1

2
K{̄ |̄ K½χ̄ |̄χ {̄χ̄K�K{̄0 |̄0K0 ½χK0

χ̄ {̄
0
χ |̄

0 �; ð14Þ

3LB ⊃ Ni|̄FiF̄|̄ ∼ NWW̄F
WF̄W̄ ¼ ϒ−2 1

CTCT̄
UFWF̄W̄ ¼ ϒ−2 ϒ2ϒ2

F̄W̄FW UFWF̄W̄ ¼ ϒ2U ≡ VNEW where we have used CT ¼ − 1
2
Kw̄ ∼

− 1
2

KW̄

ϒ2 ¼ − 1
2

ð−2F̄W̄Þ
ϒ2 ¼ F̄W̄

ϒ2 and CT̄ ¼ FW

ϒ2 , and CT is the lowest component of the superconformal multiplet of T.
4The detailed derivation will be done in [9].
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W̄ ¼ ðWÞ�: ð15Þ

F̃ ≡ 2KI|̄ð−∂μzI∂μz̄|̄ þ FIF̄|̄Þ; UðnÞ (0 ≤ n ≤ 4) is the nth
derivative of the function UðzI; z̄{̄Þ with respect to zI; z̄I ,
which are the lowest components of the matter chiral
multiplets; q ¼ q1 þ q2 where q1 (q2) is the order of the
derivative with respect to the compensator scalar s0 (s�0);
p ¼ p1 þ p2 where p1 (p2) is the order of the derivative
with respect to the field strength multiplet scalar W (W̄);
m ¼ m1 þm2 where m1 (m2) is the order of the derivative
with respect to the chiral projection multiplet scalar Tðw̄2Þ
(T̄ðw2Þ); k is the order of the derivative with respect to the
matter multiplet scalar zI; n is the order of the derivative
acting on the new term U with respect to the matter
multiplet; and q is the total order of derivatives with
respect to the compensator scalars s0 and s�0.
To find restrictions on VNEW coming from fermionic

terms, we have to identify the most singular terms in the
Lagrangian. These terms can be found using the fact that
powers of F̃ in the denominator may lead to a singularity
which gets stronger when m increases by taking more

derivatives with respect to the lowest component of the
multiplet Tðw̄2Þ as seen from Eq. (13). Hence, we will
investigate the fermionic terms containing only derivatives
with respect to the chiral projection and matter scalar
indices, i.e., T and I, in order to find the terms coupled to
UðnÞ that contain the maximal inverse powers of F̃ . They
are those with q ¼ p ¼ 0 and k ¼ n. We note in particular
that if our theory has a single chiral matter multiplet then
the most singular terms are found to be the couplings to the
derivatives proportional to NTT̄ , NWTT̄ , NWW̄TT̄ while for
two or more chiral matter multiplets they are NTTT̄ T̄ . The
latter terms vanish identically for a single multiplet because
of Fermi statistics.
First of all, let us examine the single matter chiral

multiplet case. Due to Fermi statistics, the possible fer-
mionic terms are proportional only to three tems, Uð0Þ, Uð1Þ,
and Uð2Þ, so that the maximal order of the derivative with
respect to the chiral projection that can appear in the
Lagrangians scalar is two and appears in the terms propor-
tional to NTT̄ , NWTT̄ , and NWW̄TT̄ . To show that such terms
do not vanish consider

LF2jq¼p¼0;k¼n ⊃ ϒ2þ2m UðnÞ

F̃ 4þ2m WW̄

�
−
1

2
ððχ̄IÞn1ðϒ−24ð=∂F̃ ÞK{̄Jð=∂zJÞχ̄ {̄PRÞm1Þ

× ðð=DχIÞn2ð=Dðϒ−24ð=∂F̃ ÞK{̄Jð=∂zJÞPRχ
{̄ÞÞm2Þ

�
ψ¼0

; ð16Þ

where m ¼ m1 þm2, n ¼ n1 þ n2, and 2 ¼ mþ n. Restoring the mass dimensions by fixing the super-Weyl gauge5 (i.e.,
ϒ ¼ M2

pl, s0 ¼ s�0 ¼ MpleK=6, PLχ
0 ¼ 1

3
s0KIPLχ

I ¼ 1
3
MpleK=6KIPLχ

I , and bμ ¼ 0), we obtain

LF2jq¼p¼0;k¼n ⊃ M2ð2þ2mÞ
pl

UðnÞ

F̃ 4þ2m WW̄
�
−
1

2
ððχ̄IÞn1ðM−4

pl 4ð=∂F̃ ÞK{̄Jð=∂zJÞχ̄ {̄PRÞm1Þ

× ðð=DχIÞn2ðM−4
pl ð4=Dð=∂F̃ ÞK{̄Jð=∂zJÞPRχ

{̄ÞÞm2Þ
�
ψ¼0

≈M4
pl

UðnÞ

F̃ 4þ2m OðδÞ
F ; ð17Þ

where we require ma þ na ¼ 1 for a ¼ 1, 2 since we are
studying the second derivative term Ni|̄ coupled to χ̄i and
=Dχ |̄. Redefining F̃ to be dimensionless by F̃ → M2

plF̃, we
obtain

LF2jq¼p¼0;k¼n ⊃ M−4−2m
pl

UðnÞ

F̃ 4þ2mO0
F
ðδÞ: ð18Þ

We then find δ ¼ 8þ 4m by trivial dimensional analysis
because the Lagrangian has mass dimension 4. Then, since
2 ¼ mþ n, we find that the most singular term is

LF2jq¼p¼0;k¼n ⊃ M2ðn−4Þ
pl

UðnÞ

F̃ 2ð4−nÞ O
0
F
ð2ð6−nÞÞ: ð19Þ

Next we consider the general case with several multip-
lets. We shall focus on the fourth derivative term denoted by
Nijk̄ l̄, which gives a four-fermion term. Also, we have to
consider the four-fermion product made only of the chiral
fermions with i ¼ 0; I; T because they do not contribute
one power of the F-term F̃ in the numerator, which would
reduce the number of inverse power of the F-term F̃ . This is

5Here, we use the convention of the superconformal formalism
that all physical bosonic and fermionic matter fields have
dimensions 0 and 1=2 respectively and F has dimension 2 while
the compensator s0 has dimension 1 [7]. Through dimensional
analysis, we find ½Dμ� ¼ 1; ½zi�≡ 0þ ½i�; ½χi�≡ 1

2
þ ½i�; ½Fi�≡

1þ ½i� where i ¼ 0; I;W; T and ½0� ¼ 1; ½I� ¼ 0; ½W� ¼ 3;
½T� ¼ 0.
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because the overall factor of χW contains such linear
dependence. The effective fermionic Lagrangian (12) reads
then as follows:

LF6jq¼p¼0;k¼n

⊃ ϒ2þ2m UðnÞ

F̃ 4þ2m WW̄

×

�
1

4
ðχIÞnð4ϒ−2ð=∂F̃ ÞK{̄Jð=∂zJÞPRχ

{̄Þm
�
: ð20Þ

After the super-Weyl gauge fixing we obtain

LF6jq¼p¼0;k¼n

⊃ M2ð2þ2mÞ
pl

UðnÞ

F̃ 4þ2m WW̄

×

�
1

4
ðχI

�
n
ð4M−4

pl ð=∂F̃ ÞK{̄Jð=∂zJÞPRχ
{̄ÞmÞ

≈ cM4
pl

UðnÞ

F̃ 4þ2mOðδÞ
F ; ð21Þ

where Oð1Þ ≲ c≲Oð103Þ. After doing the same dimen-
sional analysis as in the single-multiplet case, we obtain
δ ¼ 8þ 4m and

LF6jq¼p¼0;k¼n ⊃ cM−4−2m
pl

UðnÞ

F̃ 4þ2m O0
F
ð8þ2mÞ: ð22Þ

Then, since 4 ¼ mþ n, we can write the most singular
terms as

LF6jq¼p¼0;k¼n ⊃ cM2ðn−6Þ
pl

UðnÞ

F̃ 2ð6−nÞ O
0
F
ð2ð8−nÞÞ: ð23Þ

Since we are going to use liberated supergravity to
describe time-dependent backgrounds such as slow-roll
inflation we need to look more closely at the structure of F̃ .
From its definition F̃ ≡ 2KI|̄ð−∂μzI∂μz̄|̄ þ FIF̄|̄Þ, we find
F̃ ≡ 2KI|̄ð_zI _̄z|̄ þ FIF̄|̄Þ > 0 whenever spatial gradients
can be neglected. We see that the most singular behaviors
of the fermionic terms arises when _zI ¼ 0. By expanding F̃
around a static vacuum and reserving the notation F for the
expectation value < KI|̄FIF̄|̄ >, the effective Lagrangian
can finally be rewritten as follows:

(i) For the single chiral matter multiplet case,

LF2jq¼p¼0;k¼n ⊃ M2ðn−4Þ
pl

UðnÞ

F 2ð4−nÞ O
0
F
ð2ð6−nÞÞ: ð24Þ

(ii) For two or more chiral matter multiplets,

LF6jq¼p¼0;k¼n ⊃ c0M2ðn−6Þ
pl

UðnÞ

F 2ð6−nÞO
0
F
ð2ð8−nÞÞ ð25Þ

where Oð10−2Þ ≲ c0 ≲Oð1Þ.
The effective operators we obtained are generically non-

zero even after considering possible cancellations due to
Fermi statistics or nonlinear field redefinitions.As an example
we can take terms containing χi. They are made of two
composite chiral multiplets χW and χT and these produce
terms that do not vanish on shell (i.e., imposing =∂PLχ

I ≈ 0
for matter fermions). For instance, in a theory with only
one matter chiral multiplet ðz; PLχ; FÞ, we have W ¼
−2Kz̄z½fð=∂zÞ2 − F�=∂zgðχ̄PRχÞ þ fF�2 − F�=∂zgðχ̄PLχÞ�þ
2Kz̄zKz̄ z̄ zð=∂z − F�Þðχ̄PLχÞðχ̄PRχÞ, and W̄ ¼ ðWÞ�, so that
WW̄¼4K4

z̄zðj=∂zj2þjFj2Þjj=∂z−F�j2ðχ̄PLχÞðχ̄PRχÞ. Hence,
looking at the possible fermionic terms from LF1, when
i ¼ z; |̄ ¼ z̄ (i.e., q ¼ p ¼ m ¼ 0; k ¼ n ¼ 2), we get

LF1 ⊃ ϒ2
Uð2Þ

F̃ 4
WW̄ð∂μz∂μz̄Þ ¼ ϒ2

Uð2Þ

F̃ 4
4K4

z̄zðj=∂zj2 þ jFj2Þjj=∂z − F�j2ð∂μz∂μz̄Þðχ̄PLχÞðχ̄PRχÞ: ð26Þ

It is easy to see that this operator does not vanish on the mass shell of the matter scalars,□z ≈ 0. As another example, from
LF2 we get terms containing up to three matter fermions when we consider q ¼ m ¼ p1 ¼ 0, k ¼ n ¼ 1, p2 ¼ p ¼ 1,

LF2 ⊃ ϒ2
Uð1Þ

F̃ 4

1

2
Wχ̄=∂PRχ

W̄ ≈ϒ2
Uð1Þ

F̃ 4
4K2

z̄zð=∂F̃ Þð=∂zÞðχ̄PRχÞPLð=∂z − F�Þ2χj3-fermion terms þ � � � : ð27Þ

Back to the results in Eqs. (24) and (25), the general effective Lagrangians can be cast in the form

LF ¼ Λ4−δ
cut O

0ðδÞ
F ¼

8<
:

M2ðn−4Þ
pl

UðnÞ
F 2ð4−nÞ O

0ðδ¼2ð6−nÞÞ
F for Nmat ¼ 1;

c0M2ðn−6Þ
pl

UðnÞ
F 2ð6−nÞ O

0ðδ¼2ð8−nÞÞ
F for Nmat ≥ 2;

ð28Þ

whereOð10−2Þ ≲ c0 ≲Oð1Þ; Nmat and Λcut are defined to be the number of chiral multiplets of matter, and the cutoff scale
of our effective theory, respectively.
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If we demand that our effective theory describes physics up to the energy scale Λcut we obtain the following inequalities:

UðnÞ ≲
8<
:

F 2ð4−nÞ
�
Mpl

Λcut

�
2ð4−nÞ

where 0 ≤ n ≤ 2 for Nmat ¼ 1;

F 2ð6−nÞ
�
Mpl

Λcut

�
2ð6−nÞ

where 0 ≤ n ≤ 4 for Nmat ≥ 2:
ð29Þ

A conventional definition of the supersymmetry breaking scale MS is in terms of F-term expectation value so we define
M4

S ¼ M4
plF , so the constraints on UðnÞ become

UðnÞ ≲
8<
:

�
MS
Mpl

�
8ð4−nÞ�Mpl

Λcut

�
2ð4−nÞ

where 0 ≤ n ≤ 2 for Nmat ¼ 1;�
MS
Mpl

�
8ð6−nÞ�Mpl

Λcut

�
2ð6−nÞ

where 0 ≤ n ≤ 4 for Nmat ≥ 2:
ð30Þ

Equation (30) is the crucial one in our paper, as it
constrains precisely the new function U introduced by
liberated N ¼ 1 supergravity. The constraint depends on
the reduced Planck scale Mpl, the supersymmetry breaking
scaleMS, Λcut and the number of chiral multiplets of matter
in the theory. Of course, when we push both the cutoff and
supersymmetry breaking scales to the reduced Planck scale,
i.e., Λcut ∼MS ∼Mpl, we obtain a model-independent
universal constraint

∀ n∶UðnÞ ≲ 1: ð31Þ

A model where supersymmetry is broken at the Planck
scale is hardly the most interesting. In the more interesting
case that MS ≪ Mpl we need the constraints (30) again, so
we need to first determine how many matter chiral
multiplets we have in our theory. The constraints will then
depend only on our choice of Λcut and MS.
In the rest of this section we will examine the constraints

in two cases. The first is the true, postinflationary vacuum
of the theory. To make a supergravity theory meaningful we
want it to be valid at least up to energies Λcut ≳MS. The
second is slow-roll inflation. In this case we must have
Λcut ≳H, with H the Hubble constant during inflation.
For the postinflationary vacuum the interesting regime is

whenMS is relatively small, sayMS ∼ 10 TeV ≈ 10−15Mpl

and the effective theory is valid up to an energy scale not
smaller than MS, i.e., Λcut ≳MS. If Λcut < MS liberated
supergravity would be a useless complication, since in its
domain of validity supersymmetry would be always non-
linearly realized. In the postinflationary vacuum, for the
single matter chiral multiplet case, the constraints (30) thus
give for

Uð0Þ ≲
�
MS

Mpl

�
32
�
Mpl

MS

�
8

⇒ Uð0Þ ∼ 10−360; ð32Þ

Uð1Þ ≲
�
MS

Mpl

�
24
�
Mpl

MS

�
6

⇒ Uð1Þ ∼ 10−270; ð33Þ

Uð2Þ ≲
�
MS

Mpl

�
16
�
Mpl

MS

�
4

⇒ Uð2Þ ∼ 10−180: ð34Þ

Notice that Uð3Þ;Uð4Þ are not restricted. For two or more
matter chiral multiplets, the constraints are given by

Uð0Þ ≲
�
MS

Mpl

�
48
�
Mpl

MS

�
12

⇒ Uð0Þ ∼ 10−540; ð35Þ

Uð1Þ ≲
�
MS

Mpl

�
40
�
Mpl

MS

�
10

⇒ Uð1Þ ∼ 10−450; ð36Þ

Uð2Þ ≲
�
MS

Mpl

�
32
�
Mpl

MS

�
8

⇒ Uð2Þ ∼ 10−360: ð37Þ

From the constraints on Uð0Þ and Uð2Þ, we find that the
liberated scalar potential contributes only a negligibly small
cosmological constant and negligibly small corrections to
the mass terms of the chiral multiplet scalars. For the single
chiral multiplet case, restoring dimensions we get a vacuum
energy density

Uð0Þ ≲ 10−360M4
pl ð38Þ

and scalar masses

Mz ≲Mpl

ffiffiffiffiffiffiffiffiffiffiffi
jUð2Þj

q
¼ 10−90Mpl: ð39Þ

These constraints become even tighter if the theory con-
tains more than one chiral multiplet, but the ones we
obtained are already so stringent as to rule out any
observable contribution to the cosmological constant and
scalar masses from the new terms made possible by
liberated supergravity. We can say that Eqs. (38) and
(39) already send liberated supergravity back to prison
after the end of inflation.
The constraints during inflation instead can be easily

satisfied if during inflation the supersymmetry breaking
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scale is very high, sayMS ¼ Mpl. In that case, Uð0Þ ≲Oð1Þ.
After inflation the “worst case scenario” constraints coming
from Eq. (30) with Nmat ≥ 2 and MS ¼ 10−15Mpl are

∀ n∶ UðnÞ ≲ 10−120ð6−nÞ: ð40Þ

A simple way to satisfy all these constraints is to choose
a no scale structure for the supersymmetric part of the scalar
potential. This ensures the vanishing of the F-term con-
tribution to the potential independently of the magnitude of
the F-terms,

VF ¼ eGðGIGI|̄G|̄ − 3Þ ¼ 0; ð41Þ

The total scalar potential is then given by V ¼ VD þ VNEW.
Thanks to the no-scale structure, we can have both MS ∼
Mpl and Uð0Þ ∼H2 ∼ 10−10 during inflation.
Our scenario has MS ¼ Mpl during inflation and MS ¼

10−15Mpl at the truevacuum in the postinflation phase, sowe
see that to satisfy all constraints a transition between the two
different epochs must occur, for which the scale of the
composite F-termF changes fromOðMplÞ toOð10−15MplÞ.

IV. A MINIMAL MODEL OF SINGLE-FIELD
AND SLOW-ROLL INFLATION IN LIBERATED

N = 1 SUPERGRAVITY

In the previous sections we have argued that liberated
N ¼ 1 supergravity can be an effective field theory for
describing the inflationary dynamics while at the same time
satisfying all the constraints if a transition that changes the
supersymmetry breaking scale at the end of inflation is
allowed. Note that due to the no-scale structure, the scalar
potential is given only by an eventual D-term supersym-
metric potential VD and the “liberated” term U. In this
section we present an explicit minimal model of single-
field, slow-roll inflation in liberated N ¼ 1 supergravity
which obeys the inequality H ≪ Λcut ¼ Mpl ¼ 1.
To begin with, let us consider a chiral multiplet T with

Kähler potential KðT; T̄Þ ¼ −3 ln½T þ T̄� and a constant
superpotentialW0. Then, the supergravity G-function [1] is
given by

G≡ K þ ln jWj2 ¼ −3 ln½T þ T̄� þ lnW0 þ ln W̄0: ð42Þ

It automatically produces a no-scale structure in which the
F-term potential vanishes identically: VF ¼ 0.
Next, let us find the canonically normalized degrees of

freedom of the theory. From the kinetic term corresponding
to the G function (42), we read

LK ¼ 3

ðT þ T̄Þ2 ∂T∂T̄

¼ 3

4ðReTÞ2 ð∂ReTÞ
2 þ 3

4ðReTÞ2 ð∂ImTÞ2

¼ 1

2
ð∂χÞ2 þ 1

2
e−2

ffiffiffiffiffiffi
2=3

p
χð∂ϕÞ2; ð43Þ

where we have used the following field redefinition:

T ¼ ReT þ iImT ¼ 1

2
e

ffiffiffiffiffiffi
2=3

p
χ þ i

ϕffiffiffi
6

p : ð44Þ

Note that the Z2 symmetry χ → −χ is already explicitly
broken by the kinetic Lagrangian, while the symmetry
ϕ → −ϕ is unbroken. However, even the latter symmetry
will be broken by the inflationary potential. The field χ is
always canonically normalized while ϕ has a canonical
kinetic term only at χ ¼ 0.
The composite F-term is given byF ¼ eGGTGTT̄GT̄ after

solving the equation ofmotion for the auxiliary fieldsFI . For
our G function we obtain an exponentially decreasing

function F ¼ 3jW0j2=ðT þ T̄Þ3 ¼ 3jW0j2e−3
ffiffiffiffiffiffi
2=3

p
χ . This

is what we want to get a viable supersymmetry breaking
mechanism. The reason is that we look for a supersymmetry
breaking scale during inflation Mi

S ∼Mpl ¼ 1, while the
final scale should be parametrically lower than the Planck
scale—for instance Mf

S ¼ 10−15Mpl. To achieve this large
difference of scales, the vacuum expectation value of the
field χ should change during the phase transition. On the
other hand, the cutoff scale of our model can remainOðMplÞ
both before and aft
er the phase transition.
We will achieve this with a potential that changes from

ϕ ≠ 0; χ ¼ 0 during inflation to χ ≠ 0;ϕ ¼ 0 after infla-
tion. We will also choose ϕ as the inflaton field and χ as the
field that controls the supersymmetry breaking scale.
A function U producing a correct inflationary dy-

namics is

U ≡ αð1 − e−
ffiffiffiffiffiffi
2=3

p
ϕÞ2

�
1þ 1

2
σχ2

�
; ð45Þ

where α, β, γ, σ are arbitrary positive constants.
Next, we assume that the massmχ of χ is greater than the

Hubble scale H during inflation; this is necessary to
describe a single-field slow-roll inflation governed only
by the inflaton field ϕ. Hence, we impose that during
inflation m2

χ ¼ ασ ≫ H2. Since α ∼H2 ∼ 10−10, the con-
dition reduces to σ ≫ 1.
Wemust also analyze thevacuum structure of the potential.

First of all, we explore the minima with respect to χ. By

computing ∂U
∂χ ¼ 0 and defining V inf ≡ αð1 − e−

ffiffiffiffiffiffi
2=3

p
ϕÞ2 we

find that during inflation (where ϕ ≠ 0) the equation of
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motion for χ is given by σχV inf ¼ 0 so it gives a unique
minimum at χ ¼ 0. On the other hand after inflation we have
ϕ ¼ 0 and V inf ¼ 0, so the equation of motion gives a flat
potential in χ. The final position of the field χ is then
determined either by the initial conditions on χ or by small
corrections to the either the liberated supergravity potentialU
or to VF. We will describe the explicit forms of such
corrections in a forthcoming paper [9]. Here we content
ourselves with pointing out that the simple potential (45)
already achieves the goal of making the final supersymmetry
breaking scale different from Mi

S.
Before studying supersymmetry breaking we notice that

a deformation of the scalar potential such as U was obtained
using an off-shell linear realization of supersymmetry in
[8]. Therefore, for the new term to be consistent, super-
symmetry must be broken as usual by some nonvanishing
auxiliary field belonging to the standard chiral multiplets
and moreover the Kähler metric of the scalar manifold must
be positive [8]. So, in spite of the presence of the new term
U, the analysis of supersymmetry breaking is completely
standard. Since the supersymmetry breaking scale MS
comes from the positive potential part Vþ, as shown in
the Goldstino SUSY transformation δϵPLv ¼ 1

2
VþPLϵ that

is constructed with the fermion shifts with respect to the
auxiliary scalar contributions [7], we have

Vþ ¼ eGGTGTT̄GT̄ ¼ 3jW0j2
ðT þ T̄Þ3 ¼ 3jW0j2e−3

ffiffiffiffiffiffi
2=3

p
χ : ð46Þ

During inflation we demand that the initial supersym-

metry breaking scale is Mpl, so we identify W0 ≡ ðMi
SÞ2ffiffi
3

p and

therefore Vþ ¼ ðMi
SÞ4e−3

ffiffiffiffiffiffi
2=3

p
χ . Because χ ¼ 0 during

inflation we indeed have Vþjχ¼0;ϕ≠0 ¼ ðMi
SÞ4 ¼ 1 ≫

H2 ¼ Oð10−10M2
plÞ.

On the other hand, we want to get a much smaller
SUSY breaking scale Mf

S ≈ 10−15Mpl around the true

vacuum at the end of inflation. Thus, at the true vacuum
(i.e., χ ¼ C and ϕ ¼ 0) where U ¼ 0, we get Vþjχ¼C;ϕ¼0 ≈

ðMi
SÞ4e−3

ffiffiffiffiffiffi
2=3

p
C ≡ ðMf

SÞ4. From this, we find where the
location of the true vacuum in the χ direction should be
(recall that χ is a flat direction after inflation)

C ¼
ffiffiffi
8

3

r
ln
Mi

S

Mf
S

; ð47Þ

where Mf
S is a free parameter, which we set to be

approximately 10−15 in Planck units.
The proposed potential U vanishes after inflation hence it

already trivially satisfies the constraints (30). So allweneed to

do is to check that it also satisfies (31). UsingF ¼ e−3
ffiffiffiffiffiffi
2=3

p
χ ,

which givesMi
S ¼ Mpl ¼ 1 during inflation (χ ¼ 0), we first

haveUðnÞjχ¼0≪e−3m
ffiffiffiffiffiffi
2=3

p
χOð1Þjχ¼0¼Oð1Þ. Using Eq. (44),

we find ∂T ¼ ffiffiffi
6

p ð−i∂ϕ þ e−
ffiffiffiffiffiffi
2=3

p
χ∂χÞ and ∂ T̄ ¼ ffiffiffi

6
p ði∂ϕþ

e−
ffiffiffiffiffiffi
2=3

p
χ∂χÞ. Note that UðnÞjχ¼0 ≡ ∂k

T∂l
T̄UðT; T̄Þjχ¼0 where

n ¼ kþ l. In particular, since the functional dependence on χ
does not produce any singularity at χ ¼ 0, it is sufficient to
check that ∂n

ϕU ≪ Oð1Þ. Thus, because the dependence onϕ
is solely given by the Starobinsky inflationary potential, i.e.,

V ∼ αð1 − e−
ffiffiffiffiffiffi
2=3

p
ϕÞ, we will get that its derivatives are

always less than the coefficient α, thanks to the decreasing

exponential factor e−
ffiffiffiffiffiffi
2=3

p
ϕ. This implies that the constraint is

automatically satisfied since α ∼ 10−10 < Oð1Þ. So, all con-
sistency conditions canbe satisfiedbya liberated supergravity
potential.
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