Give MPI Threading a Fair Chance:
A Study of Multithreaded MPI Designs

Thananon Patinyasakdikul*, David Eberius*, George Bosilca* and Nathan Hjelm'
*University of Tennessee
Knoxville, TN 37921
TUniversity of New Mexico
Albuquerque, NM 87106

Abstract—The Message Passing Interface (MPI) has been
one of the most prominent programming paradigms in high-
performance computing (HPC) for the past decade. Lately, with
changes in modern hardware leading to a drastic increase in
the number of processor cores, developers of parallel appli-
cations are moving toward more integrated parallel program-
ming paradigms, where MPI is used along with other, possibly
node-level, programming paradigms, or MPI+X. MPI+threads
emerged as one of the favorite choices in HPC community,
according to a survey of the HPC community. However, threading
support in MPI comes with many compromises to the overall per-
formance delivered, and, therefore, its adoption is compromised.

This paper studies in depth the MPI multi-threaded imple-
mentation design in one of the leading MPI implementations,
Open MPI, and expose some of the shortcomings of the current
design. We propose, implement, and evaluate a new design of the
internal handling of communication progress which allows for a
significant boost in multi-threading performance, increasing the
viability of MPI in the MPI+X programming paradigm.

Keywords—message passing, threads, hybrid MPI+threads

I. INTRODUCTION

The Message Passing Interface (MPI) is nearly ubiqui-
tous in HPC (according to [1] more than 90% of Esascale
Computing Project [ECP] and ATDM application proposals
use it either directly or indirectly). Therefore, the availability
of high-quality, high-performance, and highly scalable MPI
implementations which address the needs of applications and
the challenges of novel hardware architectures is fundamental
for the performance and scalability of parallel applications.

The MPI standard provides an efficient and portable
communication-centric application programming interface
(API) that defines a variety of capabilities to handle different
types of data movements across processes, such as point-to-
point messaging, collective communication, one-sided remote
memory access (RMA), and file support (MPI-10) [2]. This
ensemble of communication capabilities gives applications a
toolbox for satisfying complex and irregular communication
needs in a setup that maintains portability and performance
across different hardware architectures and operating systems.
Owing to these characteristics, many scientific applications
have adopted MPI as their communication engine and, there-
fore, rely on the efficiency of the MPI implementation to
maximize the performance of their applications.

Recent hardware developments toward heavily threaded

architectures have shifted the balance of computation vs.

978-1-7281-4734-5/19/$31.00 ©2019 IEEE

communication in favor of computations, which have become
faster and more energy efficient. Over the last decade alone
theoretical node-level compute power have increased 19X,
while bandwidth available to applications has seen an increase
by a factor of only 3%, resulting into a net decrease for byte
per floating-point operation (FLOP) of 6x [3]. An increased
rate of computations needs to be sustained by a matching
increase in memory bandwidth, but physical constraints set
hard limits on the latency and bandwidth of data transfers. The
current solution to overcome these limitations has increased
the number of memory hierarchies, with orders of magnitude
variation in cost and performance between them. Essentially,
current architectures represent execution environments where
data movements are the most performance-critical and energy-
critical components. This shift has greatly impacted the tradi-
tional programming approach where each computational core
corresponds to a unique process, and all data movement,
including at the node level, passes through a message passing
layer. As the intra-node inter-process communication costs
started to rise, efforts began to move applications toward a
more dynamic and/or flexible programming paradigm.

While communication libraries can be improved, using a
combination of processes and threads provides an approach
that is capable of better relieving the pressure on the memory
infrastructure, as there is no explicit communication between
threads in the same process. However, while the use of
multiple threads to alleviate intra-node data movement seems
like a reasonable approach, this generates an entire set of new
challenges, both at the programmability level and at the com-
munication level. Threads behave better when they are loosely
coupled, but more flexibility translates into reduced ordering
between actions in different threads, including communication.
Out-of-order communication is a chronic symptom of lack
of send determinism in applications [4], and an epitome of
out-of-sequence or unexpected messages. In a communication
paradigm other than MPI, this could be a minor issue (as an
example, in an Active Message [5] context), but the MPI API
was designed with a different set of requirements in mind and
is not necessarily compatible with such usage.

Current communication libraries struggle to efficiently sup-
port a large number of concurrent communications, imposing
artificial limitations on the latency and the injection rate of
messages. With that in mind, we propose in this paper several

strategies to enhance MPI’s performance in multi-threaded
environments through an increased level of concurrency—for
one-sided and two-sided communications—for communication
progress and for message matching. We discuss our designs
and implementation in section III and evaluate it with the Mul-
tirate benchmark [6] and a multi-threaded RMA benchmark [7]
[8], along with the information from MPI’s internal software
counter [9] in section IV.

II. BACKGROUND

In this section we provide a high-level background of
important internal MPI operations for handling user-level
communications for interacting with the hardware and the
overall design of MPI in multi-threaded environments.

A. MPI Threading Level

The MPI-3.1 standard [2] provides four levels of threading
support. During MPI initialization, more precisely during
MPI_Init_thread, users can marshal with the MPI implementa-
tion the desired thread level for the application. However, most
MPI implementations only provide thread-protection when the
user initializes MPI with MPI_THREAD_MULTIPLE as it is
the only mode that allows thread concurrency, which is the
focus of this study.

B. Progress Engine

The progress engine is not a requirement from the MPI
standard, but most MPI implementations adopted this scheme.
From a high-level perspective, the MPI progress engine is
the component that ensures communication progress, either
by moving bytes across the hardware, ensuring the expected
message matching, or guaranteeing MPT’s first-in, first-out
(FIFO) message order requirement. From an implementation
perspective, the progress engine is the central place where
every component in an MPI implementation registers its
progressing routine—such as polling for incoming messages,
processing pending outgoing messages, including messages for
collective operations, or reporting completion to the user level.

As the MPI standard does not provide an API for explicitly
progressing messaging, calls into the MPI progress engine
occur under the hood during calls to other MPI routines.
The decision to enter the progress engine or not on a given
MPI function call is up to the MPI implementation, with the
exception of blocking routines such as MPI_Send, MPI_Recv
or MPI_Wait where message progression, at least related to
the operation itself, is mandatory.

The main purpose of the progress engine is to give the MPI
implementation the opportunity to check for message comple-
tion events from the network, and to ensure timely progress
on non-blocking communications. MPI usually reads entries
from the completion queues (CQs) for completion events
on a particular network endpoint. Completion events can be
from both incoming and outgoing messages. In the case of
outgoing message completion, MPI marks the corresponding
send request as completed, and doing so might release the user
from a blocking call such as MPI_Send.

C. Matching Process

The matching engine is another important piece of an
MPI implementation for handling incoming messages, as it
is responsible for the correct matching of sends and receives.
For single-threaded applications, the MPI standard offers the
guarantee that all messages between a source and destination
pair on the same MPI communicator are matched in a non-
overtaking manner, ensuring that the send order is the match-
ing order (or a FIFO ordering). This simplifies the semantics
as it ensures that, in single-threaded applications, messages
are always delivered in each communicator in a deterministic
order. However, at the network level the story is different, as
for performance and routing reasons networks do not provide
any ordering guarantee by default and the messages might
be delivered in an arbitrary order. This requires the MPI
library to implement a software solution to provide users with
the required message ordering guarantee. For multi-threaded
usage, the MPI standard only guarantees message ordering
within a single thread. Messages sent from different threads
are only guaranteed to happen in some serialized order, as
MPI communications, even blocking, are not synchronizing.

The algorithms to provide message ordering may be differ-
ent for each MPI implementation, but they share a common
approach: generate a sequence number for each message and
pack it within the message header. To simplify management,
this sequence number is generally per peer, per communicator.
The receiver extracts the sequence number from the incoming
header and uses it to ensure messages are processed in the
same order they were sent. Any message arriving out-of-
sequence needs to be saved for matching at a later time
when that message sequence number is called for. The im-
plementation has to allocate the necessary memory to store
the out-of-sequence messages, making this operation more
costly. Luckily, in a single-threaded scenario, the occurrence
is usually rare, and therefore the cost is negligible. However,
this is not the case for multi-threaded MPIL. In the scenario—
with multiple threads concurrently sending messages on the
same communicator to the same destination MPI process—
given the nature of their non-deterministic behavior, threads
can easily compete and send the messages out of order. With
more likelihood of out-of-sequence messages, multi-threaded
MPI could suffer significant performance degradation as the
number of threads increases due to increased stress on the
matching process.

After the MPI implementation successfully validates the
sequence number of an incoming message, the message is
matched against a queue of the user’s posted receives. This
code region is a critical section and must be protected with a
lock in a multi-thread scenario to prevent concurrent access
to the queue. For example, races can occur when threads
are simultaneously posting receives; or when a thread adds
a request to the posted receive queue while another thread is
in the progress engine, trying to match an incoming message
with a request on the same queue.

D. Remote Memory Access

In addition to two-sided communication the MPI-3.1 stan-
dard provides support for one-sided (RMA) communication.
This support allows an MPI implementation to directly expose
hardware Remote Direct Memory Access (RDMA), a feature
which is present on some high-performance networks (e.g.,
Infiniband and Cray Aries). This allows the MPI implemen-
tation to offload communication directly to the hardware. In
addition, the one-sided model separates communication (data
movement) from the synchronization (completion). There is no
need for any explicit matching for one-sided communication
removing a potential multi-threaded bottleneck. This makes
RMA well suited for multi-threaded applications.

The current MPI 3.1 standard provides support for three
different types of one-sided communication operations: put
(remote write), get (remote read), and accumulate (remote
atomic); and support for two classes of synchronization:
active-target (fence, post-start-complete-wait), and passive-
target (lock, flush). Active-target requires the target MPI pro-
cess of an RMA operation to participate in the synchronization
of the window. It is not well suited for multi-threaded appli-
cations as all synchronization needs to be funneled through a
single thread. Passive-target flush, on the other hand, does not
require the target of an RMA operation to participate in either
the communication or synchronization and allows for concur-
rent synchronization. For this study we focus exclusively on
the passive-target mode (MPI_Win_flush).

III. DESIGN AND IMPLEMENTATION
A. Resource Allocation

One major difference between using multiple MPI processes
versus a single MPI process with multiple threads is the re-
sources allocated for MPI operations. Resources such as buffer
pools, network contexts and endpoints, or completion queues
(CQs) are generally created per MPI process. In the process-
to-process communication model, with this single producer—
single consumer relationship, resource contention is limited.
In the case of multiple threads in the same MPI process,
these resources have to be protected, as concurrent access to a
resource may not be supported or create race conditions that
could compromise the correctness of the communication—or
even corrupt the state of the MPI library. At the same time,
this protection adds an extra cost to the operation and often
increases with the number of concurrent threads.

B. Communication Resources Instance

There are a variety of critical internal MPI resources that
must be protected in a multi-threaded environment, such as
the network endpoints, network contexts, and CQs. In existing
MPI implementations, a single network context is typically
created per MPI process and a single network endpoint per
source/destination pair. The CQ is usually attached to the
network context to store completion events. For multi-threaded
MPI, access to both network contexts and their CQs may have
to be protected, thus creating a potential bottleneck.

To give multi-threaded MPI a fair chance, more resources
need to be allocated for the entire MPI process. We use
the concept of a Communication Resources Instance (CRI)
to encompass resources such as network contexts, network
endpoints, and CQs with per-instance level of protection to
perform communication operations. The MPI implementation
can allocate multiple CRIs internally for multi-threaded needs.

Currently, there is no interoperability between threading
frameworks such as POSIX threads and MPI; therefore, the
MPI implementation does not have a standardized way to
get the number of threads that will be used for MPI com-
munication from the application. Thus, it is challenging for
the implementation to assess the proper number of CRIs to
allocate. That being said, an implementation can provide the
user with a way to give a hint via environment variable(s),
MPI info key(s), or other means (MCA parameters [10] for
Open MPI [11] or the new MPI control variables MPI_T_cvar)
to let the implementation know how many threads the ap-
plication intend to use for concurrent MPI operations. The
implementation can then allocate the CRIs accordingly. In our
implementation, MPI allocates a set of CRIs into a resource
pool and creates a centralized body to assign the allocated
instances to threads.

Ideally, there should be at least a one-to-one thread to
CRI mapping to completely eliminate the potential for lock
contention. However, in some cases external constraints limit
the capability of creating CRIs. As an example, the Cray
Aries network devices have a hardware limit on the number
of network contexts users can create, so the design must also
accommodate for cases where the number of CRIs is less than
the number of threads.

Giving more resources to the threads might not be suffi-
cient to increase communication performance for two-sided
communication as the MPI implementation still serializes the
calls to both the send operation and progress engine to prevent
any potential race conditions. In order to benefit from more
available resources, both the send and receive paths have to
be redesigned to allow for more parallelism while maintaining
thread safety and continuing to ensure the expected matching
semantic.

C. Try-Lock Semantics

Using locks to protect critical resources is one of the
simplest and most popular approaches to ensure thread safety
for critical sections. These locks act as a funnel when multiple
threads are going through the same code path, as lock con-
tention will cause threads to block. In some cases, especially
when the critical section is only performance critical (not
correctness critical), we can mitigate the funneling effect by
using try-lock semantics, a non-blocking version of lock,
where the lock acquisition returns immediately if it fails to
acquire the lock.

Try-lock semantics provide more opportunities for paral-
lelism. When the lock is already taken, we can be certain that
a thread is progressing that particular code path, and therefore,
the current thread can move on and try to pick up another code

Algorithm 1 Utilizing multiple CRIs to allow concurrent
sends.
1: function INIT
for i <+ 1, NumlInstances do
instance[i] + CREATE-INSTANCE()

w N

4: function SEND(msg)

5: k < GET-INSTANCE-ID()

6: LOCK(instancelk] — lock)

7 NETWORKSEND(instance[k], msg)
8 UNLOCK(instance[k] — lock)

9: function GET-INSTANCE-ID—ROUND-ROBIN

10: static current_id < 0

11: ret = current_id

12: current_id < current_id + 1

13: return (ret mod numliInstances)

14: function GET-INSTANCE-ID-DEDICATED

15: static thread_local my_id < unde fined

16: if my_id is defined then

17: return my_id

18: else

19: my_id <~ GET-INSTANCE-ID()—~ROUND-ROBIN
20: return my_id

path to execute, or become a helper thread and complete other
menial work.

In the following subsections, we describe how we leverage
try-lock semantics along with the communication resources
instances (we will further refer to them as CRIs or instances”
in the following sections) to alleviate resource contention from
MPTI’s internal receive path.

D. Concurrent Sends

For the MPI implementation to perform a send operation,
it needs access to a network endpoint. In the multi-threaded
case, the implementation usually protects the network context
with a lock. In our design, the network context is associated
with a CRI along with other resources, allowing us to move
the protection down the software stack, basically from per-
endpoint to per-instance. This move leads not only to finer
grains locks but also to an increased parallelism in the
communication infrastructure, allowing multiple threads to
perform send operations simultaneously on different instances.
Optimally assigning a CRI to a thread is a difficult question,
and we focus on evaluating two strategies: round-robin and
dedicated (Algorithm 1).

1) Round-Robin Assignment: In this strategy, every time
a thread needs to communicate, it first acquires a CRI. The
MPI implementation assigns an instance for a single use in
a first-come, first-served manner, supported by the use of a
circular array. Once the last available instance is assigned, the
implementation will recycle the instances and then give out the

Algorithm 2 Dedicated instance assignment to give priority to
the thread assigned instance before trying to progress others,
ensuring eventual progress for every instance.

1: function COMMUNICATION PROGRESS

2: count < 0

3: k < GET-INSTANCE-ID()—DEDICATED

4: if trylock — instancelk].lock = success then

5: progress instance|[k)]

6: count < number of completions

7: unlock — instance[k].lock

8: if count = 0 then

9: for i + 1, NumInstances do

10: k < GET-INSTANCE-ID()-ROUND-ROBIN
11: if trylock — instance[k].lock = success then
12: progress instance|k]

13: count <— number of completions

14: unlock — instancelk].lock

15: if count > 0 then

16: return

first instance again. This approach eliminate the possibility of
lock contention by assigning a different instance for every call,
in exchange of a cheaper, atomic operation. It also improves
load balancing by distributing the communication work among
the allocated instances.

2) Dedicated Assignment: To permanently assign a CRI to
a thread, MPI can utilize thread-local storage (TLS), provided
either by the threading library (e.g., POSIX threads) or the
programming language (e.g., C11, C++11). This approach
can only be implemented when the system or the compiler
supports TLS, a pretty standard feature nowadays. In our
implementation we use the native compiler support either
from C11 or the GNU Compiler Collection (GCC). When
checking for a CRI to use, the implementation can check
if an instance information is stored in TLS. If not, it can
assign an instance with a round-robin assignment and save
the instance information in the TLS. With the dedicated
assignment strategy, there is no possibility of lock contention
on the instance as long as the number of threads is lower than
or equal to the number of instances allocated. If not, some
communicating threads might share the same instance and then
introduce lock contention if they simultaneously communicate.

E. Concurrent Progress

Traditionally, Open MPI serializes calls into the progress
engine, allowing only a single thread to progress communi-
cations. Such a coarse-grained protection under-utilizes the
available thread parallelism, and limits the rate of message
extraction to the power of a single thread. To allow threads to
extract messages concurrently, we removed the serialization
from the progress engine and exploited our instance-level
protection to provide the required thread safety instead.

it

{
N2 1

’ Progress ‘ ’ Progress ‘
L
[Match] [Match]

Fig. 1: Matching process is still a serial operation and become
a major roadblock for multi-threaded MPI. Serial progress
(left), Concurrent Progress with multiple CRIs effectively
move the bottleneck to the matching process (right)

The progress engine also suffers from the lack of threading
information in MPI. When a thread makes a call into the
progress engine, it requires an instance to progress. We utilize
the same centralized body as for concurrent sends to assign an
instance to a thread. The strategies to choose which instance to
progress are similar to how we choose the instance for the send
path—namely, Round-robin and Dedicated (Section III-D).

For the Dedicated strategy, with a permanent instance as-
signed to each thread, a few issues need to be addressed. First,
the MPI implementation has to make sure that it progresses
every allocated CRI to prevent deadlock scenarios where
message completion is generated in an instance that is not
progressed by the associated thread. Second, the user might
destroy the thread and create orphaned CRIs that cannot be
reused by other threads. To overcome this limitation, we have
each thread try to progress their dedicated instance first, and,
if there is no completion event, move on to try progressing
other instances. This design will guarantee that every instance
will eventually get progressed while still maintaining the
optimization benefit from TLS.

Furthermore, the try-lock semantics on the instances become
a valuable weapon to the efficiency of concurrent progress
design (Algorithm 2). If a thread fails to acquire the lock for
an instance, it assumes that another thread is progressing that
particular instance, and the current thread can try to pick up
another instance to progress or return.

F. Concurrent Matching

The matching process is possibly the only strictly serial
operation in the MPI two-sided communication. By changing
from a serial progress to a concurrent progress engine, we
effectively move the bottleneck to the matching process. As
long as the matching process cannot be performed in parallel,
it will be challenging to get optimal performance from multi-
threaded MPI (Figure 1), as there will always be a protected
section in the message reception critical path.

The current message matching design from state-of-the-
art, open-source MPI implementations such as MPICH and
Open MPI drastically differ. Even in the context of the
same MPI implementation, the matching infrastructure can
be different depending on the network used (Portals provides

Node 0

Node 0 Node 1

Node 0 Node 1

Fig. 2: Different modes of operations in Multirate—Pairwise
benchmark binding CPU cores to communication entities.

hardware matching), the hardware capabilities (AVX provides
opportunities for vector matching) and the configured software
stack. As an example, Open MPI supports multiple methods
for matching, going from hardware matching when available,
to a single global queue when using the UCX PML; to a
vector fuzzy-matching single global queue [12]; and finally
to the default, more decentralized matching in the OB1 PML
(with a matching queue per process per communicator with
special arrangements for MPI_ANY_SOURCE that has the
potential to minimize the contention lock for communications
not between the same peers in the same communicator).

A study of optimized or parallel matching is not within
the scope of this paper. For this study, we will show the
potential of concurrent matching by utilizing OB1, a point-to-
point matching layer (PML) component designed to perform
the matching process per MPI communicator instead of glob-
ally. We can then simulate the concurrent matching process
by creating multiple communicators and allowing threads to
perform unhindered matching in parallel. While this approach
might not be practical for some real-world applications, it is
sufficient to demonstrate the potential of multi-threaded MPL

IV. EXPERIMENTS

Most of the design strategies described in this paper are
generic, and can be applied to different MPI implementations.
To assess their benefit and potential performance impact we
implemented them in Open MPI, by taking advantage of the
Open MPI modular design [13], and utilizing the OB1 point-
to-point messaging component (pml/OB1) in conjunction with
the uct (for Infiniband networks) and ugni (for Aries networks)
Byte Transport Layer (BTL) components (btl/uct), which were
updated to use multiple CRIs. We also modified the Open MPI
progress engine (opal_progress) to allow multiple threads in
the progress engine.

To gain low-level insights into the different statistics re-
lated to the communication engine, we took advantage of
Open MPI’s built-in Software-based Performance Counters
(SPCs) [9] to expose internal MPI information with low
overhead. SPCs offer a variety of measurements from the MPI
level, such as the number of messages sent/received as well as
MPI internal information, such as the number of unexpected or

TABLE I: Testbeds configuration.

Alembert Trinitite

Processor Dual 10-core Intel Xeon Dual 16-core Intel Xeon
E5-2650 v3 @2.3 Ghz E5-2698 v3 @2.3 Ghz
Haswell Haswell

Main Memory 64GB DDR4 128GB DDR4

Interconnect InfiniBand EDR (100 Cray Aries (100 Gbps)
Gbps)

oS Scientific Linux 7.3 Cray Suse Linux

Compiler GCC 8.3.0 GCC 8.3.0

out-of-sequence messages, the cost of matching, or the length
of the matching queues. For this study, we focus on two of
these counters: the number of out-of-sequence messages and
the total matching time.

To evaluate the impact of each strategy presented in this
paper, we measure the message rate with the Multirate bench-
mark [6] in pairwise pattern for two-sided communication, and
use the RMA-MT benchmark [14] for one-sided communica-
tion. We have run several hundred experiments and report in
all instances the mean and the standard deviation in the figures,
which should be noted is consistently very small.

Multirate—pairwise spawns pairs of communication entities
which can be mapped to either an MPI process or a single
thread to perform communication simultaneously (Figure 2).
For two-sided communication experiments, we perform zero
byte communications as they allows us to capture only the
cost of the message envelope. Open MPI sends necessary
matching information to be matched on the receiver side
without any payload (the size of this matching header is small
in Open MPI, around 28 bytes).

RMA-MT is a benchmark developed at Sandia National Lab
(SNL) and Los Alamos National Laboratory (LANL) to stress-
test an MPI implementation under a heavy multi-threaded
Remote Memory Access (RMA) workload. The experimental
testbeds specifications are presented in Table I, and are Alem-
bert from the University of Tennessee (IV-A through IV-E)
and LANL’s Trinitite clusters (IV-F).

A. Concurrent Sends

Figure 3a demonstrates the effect of allocating additional
internal resources, CRIs. We use the original design, which
serializes progress and therefore only allows a single thread to
perform the network extraction at a time. By only introducing
changes on the sender side, these experiments demonstrate
the impact of increasing resource availability, thus decreasing
contention on the send path. This allows multiple threads
to reach the lowest network level simultaneously, each in a
different context, and to technically perform send operations
concurrently. We employ the two strategies described in Sec-
tion III-D to assign an instance to a thread: round-robin and
dedicated presented by solid and dashed lines, respectively.
Each color represents a different number of instances allocated
for the experiment.

The red lines represent the base performance—the original
multi-threading support in Open MPI—with a single instance

shared between all threads. The impact of contention on
the shared resource become visible very early, starting as
soon as 2 threads. The scenario under investigation here is
very demanding. As the only payload is the MPI matching
envelope, threads sharing the same instance will continously
fight for the same protection lock, and the lock will therefore
always be contested.

Ideally, a one-to-one mapping from a thread to an instance
should be the starting point to maximize the performance as,
if handled correctly, even when all threads use the network
there can be no contention on any instances. We achieve this
scenario by employing the Dedicated strategy on this experi-
ment, represented by the blue-dashed line (with 20 threads, 20
instances). Just by increasing the number of instances we can
achieve a performance gain of up to 100% compared to our
original case. If we reduce the number of instances to 10, we
see a small performance drop after going over 10 threads as
the threads start sharing the instances, thus introducing some
congestion (green-dashed line).

Although the round-robin strategy (solid lines) does not give
the best performance, it significantly softens the effect of the
congestion by evenly spreading the CRIs among threads, thus
reducing the lock congestion. It is still a viable strategy when
Dedicated cannot be implemented due to lack of compiler
support on the platform.

The performance metrics obtained from SPC are presented
along with Figure 3 in Table II. Due to the space constraints,
we only present the information from the last data point from
the best result of each figure, at 20 thread pairs, 20 instances
with Dedicated assignment strategy. In general, for serial
progress, the SPCs show similar numbers of out-of-sequence
messages (up to 90%) with similar time spent in matching.

B. Concurrent Progress

Figure 3b presents the performance impact from concurrent
progress. The difference from the above experiment is the
concurrent progress, which basically allows multiple threads
to execute the progress engine simultaneously.

Concurrent progress hinders the performance instead of
boosting it, even with increased parallelism (Figure 3b). The
results show a funneling effect as the number of threads
increases, regardless of number of instances or the assignment
strategy, just as expected. The potential parallelism from con-
current progress is restricted by the next step in the execution
path, the matching, and cannot boosts the performance as
long as the matching process remains a serial operation; the
approach effectively moves the bottleneck from the progress
engine to the matching process (Figure 1).

The SPC information from Table II reveals that the MPI
implementation is spending up to 300% more time in matching
compared to our earlier experiment, which is consistent with
our expectations.

C. Concurrent Matching

We relax the constraints on the matching to improve upon
the previous case. To simulate a concurrent matching process,

Serial Progress Concurrent Progress Concurrent Progress + Concurrent Matching

T
3M i 3M) mode 3M WP EPRPRPOE T
A %) aopck @
2Mf | 2M— - round-robin 2M : bt T S
% 3 1 \ -+ dedicated 1. 3
2 g g =1
g w2 ' 1ud . 1M o
S 8§M Shchiaca l 98 M b T Number of instances 8§ M =4 1
Q 1 . & 3 3
g osm > "‘“N-JQN‘QVT gel 5 1 06M 26 1
05M 1 Nas . | S - 10 05M 1
& 04M T \.—4}\: 04M * 20 04M 1
3 03M 1 03M 03M 1
[%2]
2 o2m 1 02M %% 02M 1
2 . b B ey
1 SR EEa 1
1 ' 1
0.1 M 1 0.1 M 0.1 M 1
0 5 10 15 20 0 5 15 20 0 5 10 15 20

10
Number of thread pairs

() (b (©

Fig. 3: Zero byte message rate on different strategies.

TABLE II: Software Performance Counters information from last data point of the experiment in Figure 3.
(20 thread pairs, Dedicated assignment, total messages = 2,585,600)

Serial Progress Concurrent Progress Concurrent Progress + Matching

Number of instances 1 10 20 1 10 20 1 10 20
Out-of-sequence messages 2,154,493 2,323,003 2,225,190 2,375,922 2,425,818 2,420,660 15,188 45 0

Out-of-sequence (%) 83.32% 89.98% 86.08% 91.89% 93.82% 93.62% 0.59% =~ 0% 0%
Match time (ms) 2,732 2,622 2,738 8,553 7,944 8,069 476 430 389

we create multiple communicators and take advantage of
the matching logic in the OB1 PML, with matching queues
private to each communicator. Since the pml/OB1 component
in Open MPI performs matching per-communicator, this ef-
fectively provides support for concurrent matching.

Multirate—pairwise provides an option to assign a commu-
nicator per each pair of communicating threads. With a unique
communicator per thread pair along with concurrent sends and
concurrent progress, this part of the experiment represents
the multi-threaded performance when the contention in the
matching process is minimal.

Figure 3c highlights a major increase in the message rate
for all strategies. Even the round-robin assignment (solid lines)
shows performance improvement with the number of threads,
a completely different outcome from our earlier experiments.
The instance assignment strategy seems to perform well even
after the number of threads is greater than the number of
instances. For this strategy, messages from the same commu-
nicator can be sent out from different instances. There are
chances that the receiver—as their threads extract the mes-
sages simultaneously from multiple instances—will perform
matching on the messages from the same communicator and
introduce some congestion (Figure 1).

Dedicated assignment gives the best performance as each
thread always uses the same network instance in addition to
using the same communicator (dashed lines). The blue dashed
line represents an ideal scenario with one-to-one mapping from
thread to CRI to communicator. The performance scales with
the number of threads but drops once the number of threads
is large, suggesting other bottlenecks not yet identified. The
green dashed line shows the same performance scaling until
the threads have to share instances (at 11 threads and over)

before dropping off similarly to the blue dashed line.

The information from the SPCs also shows a drastic im-
provement over earlier experiments as the number of out-of-
sequence messages drops significantly after introducing more
instances. The match time is minimal, as there is a guarantee
for no contention on both the instance and the matching
process. While this approach could be implemented in a cus-
tomized benchmark, using dedicated communicators for each
communication thread pair might not be practical for most
applications. Nonetheless, this experiment successfully shows
that the major bottleneck for multi-threaded MPI currently
resides in the matching process contention.

D. Message Overtaking

We can break the matching process into two parts: se-
quence number validation, and the queue search to match
messages with MPI requests. As explained earlier, out-of-
sequence messages force the MPI implementation to allocate
memory to buffer the message for processing later, which is
a costly operation right in the middle of the critical path. It
is possible to relax the matching order requirement in MPI,
which translate to ignoring the sequence number validation,
by providing the MPI info key mpi_assert_allow_overtaking
to the communicator, allowing MPI to therefore immediately
match every incoming message. This info key is not novel, it
has been intensely discussed in the MPI Forum, and has been
approved for inclusion in the next version of the MPI standard.
This study can serve as a further validation of the usefulness
of this info key in threaded scenarios.

Allowing the MPI implementation to match every incoming
message immediately will lead to high stress on the queue
search. When using multiple tags, the queue search is a linear
operation where the cost increases with the queue length.

Serial progress
T

Concurrent progress

Concurrent progress + Concurrent Matching

T
3M i 3M | mode 3M i
1 . I -+ round-robin YIS & & T Ivem
— A ; SEe L IT
2 Ll ! v I |-+ dedicated oM 3 LSRN -
3 1 | \ | | iz,
g g . |3 3 T o
e L SN 1 1 | Number of instances 1 ﬁ}r-.
2 LAY Ty Ty Y 1 1 ¥
5 - r] “
c h) : I =10 "M/:M
® st i<} ™ .. ' =il
9 1M s<pATE 1 N 20 ™ t I
3 ! B i 08M s 1)/ !
2 0.8M . I Ty A s 0.8M g
3 A 2 T \ " #
= o7m ! 07M X A 5 = orwl L/ !
0.6M NG Il L oF2a.ar-ba hd
0.6 M i NS i S ey T 0.6 M :
0.5M I 0.5M 1 0.5M 1
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Number of thread pairs
(@) (b) (©

Fig. 4: Zero byte message rate when the message ordering is not enforced.

When a message is matched out of sequence, the average
time to search the queue is increased because the request
associated with the message might be at the end of the
queue. To fully reap the benefits of message overtaking, we
modify Multirate—pairwise to post the receive with a wildcard
tag (MPI_ANY_TAG) to force the implementation to always
match the incoming message with the first posted receive
request, skipping the queue search entirely.

This experiment represents the multi-threaded MPI perfor-
mance if the matching process cost is minimal. We perform
the same set of experiments from earlier with our tweak and
demonstrate the result in Figure 4. If we take a look at the
serial progress performance (Figure 4a), for a single instance
(red lines), we can still see that increasing the number of
instances helps in giving some performance boost from the
sender side. The message rate flattens out around 500K msg/s
and remains unchanged with an increasing number of threads,
similarly with our earlier experiment (Figure 3a). This suggests
that the source of performance degradation in multi-thread
MPI is mostly from the matching process.

Although concurrent progress still shows the same perfor-
mance drop from matching congestion where multiple threads
try to acquire the matching lock, the message rate still flattens
out around the same point as serial progress (Figure 4b). While
in the last case, with both concurrent progress and concurrent
matching (Figure 4c), removing the ordering does not affect
the performance because the matching process for this strategy,
based on MPI_ANY_TAG, is already optimal.

E. Current State of MPI Threading

In this section, we compare our proposed strategies and
with different state-of-the-art MPI implementations on the
same configuration of Multirate—pairwise. To get a better
understanding of where the threaded performances are over-
all, we also compare with the process-based mode, where
communications—instead of happening between threads—
now happen between processes placed on the same nodes as
the original threads. Ideally, running on the same hardware
with the same communication pattern should yield similar
performance, regardless of whether processes or threads are
used. Unfortunately, as we demonstrated in Figure 5, at the

Pairwise 0 bytes, window size = 128, Alembert

10 M+

Message rate/s

S

10 20

Number of communication pairs

MPICH Process
MPICH Thread

-- OMPI Process -= OMPI Thread + CRIs -e- IMPI Process
- OMPI Thread -e: OMPI Thread + CRIs* - IMPI Thread

Fig. 5: Zero byte message rate from different state-of-the-art
MPI implementations shows disparity between two mode of
operations along with our threading improvements. (Note: Log
scale on Y-axis.)

current stage of threading support in all MPI implementations,
we are far from this ideal scenario.

The MPI implementations presented in this experiment are
Intel MPI 2018.1 [15], MPICH 3.3 [16] and Open MPI
4.0.0 [11] with and without our modification. Each MPI
implementation was compiled with GCC 8.3.0 with proper
optimization flags (except for Intel MPI which is only available
as a pre-compiled binary from the vendor).

Figure 5 highlights, using a log-scale Y axis from multi-
thread standpoint, that there is little difference between MPI
implementations (dashed lines)—they all perform similarly
poorly. We observe roughly a 100% performance boost from
our base implementation by employing try-lock semantics

1 bytes 128 bytes 1024 bytes 4096 bytes 16384 bytes
30 M 30 M+ 30M 30 M 30 M progress_engine
20M 20 M 20 M 20 M 20 M — serial
- - concurrent
@ 10M 10 M+ 10M 10M 10M
? mode
£ single
2 - dedicated
o 3M 3 M- 3M Ee L e e e e e R 3M round-robin
g 2m{ 2M] i 2M 2M i |,
173 E 9
[}
Y ™ ™ ™ 1™
i il i HIE: i
0.5 M 05M 05M 05 M 0.5 M = =
04M 04M 04M 04M 04M
12 4 8 16 32 12 4 8 16 82 12 4 8 16 32 T2 4 8 16 32 12 4 8 16 82
Number of threads
Fig. 6: RMA-MT performance using MPI_Put and MPI_Win_flush on Haswell architecture
1 bytes 128 bytes 1024 bytes 4096 bytes 16384 bytes
30 M 30 M 30M 30 M 30 M progress_engine
20 M 20 M 20M 20 M 20 M — serial
10M 10 M 1o M-SR E 10M 10M - = concurrent
»
§> mode
g 3Mm 3 M 3M GMf=r=s=mrmrme = =| 3M single
© 2M 2 M 2M 2M == 2m 4 dedicated
=)
o 1M 1M M i M round-robin
So08M 0.8 M 0.8 M 0.8 M 08Mi s r=E =T =
T 06M| K 0.6 M+ 0.6 M 0.6M 0.6 M a5
S 04M 0.4 M- 0.4M 0.4M 0.4M /
=
02M 02M 02M 02M 02M
01M 0.1 M 0.1M 0.1M 01M
1 2 4 8 16 32 64 12 4 8 16 32 64 12 4 8 16 32 64 1 2 4 8 16 32 64 12 4 8 16 32 64

Number of threads

Fig. 7: RMA-MT performance using MPI_Put and MPI_Win_flush on KNL architecture.

with multiple CRIs (dark red), but these results should be
put in a larger context and compared with the process-to-
process performance. The black dotted line represents the CRI
injunction with concurrent progress and concurrent matching,
the most optimistic scenario for communicating threads. While
we do notice a significant boost in performance, up to 10x
compared with the base implementation, we still cannot reach
the same level of performance as the non-threading mode,
suggesting not yet identified bottlenecks for multi-thread MPIL.

F. RMA Performance

To test the performance of our implementation with one-
sided MPI, we ran experiments with the RMA-MT benchmark.
The experiments were run on the Trinitite system at LANL
using both Intel Knights Landing (KNL) and Haswell compute
nodes. Open MPI was configured to use the ugni BTL and
the RDMA one-sided component (osc). The ugni btl provides
support for multiple CRIs for one-sided communication only.
By default, the ugni btl will try to detect the number of
cores available to the MPI process and will attempt to create
one instance per available core. In the case of the RMA-MT
benchmark, this creates 32 instances on Haswell nodes and 72
instances on KNL nodes.

All tests were configured to bind each benchmark thread to a
dedicated CPU core (-x option). We ran the benchmarks from 1
to 32 threads on Haswell nodes, and 64 threads on KNL nodes,

using the MPI_Put operation (-o put) and MPI_Win_flush
synchronization (-s flush) with both round-robin and dedicated
assignment strategies. This benchmark spawns a user-specified
number of threads that for each message size perform 1000
put operations. The first thread then calls MPI_Win_sync to
synchronize the window. The results for both Haswell and
KNL architectures appear in Figures 6 and 7 where the black
horizontal line in each sub-figure represents the theoretical
peak message rate for that particular message size.

The results show that the performance when using dedi-
cated instances for threads (triangles) significantly outperforms
round-robin (square). The performance difference is similar
on both KNL and Haswell nodes. When using a dedicated
thread instance, the performance of the RMA-MT benchmark
scales almost perfectly with the number of threads. The single
instance performance (red) represents the performance before
support was added for multiple network instances, where the
performance drops with increasing numbers of threads due to
the lock contention on a single instance.

As expected, there appears to be little benefit from concur-
rent progress in this configuration (dashed lines), likely due
to the absence of involvement of the target process in one-
sided communications, which annul the need for concurrently
draining the network and matching the messages.

V. RELATED WORK

Many studies have been conducted investigating ways to
improve the efficiency of multi-threaded MPI. [17]-[19] pro-
posed several strategies to minimize locking for MPI internals
to mitigate the effect of lock contention, which becomes
one of the main performance bottlenecks for multi-threaded
MPI. The authors of [20] proposed software offloading to
avoid the lock entirely by having one dedicated communica-
tion thread, centralizing the MPI operations between threads
through a lock-less command queue. [21] [22] [23] [24]
investigate alternative thread vs. process approaches and the
use of shared memory mapping between MPI processes for
intra-node communications, circumventing the use of threads
and MPI_THREAD MULTIPLE and avoid the cost of thread
synchronization from MPI entirely.

In this study, we take advantage of the thread synchroniza-
tion object of Open MPI’s progress engine. Threads are bound
to the object with events, allowing threads to get notification
of event completion. Open MPI leverages the synchronization
object to reduce the lock contention in the progress engine,
similarly to the study of Dang et al., for MPICH [25].

Si et al. propose interoperability between the MPI and
OpenMP runtimes [26] [27] to fully utilize idle application-
level threads for MPI communications in many-core environ-
ments. Grant et al. studied an approach to aggregate small
messages from multiple threads into a larger buffer before
sending to peer to avoid the matching overhead incurred per
message [28].

There is interest in extending the MPI standard to allow
MPI users to create necessary communication endpoints to
enhance multi-threaded communication performance by giving
threads direct access to the hardware resources [29], [30].
These studies are somewhat similar to our work, but instead
of proposing a solution hidden in the MPI software stack,
they propose user-level solutions, a possibly more enticing
approach for power-users.

A previous study investigated the performance of the multi-
threaded RMA support in Open MPI when using multiple
device contexts [8]. That work, however, did not look at the
performance when binding network resources to threads. The
results of this study show that there are additional performance
benefits that can be achieved by dedicating a thread to a
particular resource.

VI. OPTIMIZATION SUGGESTIONS

In general, the MPI implementations could benefit from
allocating more resources for threads to allow them to op-
erate simultaneously. There are several strategies to assign
the resources to threads. Our experiments confirm that the
ideal approach is to have at least a one-to-one mapping
from thread to the resource (dedicated assignment), similar to
non-threading environments where each process has exclusive
access to its network resources.

For two-sided communication, the likelihood of out-of-
sequence messages increases with the number of threads,

putting tremendous stress on the receiver side’s matching pro-
cess. Using an MPI info key to allow message overtaking from
the application level might help in boosting the performance.
However, it might only be suitable for some categories of
application that do not rely on message ordering, such as task-
based runtimes.

The matching process remains one of the major bottlenecks
for two-sided communication, as it is a critical section that has
to be protected. This study further demonstrates the potential
of multi-threaded MPI if the matching process is parallelized,
but while it is possible to argue that all the protection
mechanisms can be optimized, it remains true that matching,
as imposed by the MPI standard, is inherently sequential.
Dropping the matching requirements for messages will either
move the MPI two-sided communications performance and
scalability toward one-sided communications—which come
with their own set of constraints—or push in the direction of
Active Messages, a field that has received little interest from
the MPI community as yet.

One-sided communication reaps the most benefit from more
allocated resources. Without matching process, the perfor-
mance does not suffer from the funneling effect on the
matching process serialization. Our experiment shows good
performance scaling with the number of threads. However,
one-sided communication imposes the burden of synchroniza-
tion and programming complexity on the users.

VII. CONCLUSION

With the hope to make MPI a more suitable communication
infrastructure for mixed programming paradigms (MPI+X),
we assessed the performance of two-sided communications
on several MPI implementations in a multi-threaded sce-
nario. Confronted with an abysmal performance gap between
threads-and processes-based communications, we proposed
several strategies to address this performance gap, and imple-
mented and evaluated them in the Open MPI library, looking
at their impact on both one- and two-sided communications.
While we implemented our proposed design in Open MPI, the
design is highly portable and can be easily adopted for other
MPI implementations. We have also proposed a few potential
additions to the MPI standard that would allow for better
threading support, topics we plan to continue to investigate
in the future.

Our optimizations are partially available in Open MPI
release version 4.0 and entirely in the master branch on the
official Open MPI GitHub repository.'

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. #1664142 and the Exas-
cale Computing Project (17-SC-20-SC), a collaborative effort
of the US Department of Energy Office of Science and the
National Nuclear Security Administration.

Uhttps://www.github.com/open-mpi/ompi

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

(13]

[14]
[15]

[16]

REFERENCES

D. E. Bernholdt, S. Boehm, G. Bosilca, M. G. Venkata, R. E. Grant,
T. Naughton, H. P. Pritchard, M. Schulz, and G. R. Vallee, “Ecp
milestone report a survey of mpi usage in the us exascale computing
project wbs 2.3. 1.11 open mpi for exascale (ompi-x)(formerly wbs 1.3.
1.13), milestone stpm13-1/st-pr-13-1000.”

M. P. I. Forum, MPI: A Message-Passing Interface Standard Version
3.1, June 2015, http://mpi-forum.org/.

S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun,
K. Wen, A. Rodrigues, and K. B. man, “Optical interconnects
for extreme scale computing systems,” Parallel Computing, vol. 64,
no. Supplement C, pp. 65 — 80, 2017, high-End Computing
for Next-Generation Scientific Discovery. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819117300170
A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Un-
coordinated checkpointing without domino effect for send-deterministic
mpi applications,” in 2011 IEEE International Parallel Distributed
Processing Symposium, May 2011, pp. 989-1000.

T. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schau ser, “Ac-
tive messages: a mechanism for integrated communication and compu
tation,” in Computer Architecture, 1992. Proceedings., The 19th Annual
Inte rnational Symposium on. 1EEE, 1992, pp. 256-266.

T. Patinyasakdikul, X. Lou, D. Eberius, and G. Bosilca, “Multirate: A
flexible mpi benchmark for fast assessment of multithreaded communi-
cation performance,” in Submitted to Proceedings of the 26th European
MPI Users’ Group Meeting, ser. EuroMPI °19, 2019.

M. G. FE. Dosanjh, T. Groves, R. E. Grant, R. Brightwell, and P. G.
Bridges, “Rma-mt: A benchmark suite for assessing mpi multi-threaded
rma performance,”’ in 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), May 2016, pp. 550-559.
N. Hjelm, M. G. F Dosanjh, R. E. Grant, T. Groves,
P. Bridges, and D. Arnold, “Improving mpi multi-threaded rma
communication performance,” in Proceedings of the 47th International
Conference on Parallel Processing, ser. ICPP 2018. New York,
NY, USA: ACM, 2018, pp. 58:1-58:11. [Online]. Available:
http://doi.acm.org/10.1145/3225058.3225114

D. Eberius, T. Patinyasakdikul, and G. Bosilca, “Using software-based
performance counters to expose low-level open mpi performance
information,” in Proceedings of the 24th European MPI Users’ Group
Meeting, ser. EuroMPI ’17. New York, NY, USA: ACM, 2017, pp. 7:1—
7:8. [Online]. Available: http://doi.acm.org/10.1145/3127024.3127039
J. Squyres, “Modular component architecture,” https://www.open-
mpi.org/papers/workshop-2006/mon_06_mca_part_1.pdf, [Online; ac-
cesed 21-March-2019].

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004, pp. 97-104.

W. Schonbein, M. G. F. Dosanjh, R. E. Grant, and P. G. Bridges,
“Measuring multithreaded message matching misery,” in Euro-Par 2018:
Farallel Processing, M. Aldinucci, L. Padovani, and M. Torquati, Eds.
Cham: Springer International Publishing, 2018, pp. 480—491.

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open mpi:
Goals, concept, and design of a next generation mpi implementation,”
in Recent Advances in Parallel Virtual Machine and Message Passing
Interface, D. Kranzlmiiller, P. Kacsuk, and J. Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 97-104.

[Online]. Available: https://github.com/hpc/rma-mt

“Intel mpi library software,” https://software.intel.com/en-us/mpi-library,
[Online; accesed 21-March-2019].

W. Gropp, “Mpich2: A new start for mpi implementations,” in
Proceedings of the 9th European PVYM/MPI Users’ Group Meeting on

(17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Recent Advances in Parallel Virtual Machine and Message Passing
Interface. London, UK, UK: Springer-Verlag, 2002, pp. 7—. [Online].
Available: http://dl.acm.org/citation.cfm?id=648139.749473

D. Goodell, P. Balaji, D. Buntinas, G. Dozsa, W. Gropp, S. Kumar,
B. R. d. Supinski, and R. Thakur, “Minimizing mpi resource contention
in multithreaded multicore environments,” in 2010 IEEE International
Conference on Cluster Computing, Sep. 2010, pp. 1-8.

P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur, “Toward
efficient support for multithreaded mpi communication,” in Proceedings
of the 15th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 120-129. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-87475-1_20

G. Dézsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
J. Ratterman, and R. Thakur, “Enabling concurrent multithreaded mpi
communication on multicore petascale systems,” in Recent Advances
in the Message Passing Interface, R. Keller, E. Gabriel, M. Resch, and
J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 11-20.

K. Vaidyanathan, D. D. Kalamkar, K. Pamnany, J. R. Hammond,
P. Balaji, D. Das, J. Park, and B. Jod, “Improving concurrency and asyn-
chrony in multithreaded mpi applications using software offloading,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2015, p. 30.
“Lockless performance.” [Online]. Available: https://locklessinc.com/
M. Si, A. J. Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa,
“Casper: An asynchronous progress model for mpi rma on many-core
architectures,” in 2015 IEEE International Parallel and Distributed
Processing Symposium. 1EEE, 2015, pp. 665-676.

M. Prache, P. Carribault, and H. Jourdren, “Mpc-mpi: An mpi
implementation reducing the overall memory consumption,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
Proceedings of the 16th European PVM/MPI Users Group Meeting
(EuroPVM/MPI 2009), ser. Lecture Notes in Computer Science,
M. Ropo, J. Westerholm, and J. Dongarra, Eds. Springer Berlin
Heidelberg, 2009, vol. 5759, pp. 94-103. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03770-2_16

A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa,
“Process-in-process: techniques for practical address-space sharing,” in
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 2018, pp. 131-143.

H. Dang, S. Seo, A. Amer, and P. Balaji, “Advanced thread synchroniza-
tion for multithreaded mpi implementations,” in 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), May 2017, pp. 314-324.

L. Dagum and R. Menon, “Openmp: An industry-standard api
for shared-memory programming,” I[EEE Comput. Sci. Eng.,
vol. 5, no. 1, 46-55, Jan. 1998. [Online]. Available:

https://doi.org/10.1109/99.660313

M. Si, A. Pefa, P. Balaji, M. Takagi, and Y. Ishikawa, “Mt-mpi:
multithreaded mpi for many-core environments,” in Proceedings of the
International Conference on Supercomputing, 06 2014.

R. Grant, A. Skjellum, and P. V Bangalore, “Lightweight threading
with mpi using persistent communications semantics,” in Workshop on
Exascale MPI 2015 held in conjunction with Supercomputing (SC15),
11 2015.

S. Sridharan, J. Dinan, and D. D. Kalamkar, “Enabling efficient multi-
threaded mpi communication through a library-based implementation of
mpi endpoints,” in SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
Nov 2014, pp. 487-498.

J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir, and
R. Thakur, “Enabling communication concurrency through flexible mpi
endpoints,” The International Journal of High Performance Computing

Applications, vol. 28, no. 4, pp. 390405, 2014.

