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transform B, coincides with the one introduced by the first
two authors.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. The classical Segal-Bargmann transform

This paper concerns a generalization of the Segal-Bargmann transform over compact-
type Lie groups, to allow the time parameter of the transform to be complex. We begin
by briefly discussing the history of the transform. For ¢t > 0 and d € N, let p; denote the
variance-t Gaussian density on R%:

|z

pe(z) = (2mt)~ Y2 exp <_§> .

This is the heat kernel on R?: the solution u of the heat equation dyu = LAu with
(sufficiently integrable) initial condition f is given in terms of p; by

ult,x) = (po * f) () = / o — ) () dy. (11)
Rd

The function p; admits an explicit entire analytic continuation to C?, which we call
(pt)c: it is simply the function
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(p)c(z) = (@nt) P exp (=757 ).

where z - z = Z?:l zJ2 If f € L (R?) and of sufficiently slow growth, then the integral

(Buf)(z) = / ()= — ) f(y) dy (1.2)

R4

converges and defines an entire holomorphic function on C<.

The map f — B;f is equivalent to the Segal-Bargmann transform, invented and
explored by the eponymous authors of [1,2,47-49]. Note that neither Segal nor Bargmann
explicitly connected the transform to the heat kernel, nor did they write the transform
precisely as in (1.2). Nevertheless, their transforms can easily be rewritten in the form
(1.2) by simple changes of variable; cf. [24].

We consider also the heat kernel on C? = R?¢ (with time-parameter rescaled by a
factor of 2), which we refer to as u;:

pe(2) = (mt) = exp(—[z[*/1).

(Note that the real, positive function j; on C? is not the same as the holomorphic
function (p;)c.) The main theorem about this transform is that B; is an isometric iso-
morphism from L?(R%, p;) onto HL?(C?, ;) — the space of holomorphic functions in
L?(C4, ). (For precisely this form of the theorem, see Theorem 6.3 in [24].) For more
information about the classical Segal-Bargmann transform, see, for example, [24,29].

1.2. The Segal-Bargmann transform for Lie groups of compact type

In [22], the second author introduced an analog of the Segal-Bargmann transform on
an arbitrary compact Lie group. Then, in [10], the first author extended the results of
[22] to a Lie group K of compact type (Section 2), a class that includes both compact
groups and RY. The idea of [22] and [10] is the same as in the R case: the heat kernel
pt on K has an entire analytic continuation (p;)c to the complezification K¢ of K. The
transform By is defined by the group convolution formula generalizing (1.2):

(Buf)(z) = / () (k) f(k) dk. (1.3)

K

The theorem is that By is an isometric isomorphism from L?(K, p;) onto the holomorphic
space HL?(Kc, i), where pi; is the (time-rescaled) heat kernel on K¢. If K = R, then
By is precisely the classical Segal-Bargmann transform of Section 1.1.

Later, in [14,23], the authors made a further generalization related to the time pa-
rameter ¢t. One can use a different time s # ¢ to measure the functions f in the domain,
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while still using the analytically continued heat kernel at time ¢ to define the transform,
as in (1.3). The resulting map,

Bs,t: LQ(Kv ps) — j{LQ([((CMMS,t)

is still an isometric isomorphism for an appropriate two-parameter heat kernel density
s, provided 0 < ¢ < 2s. Note that the formula for the transform B, ; does not depend
on s; this parameter only indicates the inner product to be used on the domain and
range spaces. In the special case that K = R¢, the two-parameter heat kernel density
s+ in the range is a Gaussian measure with different variances in the real and imaginary
directions. (Take u = 0 in (1.15) below.)

Remark 1.1. For a complex manifold M, let H(M) denote the space of holomorphic
functions on M. If u is a measure on M having a strictly positive, continuous density
with respect to the Lebesgue measure in each holomorphic local coordinate system, it is
not hard to show that HL?(M, u) := H(M) N L*(M, i) is a closed subspace of L*(M, )
and is therefore a Hilbert space. Furthermore, the pointwise evaluation map F — F(z)
is continuous for each z € M, and the norm of this functional is locally bounded as a
function of z. (See, for example, Theorem 3.2 and Corollary 3.3 in [11] or Theorem 2.2
in [24].)

1.3. The complex-time Segal-Bargmann transform

The topic of the present paper is a new generalization that modifies the transform
B+ as well; in particular, we show that the time parameter ¢ can also be extended
into the complex plane, and there is still an isomorphism between real and holomorphic
L? spaces of associated heat kernel measures. This generalization is natural and, in a
certain sense, a completion of Segal-Bargmann transform theory, as explained below.
(See Theorem 3.2. See also Section 1.5 for further motivation for this generalization.)

Let K be a connected compact-type Lie group with Lie algebra £, and fix an
Ad(K)-invariant inner product (-,-), on € (Section 2). This induces a bi-invariant Rie-
mannian metric on K, and an associated Laplace operator Ag, which is bi-invariant,
elliptic, and essentially self-adjoint in L?(K). There is an associated heat kernel,
pt € C (K, (0,00)), satisfying

(*<27) @) = [ ooy Df) k. forall f € LK) and >0, (1)
K

Our first theorem is that the heat kernel can be complexified in both space and time.

Theorem 1.2. Let K be a connected Lie group of compact type, with a given Ad(K)-invar-
iant inner product on its Lie algebra €, and let (pi)i>o be the associated heat kernel. Let
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C denote the right half-plane {T = t+iu: t > 0,u € R}. There is a unique holomorphic
function

pc: Cy x Kc—C
such that pc(t,z) = pe(x) for allt >0 and x € K C Kc.

Theorem 1.2 is proved in Section 5, as part of Theorem 5.13.
Following the pattern described above for the R? case, we make the following defini-
tion.

Notation 1.3 (Complex-time Segal-Bargmann transform). For 7 € C, and z € K,
define

(B-f) (2) := /p(c (7, 2k~ 1) f(k) dk for z € K¢ (1.5)
K

for all measurable functions f: K — C satisfying

/|pC(T, k) (k)| dk < oo. (1.6)
K

Further let D(B,) denote the vector space of measurable functions f: K — C such that
(1.6) holds for all z € K¢ and such that B, f € H(K¢).

As defined, D(B;) is a linear subspace of the measurable C-valued functions on K, and
B,: D(B;) — H(Kc¢) is a linear map. The main theorem of this paper (Theorem 1.6)
identifies L?-Hilbert subspaces of D(B,) and H(K¢) which are unitarily equivalent to
one another under the action of B.. To describe the relevant subspaces of H(K¢) we
need a little more notation.

As on K, we fix once and for all a right Haar measure A on K¢, and typically write
dz for \(dz) and L?(K¢) for L?(Kc, ). When s > 0, let D(s, s) C C, denote the open
disk of radius s centered at s.

Definition 1.4. Let s > 0 and 7 = t 4+ 4u € C. The (s,7)-Laplacian A, ; on K¢ is the
left-invariant differential operator

dim €

t\ - t~ &~

A, = Z Ks - 2) X7+ in —uX;Y; (1.7)
=1

where {X;}9™ ¢ is any orthonormal basis of £, and Y; = JX; where .J is the operation

of multiplication by i on ¢c = Lie(K¢). Here, for any Z € t¢, we let Z denote the

left-invariant vector field on K¢ whose value at the identity is Z.
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Remark 1.5. Given s > 0 and 7 =t +iu € C4, from (1.7), it is not difficult to show that
the operator A, - is elliptic if and only if

s—1t/2 —u/2 1
a(s,7) := det / 12 —(2st —t* —u?) > 0. (1.8)
—u/2  t)2 4
This can be written equivalently as
2s >t +u?/t (1.9)

or, more succinctly, as 7 € D(s,s) (the disk of radius s, centered at s). Further notice
that D(s,s) T C4 as s T o0.

If the conditions in Remark 1.5 hold, then there exists a heat kernel density ps, €
C>*(Kc,(0,00)) such that

<6A5”/2f> (w) = /,us’r(w_lz) f(z)dz forall fe L*(Kc).

Kc

We are now prepared to state the main theorem of this paper.

Theorem 1.6 (Complex-time Segal-Bargmann transform). Let K be a connected,
compact-type Lie group. For s > 0 and 7 € D(s,s), L*(K,ps) C D(B,); i.e., B, f
is holomorphic on K¢ for each f € L?(K,ps). The image of B, on this domain is
B. (L*(K, ps)) = HL*(Kc, pis,-). Moreover,

BS,T = BT‘Lz(K,pS)
is a unitary isomorphism from L?(K, ps) onto HL?(Kc, s +)-

Theorem 1.6 is proved in Section 5. The 7 =t € R case of Theorem 1.9 was established
in [14, Theorem 5.3]. (See also [23, Theorem 2.1].)

Remark 1.7. The condition in [14,23] for the two-parameter Segal-Bargmann transform
B, ; to be a well-defined unitary map was ¢t > 0 and s > ¢/2, or equivalently ¢t € (0,2s). It
is therefore natural that, in complexifying ¢ to 7, the optimal condition is that 7 € D (s, ),
the most symmetric region whose intersection with R is the interval (0, 2s).

In the case that the group K is compact, there is a limiting s — oo variant (The-
orem 1.9) of Theorem 1.6. To state this variant, as in [22], we first introduce a one
parameter family of “K-averaged heat kernels.”



B.K. Driver et al. / Journal of Functional Analysis 278 (2020) 108303 7

Definition 1.8. Let K be a compact Lie group. For ¢t > 0, define the K-averaged heat
kernel v; on K¢ by

v(z) = /Mm(z’k‘) dk  for all z € K¢
K

where dk denotes the Haar probability measure on K.

In fact, one can replace g by ps - for any 7 € D(s, s) in the above integral, and the
resulting K-averaged density v; is the same: it only depends on ¢ = Re7; see Proposi-
tion 5.15.

Theorem 1.9 (Large-s limit). Let K be a compact connected Lie group. For all s > 0
and T =t + iu € D(s,s), we have L*(K) = L*(K, ps) and L*(Kc, ps,») = L*(Kc,vt)
(equalities as sets). Furthermore, for all f € L*(K) and all F € L*(Kc,v;), we have

Slggo ||fHL2(K,pS) = Hf||L2(K)

Slingo HF”B(KCMS,T) - HF||L2(K(C7W) )

It follows that Bso, = BT|L2(K) is a wunitary isomorphism from L*(K) onto
HL*(Kc,vt).

This theorem is proved in Section 5.3 below.

Remark 1.10. The unitarity of the map Bo, , was previously established in [19, Prop.
2.3]. Indeed, this unitarity result follows easily from the unitarity of the “C-version”
Segal-Bargmann transform in [22] and the unitarity of the operator /2 : L?(K) —
L?*(K). The significance of Theorem 1.9 is that the unitary map Bo , is, in a strong
sense, the s — oo limit of the unitary map B; ;.

1.4. An outline of the proof

We now give a heuristic proof of the isometricity portion of Theorem 1.6, in the
Euclidean case K = R?, for motivation. The argument is a generalization of the method
used in the appendix of [25]. By (1.5), if we restrict to real time 7 = ¢ > 0 and look at the
transform (Bs,¢ f)(z) at a point 2 € R?, we simply have (Bs ¢ f) (%) = [ga pt(z—y) f(y) dy;
in other words, restricted to real time and K, B, .f is just the heat operator applied to
f, Bstf = ez f where A is the standard Laplacian on R?. Therefore, in general the
transform can be described as “apply the heat operator, then analytically continue in
space and time”. But if the function f itself already possesses a holomorphic extension
fc to all of C? (e.g., if f is a polynomial), then at least informally we should have
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s,Tf =e:z
FF. Since fc is holomorphlc we have

where now A (the sum of squares of the R?-derivatives) is acting on functions on C¢
Let F = B, f; we need to compute |F|> = FF. Si
d 5 . 3
5. fc, and so Afc =370, ad_zf c =: 0?fc; similarly Afc = ZJ 1 6Z2f<c
02 f(c Agam since fc is holomorphic and fc is antiholomorphic, 92 fc = 0 = 5‘2 fc; so
fc. (1.10)

fe)(e3? fe) = eF7 5 £ fe

(FF) = (3
Now, we measure f in L2(R<, p,); setting x = 0 in the (additive form of) (1.4) defining
the heat operator, we can compute
11122 R4, / W WP dy = (e22]f?) (0) = (e22[fc) (0). (1.11)
Rd
(1.12)

1F 12 e,y = (327 1F2) (0)
(1.13)

Similarly, we measure F in L?(C%, 14 ,), meaning
_ (.34
Combining (1.10) and (1.12), and commuting partial derivatives to combine the expo-

nentials, we therefore have
LA, 4302435
1Bur flacci ey = (227 2427 ) (0)

2
Comparing (1.11) with (1.13), we see that to prove the isometry in Theorem 1.6, it

sA = Ag, +70% + 707

suffices to have
Expressing the operators 9% and 92 in terms of real partial derivatives, we can then
(1.14)

solve for A; ;; this is how (1.7) arises. In the present Euclidean setting, we have
0? . t 02 0?
—— U= .
2 0y? O0x;0y;

-2 {(-5)
(1.15)

AS,T
j=1
As in Remark 1.5, it is easily verified that A, . is elliptic precisely when 7 € D (s, s)
Moreover, by a standard Fourier transform argument, one shows that ez=s7 f = fx g ,
u )
_l’ . y s

—t/2 o
2 vl 2

S

where

par(2) = ) (L2 o
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where z = x + iy € R +iR? = C%, and o := a/(s,7) as in Eq. (1.8).

When u = 0, the density ps, becomes a product of a Gaussian in the = variable and
a Gaussian in the y variable, but with typically unequal variances. If v = 0 and s = t,
the formula for pu, , reduces to

pe(z) = (wt)~de=F1/,

which is the density for the standard Segal-Bargmann space over C%.

For a general Lie group K of compact type, we replace the partial derivatives in
the preceding argument with left-invariant vector fields. The heuristic argument then
goes through unchanged, except that we must remember that left-invariant vector fields
do not, in general, commute. Thus, we must also verify that the particular operators
involved in the calculation do, in fact, commute, allowing us to combine the exponents
as above. For this, we need to use an inner product on the Lie algebra of K that is
Ad-invariant; this is the reason for the assumption that K be of compact type.

Most of this paper is devoted to making the above argument rigorous. The key is to
introduce a dense subspace (consisting of matrix entries; see Section 4.2) of the domain
Hilbert space on which integration against the heat kernel can be computed rigorously
by a power series in the relevant Laplacian. This argument can be found in Section 5.

The operator A, » was the starting point for the current investigation. It is the Lapla-
cian for a left-invariant Riemannian metric on K¢ for which the corresponding inner
product on the Lie algebra is invariant under the adjoint action of K. While the Lie
algebra of the complexified Lie group K¢ does not possess a fully Ad-invariant inner
product (unless K is commutative), it does possess many inner products that are invari-
ant under the adjoint action of K. These are the most natural from the perspective of
diffusion processes, particularly in high dimension (cf. [36]). In fact, there is a natural
three (real) parameter family of Ad(K)-invariant inner products on Lie(K¢) (see (3.8)
for the relation to the Segal-Bargmann transform parameters s and 7 =t + iu). In the
case that K is simple, this is a complete characterization of all such invariant inner prod-
ucts; this is the statement of Theorem 3.2 below. It was this fact that led the authors
backward to discover the complex-time Segal-Bargmann transform, which is therefore
a natural completion of the versions of the transform previously introduced by Segal,
Bargmann, and the first two authors of the present paper.

1.5. Motivation

In the case K = U(n) and K¢ = GL(n;C), we may give one motivation for the
complex-time Segal-Bargmann transform as follows: choosing matrices at random from
GL(n; C) with distribution ps , is an interesting random matrix model and the trans-
form is a tool for studying that model. We now elaborate on this statement, starting by
thinking of the heat kernel measure on GL(n;C) as giving a random matrix model. The
heat kernel measure i, -(g) dg on GL(n; C) is just the group analog of a Gaussian mea-
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sure on its Lie algebra, the space of all n X n matrices. In the two-parameter case (i.e.,
with 7 =t € R), the Gaussian measure is a scaled version of the Ginibre ensemble. In
the large-n limit, the eigenvalues of a random matrix chosen according to this Gaussian
measure are uniformly distributed on an ellipse with axes lying along the real and imag-
inary axes. One can certainly add a third parameter to the Gaussian measure, but one
does not really get anything new by doing so: The resulting random matrix is just the
two-parameter case multiplied by a fixed complex number. Thus, the limiting eigenvalue
distribution is uniform over an ellipse in C—but an ellipse that has been rotated so its
axes no longer lie along the real and imaginary axes.

For the heat kernel measure on GL(n;C), the problem is much richer. In the two-
parameter case (i.e., with 7 = ¢ € R), the second and third authors have used [30] the
large-n Segal-Bargmann transform developed in [3,15,32] to identify the domain ¥, ; in
C on which the “Brown measure” of the limiting object is supported. We expect that
this is the domain into which the eigenvalues of random matrices chosen from GL(n;C)
and distributed as ps, cluster in the n — oo limit. In the case s = ¢, the authors then
computed the Brown measure—not just its support—in [9].

Already in the two-parameter case, the domains ¥, ; display an interesting structure,
changing from simply connected to doubly connected at s = 4. If we then allow 7 to
be complex, the associated random matrix model is no longer just a complex number
times the two-parameter case. Thus the domain into which the eigenvalues cluster will
not be simply a rotation of X, ;. Rather, simulations indicated that the domain gets
twisted around in a much more complicated (and therefore interesting) way. The large-n
limit of the complex-time Segal-Bargmann transform has already been developed in
[6]. We expect that this limiting transform will be an important tool in studying the
large-n eigenvalue distribution of ys -, in the same way that the large-n limit of the
two-parameter transform was used in [30].

In the rest of this subsection, we provide motivation for considering the complex-time
transform for a fixed, finite-dimensional Lie group of compact type. The Segal-Bargmann
transform (B; f)(z) is computed by integration of f against the function

Xi(x) = pe(r,a™"2). (1.16)

These functions may be thought of as “coherent states” on K. In the case K = R!,
coherent states are often defined as minimum uncertainty states, namely those giving
equality in the classic Heisenberg uncertainty principle. There is, however, a stronger
form of the uncertainty principle, due to Schrédinger [46], which says that

h2
(AxX)* (AyP)? > 1 + |Covy (X, P)?, (1.17)
where A, X is the uncertainty of the observable X in state x, and

Cov, (X, P) := (XP + PX)/2), — (X) (P),
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is the quantum covariance. (The classic Heisenberg principle omits the covariance term
on the right-hand side of (1.17).)

States that give equality in (1.17) are Gaussian wave packets, but where the quadratic
term in the exponent can be complex, as follows:

x(x) = Cexpfiaz? — b(x — ¢)® + idx} (1.18)

with a,b,c,d € R and b > 0. This class of states is actually more natural than the usual
ones with a = 0, because the collection of states of the form (1.18) is invariant under the
metaplectic representation; that is, the natural (projective) unitary action of the group
of symplectic linear transformations of R2.

If we specialize the states in (1.16) to the R? case, we find that they are Gaussian
wave packets, and that if Im 7 # 0 then the quadratic part of the exponent is complex.
We see, then, that allowing the time-parameter in the Segal-Bargmann transform to be
complex amounts to considering a larger and more natural family of coherent states.
In the R? case, unitary Segal-Bargmann-type transforms using general Gaussian wave
packets were constructed by J. Sjostrand [50] and L. Hormander [34], with applications
to semiclassical analysis. In these works, it is essential to allow the quadratic part of the
exponent to be complex, in order to achieve invariance of the theory under symplectic
linear transformations.

In the s — oo transform Beg ¢4, 0f Theorem 1.9, the domain Hilbert space is L?(K).

iul /2

Since e is a unitary map of L?(K) to itself, in this case it is possible to derive the

complex-time transform from the real one By, ; (denoted as the C-version of the trans-

form Cy in [22]) by the decomposition ez (tFHiA — gtA/2iul/2

. This possibility has been
exploited, for example, in the papers [18,19] of C. Florentino, J. Mourédo, and J. Nunes
on the quantization of nonabelian theta functions on SL(n,C) = SU(n)c. The authors
show that these functions arise as the image of certain distributions on SU(n) under
the heat operator, evaluated at a complex time, and use the Segal-Bargmann transform
in the complexification process. These papers, then, show the utility of introducing a
complex time-parameter into the (C-version) Segal-Bargmann transform. The present
paper extends this complex time-parameter to the two-parameter transform.

Meanwhile, the Segal-Bargmann transform for K is related to the study of complex
structures on the cotangent bundle T*(K). There is a natural one-parameter fam-
ily of “adapted complex structures” on T*(K) arising from a general construction of
Guillemen-Stenzel [20,21] and Lempert—Sz6ke [40,51]. Motivated by ideas of Thiemann
[52], the second author and W. Kirwin in [31] showed that these structures arise from
the “imaginary-time geodesic flow” on T*(K). The Segal-Bargmann transform can then
be understood [16,17,26] as a quantum counterpart of the construction in [31].

As observed in [41], the adapted complex structures on T*(K) extend to a two-
parameter family, by including both a real and an imaginary part to the time-parameter
in the geodesic flow in [31]. The corresponding quantum construction has been done in
[42] and can be thought of as adding a complex parameter to the C-version of the Segal—
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Bargmann transform for K. (Compare work of Kirwin and Wu [38] in the R? case.) The
present paper then extends the complex-time transform to its most natural range, in
which the domain Hilbert space is taken to be L? of K with respect to a heat kernel
measure.

Finally, we mention the paper [28], which shows that certain operators on L?(Kc, ;)
of the form C;AC, 1 where A is an operator on L?(K), can be represented as Toeplitz
operators. Here Cy, for t € R, is the C-version Segal-Bargmann transform, which coin-
cides with the limiting transform By, ; in Theorem 1.9. Using the results of the present
paper, a similar analysis can be performed for operators of the form C’HWAC;;W, where
Ct4iv is the limiting transform B ¢4, in Theorem 1.9.

2. Compact-type Lie groups and their complexifications

We now introduce the class of Lie groups in which we are interested: those of compact
type and their complexifications.

Definition 2.1. A connected Lie group K with Lie algebra ¢ is said to be of compact type
if there exists an Ad-K-invariant inner product on &; that is, an inner product such that

(Ad,X,Ad,Y) = (X,Y), VzeK, X,Y €t

Clearly a commutative group is of compact type. Furthermore, every compact group is
of compact type, since any inner product on its Lie algebra can be made Ad-invariant by
averaging over the adjoint action. A key result says that products of these two examples
account for all Lie groups of compact type.

Proposition 2.2 ([453], Lemma 7.5). If K is a compact-type Lie group with a specified
Ad-invariant inner product, then K is isometrically isomorphic to a direct product group:
K = Ky x R? for some compact Lie group Ky and some non-negative integer d.

If G is a connected real Lie group, a complexification of G is a pair (G¢,t) consisting
of a complex Lie group G¢ and a smooth homomorphism ¢ : G — G¢ such that the
following universal property holds: for any complex Lie group H and any smooth ho-
momorphism ® : G — H, there is a unique holomorphic homomorphism ®¢ : Go¢ - H
such that

P or=a.

Suppose K = K x R? is a connected Lie group of compact type. It is known ([33,
XVII Theorem 5.1] or [4, Theorem 4.1, Propositions 8.4 and 8.6]) that the Lie alge-
bra of the complexification of K is the complexification of its Lie algebra £,—that is,
Lie((Ko)c) = t + it—and that « maps Ky injectively into its complexification. Mean-
while, the complexification of R? is C?, with ¢ being the obvious inclusion map. Thus,
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the Lie algebra of K¢ is the complexification of its Lie algebra, and ¢+ : K — K¢ is
injective. From now on, we always identify K with the subgroup ¢(K) of Kc.

Example 2.3. The compact Lie groups SO(n), SU(n), and U(n) have the following com-
plexifications:

SO(n)c = SO(n;C), SU(n)c = SL(n;C), U(n)c = GL(n;C).

We recall that a Lie group is called unimodular if every left Haar measure is also right
invariant.

Proposition 2.4. If K is a connected Lie group of compact type, both K and K¢ are
unimodular.

Proof. The existence of an invariant inner product guarantees that the Lie algebra € of
K decomposes as the Lie algebra direct sum of a commutative algebra and a semisimple
algebra [27, Proposition 7.6]. It then follows from Corollary 8.31 in [39] that K is uni-
modular. Meanwhile, the complexification of each simple summand in ¢ is also simple as
a real Lie algebra [27, Theorem 7.32 and Exercise 12]. Thus, ¢, when viewed as a real
Lie algebra, is also the direct sum of a commutative algebra and a semisimple algebra
and is therefore unimodular. O

Let K be a connected Lie group of compact type and let K¢ its complexification. It
is convenient, for reasons that will be apparent shortly, to write the “multiplication by
i” map on £c as J : &c — £c. (Thus, J? = —1.) Since £c is a complex Lie algebra, the
bracket on €¢ is bilinear over C, and in particular

[JX,Y] = J[X,Y] (2.1)

for all X,Y € £c.
For any X € ¢, the left-invariant vector field X is given by

5 d
— 2 orgetX )
(E9)0) = o) 22)

for any smooth real- or complex-valued function f on K¢. We may now appreciate the
utility of the notion J for the “multiplication by ¢” map on £c: in general, JX f is not
the same as i X f (for example, if f is real valued). On the other hand, a complex-valued
function f on K¢ is holomorphic if and only if the differential of f at each point g € K¢
is a complex-linear map from Ty (K¢ ) to C. Thus, if f is holomorphic, then for all X € g
and g € K¢, we have

j\X/f(g) =iXf(g) (f holomorphic). (2.3)
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3. Invariant metrics on K and K¢
3.1. Invariant metrics

If G is a Lie group with Lie algebra g and K C G is a compact Lie subgroup, one
can produce an Ad(K)-invariant inner product on g by averaging any inner product
over the adjoint representation of K, as above. This raises the question: how many
Ad(K)-invariant inner products does g possess? We now answer this question in the case
that K is simple (and compact type), and G = K¢ is the complexification of K.

Fix a compact-type Lie group K, and an Ad(K)-invariant inner product (-, )¢ on its
Lie algebra ¢. Let K¢ denote the complexification of K (cf. Section 2); in particular
tc = Lie(K¢) = ¢@ Jt. Consider the following three-parameter family of inner products
on Kc¢:

(X1 4+ JY1, Xo + JY2)ap,c := a{X1, Xo)e + b(Y1, Ya)e + c((X1,Yo)e + (X2, Y1)e) (3.1)

for X1, X5,Y1,Ys € & where a,b > 0 and ¢ < ab. It is straightforward to verify that
the symmetric bilinear forms in (3.1) are real inner products on £¢ (precisely under
the conditions on a,b, ¢ stated below the equation), and are all Ad(K)-invariant. The
main theorem of this section is that, in the case that K is simple, this is a complete
characterization of all Ad(K)-invariant inner products on Kc.

Definition 3.1. A Lie group K is called simple if dim K > 2, and the Lie algebra ¢ of K
has no nontrivial ideals.

Theorem 3.2. Let K be a simple (or 1-dimensional) Lie group of compact type. Then
¢ has a unique (up to scale) Ad-invariant real inner product (-,-)e. Furthermore, all
Ad(K)-invariant real inner products on tc have the form (3.1).

Remark 3.3. For example, K = SU(n) is simple, with complexification K¢ = SL(n,C).
Hence (3.1) characterizes all Ad(SU(n))-invariant inner products on SL(n,C), where
(X,Y)sun) = Tr(XY*) = —Tr(XY) is the unique (up to scale) Ad-invariant inner
product on su(n). In that case, the family can be written explicitly in terms of the trace
as

(A, B)ape = %(b + a)ReTr(AB*) + %Re [(b—a+2ic)Tr(AB)]. (3.2)

Extending to U(n) and its complexification GL(n,C), it is easy to compute that all
Ad(U(n))-invariant inner products on gl(n, C) are of the form (3.1) plus one more term,
involving the 1-dimensional subspace spanned by the identity matrix; extending (3.2),
there is one more term involving Tr(A)Tr(B). In [5,37,36], the third author studied the
large-n limits of the diffusion processes on GL(n,C) invariant with respect to the inner
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products (, )4.p,0. Part of the motivation for the present work was the question of whether
those were the largest class of appropriately invariant diffusions; the answer provided by
Theorem 3.2 is no.

Remark 3.4. The first statement of Theorem 3.2, that the Ad-invariant inner product on
K is unique up to scale when K is simple, is well known; it was proved, for example, in
[43, Lemma 7.6].

We will use Schur’s lemma as a tool in the proof of Theorem 3.2, but this is complicated
by the fact that the inner products in question are real. We must therefore be careful
about how and when we complexify.

Lemma 3.5. If K is a simple (real) Lie group with Lie algebra €, then the (real) ad-
joint representation of K on € is irreducible. Moreover, if K is compact type, then the
(complex) adjoint representation of K on ¢ is also irreducible.

Proof. If J C ¢ is an invariant real subspace for Ad(K), then Ad,x(Y) € Jfor all t € R,
X €t and Y € J. Taking the derivative at ¢ = 0 shows that adx(Y) = [X,Y] € J for all
X € tand Y € J, which means J C ¢ is an ideal in €. Thus J € {0, ¢}, yielding the first
statement of the lemma.

Now, [27, Theorem 7.32] states that the simplicity of ¢ implies that £c is also simple
as a complex Lie algebra. (The statement given there assumes K is compact, but the
proof only uses the fact that it is compact type.) So, let § C ¢ be an invariant complex
subspace for Ad(K). The same argument above shows that [X, W] € J for all X € £ and
W € Jd. Any Z € €¢ has the form Z = X + JY for X, Y € ¢, and by (2.1), we therefore
have

[ZW]=[X+JY,W]=[X, W]+ JY,W]€d+Ji=3, VZct,Wej

where the final equality follows from the fact that J is a complex subspace. Hence J is
a complex ideal in €c, and therefore J € {0, ¢c}. This concludes the proof of the second
statement. 0O

We now prove the algebraic result that constitutes most of the proof of Theorem 3.2.

Proposition 3.6. Let K be a simple (or 1-dimensional) real compact-type Lie group, and
fix an Ad-invariant inner product {-,-)¢ on its Lie algebra €. If B: tc x tc — R is an
Ad(K)-invariant symmetric bilinear form, then B has the form (3.1) for some a,b,c € R.

Proof. The result is straightforward when K is 1-dimensional, so we focus on the case
that K is simple. We use the inner product (-,-)1,1,0 (cf. (3.1)) as a reference; there is
then some endomorphism M : ¢¢ — £¢ such that



16 B.K. Driver et al. / Journal of Functional Analysis 278 (2020) 108303

B(Z,W)={(Z,M(W))1.1,0 vV Z,W e fc.

The symmetry of B forces M to be self-adjoint. We identify t¢c = £ @ Jt with ¢ £. Thus
we can decompose the endomorphism M in block diagonal form

A C
CcT B

(3.3)

where A and B are symmetric matrices.

Since the adjoint representation of K commutes with J, it follows that, under the
isomorphism £c = ¢ @ £, Ady, acts diagonally for all k£ € K. Using the fact that both the
inner product (-, -)1,1,0 and the bilinear form B are Ady-invariant, it is straightforward to
compute that the matrices A, B, C, and C'T all commute with Ady, for each k € K. The
same therefore applies to the complex-linear extensions of these endomorphisms to £¢.
It then follows from Lemma 3.5 and Schur’s lemma that there are constants a,b,c € C
with A =al, B=0bI,and C = C'T = cl. Since each of the endomorphisms preserves the
real subspace ¢, it follows that a,b,c € R.

Hence, for Z = X + JY € t¢, (3.3) yields M(Z) = (aX +¢Y) + J(cX + bY). From
the definition of the inner product (-,-)11,0, we therefore have

B(X1+JY1, Xo + JY2) = (X1 + JY1,aXo + Yo + J(c X2 + bY2))1,10
= (X1,aX + cYa)e + (Y1, cXo + bY2)e
=a(X1, Xo)e + (X1, Y2)e + (Y1, Xo)e + b(Y7,Y2)e
= (X1 +JY1, Xo+JY2)ape

concluding the proof. O
The proof of Theorem 3.2 now follows quite easily.

Proof of Theorem 3.2. Let (-, )¢ and (-,-); denote two Ad-invariant inner products on
K. We may view the second inner product as a symmetric (degenerate) bilinear form
on £c, which is Ad(K)-invariant. By Proposition 3.6, it follows that (-,-); = a(-,-)¢ for
some a € R (the other terms in (3.1) are 0); the fact that both are inner products forces
a > 0. This proves the uniqueness, up to scale, of the Ad-invariant inner product on K.

Now, any real inner product (-,-) on ¢ is a symmetric bilinear form on £c, and so by
Ad(K)-invariance, Proposition 3.6 shows that it has the form (3.1) for some a, b, c € R.
Since it is an inner product, it follows that the matrix M of (3.3) is positive definite,
and given its block diagonal form, this is equivalent to a,b > 0 and ab — ¢?> > 0. This
concludes the proof. 0O
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3.2. Laplacians

We use the notation X for the left-invariant vector field associated to a Lie algebra
element X, as in (2.2). We fix an Ad(K)-invariant inner product (-,-), on K. Then if
{X; }‘;fie is an orthonormal basis for £ with respect to (-,-),, we define Ag to be the
operator given by

dim ¢

Ap=Y X2 (3.4)
j=1

The operator is easily seen to be independent of the choice of orthonormal basis. Since
K is unimodular, this operator is the Laplace—Beltrami operator for the left-invariant
metric determined by (-, -), [12, Remark 2.2]. Since (-, -), is Ad(K)-invariant, the metric
on K is actually bi-K-invariant and thus Ag is bi-K-invariant.

2 < ab, as in Section 3.1,

We now fix real numbers a, b, and ¢ with a,b > 0 and ¢
and let (-,-),, . be the associated Ad(K)-invariant inner product. We then choose an
orthonormal basis {Z; }?;ﬁfﬂé for ¢ with respect to this inner product and define the

Laplacian L3, by

2 dim €

La,b,c = Z ijv (35)
j=1

similarly to (3.4).

Proposition 3.7. Let L, . denote the Laplacian in (3.5). Fiz any basis {Xj}?zl of ¢
orthonormal with respect to the given Ad(K)-invariant inner product on €, and let Y; =
JX;. Then

1

Labc:
i ab — c2

d
D [bX7 +aY}? - 2eX,Y;] . (3.6)
j=1

Proof. We use the basis {Z; }5;“1"1? consisting of X1, Y1, ..., Xgim e, Yaim ¢ (in that order).
We let {qp, }? 3™ ¢ be the associated Gram matrix; that is, the matrix of inner products

l,m=1
of these basis elements with respect to the inner product (-, -) If ¢! is the inverse

a,b,c’
matrix to g, it is an elementary computation to verify that

2 dim ¢
La,b,c = Z (q_l)lleZm~ (37)
l,m=1

Now, we can compute directly from (3.1) and the orthonormality of {X j}?zl that

(Xi, Xj)ape = adij, (Yi,Yj)ape =005, (Xi,Yj)ape= (Y, Xj)ap,e = cdij.
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It follows that the matrix ¢ is block diagonal with 2 x 2 diagonal blocks all equal to the
matrix B (below). Thus ¢~! is also block diagonal with 2 x 2 diagonal blocks all equal
to B~1 (below):

Combining this with (3.7) yields (3.6). O

To dispense with the cumbersome determinant in the denominator in (3.6), and to
match the parametrization relevant to the Segal-Bargmann transform, we make the
following change of parametrization:

(s,t,u) = ®(a,b,c) = 5 (a +b,2a,2c). (3.8)

1
ab—c
It is straightforward to verify that ® is a diffeomorphism

®: {(a,b,c): a,b>0,c¢* < aby — {(s,t,u): t > 0,u € R,2s >t +u?/t}

with inverse

_ 4
(a,b,¢) = @ (s, t,u) = 5o (5.5 — 5,

SIS

) =

R~

(5,5—5.%) (3.9)

IR

referring to the constant « of (1.8), which is positive precisely in range of ®. From here on,
we use the parameters (s, ¢, u) which leads to the notation used in Definition 1.4 of A, -
on K¢ in the introduction. In particular, this means that the Laplacian A, ; corresponds
to the inner product (-, ). where (a,b,c) are given as in (3.9). The fact that ® is a
bijection shows that there is a one-to-one correspondence between the Laplacians A, ;
and the inner products (-, )q.p,c-

4. Heat kernels and matrix entries
We refer the reader to [45] or [54] for the general theory of heat kernels on Lie groups.
4.1. Heat kernels on K and K¢

We now fix a connected Lie group K of compact type, together with an Ad(K)-invar-
iant inner product (-,-), on €. We let Ag be the associated Laplacian on K, as in
Section 3.2. We then let p; be the associated heat kernel on K i.e., the fundamental
solution at the identity to the heat equation

ou 1
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Then the heat operator may be computed as

€220)(w) = [ pilay)1(w) (@)

K

where dy is the Riemannian volume measure associated to the left-invariant Riemannian
metric on K induced by the inner product (-,-), on €.

Remark 4.1. For a general left-invariant metric on K, the right-hand side of (4.1) should

L) rather than p;(xy~!). Since, however, our metric is Ad(K )-invariant, the

1

have pt(y~

heat kernel p; is a class function, so that p,(y~'z) = pi(zy~1!). We write pi(zy~?1) to

maintain consistency with [22].

We fix s > 0 and 7 € C with 7 € D(s,s) (the disk of radius s, centered at s). We
consider a left-invariant metric on K¢ whose value at the identity is one of the inner
products considered in Section 3.1. The associated Laplacian, denoted A, ;, is the one
considered in Definition 1.4. We emphasize that, although 7 is a complex number, the
Laplacian A; ; is a real elliptic operator on Kc¢. We then let p, ., be the associated
heat kernel, i.e., the fundamental solution at the identity to the heat equation

ou 1
7:7AST ’
or 2 st

with r being the time-variable in the heat equation. We will mainly be interested in the
value of this heat kernel at r = 1:

Ms, 7 = Hs,t,1-
That is to say, formally,
fis,r = €207/2(5),
where 0 is a -function at the identity.

Lemma 4.2 (Averaging lemma). Assume K is compact. For each s and 7 with T € D(s, s),
let vs + be the associated K-averaged heat kernel, given in Definition 1.8:

vr(9) = [ e (ah) d:

K

Then there exist constants as » and bs . such that

aS»TVs,T(g) S /f[/s,T(g) S bs,‘r”sn—(g)
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for all g € K¢. Specifically, for each s and T, let o be any positive number such that
T €D(s—o0,s—0). Then we may take

@5 = minpo(k); by, = max p (k).

Proof. We write the operator A, ., as defined in (1.7), in the form

dim ¢
AS,T =0 Z XJQ + As—a,7—~ (42)

Jj=1

Now, the operator A;_, ; is constructed from left-invariant vector fields and is therefore
a left-invariant operator on K¢. Since the inner product in the construction of A, ;
is Ad(K)-invariant, A, . is also invariant under the right action of K. It follows that
A, ; commutes with the left-invariant vector field X on K¢, with X € &, since X is an
infinitesimal right translation. We conclude that the two terms on the right-hand side of
(4.2) commute. Once this observation has been made, the proof of the averaging lemma
from [22, Lemma 11] tells us that

ps,r(9) = / fhs—or(gk™ oo (k) dk.

Since ps(k) dk is a probability measure, the integral of y1, » over each K-orbit is the same
as the corresponding integral of us_, ~. Thus, we obtain

< -1 =
o) < s (0] [ 10 () = s (B ),
K

as claimed, and similarly for the lower bound. 0O
4.2. Matriz entries

In the case K = R, it is convenient to do computations with the heat operator on
polynomials. Although these functions are not in L?(R?), one can naively make sense of
e5Ara f as a terminating power series for any polynomial f. It is then an easy matter
to verify that the integral formula for the heat operator coincides with its Taylor series.
That is to say, if f is a polynomial on R?, then

n!

[t =nsan =3 Ll (agay sio) (13)

Rd n=0

Equation (4.3) is easy to prove directly; the result is also a special case of Proposition 4.7
below.
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We will need a counterpart of polynomial functions on a general (compact-type) Lie
group; these are matriz entries, which we define as follows.

Definition 4.3. Let G be a Lie group. Let (7, V) be a finite-dimensional complex repre-
sentation of G, and let A € End(V;) be a fixed endomorphism. The associated matrix
entry function fr a4 on G is the function

fra(x) = Tr(m(x)A).

If G is a complex Lie group and the representation 7 : G — GL(V;) is holomorphic,
then we refer to fr 4 as a holomorphic matrix entry. In particular, every holomorphic
matrix entry on a complex Lie group is a holomorphic function.

Remark 4.4. A number of comments on matrix entries are in order.

(1) Although some authors might require 7 to be irreducible in order to call fr 4 a matriz
entry, we make no irreducibility assumption in our definition. If G is compact, every
finite-dimensional representation of G decomposes as a direct sum of irreducibles, in
which case every matrix entry is a linear combination of matrix entries for irreducible
representations. In general, not every matrix entry (in the sense of Definition 4.3)
will decompose as a sum of matrix entries of irreducible representations.

(2) Some authors require a matrix entry to be of the form f(z) = {(w(z)v) for some
v € V and £ € V*. This is a special case of Definition 4.3 with f = f; 4 where
A(w) = &(w)v, i.e., A = £ ®@v. The more general matrix entries of Definition 4.3 are
linear combinations of these more restricted “rank-1” entries.

(3) Matrix entries are smooth functions on G.

(4) If G =R, all polynomials are matrix entries. Indeed: if g is a polynomial of degree
< n, take the representation space V to be all polynomials p of degree < n, where
m(x)p = p(-+x). If & (p) = p(0) is the evaluation linear functional, then &y(m(x)q) =
q(x), so ¢ is a matrix entry.

(5) Even if G is complex, we will have a reason to consider matrix entries associated to
representations of G that are not holomorphic.

Lemma 4.5. For any Lie group G, the set of matriz entries on G forms a self-adjoint
complex algebra.

Proof. It is straightforward to compute that, for A € C, Afz a4 = fr x4, while sums and
products satisfy fr a + fo.B = fros,a0B and fr afsB = freo Aep. For complex conju-
gation, we must define the complex conjugate of a representation and an endomorphism.
This can be done invariantly, but for our purposes there is no reason not to simply
choose a basis. Given a representation (7, V) of dimension d, choose a complex-linear
isomorphism ¢: V,; — C%, and let [7(z)] = pom(z)op ! and [A] = poAop™l. Asdxd
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complex matrices, both [r(x)] and [A] have complex conjugates [7(z)] and [A], defined
entry-wise. Then

fr.a(z) = Tre(r(2)A) = Te([n(@)][A]) = Tr([r(2)] [A]). (4.4)

The map [7]: G — GL(C?) given by [r](z) = [r(z)] is a representation of G on C¢, and
(4.4) shows that

Jra = iz
is also a matrix entry of G. This concludes the proof. 0O
We now establish two key results about matrix entries.

Theorem 4.6. Let K be a real Lie group of compact type. For any s > 0, the matriz
entries on K are dense in L*(K,ps). If s > 0 and 7 € D(s,s), then the holomorphic
matriz entries on K¢ are dense in HL*(Kc, pis.r)-

Proof. We consider first the case that K = R% and K¢ = C%. Then p, is a Gaussian
measure on K. Since every polynomial on R? is a matrix entry, we may appeal to the
classical result that polynomials are dense in L? of Gaussian measures on R¢. (For a proof
of a more general result, see [14, Theorem 3.6].) On the complex side, every holomorphic
polynomial is a holomorphic matrix entry, and the measure ps . on C? is Gaussian.
Thus, by [14, Proposition 3.5], matrix entries are dense in HL?(C?, i ). (Note that, in
general, the measure p5 » is not invariant under multiplication by e’ and monomials of
different degrees are not necessarily orthogonal. Thus the proof of density of holomorphic
polynomials in [1, Section 1b] does not apply.)

We consider next the case that K is compact. In that case, the heat kernel density ps on
K is bounded and bounded away from zero for each fixed s > 0. Thus, the Hilbert space
L?(K, ps) is the same as the Hilbert space L?(K), with a different but equivalent norm.
Hence, the density of matrix entries in L2(K, p,) follows from the Peter—Weyl theorem.
On the complex side, we appeal to the averaging lemma (Lemma 4.2), which tells us
that the Hilbert space HL?(Kc, jis-) is the same as the Hilbert space HL*(Kc, ),
with a different but equivalent norm. Thus, it suffices to establish the density of matrix
entries in HL?(Kc,v;); this claim follows verbatim from the proof of the “onto” part of
Theorem 2 in [22, Section 8].

We consider finally the case of a general compact-type group K. Recall (Proposi-
tion 2.2) that K is isometrically isomorphic to Ky x R¢ for some compact Lie group Ko
and some d > 0. Thus, the heat kernel measure ps on K factors as a product of the heat
kernel measures p? on Ky and p! on R?. Now, a standard result from measure theory tells
us that there is a unitary map U from L?(Ky, p?) @ L?(R%, p!) onto L?(K, p,) uniquely
determined by the requirement that U(f1 ® f2)(z1,22) = fi(z1)f2(x2). If f1 and fo are
matrix entries on Ko and R?, respectively, then fi(x1)f2(z2) is a matrix entry on K
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(by an argument very similar to the proof of Lemma 4.5). Using the density results for
Ky and for R? and the unitary map U, we can easily show that linear combinations of
matrix entries of this sort (which are again matrix entries) are dense in L?(K, ps).

On the complex side, K¢ is isomorphic to (Kg)c x C%. If we restrict our Ad-invariant
inner product on £ to the Lie algebras of Ky and of RY, these restrictions will also
be Ad-invariant. We may then construct left-invariant metrics on (Kj)c and C? by
the same procedure as for K¢. In that case, it is easily verified that the isomorphism
K¢ = (Ko)c x C? is isometric. Thus, the heat kernel measure s, on K¢ is a product
of the associated heat kernel measures u? - on (Ko)c and p}, on C9.

Then, as on the real side, we have a unitary map V from L?((Ko)c, u ,)®L*(C?, p 1)
onto L*(Kc, ps,+). According to the Appendix of [23], the restriction of V to the tensor
product of the two HL? spaces maps onto HL?(Kc, us,,). (It is easy to see that V maps
the tensor product of the two HL? spaces into HL?(Kc, s r); it requires some small
argument to show that it maps onto.) Thus, as on the real side, the density result for
K¢ reduces to the previously established results for (Ko)c and for C4. O

Proposition 4.7. Let f, 4 be a matriz entry on K. Then

[ ooy rale) de = 3 S (A" fr o)
K n=0 '
= Tr(n(x)e!“"/2 A) (4.5)

with absolute convergence of the integral on the left-hand side and locally uniform con-

dim .
i e (X;)?, where 7. is the

Lie algebra representation associated to the Lie group representation .

vergence of the sums on the right-hand side. Here Cr =

Let fr a be a matriz entry on Kc. Then

o0

[ fra@necte) dg =3 5 () Frale)
K¢

n=0

= Tr(n(x)ePmsr/2A) (4.6)

with absolute convergence of the integral on the left-hand side and locally uniform con-
vergence of the sum on the right-hand side. Here

dim ¢
t t
Dysr= z:l {(s — 5) e (X;)% + §7T*(YJ)2 —um (X;)m(Y5)
j=
where m, is the Lie algebra representation associated to the Lie group representation .

We note that unless K is compact (as opposed to merely being of compact type),
matrix entries on K are typically not in L?(K,dz) and thus not in the usual domain of
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definition of the heat operator e*~%/2. Similarly, matrix entries on K¢ are typically not
in the usual domain of the heat operator e®s~/2.

Proof. The proposition is an immediate consequence of Langland’s theorem (cf. [45,
Theorem 2.1]). See also [22, Lemma 8]. If one assumes it is valid to differentiate under
the integral and to integrate by parts, one can prove the proposition easily; see the proof
of [10, Theorem 2.13]. O

Remark 4.8. If f is a matrix entry on K or K¢, then by Lemma 4.5, | f|? is also a matrix
entry. Thus, the absolute convergence of the integral in Proposition 4.7 tells us that f is
in L2(K, pt) or L*(Kc, ps,7)-

5. The Segal-Bargmann transform

We analyze the complex-time Segal-Bargmann transform for a connected Lie group
of compact type in two stages. In the first stage, we consider a transform M, (see
Definition 5.1 below) defined on matrix entries using a power-series definition of the
heat operator. Using the strategy outlined in Section 1.4 along with density results in
Theorem 4.6, we show that M, maps a dense subspace of L?(K, p,) isometrically onto a
dense subspace of HL?(Kc, is,,). Thus, M, extends to a unitary map M, of L?(K, ps)
onto HL?*(Kc, s ).

In the second stage, we show that the heat kernel p¢(x) on K has a holomorphic
extension in both ¢ and x, denoted pc(-,-). We then prove that the unitary map M, ,
may be computed by “convolution” with the holomorphically extended heat kernel. That
is to say,

(Mo f)(2) = / pe(r, 2k Y) £ (k) d

K

for all s >0, f € L?(K,ps), 7 € D(s,5), and z € Kc.

The advantage of the two-stage approach to the proof is that we can use the unitary
map M , to establish the existence of the holomorphic extension of the heat kernel, thus
avoiding the representation-theoretic estimates used in [22, Section 4]. Although this
approach was used already in [10], a number of details are different in the complex-time
case. We therefore provide full proofs here.

5.1. Constructing a unitary map

As usual, we work on a connected Lie group K of compact type, with a fixed
Ad(K)-invariant inner product on its Lie algebra €. According to Theorem 4.6, the space
of matrix entries is dense in L?(K, p,) and the space of holomorphic matrix entries is
dense in HL?*(Kc, fts,7)-
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We now define a transform M, directly by its action on matrix entries. Let fr 4 be
a matrix entry on K acting on a complex vector space V. By the universal property of
complexifications, the representation 7 extends uniquely to a holomorphic representation
mc of K¢ on V. Hence, the matrix entry fr 4 has an analytic continuation as well,

(fr,a)c(9) = Tr(mc(9)A) = fre,alg), g€ Kc.

Definition 5.1. For 7 € C_, define M, on matrix entries on K as

MTfﬂ,A = Z %—Q‘W(AK)nfﬂ,A

n=0 ’ C
Note that, by (4.5), M;fr 4 is again a matrix entry, and thus has a holomorphic

extension.

5.1.1. Complex vector fields and commutation relations

We would now like to emulate the proof of the Segal-Bargmann isometry for the R¢
case outlined in Section 1.4. To that end, we must introduce the complex vector fields
generalizing the complex derivatives 0/0z; and 0/0Z; in the Euclidean context.

Definition 5.2. Let GG be a complex Lie group with Lie algebra g and let X be an element

of g. The holomorphic and antiholomorphic vector fields associated to X are complex
vector fields Ox and Oy on G defined by

8XE%<X—iﬁ) and 5X5%<X+z‘f)?). (5.1)

In the special case G = CY, if X = 0/dx; then dx = 0/0z; and dx = 0/9z;. By (2.3),
if X € g and F is holomorphic on G then

OxF=XF, 0xF=0 (5.2)
OxF =0, oxF = XF. (5.3)

Lemma 5.3. If X,V € g, then
[0v,JX] =i[0v,X], and  [dv,JX]=—i[dv,X].

Proof. By (2.1), for any W1, W5 € g, [JWq, Wa] = J[W7, Wa] = [W7, JWa] and therefore
by the definition of the Lie bracket,

—_~ /—~—

[TW1, Wa] = [JWy, Wa] = J[Wy, Wa] = [Wy, JWa] = [Wy, TWa).

We can then compute from the definition that
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e e I I
0y, JX] = 5[V = idV,JX] = S[JV —iTJV,X] = S[IV +iV, X] = iloy, X].
The calculation for dy is similar. O

‘We now specialize to the case G = K¢ for a compact-type Lie group K.

Definition 5.4. Fix an orthonormal basis { X1, ..., Xq} for ¢, and let 0; := Ox, asin (5.1).
Then set

d
= Z 8]2», and 0? = Zéf (5.4)
j=1

A routine calculation shows that the operators 92 and 9 are well-defined, independent
of the choice of orthonormal basis.

Lemma 5.5. The operators 8> and 9 commute with the right action of K on Kc.

This is a routine computation and is left to the reader.
This brings us to the main commutator result of this section.

Proposition 5.6. For any A € ¢,
0%, A] = [0°, 4] = 0.

Proof. As any A € £c has the form A =V + - JW for some V,W € &, it suffices by
linearity to prove that 92 and 92 commute with V and JV for any V € £. For the former
statement, apply Lemma 5.5 to the right action of k = €'V, and differentiate at ¢t = 0
to yield the result. For the second statement, we employ Lemma 5.3 and compute as
follows.

d d
02, 0V] = > 1005, TV = > (95105, TV + [0, TV165 )

j=1 j=1

d
:iZ(aj[ajj/] _@Zaa V] =i[0%, V]

j=1
and we already showed that [92, V] = 0. A similar calculation proves the result for 9. O
Corollary 5.7. The operators 9%, 9%, Ak, and As 7 all mutually commute.
Here we regard Ak as a left-invariant operator on Kc.

Proof. Since Ax and A, , are linear combinations of squares of left-invariant vector
fields on K¢, Proposition 5.6 shows that they both commute with 82 and 92. Similarly,
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letting Y; = J X}, since 8]2 and 5]2 are linear combinations of XJZ, }7]-2, and X'jf/j = f’jX'j
(cf. (2.1)), the commutator [9%, 9] = 0 also follows from Proposition 5.6. Now, since A
is the Laplacian associated to an Ad(K)-invariant inner product on €c, it commutes with
the right action of K. Thus, A, commutes with each Xj and thus with Ag. O

Remark 5.8. The fact that [0%,0% = 0 holds quite generally. Indeed, on any complex
manifold, if Z =}, aj(z)a%j and W =3, bj(z)aizj are two holomorphic vector fields,

than a simple computation shows that [Z, W] = 0.

5.1.2. The transform M., and the isomorphism MS’T
The usefulness of the 92 and 92 operators and the commutation result in Corollary 5.7
in the present context lies in the following result.

Lemma 5.9. Let s > 0 and 7 € D(s,s). Let As denote the K¢ Laplacian of Defini-
tion 1.4, and let Ak denote the Laplacian of K acting on C*®(Kc¢) as usual. Then

sA = Ay r + 70 + 70*
where all operators appearing in this identity are mutually commuting.

Proof. Fix an orthonormal basis {X7,..., X4} of & For ease of reading, let Y; = JX;.
To begin, we compute that, for each j,

_ 1 - N - ~ 1 - -
O+ 07 = 1(X; = iY))? + (X, +i¥))? = S(X2- V), (5.5)

_ 1 - -
O — 7 = £(X; — i¥;)? = (X, +1¥;)? = —iXY, (5.6)

where we have used the fact that [X;,Y;] = 0 (cf. (2.1)).
Now, let 7 =t + ¢u. Then for each j,

t - -

707 4+ 707 = t(07 + 07) + iu(97 — 07) = 5(X]2 —Y7) +uX;Y;.
Thus, we have
t 592 t 2 X7 2 -2 2
s=3 X7+ in —uX;Yj| +70; + 707 = sX;. (5.7)

Summing (5.7) on j proves the lemma. O

We can now prove that M, is a bijection from the space of matrix entries on K to the
space of holomorphic matrix entries on K¢, isometric from L?(K, ps) into L?(Kc, ps,r)-
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Theorem 5.10. Let [ be a matriz entry function on K. Then for s >0 and 7 € D(s, s),

M fllL2 (ke ey = 122K p0)- (5.8)

Moreover, every holomorphic matrix entry F on K¢ has the form F = M, f for some
matriz entry f on K.

The proof of (5.8) follows the strategy outlined in Section 1.4, using left-invariant
vector fields in place of the partial derivatives in the Euclidean case. A key step in the
argument requires us to combine exponentials, which is possible only if the operators
in the exponent commute. It is at this point that we use the commutativity result in
Corollary 5.7.

Proof. Let F = M., f. The matrix entry f on K has a holomorphic extension f¢ to Kc.
Now, A, viewed as a left-invariant differential operator on K¢, is a sum of squares of
left-invariant vector fields; thus, it preserves the space of holomorphic functions. Thus,
we have that ((Ax)™f)c = (Ak)™(fc) for all n > 0. It follows that F' may be computed
as F' = e™®x/2(f¢). Since fc is holomorphic, we may use (5.2) to rewrite this relation
as

F=e"(fc).
It is then straightforward, using (5.2) and (5.3), to see that
[P = e 2P (e fe).
Thus, using Proposition 4.7, we may compute the norm of F' as

1F 2,y = (€27 2IF 1) (€)
= (B 2em 2T fe fe) ) (e). (5.9)

By the commutativity result in Corollary 5.7, we may combine the exponents in the
last expression in (5.9). Note that there are no domain issues to worry about here: All
the exponentials in (5.9) are defined by power series and since fc fc is a matrix entry
(cf. Lemma 4.5), all exponentials are acting in a fixed finite-dimensional subspace of
functions on K¢. Using Lemma 5.9, (5.9) therefore becomes

IEZ e,y = (€252 U fe ) (e) = (252 | £17) ().

The last equality holds because e belongs to K and A is a sum of squares of left-
invariant vector fields associated to elements of . Using Proposition 4.7 again, we finally
conclude that
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2
HFHiz(KC,ﬂS,T) = HfHL?(K,pS)

establishing (5.8).

Suppose now that F' is a holomorphic matrix entry on Kc; that is, F' = fr. a for
some finite-dimensional holomorphic representation m¢ of Kc. Then F|, = fr a, where
m is the restriction of m¢ to K. We may then define

f=e 285 (Flg)=f

mefgc"A'
Then f is a matrix entry and we have M, f = (325 f)c = F. O

Theorem 5.11. The map M, has a unique continuous extension to L*(K,ps), denoted
M ;, and this extension is a unitary map from L*(K, ps) onto HL*(Kc, s +)-

Proof. Theorem 4.6 tells us that M, is defined on a dense subspace of L?(K, p). Since
M, is isometric, the bounded linear transformation theorem (e.g., Theorem 1.7 in [44])
tells us that M, has a unique continuous extension to a map MS’T of L2(K ,Ps) into
HL*(Kc, pts.+)- This extension is easily seen to be isometric, and since (by Theorem 4.6
again) the image of M, is dense, the extension is actually a unitary map. 0O

For a general f € L?(K, p), the value of M&T may be computed by approximating
f by a sequence f,, of matrix entries and setting

Msn’f = nh—>Holo MTfn- (51())

(The bounded linear transformation theorem guarantees that the limit exists and that
the value of M , is independent of the choice of approximating sequence.) Now, (5.10)
is not a very convenient way to compute. In the next section, we will seek a direct
way of computing M&T, which will also demonstrate that MS,T coincides with the way
we defined the complex-time Segal-Bargmann transform in the introduction; cf. (1.5).

A first step in that direction is proving that (M, . f)(z) is holomorphic in both 7 and z.

Lemma 5.12. Fiz s > 0. For each f € L*(K, ps), the function (1,2) — (Ms.f)(2) is a
holomorphic function on D(s,s) x Kc.

Proof. If f = f; 4 is a matrix entry, then

(Ms,‘rffr,A)(Z) = (MTfﬂ"A)(z) = TI‘(’]‘('C (g)eTCW/QA)

which is easily seen to depend holomorphically on 7 and z.

We then approximate an arbitrary f € L?(K, ps) by a sequence f,, of matrix entries.
Then M, f, = M . f, will converge to M . f in HL?*(Kc, is,-). It is well known that
the evaluation map F +— F(z) on HL?*(Kc, pts.+) is a bounded linear functional; this is



30 B.K. Driver et al. / Journal of Functional Analysis 278 (2020) 108303

due to the ubiquitous pointwise L? estimates in this holomorphic space (cf. [11,24]). We
claim that we can actually find locally uniform bounds on this functional. That is to say:
for each precompact open subset U of K¢ and r € (0, s), there exists C = C(r,U) < oo
such that, for all 7 € D(s,r) and F € HL*(Kc, pis.7),

sup [F(2)] < C(r,U) [Fll L

Kepinn) - (5.11)

Assuming this result for the moment, we can conclude that the convergence of
(M - fn)(2) to (M - f)(2) is locally uniform jointly in (7, z), and since each function in
the sequence is holomorphic, it follows that the limit (M, f)(z) is jointly holomorphic
in (7, 2) as claimed.

To establish the bound in (5.11), we observe that the norm of the pointwise evaluation
functional can be estimated in terms of lower bounds on the density p ,. For example,
[11, Theorem 3.6] shows (in our context) that, for any precompact neighborhood V' of

the identity e, there is a constant C(V') so that, for all holomorphic F' and z € K¢,

cv)

infyev /s, (v2)

[F(2)] < 1 2 e i, -

The constant C(V) is determined only by the holomorphic structure of the group (given
by averaging a symmetrized bump function on V', applying the Cauchy integral formula);
hence, C(V) is independent of s and 7. Hence, it suffices to show that s ,(z) is bounded
strictly above 0 locally uniformly in 7 and z.

Since K¢ factors as (Ko)c x C¢ (recall Proposition 2.2), the heat kernel ps ., also
factors over this product. On the C? side, there is an explicit formula for y -(2) (given
in (1.15)) which is manifestly bounded away from zero locally in both 7 and z. Thus, it
suffices to assume that K is compact, which we do from now on.

Denote ¢ = Re7. From the averaging lemma (Lemma 4.2) and Proposition 5.15, we
see that there is a strictly positive constant C’(s,7) such that psr <cr(sr) pt,t, and
the constants can be chosen to depend continuously on (s, 7). Note that p;; is the heat
kernel for a single metric, which is therefore a continuous positive function of (¢,z) €
(0,00) x K¢. In particular, p;+(2) is bounded strictly away from 0 for (¢, z) in compact
subsets of (0,00) x K¢. It follows from the continuity of the function (s,7) — C’(s,7)
that the same holds true for u, -(2), establishing (5.11) and completing the proof. 0O

5.2. The analytic continuation of the heat kernel
In this section, we show that the unitary map M, ,: L*(K,ps) — HL?(Kc, pis.+)
constructed in Section 5.1 may be computed as a “convolution” against a holomorphic

extension of the heat kernel p; on K. The following theorem makes this precise.

Theorem 5.13. Let K be a compact-type Lie group.
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(1) There exists a unique holomorphic function pc : C4 X K¢ — C such that for t >0
and x € K we have

pc <t7 Z‘) - Pt(x)
(2) If s > 0 and 7 € D(s, s), then for each z € K¢, the function

pc(r za”?)

T @)

belongs to L?(K, ps).
(3) The unitary map My, may be computed as

(Torf)(z) = / pe(r, =k~ (k) dik

for all f € L*(K, ps) and all z € Kc.
Since

-1
pe(r, 2k fy k= LT iy o (ya
ps(k)
it follows by the Cauchy—Schwarz inequality and Theorem 5.13(2) that the function
ks pc (7, zk™1) f(k) is integrable. Using the decomposition of K as Ko x R?, where Ko
is compact (Proposition 2.2), we may easily reduce the general case to the compact case
and the Euclidean case, which we now address separately.

5.2.1. The compact case

It is possible to construct the holomorphic extension of the heat kernel on K using
the method of [22, Section 4], which is based on a term-by-term analytic continuation
of the expansion of the heat kernel in terms of characters. Indeed, replacing ¢ by ¢ + iu
in the heat kernel makes no change to the (absolute) convergence estimates in [22].
(The time-parameter occurs only linearly in the exponent there, so the absolute value
of each term would be independent of w.) On the other hand, the argument in [22]
requires detailed knowledge of the representation theory of K. We present here a different
argument (similar to the proof of Corollary 4.6 in [10]) that uses the unitary map M, ,
of Theorem 5.11 to construct the desired analytic continuation.

Lemma 5.14. If K is compact, s > 0, 0 < t < 2s, and Ms,t is the unitary map as in
Theorem 5.11, then for any f € L*(K, ps),

(M1 f) (z) = (pe = [) () = /pt(xk:_l)f(k‘) dk Vx € K C K¢. (5.12)
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(Note: for K compact, L? (K) = L*(K, ps) independent of s > 0 and hence M f does
not really depend on s.)

Proof. By Definition 5.1, we have that for any matrix entry fr 4 on K,

(Mt fr,4)(9) = (Mi fr,4)(9) = Tr(mc(9)e' /2 A),

where ¢ is the holomorphic extension of 7 from K to K¢. Thus, by (4.5), we have

(M fr,a) |k (2) = Te(n(2)e' /2 A) = (p * fr,4) ().

This suffices to complete the proof as matrix entries are dense in L? (K) and both
L*(K) > f — (Msyf)(z) € C and L*(K) > f — (pt* f)(z) € C are continuous
linear functionals on L? (K) for each fixed € K. The first assertion holds since M, , :
L*(K,ps) — HL?*(Kc, ps,,) is unitary and pointwise evaluation on HL?(Kc, us ) is
continuous and the second follows by Holder’s inequality. O

Proof of Theorem 5.13 in the compact group case. We begin with point (1): the space-
time analytic continuation of the heat kernel. Let 0 < § < r < oo, and consider the
vertically symmetric rectangle Us, = {r € Cy: d <ReT < r, |Im7| <r}.Let 0 < e < 4,
and fix s > 0 large enough that Us, — e C D(s,s). The function p. is continuous and
hence in L?(K, ps). We then define pc: Us, x K¢ — C by

pc(T, z) = (Msn’—spe) (2). (5.13)

By Lemma 5.12, pc is analytic in both variables so long as 7 — € € D(s, s); in particular,
pc is analytic on Us, x Kc¢. For the moment, it appears a priori that the value of pc
depends on s and e.

Now consider the restriction of pc to (¢,z) € (Us, MR) x K. By Lemma 5.14 and the
semigroup property of the heat kernel,

pc(t,x) = (Ms,t—epe) (2) = (pt—e * pe) (x) = pt(x) Vo € K. (5.14)
Thus, pc is a holomorphic extension of the heat kernel p;(z) in ¢ and z. Analytic con-

tinuation from K to K¢ is unique (cf. [53, Lemma 4.11.13]), and also from Us, N R to
(

Us, by elementary complex analysis. In particular, since p;(z) does not depend on s or
€, neither does the function pc.

Thus, for each rectangle Us ., there is a unique analytic continuation of the heat kernel
to a holomorphic function pc on Us, x Kc. Let §,, and 7, be sequences with d,, | 0 and
rnp T 00, let U, = Us, ,,, and let p¢ be the analytic continuation of p;(x) to U,. The
rectangles U, are nested with union C,; since pg and pg agree on (Upam NR) x K,
uniqueness of analytic continuation shows that they agree on their common domain

Upnam X Kc. Thus, there is a globally defined holomorphic function pc whose value in
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U, x K¢ is pg, and thus restricts to pi(z) on (U, NR) x K; ergo pc(t,z) = pi(x) for
t >0 and z € K, as desired. Uniqueness again follows from [53, Lemma 4.11.13]. This
establishes point (1).

Point (2) is immediate since K is compact and the function in question is continuous.
For point (3), we first note that, by Lemma 5.12, (M , f)(z) is holomorphic in 7 and z.
Meanwhile, since pc (7, zk™!) is holomorphic in 7 and z for each fixed k € K, we may
use Fubini’s theorem and Morera’s theorem to verify that [, pc (7, zk™") f(k) dz is also
holomorphic in 7 and z. Since both sides of the desired equality are holomorphic in
7 and z, it suffices by uniqueness of analytic continuation to verify the result when
T=1t¢€(0,2s) and z = z belongs to K. Using Lemma 5.14 and the defining property of
pc, the desired equality thus becomes

(D5l 1) () = / pul(ak™) £ (k) dk,

K

which is true. This concludes the proof. O

5.2.2. The Euclidean case
The heat kernel p, on R? is explicitly known to be the Gaussian density mentioned
in the introduction:

pa(w) = (2m5) "2 exp (_|§_>

S

and the density s (%) in this case has been described in (1.15) in the introduction.

Proof of Theorem 5.13 in the Euclidean case. For point (1), the desired holomorphic
extension is given by

pc(r,z) = ( 271'7') - exp (—2—:) (5.15)

where z - z = Z?Zl 2]2 and where v/277 is defined by the standard branch of the square
root (with branch cut along the negative real axis).
Point (2) of the theorem is an elementary computation. Using additive notation for

the group operation, we need to verify that
‘,O(C(T,Z*SU)F d 516
Wﬂs (z)dr < o0 (5.16)
Rd

for all z € C?, provided that s > 0 and 7 € D(s,s) (or, equivalently, provided that
a > 0; cf. (1.8)). Equation (5.16) is a Gaussian integral whose computation is tedious
but straightforward. (The integral factors into separate integrals over each copy of R,
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which may then be evaluated in a computer algebra system.) We record the result here:
if z=¢+41in and 7 =t + du, then

/%ﬂm@m:(%) (L + 5 20 L) o)
2

where, as in (1.8), a = (2st — t* — u?) /4.
For point (3), we must show that (M, ,f)(z) may be computed as

(Mg f)(2) = /p(c (r,z —x)f(z) dx (5.18)

R4

for all f € L?(RY, p,). If f is a polynomial (and thus a matrix entry) and 7 € R and
z € R4, (5.18) follows from Proposition 4.7. Furthermore, when f is a polynomial, both
sides of (5.18) are holomorphic in 7 and z, so the result continues to hold when 7 € C
and z € C?. Now, both sides of (5.18) depend continuously on f € L?(R¢, p,)—the
left-hand side by the unitarity of M, and the continuity of pointwise evaluation, and
the right-hand side by the fact that p¢ (¢, z — ) is square-integrable in x. Thus, we may
pass to the limit starting from polynomials to obtain the result for all f € L%(R%, p,),
thus completing the proof of Theorem 5.13 in the R? case. O

We note that, by (5.17), we have bounds on the value of (M, ,f)(z) in terms of the
L? norm of f. Since MS’T maps isometrically onto J'CLQ((Cd, s ), these bounds translate
into pointwise bounds in HL?(C?, ;) as follows:

IF(5+@'77)I2S(%> (/2|£|2 SRy e n) IF s, ys (519)

where j, ; is given as in (1.15). Note that the bounds on |F(z)|” are, up to a constant,
just the reciprocal of the density p .. This is typical behavior for HL? spaces over C d
with respect to a Gaussian measure.

5.83. The s — oo limit
Throughout this section, we assume that the compact-type group K is actually com-
pact and we normalize the Haar measure dk on K to be a probability measure. Recall

that v, € C*° (K¢, (0,00)) is the K-averaged heat kernel measure, as in Definition 1.8.

Proposition 5.15. For all s > 0 and 7 =t + iu with 7 € D(s, s), we have

[ arlat) = (o) (5.20)

K
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That is to say, the integral on the left-hand side of (5.20) is independent of s and u and
therefore equals its value when w =0 and s = t, which is v;.

For the moment, we give only a heuristic argument for Proposition 5.15; a full proof
requires some functional-analytic technicalities, which will be provided in Appendix A.
By Corollary 5.7, the three terms in the definition (1.7) of A, . all commute with one
another. Thus, formally, we can differentiate in the naive way, as if the terms in the
exponents were scalars rather than operators. Assuming this approach is valid, we would
get

dim ¢ dim ¢

a:u’.s T Z XQMS - 8,“5 T Z j,U/s . (521)

We now denote the integral on the left-hand side of (5.20) by v, .. Then (5.21) would
tell us that

dim € dim ¢

ang = Z X2Vs‘r7 agiLT = Z X YVs‘r

But v, ; is by construction invariant under the right action of K, so that X Vs = 0.
Since Xj commutes with 17] = JNXJ-, we would find that v, ; is independent of s and u,
as claimed.

We will use the following well-known result for the heat kernel measure on a compact
Lie group at large time.

Lemma 5.16. If K is a compact Lie group, the heat kernel ps converges to the constant
1 uniformly over K as s — oo.

This result holds more generally on compact Riemannian manifolds. (Apply Theo-
rem 2 on p. 141 of [7] to the heat kernel p., for ¢ > 0.) In the case of a compact
Lie group, the result follows easily from the expansion of the heat kernel in terms of
characters (e.g., Eq. (15) in [22]).

With these results in hand, we may now prove Theorem 1.9, describing the large-s
limit of the transform B; .

Proof of Theorem 1.9. Since K is compact, the function ps is bounded and bounded
away from zero, showing that L?(K) = L?(K, ps) as sets. The equality of L?(Kc,v;) and
L?*(Kc, pis,7) as sets follows from the averaging lemma (Lemma 4.2) and Proposition 5.15.
We then note that as s tends to infinity with 7 fixed, the parameter ¢ in the averaging
lemma can be chosen to tend to infinity. Thus, by Lemma 5.16, the constants in the
averaging lemma tend to 1 as s tend to infinity, from which the claimed convergence of
norms follows. The equalities of the various Hilbert spaces as sets and the convergence
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of the norms allows us to deduce the unitarity of B, , from the unitarity of the maps
Bs .. O
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Appendix A. Proof of Proposition 5.15

In this section, we provide a proof of Proposition 5.15, which we argued for heuristi-
cally in Section 5.3.

Theorem A.1l. Let G be a Lie group with Lie algebra g and fix an inner product on g.
For any subspace V C g, define

Ay =) X7,
J

where {X;} is an orthonormal basis for V, with domain D(Ay) = C°(G). Then Ay is
essentially self-adjoint as an unbounded operator on L?(G,dg), where dg is a right Haar
measure. Moreover, its closure Ay is non-positive, and the associated heat operators
e3AV are left-invariant for each t > 0.

We give here a proof based on work of Jgrgensen; a brief outline of a more elementary
argument was given in [13, p. 950], based on a method communicated to the first author
by L. Gross. We emphasize that we do not assume that the smallest Lie algebra containing
the X,’s is all of g; thus, Hérmander’s criterion for hypoellipticity need not apply.

Proof. We fix a left Haar measure m in addition to the right Haar measure A on G. Let R
be the unitary right regular representation on L?(G, \), i.e. for z € G and ¢ € L*(G, \)
let

(R(z)p)(y) = ¢(yz) forally e G.

For f € C°(G) and ¢ € L%*(G,)\) we associate a “Garding vector”, g := R(f)¢ €
L?(G, \), defined by
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(R(f))(y) == / (@) (R(x)o)(y) dm(z)
G

- / F(@)p(ya) dm(z) = / o 2)o() dm(x). (A1)
G

G

(According to a result of Malliavin and Dixmier [8], the space of Garding vectors coincides
with the space of “C'* vectors.”)

For X € glet X denote the right-invariant vector field on G which agrees with X at
the identity (as compared with the left-invariant vector field X). By general theory in
[35, Theorem 1.1] or by direct computation, R(f)p € C*(G) N L*(G, \) and

Xg=XR(f)p=R (—Xf) ¢ e C®(G)NLAG,N), YXeaq. (A.2)

Let D(L;) denote the span of the Garding vectors and L; := Lo|p(z,). According to
[35, Theorem 1.1] with U = R, the operator L; is essentially self-adjoint. To complete
the proof it suffices to show L = L; and for this it suffices to show L; C L and L C L.
We now verify the two desired operator inclusions.

o (Ly C L) Let g := R(f)p € D(L;) be a Garding vector as above. Choose a sequence
{hn}S2, C C(G,[0,1]) as in [12, Lemma 3.6] such that h, = 1 on a Rieman-
nian ball of radius n relative to the left-invariant Riemannian metric on G, and so
SUp,eq |Shn(z)| < 0o whenever S is any left-invariant differential operator on G. By
the dominated convergence theorem, the fact that Sg € C*°(G) N L?(G, \) for any
left-invariant differential operator S on G (see (A.2)), and the stated properties of
{hn}5% 4, it is easily shown that h,g — g and L(h,g) — L1g in L*(G, ) as n — oco.
This shows that g € D(L) and Lg = Lig, i.e., Ly C L.

« (L C Ly) Choose 4, € C°(G,[0,00)) such that [, 8,(z) dm(z) = 1 for each n and
supp(8,) | {e} as n — oo. Let t: G — G denote the inversion map, i.e. ¢(z) = 27!
for all z € G. If f € C°(G), then g, :== R(f 01))d, — f in L*(G,\) as n — oo (see
(A.1)). Moreover, g, € D(L;) N D(L) and

k
Lign =R ZXJZ(JCO’/) 6n=R((Lf)ot)dn = Lf, asn—o0
=1

where the convergence is in L?(G, \). Thus, it follows that f € D(L;) and L, f = Lf,
i.e., LC El.

This concludes the proof of self-adjointness. The non-positivity of the self-adjoint

extension L and the left invariance of the operators e*” are now standard exercises. O
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Lemma A.2. Let H be a separable Hilbert space, let A and B be two essentially self-adjoint
non-positive operators on H, and suppose Q: H — H is a bounded operator such QB C
AQ; i.e., Q(D(B)) C D(A) and QB = AQ on D(B). Then Qe'B = et4Q for all t > 0.

Proof. If f € D(B) and f, € D(B) such that f, — f and Bf, — Bf, then Qf, — Qf
and AQf, = QBf, — QBf as n — oo. Therefore it follows that Qf € D(A) and
AQf = QBf for all f € D(B); i.e., QB C AQ. So for any A\ € C we may conclude that
(M — A)Qf = QN — B)f for all f € D(B). If we assume A > 0 and g € H, we may
take f = (A — B)"'g € D(B) in the previous identity to find

(A= A)Q - B)"lg = Qg.

Multiplying this equation by (Al — A)~' and using the fact that g was arbitrary shows
that QA — B)~' = (M — A)~'Q or, equivalently,

QU-X'B)y'=T-X1A)"'Q forall A>0.
A simple induction argument then shows that
QU-N'B)y ™ =(I-X1A)""Q foral \>0. (A.3)

Now, note that lim, .oo(1 — £)7™" = ¢e¥ and 0 < (1 — £)™ < 1 for y < 0. We
thus obtain the following strong operator limits, using the spectral theorem and the

dominated convergence theorem:

e”; = lim (I— 3B) and eM = lim (I— iA) .
n—oo n n—oo n

Therefore, taking A = n/t in (A.3) and then letting n — oo shows Qe = ¢t4Q for all
t > 0. This completes the proof for ¢t > 0, and the ¢t = 0 case is immediate. O

Corollary A.3. If K is a Lie subgroup of G, V C g is an Ad(K)-invariant subspace,

and (-,-),, is an Ad(K)-invariant inner product on V, then eV commutes with right
translations by elements of K.

Proof. If @ is a right-translation by an element of K and A = B = Ay with D(Ay) =
C*(@G), then @B = AQ, and Q preserves D(Ay ) in this case. The result now follow by
an application of Lemma A.2. O

Definition A.4 (K -averaging). Let P be the K-averaging operator defined on L{ (Kc)
by
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(P = [ st
K

where dk denotes the Haar probability measure on K.

Since the Haar measure on K is invariant under inversion and the convolution with
itself is still Haar measure, we can easily check that P: L?(K¢) — L?(Kc) is an orthog-
onal projection. The operator P also preserves the subspaces C*°(K¢) and C(K¢)
and if f € C(K¢) we have Pf(zk) = Pf(z) for all k € K and z € K¢. Proposition 5.15
states, in this language, that P = 14, where t = Re 7.

Proof of Proposition 5.15. If X € € and f € C>°(K¢), then (Pf) (ze"™) = (Pf) (2) for
all z € K¢ and r € R. Differentiating at » = 0 shows that )ZPf = 0 for any X € ¢t
Using the fact that X;Y; = ¥;X;, which follows from the definition Y; = JX; and (2.1),
it follows from Definition 1.4 that

d
t t oo ) ~9
AS)TP = §AJ3P = PaAJE on Cc (K(C), where AJE = ;}/j . (A4)

For the last equality, we have used that A j; commutes with right translations by elements
of K and therefore with P. An application of Lemma A.2 with Q = P, A = A, -, and
B = %AJ@ gives Peilie = ¢Berpfor all 7 € D (s,s) with ReT = t. In particular we
may conclude that

DerP =P Yr=t+iueD (s,9) (A.5)
or equivalently that
(eASvTPv,w>L2(KC) = <eA"th,w>Lz(KC) Vu,v € Co(Kc, R). (A.6)

For the rest of the proof let jis » = Ppus r be the K-average of i5 .. We may rewrite
the left-hand-side of (A.6) as

(€3 Po,w)sarce) = [ arlg)(Pe)(ag)u(z) dg s

— [ berle)eleohyut:) dgdzak

KZxK

= [ ek oCeg)ulz) dy dz di

KZxK

= / s~ (gk)v(zg)w(z) dg dz dk

KZxK



40 B.K. Driver et al. / Journal of Functional Analysis 278 (2020) 108303

- / e (9)0(2g)w(2) dy dz.

2
K(C

This equation with 7 = ¢ also shows the right-hand-side of (A.6) is given by

(B0t Pu,w) a0y = / vi(g)v(zg)w(z) dg dz.
K2

Comparing the last two identities shows, for all v,w € C.(K¢),

/ﬁs77(g)v(zg)w(z)dgdz= /Vt(g)v(zg)w(z)dgdz.

2 2
KC KC

As C.(Kc¢) is dense in L?(Kc¢), we may conclude that, for all v € C.(K¢),

[ ieclontords = [vi@uodg tor ac. -

Kc Kc

and hence for every z € K¢ as both sides of the previous equation are continuous in z.
Thus, taking z = e, it follows that,

/ fie.r (9)0(g) dg = / v(g)u(g)dg ¥ v € Co(Kc,R).

K¢ K¢

So as above, the density of C.(Kc) in L?(Kc) along with the continuity of both is ,
and 14, allows us to conclude that fis -(g) = 1:(g) for all g € K¢. O
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