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Fermionic terms in a class of locally supersymmetric theories called “liberated supergravity” are
nonrenormalizable interactions proportional to inverse powers of the supersymmetry breaking scale and
Planck mass M. This property defines an intrinsic cutoff for liberated supergravities, which are therefore
effective theories valid only below energies that never exceed the cutoff. Requiring that the cutoff exceeds
current theoretical and observational bounds shows that the new scalar potential terms allowed by liberated
supergravity can neither change the cosmological constant predicted by supergravity by any observable
amount, nor give measurable contributions to particle masses. We show that it is nevertheless possible to
define a simple liberated supergravity model of slow roll inflation valid up to energy scales that are well
above the Hubble parameter during inflation and exceeds observable limits after inflation. The key to
constructing a viable model is to change the supersymmetry breaking scale, from a Planck-scale value

during inflation, to TeV-scale after inflation.
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I. INTRODUCTION

Supergravity strongly constrains the form of the scalar
potential [1], hence it makes the construction of specific
models of elementary interactions or inflation challenging.
The literature on supergravity inflationary potentials is vast
and somewhat unnecessary for this paper, which is devoted
instead to the study of a new model of supergravity, called
“liberated supergravity” [2]. As its name suggests, the
scalar potential of liberated supergravity need not be of the
special form given in [1]; it is in fact a completely general
function of the scalar fields.

As any other gravity theory, liberated supergravity con-
tains nonrenormalizable interaction, so it is by construction
an effective theory valid only up to a finite cutoff that cannot
exceed the (reduced) Planck scale A, < 1/v87G = M.
Differently from models where supersymmetry is non-
linearly realized this scale can be parametrically larger than
the supersymmetry (SUSY) breaking scale M. This is also
different from the models described in [3-6], where the
cutoff is also only required to be O(My). In liberated
supergravity, instead, the cutoff can be parametrically larger
than M g, because the latter is defined through the F- and/or
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D-term expectation values while the former depends on both
the new terms present in the “liberated” scalar potential U/
and the expectation values of the auxiliary fields.

For a given value of A, the corrections to the scalar
potential due to the new terms allowed by liberated super-
gravity are severely constrained by our Eq. (30), which
refine and make quantitative Egs. (3.30)—(3.31) of Ref. [2].
These constraints are the first main result of our paper,
because they show that even in the least restrictive case
Acut ~ Mg the liberated corrections to the vacuum energy are
completely negligible. The same is true for liberated
corrections to particle masses.

Another question worth asking is whether liberated
supergravity can nevertheless produce a slow-roll infla-
tionary potential with a cutoff well above the Hubble scale
(the latter condition is necessary for the self-consistency of
an effective theory of inflation). We answer in the affirma-
tive by exhibiting a toy model with a simple, explicit
potential that can satisfy all constraints. The key feature that
makes it possible to describe Hubble scale physics in our
model is a change occurring in the supersymmetry breaking
potential from one that gives a fixed high value Mg > H
during slow roll to a no-scale potential after the end of
inflation.

Section II succinctly describes the construction of
liberated supergravity in the superconformal tensor calcu-
lus formalism. Section III describes the construction of its
fermionic terms and derives the key inequalities and
constraints that any such theory must obey. Section IV
presents a toy model of slow-roll inflation in liberated
supergravity.
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II. LIBERATED A =1 SUPERGRAVITY IN
SUPERCONFORMAL TENSOR CALCULUS

In this section, we summarize the construction of
liberated A/ = 1 supergravity [2] using superconformal
tensor calculus [7,8] that will be discussed in more details
in [9]. Liberated supergravity was described in [2] using the
superspace formalism, where a Kéhler transformation is
introduced to remove the variation of the action under a
super-Weyl rescaling, while a super-Weyl-Kihler trans-
formation is promoted to an Abelian gauge symmetry to
produce the liberated supergravity. In the superconformal
formalism one instead introduces a conformal compensator
multiplet, called S, which eliminates the variation while
keeping the Kihler potential invariant under superconfor-
mal symmetry. Hence, differently from the superspace case,
we need to define such a gauge transformation independ-
ently of superconformal symmetry.

To do this, it is useful to write the invariant actions in the
two different formalisms [10]:

Vip =2 / d*0EV, 8], = / dPOES + / dOE S,

(1)

where V is a composite superconformal real multiplet with
the Weyl/chiral weights (2, 0), S is a composite super-
conformal chiral multiplet with Weyl/chiral weights (3, 3),
while E and &£ are the corresponding D/F-term measure
densities [7]. The action must be invariant under a super-
Weyl-Kihler transformation that shifts the superspace den-

sities as E — Ee?* 12X and £ — E£¢®%. This requires that the
corresponding superconformal multiplets transform as

e S = Se %, (2)
To describe the liberated supergravity in the superconformal
formalism, we therefore promote the super-Weyl-Kihler
transformation to a gauge symmetry under which the
compensator is inert, so that the transformation rules are
given by |

K — K+ 6%+ 6%, W — We 0%, W — WeF,
T — e #2+25T, T — X427, So = So,
W, = e 3EW,, TOV?) - TON?)e 4242, (3)

where X is a chiral superfield, W is the superpotential, WV, is
the field strength of a real vector multiplet, and T is the chiral
projection. With these rules, a Lagrangian of the liberated
N = 1 supergravity equivalent to that of Ref. [2] is

W2(K)YW?(K) -
= |)y? = zZLzZH| . (4
fuow = P 7m0
In Eq (4), we have introduced the notations'

Y = (SoSoe K 203), w2 (K) = WA(K) /D2, W2 (K)=
W2(K)/Y?*; we denoted with U(Z', Z) a generic function
of the matter chiral multiplets Z’s and with K(Z!, Z") the
supergravity Kihler potential. We also call W, (K) the field
strength multiplet corresponding to the Kihler potential. By
denoting with (w, ¢) the Weyl/chiral weights of a multiplet
we have the following assignment: (1, 1) for Sy, (2, 0) for ),
(3/2,3/2) for W,(K), (=1,3) for w?(K), and (0, 0) for
Z,K(Z!', 7", T(w*(K)), T(w*(K)),U(Z!,Z"). By assum-
ing that U(z!,7") is inert under the gauge symmetry and
using w? — w2e 2ZH4E T(w?) — T(w?), we see that the
whole Lagrangian is invariant under the gauge symmetry,
so that it reproduces liberated supergravity.

Next we find the bosonic contribution to the scalar
potential. We define a composite superconformal multiplet
N made of the superconformal chiral multiplets Z' =
(z, Py, F') (i=0,1,W,T), which can be (z°=s,,
Py FO), (2 PLy), (Y =W, PV FY)2 (7 = T(w?),
Py, FT). The lowest component N of N, is given by

474

* —K(z’,zf)/3)—2 T(WQ)T(WQ)

N = (sospe Uiz, (5)

and we get the component Lagrangian by using the D-term
formula. It reads as follows:

P P S i B 1 A Y.
Lxew = [N]pe™ =N <—D;41’D”Z 3/ Dy’ —EZJD)( +F FJ) +§[Nijl_c(_)()(JFk + 7' (P</)y*) +Hel

1 )
4

1 _ 1 | —
+7§Nil//a)( +H.c. +8N _R(w)+§l/’#7 Rup(Q)

where N i7» N

2

1 . | PR P
+ N 77 + [Mw-y<NﬁF’x’ - NPy —2Nij/;)(k)()r’) +§18"”/ VYW <Nl~Dgz + S Ngk'vex!

1 il -l v P/
—m(NiZ + N )R, (Q), (6)

N,z and N, ;7 are the derivatives with respect to 7 fori,j=0,1,W,T: N;= 0N /97 etc.. The gravitino is

denoted by y and other details will be given in [7]. As for the detailed structure of the fermions y’ = P, ', we find [9]

'In superconformally invariant theories there are no dimensionless parameters and the Planck scale is introduced by the super-Weyl

: — * ,—K/3
gauge choice Y = sysje X/

= Mgl, where Y is by definition the lowest component of ).

*Here, W(K) denotes the lowest component of the field strength multiplet W2(K). It is not the usual superpotential W.
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PLZO’
PLZI,

where F = 2K;(—0,z'0"Z7 + F'F7) and

PF = 2(PK;)(—0,2' 0477 + F'F7) + 2K ;5(—(99,2")0*7

Notice that ' contains not only the fundamental fermions
2" and y! but also two composite chiral fermions y" and 7.

A straightforward use’ of the superconformal tensor
calculus then gives the scalar potential in the form

View = (sospe 832U 7).

©)

The super-Weyl gauge choice T = sysje X/3 = My =
1 puts the action in the Einstein frame and reproduces the
scalar potential of Ref. [2]

View = U(Z', 7). (10)

This then implies that the total scalar potential generically is

V=Vp+Vr+ View,

(11)

where Vp, Vp are the usual D/F-term potentials. The
additional contribution to the scalar potential, Vygw, i an
arbitrary function of the z's; since it does not obey any
constraint it fully justifies the name “liberated” for the new
class of supergravities introduced in [2]. |

Py = AFKy[(9!)Pry' = F Py’ + -

P = 3 [4PF)K (@) Prr’ — FPL) - (— P = 3Kk = 24 (b, + iAﬂ>)

+ 7 fermion terms,

x 4F Ky [(P7) ) Pry’ — FTPL)(J]} + -+ + 9 fermion terms,

= 0,2/ (90'Z) + (PF')F! + F! (PF7)). (8)

[

III. FERMIONIC TERMS IN LIBERATED
N =1 SUPERGRAVITY

In this section, we investigate the fermionic terms in
liberated N = 1 supergravity in the superconformal for-
malism.* First of all, focusing only on matter couplings,

e., looking at terms independent of y, we read the
following terms from Eq. (6):

i D, D |

1 .
w=0" [’FZ = _ENi])(lp)(jL//:O’

o 1 -
Lpz= _NijFlF]L//:O’ Lry= —ENiji})(’)(ijb/:o’

1
['FS £F6—_ 1]7(%)()()( |y/ =0

l]k)( (DZJ))( |1// 0>

N
Lp=-—

R (@)

(12)

y=0"

Here, we observe that the fermionic terms in the effective
Lagrangian contain couplings to the function ¢/ and its
derivatives since N o .

The general structure of the fermionic terms can be found
as a power series in derivatives of the composite multiplet

N (ie., Nj,N;;, N;jz, and N;;z7). The rth derivative of N,

denoted with N l( gy

ijko
has the following generic form:

(n)
(") _ alr=qtpimik) _ (k=) mo w U Tl
Ni.‘.i - Nq-pfllnylf - (638, T 2)T4+2 1j_—4+2m Wirwizr:
_ U _
= (1) (qy + Dlgo + Dy 521 (9] 2K12) p42m S wimr i, (13)
where
W = 2Kyl (D7) = F|Kvp [(PF )" = F/ ') = Kyl (D7) = o\ Ky ¥ 7 27
e o r a1
~ Kisk W07 1Ko (DT = FIo") = 5 Kag k[P0 T ) Koy 0 70, (14)
Ly D> NF'FI ~ NyyFVEY —”r A UPYEY = - 2 LLUFYFY = YU = Vygy where we have used Cp=—1K; ~
%’;— -1 ( 2€W> ‘;W and C; = TZ’ and CT is the lowest component of the superconformal multiplet of 7.

2
*The detailed derivation will be done in [9].
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W= (W) (15)

F =2K;(=0,2'0"77 + F'F7); U™ (0 < n < 4) is the nth
derivative of the function U(z!,7") with respect to 7,7/,
which are the lowest components of the matter chiral
multiplets; ¢ = g, + g, where q; (g,) is the order of the
derivative with respect to the compensator scalar s, (s();
p = p1 + p> where p; (p,) is the order of the derivative
with respect to the field strength multiplet scalar W (W);
m = m; + m, where m; (m,) is the order of the derivative
with respect to the chiral projection multiplet scalar 7'(w?)
(T(w?)); k is the order of the derivative with respect to the
matter multiplet scalar z/; n is the order of the derivative
acting on the new term !/ with respect to the matter
multiplet; and ¢ is the total order of derivatives with
respect to the compensator scalars s, and s;.

To find restrictions on Vygw coming from fermionic
terms, we have to identify the most singular terms in the
Lagrangian. These terms can be found using the fact that
powers of F in the denominator may lead to a singularity
which gets stronger when m increases by taking more
|

derivatives with respect to the lowest component of the
multiplet 7(w?) as seen from Eq. (13). Hence, we will
investigate the fermionic terms containing only derivatives
with respect to the chiral projection and matter scalar
indices, i.e., 7" and /, in order to find the terms coupled to
U™ that contain the maximal inverse powers of F. They
are those with ¢ = p = 0 and k = n. We note in particular
that if our theory has a single chiral matter multiplet then
the most singular terms are found to be the couplings to the
derivatives proportional to N7, Nyr7, Nywrr While for
two or more chiral matter multiplets they are N;p77. The
latter terms vanish identically for a single multiplet because
of Fermi statistics.

First of all, let us examine the single matter chiral
multiplet case. Due to Fermi statistics, the possible fer-
mionic terms are proportional only to three tems, 2/, /()
and U®), so that the maximal order of the derivative with
respect to the chiral projection that can appear in the
Lagrangians scalar is two and appears in the terms propor-
tional to Ny, Nyr7, and Nyyr7. To show that such terms
do not vanish consider

(n) - ,
EFZ'q:p:O,k:n 2 ’I‘2+2m fszrzm WW 5 (()(l)m( _24(aF)KTJ(@ZJ))?lPR)mI)
X ((Dx")=(D(Y24(DF ) Ky (P2 ) Pra’))™) ; (16)
y—

where m = m| +my, n =n| + n2, and 2 = m + n. Restoring the mass dimensions by fixing the super-Weyl gauge5 (i.e.,

T M S():SS:Mple K/6 PLZ :—SoK]PL){

pl’

(n)
20242m) U
Lyl gepogen D My~ ™" Favan

< ((Pr')™=(M

where we require m, +n, = 1 for a = 1, 2 since we are
studying the second demvatlve term N;; coupled to )(' and
Dy’. Redefining F to be d1mens10nless by F — M ]—' we
obtain

un

—4-2m
£F2|q =p=0.k=n DM f4+2m

0,0, (18)

5Here, we use the convention of the superconformal formalism
that all physical bosonic and fermionic matter fields have
dimensions 0 and 1/2 respectively and F has dimension 2 while
the compensator s, has dimension 1 [7]. Through dimensional
analysis, we find [D,]=1,[z]=0+[i].[y'] =5+ [i].[F]=
1 +[i] where i=0,I,W,T and [0]=1,[I]=0,[W]=3,
[T] =0.

1 =1\n,
S (@

o (AP (DF) Ky (P2 ) Pry'))™)

1My eX/K, P!, and b, = 0), we obtain

M;144(@-7~:)K71(@21))?7PR)Y"' )

um 5
0~M31f4+2m O(F>’ (17)
]I/:

[

We then find 6 = 8 + 4m by trivial dimensional analysis
because the Lagrangian has mass dimension 4. Then, since
2 = m + n, we find that the most singular term is

2(n—4) Z/{<“ 26-m).

£F2|q:p:0,k:n 2 Mpl ]_- O/ (19)

Next we consider the general case with several multip-
lets. We shall focus on the fourth derivative term denoted by
N jz7> which gives a four-fermion term. Also, we have to
consider the four-fermion product made only of the chiral
fermions with i = 0,/, T because they do not contribute
one power of the F-term F in the numerator, which would
reduce the number of inverse power of the F-term F. This is
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because the overall factor of y" contains such linear
dependence. The effective fermionic Lagrangian (12) reads
then as follows:

£F6 |q=p=0,k=n

D) T2+2m ﬂ WV_V
ﬁ4+2m

1 ~ _
< (TGP K0P ). 0
After the super-Weyl gauge fixing we obtain

‘CF6 |q:p:0$k:n

U
j:4+2m

5 M§1(2+2m)
< (30 ) @M OF K (9 Pt
Za2m OF - (1)

where O(1) < ¢ < O(10%). After doing the same dimen-
sional analysis as in the single-multiplet case, we obtain
0=28+4m and

U

]?4—&-2;7:

L6l g=p=04=n D cMy=" O ®&+2m) - (22)

Since we are going to use liberated supergravity to
describe time-dependent backgrounds such as slow-roll
inflation we need to look more closely at the structure of F.
From its definition F = 2K,;(—0,z/0"z/ + F'F7), we find
F =2K;(2'z7 + F'F7) > 0 whenever spatial gradients
can be neglected. We see that the most singular behaviors
of the fermionic terms arises when 7/ = 0. By expanding F
around a static vacuum and reserving the notation F for the
expectation value < K;;F'F7 >, the effective Lagrangian
can finally be rewritten as follows:

(i) For the single chiral matter multiplet case,

2(n—4 Z/l< n
Lialg=p=0.4=n DMpl( )j:24 ") Opomm). (24)

(i) For two or more chiral matter multiplets,

(n)
2n-6) UM
£F6|q=p=0.k=n ) c/Mpl(n )fz 6—n)

where O(1072) < ¢’ S O(1).

The effective operators we obtained are generically non-
zero even after considering possible cancellations due to
Fermi statistics or nonlinear field redefinitions. As an example
we can take terms containing y'. They are made of two
composite chiral multiplets y" and y” and these produce
terms that do not vanish on shell (i.e., imposing @P; y' ~ 0
for matter fermions). For instance, in a theory with only
one matter chiral multiplet (z, P, y, F), we have W =

0,26-1)  (25)

;Fhen, since 4 = m + n, we can write the most singular —2K. [{(@Z) — F*92Y(7Pry) + {F*z —_F*@Z}()?PL)()H
erms as 2K Km(az F*)(7PLy)(7Pry), and W = (W)*, so that
Y WW =4K2 (|92 +|F*)[|9z— F*[*(7PLx) (7Pry). Hence,
Lr6| g p—o.en 2 eMA "0~ (8-m), (23)  looking at the possible fermionic terms from Ly, when
q=p=0.k=n pl F2(6-n) F . o o
i=z,7j=z7@0e,q=p=m=0,k=n=2), we get
|
® e - 2 2 2 3\ (3 5
(0,20"7) = 21027 + [FIP)|@z — F*[*(8,20"2) (¢ PLx) (Pry).- (26)
It is easy to see that this operator does not vanish on the mass shell of the matter scalars, [z ~ 0. As another example, from
L, we get terms containing up to three matter fermions when we consider g =m=p, =0, k=n=1, p, =p =1,
u(l) 2u(1> ) an B 5
'CFZ D f WXﬂPR)( ~T f4 4K2Z(@’7:)(@Z)()(PR)()PL(@Z - F*) )(|3—fermion[erms e (27)
Back to the results in Eqgs. (24) and (25), the general effective Lagrangians can be cast in the form
2(n—4 ) 0=2(6—n

4-5./(6) Mpl( )}‘2(4—n) O/F( ) for N mat = L,
Lr=AalOF" = 2n—=6) Y y(6=2(8—n)) (28)

M"Y Hem OF for Npa > 2,

where O(1072) </ S O(1); N
of our effective theory, respectively.

mar and Ay are defined to be the number of chiral multiplets of matter, and the cutoff scale
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If we demand that our effective theory describes physics up to the energy scale A, we obtain the following inequalities:

u(n) S Acul

My,

F2(6-n) <_>2(6‘”) where 0 <n <4 for Ny, > 2.

cut

FA4-n) (ﬁ) 247 Where 0<n <2 for Nt = 1,

(29)

A conventional definition of the supersymmetry breaking scale M is in terms of F-term expectation value so we define

M = M, F, so the constraints on ") become

(%) 8(4—n) (Mpl> 2(4-n)
(n) < Mpl Acul

~ <%>8(6—n) (%) 2(6—n)
Mp] Acm

Equation (30) is the crucial one in our paper, as it
constrains precisely the new function ¢/ introduced by
liberated N = 1 supergravity. The constraint depends on
the reduced Planck scale M, the supersymmetry breaking
scale Mg, A, and the number of chiral multiplets of matter
in the theory. Of course, when we push both the cutoff and
supersymmetry breaking scales to the reduced Planck scale,
ie., Ag~Mg~M,, we obtain a model-independent
universal constraint

u

pl>

VU <1, (31)

A model where supersymmetry is broken at the Planck
scale is hardly the most interesting. In the more interesting
case that Mg << M|, we need the constraints (30) again, so
we need to first determine how many matter chiral
multiplets we have in our theory. The constraints will then
depend only on our choice of A, and M.

In the rest of this section we will examine the constraints
in two cases. The first is the true, postinflationary vacuum
of the theory. To make a supergravity theory meaningful we
want it to be valid at least up to energies Ay = Mg. The
second is slow-roll inflation. In this case we must have
Aoyt 2 H, with H the Hubble constant during inflation.

For the postinflationary vacuum the interesting regime is
when Mj is relatively small, say Mg ~ 10 TeV ~ 107°M
and the effective theory is valid up to an energy scale not
smaller than Mg, i.e., Ay 2 Mg. If A < Mg liberated
supergravity would be a useless complication, since in its
domain of validity supersymmetry would be always non-
linearly realized. In the postinflationary vacuum, for the
single matter chiral multiplet case, the constraints (30) thus
give for

32 8
U < <%> (%) = U ~ 10730, (32)

M, My
2% 6
pl S

where 0 <n <2 for N, =1,
(30)
where 0 <n <4 for Ny, > 2.

16 4
u? < <%> <%> = U2 ~ 107180, (34)

M, M

Notice that /), U4 are not restricted. For two or more
matter chiral multiplets, the constraints are given by

48 12
Uuo < <AA;IS> <MP‘> = U0 ~ 107540, (35)

pl MS
40 10
u“)s(%) <%) = UV ~ 10740, (36)
pl N
32 8
u<z>5<%> <%> = UO ~ 1070, (37)
pl N

From the constraints on U(©) and U®, we find that the
liberated scalar potential contributes only a negligibly small
cosmological constant and negligibly small corrections to
the mass terms of the chiral multiplet scalars. For the single
chiral multiplet case, restoring dimensions we get a vacuum
energy density

U <10730M3, (38)
and scalar masses
M, S M/ [UP] = 1072°M,. (39)

These constraints become even tighter if the theory con-
tains more than one chiral multiplet, but the ones we
obtained are already so stringent as to rule out any
observable contribution to the cosmological constant and
scalar masses from the new terms made possible by
liberated supergravity. We can say that Egs. (38) and
(39) already send liberated supergravity back to prison
after the end of inflation.

The constraints during inflation instead can be easily
satisfied if during inflation the supersymmetry breaking
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scale is very high, say Mg = M. In that case, U <o(1).
After inflation the “worst case scenario” constraints coming
from Eq. (30) with Ny, > 2 and Mg = 1071°M; are

Vo UM < 10712007, (40)

A simple way to satisfy all these constraints is to choose
ano scale structure for the supersymmetric part of the scalar
potential. This ensures the vanishing of the F-term con-
tribution to the potential independently of the magnitude of
the F-terms,

Vp = ¢9(G,GG, - 3) = 0, (41)

The total scalar potential is then given by V = V5, + Vgw-
Thanks to the no-scale structure, we can have both Mg ~
M, and U©) ~ H? ~ 10710 during inflation.

Our scenario has Mg = M, during inflation and Mg =
10-5M p1 at the true vacuum in the postinflation phase, so we
see that to satisfy all constraints a transition between the two
different epochs must occur, for which the scale of the
composite F-term F changes from O(M,;) to O(107M,y).

IV. A MINIMAL MODEL OF SINGLE-FIELD
AND SLOW-ROLL INFLATION IN LIBERATED
N =1 SUPERGRAVITY

In the previous sections we have argued that liberated
N =1 supergravity can be an effective field theory for
describing the inflationary dynamics while at the same time
satisfying all the constraints if a transition that changes the
supersymmetry breaking scale at the end of inflation is
allowed. Note that due to the no-scale structure, the scalar
potential is given only by an eventual D-term supersym-
metric potential V, and the “liberated” term /. In this
section we present an explicit minimal model of single-
field, slow-roll inflation in liberated N = 1 supergravity
which obeys the inequality H < Ay = My = 1.

To begin with, let us consider a chiral multiplet 7 with
Kihler potential K(7,T) = =3In[T + T] and a constant
superpotential W(,. Then, the supergravity G-function [1] is
given by

G=K+Wn|WP?=-83IT+T]+hW,+InW, (42)

It automatically produces a no-scale structure in which the
F-term potential vanishes identically: V = 0.

Next, let us find the canonically normalized degrees of
freedom of the theory. From the kinetic term corresponding
to the G function (42), we read

3 _
=——_0T0T
Ly =y 7010

S (OReT)? +

4(ReT)? (OlmT)?

3
4(ReT)?
1

= S0 + 5 VT (g, (#3)

where we have used the following field redefinition:

1 ¢
T =ReT +ilmT = ~eV¥¥% i . 44
2 e W

Note that the Z, symmetry y — —y is already explicitly
broken by the kinetic Lagrangian, while the symmetry
¢ — —¢ is unbroken. However, even the latter symmetry
will be broken by the inflationary potential. The field y is
always canonically normalized while ¢ has a canonical
kinetic term only at y = 0.

The composite F-term is givenby F = ¢’ G;G"T G7 after
solving the equation of motion for the auxiliary fields F’. For
our G function we obtain an exponentially decreasing

function F = 3|Wo|>/(T + T)? = 3|Wo|?e>V2?/3. This
is what we want to get a viable supersymmetry breaking
mechanism. The reason is that we look for a supersymmetry
breaking scale during inflation M§ ~ M, = 1, while the
final scale should be parametrically lower than the Planck
scale—for instance M} = 107'3M,;. To achieve this large
difference of scales, the vacuum expectation value of the
field y should change during the phase transition. On the
other hand, the cutoff scale of our model can remain O(M )
both before and aft

er the phase transition.

We will achieve this with a potential that changes from
¢ # 0,y =0 during inflation to y # 0,¢ = 0 after infla-
tion. We will also choose ¢ as the inflaton field and y as the
field that controls the supersymmetry breaking scale.

A function U producing a correct inflationary dy-
namics is

U=a(l - e—\/%)2<1 +%o;(2), (45)

where a, f, v, o are arbitrary positive constants.

Next, we assume that the mass m,, of y is greater than the
Hubble scale H during inflation; this is necessary to
describe a single-field slow-roll inflation governed only
by the inflaton field ¢. Hence, we impose that during
inflation m} = ac > H?. Since a ~ H* ~ 107!, the con-
dition reduces to ¢ > 1.

We must also analyze the vacuum structure of the potential.
First of all, we explore the minima with respect to y. By

computing %—i{ = 0 and defining Vs = a(l — eV 2 3‘/’)2 we
find that during inflation (where ¢ # 0) the equation of
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motion for y is given by oyV;,; = 0 so it gives a unique
minimum at ¥ = 0. On the other hand after inflation we have
¢ =0 and V;; = 0, so the equation of motion gives a flat
potential in y. The final position of the field y is then
determined either by the initial conditions on y or by small
corrections to the either the liberated supergravity potential
or to Vp. We will describe the explicit forms of such
corrections in a forthcoming paper [9]. Here we content
ourselves with pointing out that the simple potential (45)
already achieves the goal of making the final supersymmetry
breaking scale different from M.

Before studying supersymmetry breaking we notice that
a deformation of the scalar potential such as I/ was obtained
using an off-shell linear realization of supersymmetry in
[8]. Therefore, for the new term to be consistent, super-
symmetry must be broken as usual by some nonvanishing
auxiliary field belonging to the standard chiral multiplets
and moreover the Kéhler metric of the scalar manifold must
be positive [8]. So, in spite of the presence of the new term
U, the analysis of supersymmetry breaking is completely
standard. Since the supersymmetry breaking scale Mg
comes from the positive potential part V., as shown in
the Goldstino SUSY transformation 6,P;v = %VJrPLe that
is constructed with the fermion shifts with respect to the
auxiliary scalar contributions [7], we have

- 3|Wo?
V, =e9G;G"G; = ﬁ

= 3|Wy[Pe V¥, (46)
During inflation we demand that the initial supersym-

. . _ (My)?
so we identify W, = el and

metry breaking scale is M,

therefore V. = (M})*e3V2/3%_ Because y =0 during
inflation we indeed have V.| g z0 = (M§)* =1>
H? = O(lO“OMgl).

On the other hand, we want to get a much smaller
SUSY breaking scale MJ;z 107M,; around the true

vacuum at the end of inflation. Thus, at the true vacuum
(e, y = Cand ¢ = 0) where U = 0, we get V_ |,_c 4o ¥
(Mi)*e=3V?2/3€ = (M{)*. From this, we find where the
location of the true vacuum in the y direction should be
(recall that y is a flat direction after inflation)

8. M.
C=1/zIn—3, (47)
3 MJ;

where M{; is a free parameter, which we set to be
approximately 10~'% in Planck units.

The proposed potential I/ vanishes after inflation hence it
already trivially satisfies the constraints (30). So all we need to

do is to check that it also satisfies (31). Using F = e~ 23,
which gives M = M, = 1 during inflation (y = 0), we first
have " |,_y<e™" 230(1) l,=o=0(1). Using Eq. (44),
we find 0p = V6(=id + e"V¥¥9,) and 97 = v/6(id 5+

e" V%9, ). Note that U™ |,_o = 0LOLU(T, T)|,—, where
n = k + [. In particular, since the functional dependence on y
does not produce any singularity at y = 0, it is sufficient to
check that 93U/ << O(1). Thus, because the dependence on ¢
is solely given by the Starobinsky inflationary potential, i.e.,
V~a(l- e~ V23 "), we will get that its derivatives are
always less than the coefficient «, thanks to the decreasing
exponential factor e=V2/3%_ This implies that the constraint is
automatically satisfied since a ~ 1071 < O(1). So, all con-
sistency conditions can be satisfied by a liberated supergravity
potential.

ACKNOWLEDGMENTS

We would like to thank Alexios Kehagias for useful
discussions. M. P. is supported in part by NSF Grant
No. PHY-1915219.

[1] E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello,
and P. van Nieuwenhuizen, Spontaneous symmetry break-
ing and Higgs effect in supergravity without cosmological
constant, Nucl. Phys. B147, 105 (1979); E. Cremmer, S.
Ferrara, L. Girardello, and A. Van Proeyen, Yang-Mills
theories with local supersymmetry: Lagrangian, transfor-
mation laws and super-Higgs effect, Nucl. Phys. B212, 413
(1983).

[2] F. Farakos, A. Kehagias, and A. Riotto, Liberated A = 1
supergravity, J. High Energy Phys. 06 (2018) 011.

[3] Y. Aldabergenov, S.V. Ketov, and R. Knoops, General
couplings of a vector multiplet in A = 1 supergravity with
new FI terms, Phys. Lett. B 785, 284 (2018).

[4] I. Antoniadis, A. Chatrabhuti, H. Isono, and R. Knoops,
Fayet-Iliopoulos terms in supergravity and D-term inflation,
Eur. Phys. J. C 78, 366 (2018).

[5] N.  Cribiori, F. Farakos, M. Tournoy, and A.V.
Proeyen, Fayet-Iliopoulos terms in supergravity without
gauged R-symmetry, J. High Energy Phys. 04 (2018)
032.

025008-8


https://doi.org/10.1016/0550-3213(79)90417-6
https://doi.org/10.1016/0550-3213(83)90679-X
https://doi.org/10.1016/0550-3213(83)90679-X
https://doi.org/10.1007/JHEP06(2018)011
https://doi.org/10.1016/j.physletb.2018.07.072
https://doi.org/10.1140/epjc/s10052-018-5861-6
https://doi.org/10.1007/JHEP04(2018)032
https://doi.org/10.1007/JHEP04(2018)032

CONSTRAINING LIBERATED SUPERGRAVITY PHYS. REV. D 103, 025008 (2021)

[6] I. Antoniadis and F. Rondeau, New Kdihler invariant [9] H. Jang and M. Porrati, Component action of liberated
Fayet-Iliopoulos terms in supergravity and cosmological N =1 supergravity and new FI terms in superconformal
applications, Eur. Phys. J. C 80, 346 (2020). tensor calculus (to be published).

[71 D.Z. Freedman and A. Van Proeyen, Supergravity [10] T. Kugo, R. Yokokura, and K. Yoshioka, Component
(Cambridge University Press, Cambridge, England, 2012). versus superspace approaches to D=4, N =1 con-

[8] S. Ferrara, R. Kallosh, A. V. Proyen, and T. Wrase, Linear formal supergravity, Prog. Theor. Exp. Phys. (2016),
versus non-linear supersymmetry, in general, J. High Energy 073B07.

Phys. 04 (2016) 065.

025008-9


https://doi.org/10.1140/epjc/s10052-020-7912-z
https://doi.org/10.1007/JHEP04(2016)065
https://doi.org/10.1007/JHEP04(2016)065
https://doi.org/10.1093/ptep/ptw090
https://doi.org/10.1093/ptep/ptw090

