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We introduce a new form of the Segal–Bargmann transform 
for a connected Lie group K of compact type. We show 
that the heat kernel (ρt(x))t>0,x∈K has a space-time analytic 
continuation to a holomorphic function

(ρC(τ, z))Re τ>0,z∈KC ,

where KC is the complexification of K. The new transform is 
defined by the integral

(Bτ f)(z) =
∫
K

ρC(τ, zk−1)f(k) dk, z ∈ KC .

If s > 0 and τ ∈ D(s, s) (the disk of radius s centered at 
s), this integral defines a holomorphic function on KC for 
each f ∈ L2(K, ρs). We construct a heat kernel density μs,τ

on KC such that, for all s, τ as above, Bs,τ := Bτ |L2(K,ρs)
is an isometric isomorphism from L2(K, ρs) onto the space 
of holomorphic functions in L2(KC , μs,τ ). When τ = t = s, 
the transform Bt,t coincides with the one introduced by the 
second author for compact groups and extended by the first 
author to groups of compact type. When τ = t ∈ (0, 2s), the 
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transform Bs,t coincides with the one introduced by the first 
two authors.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. The classical Segal–Bargmann transform

This paper concerns a generalization of the Segal–Bargmann transform over compact-
type Lie groups, to allow the time parameter of the transform to be complex. We begin 
by briefly discussing the history of the transform. For t > 0 and d ∈ N, let ρt denote the 
variance-t Gaussian density on Rd:

ρt(x) = (2πt)−d/2 exp
(

−|x|2
2t

)
.

This is the heat kernel on Rd: the solution u of the heat equation ∂tu = 1
2Δu with 

(sufficiently integrable) initial condition f is given in terms of ρt by

u(t, x) = (ρt ∗ f)(x) =
∫
Rd

ρt(x − y)f(y) dy. (1.1)

The function ρt admits an explicit entire analytic continuation to Cd, which we call 
(ρt)C: it is simply the function
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(ρt)C(z) = (2πt)−d/2 exp
(

−z · z

2t

)
,

where z · z =
∑d

j=1 z2
j . If f ∈ L1

loc(Rd) and of sufficiently slow growth, then the integral

(Btf)(z) :=
∫
Rd

(ρt)C(z − y)f(y) dy (1.2)

converges and defines an entire holomorphic function on Cd.
The map f �→ Btf is equivalent to the Segal–Bargmann transform, invented and 

explored by the eponymous authors of [1,2,47–49]. Note that neither Segal nor Bargmann 
explicitly connected the transform to the heat kernel, nor did they write the transform 
precisely as in (1.2). Nevertheless, their transforms can easily be rewritten in the form 
(1.2) by simple changes of variable; cf. [24].

We consider also the heat kernel on Cd ∼= R2d (with time-parameter rescaled by a 
factor of 2), which we refer to as μt:

μt(z) = (πt)−d exp(−|z|2/t).

(Note that the real, positive function μt on Cd is not the same as the holomorphic 
function (ρt)C.) The main theorem about this transform is that Bt is an isometric iso-
morphism from L2(Rd, ρt) onto HL2(Cd, μt) — the space of holomorphic functions in 
L2(Cd, μt). (For precisely this form of the theorem, see Theorem 6.3 in [24].) For more 
information about the classical Segal–Bargmann transform, see, for example, [24,29].

1.2. The Segal–Bargmann transform for Lie groups of compact type

In [22], the second author introduced an analog of the Segal–Bargmann transform on 
an arbitrary compact Lie group. Then, in [10], the first author extended the results of 
[22] to a Lie group K of compact type (Section 2), a class that includes both compact 
groups and Rd. The idea of [22] and [10] is the same as in the Rd case: the heat kernel 
ρt on K has an entire analytic continuation (ρt)C to the complexification KC of K. The 
transform Bt is defined by the group convolution formula generalizing (1.2):

(Btf)(z) =
∫
K

(ρt)C(zk−1)f(k) dk. (1.3)

The theorem is that Bt is an isometric isomorphism from L2(K, ρt) onto the holomorphic 
space HL2(KC, μt), where μt is the (time-rescaled) heat kernel on KC. If K = Rd, then 
Bt is precisely the classical Segal–Bargmann transform of Section 1.1.

Later, in [14,23], the authors made a further generalization related to the time pa-
rameter t. One can use a different time s �= t to measure the functions f in the domain, 
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while still using the analytically continued heat kernel at time t to define the transform, 
as in (1.3). The resulting map,

Bs,t : L2(K, ρs) → HL2(KC, μs,t)

is still an isometric isomorphism for an appropriate two-parameter heat kernel density 
μs,t, provided 0 < t < 2s. Note that the formula for the transform Bs,t does not depend 
on s; this parameter only indicates the inner product to be used on the domain and 
range spaces. In the special case that K = Rd, the two-parameter heat kernel density 
μs,t in the range is a Gaussian measure with different variances in the real and imaginary 
directions. (Take u = 0 in (1.15) below.)

Remark 1.1. For a complex manifold M , let H(M) denote the space of holomorphic 
functions on M . If μ is a measure on M having a strictly positive, continuous density 
with respect to the Lebesgue measure in each holomorphic local coordinate system, it is 
not hard to show that HL2(M, μ) := H(M) ∩ L2(M, μ) is a closed subspace of L2(M, μ)
and is therefore a Hilbert space. Furthermore, the pointwise evaluation map F �→ F (z)
is continuous for each z ∈ M , and the norm of this functional is locally bounded as a 
function of z. (See, for example, Theorem 3.2 and Corollary 3.3 in [11] or Theorem 2.2 
in [24].)

1.3. The complex-time Segal–Bargmann transform

The topic of the present paper is a new generalization that modifies the transform 
Bs,t as well; in particular, we show that the time parameter t can also be extended 
into the complex plane, and there is still an isomorphism between real and holomorphic 
L2 spaces of associated heat kernel measures. This generalization is natural and, in a 
certain sense, a completion of Segal–Bargmann transform theory, as explained below. 
(See Theorem 3.2. See also Section 1.5 for further motivation for this generalization.)

Let K be a connected compact-type Lie group with Lie algebra k, and fix an 
Ad(K)-invariant inner product 〈·, ·〉

k
on k (Section 2). This induces a bi-invariant Rie-

mannian metric on K, and an associated Laplace operator ΔK, which is bi-invariant, 
elliptic, and essentially self-adjoint in L2(K). There is an associated heat kernel, 
ρt ∈ C∞(K, (0, ∞)), satisfying

(
eΔK/2f

)
(x) =

∫
K

ρt(xy−1)f(y) dk for all f ∈ L2(K) and t > 0. (1.4)

Our first theorem is that the heat kernel can be complexified in both space and time.

Theorem 1.2. Let K be a connected Lie group of compact type, with a given Ad(K)-invar-
iant inner product on its Lie algebra k, and let (ρt)t>0 be the associated heat kernel. Let 
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C+ denote the right half-plane {τ = t + iu : t > 0, u ∈ R}. There is a unique holomorphic 
function

ρC : C+ × KC → C

such that ρC(t, x) = ρt(x) for all t > 0 and x ∈ K ⊂ KC.

Theorem 1.2 is proved in Section 5, as part of Theorem 5.13.
Following the pattern described above for the Rd case, we make the following defini-

tion.

Notation 1.3 (Complex-time Segal–Bargmann transform). For τ ∈ C+ and z ∈ KC, 
define

(Bτ f) (z) :=
∫
K

ρC(τ, zk−1)f(k) dk for z ∈ KC (1.5)

for all measurable functions f : K → C satisfying∫
K

∣∣ρC(τ, zk−1)f(k)
∣∣ dk < ∞. (1.6)

Further let D(Bτ ) denote the vector space of measurable functions f : K → C such that 
(1.6) holds for all z ∈ KC and such that Bτ f ∈ H(KC).

As defined, D(Bτ ) is a linear subspace of the measurable C-valued functions on K, and 
Bτ : D(Bτ ) → H(KC) is a linear map. The main theorem of this paper (Theorem 1.6) 
identifies L2-Hilbert subspaces of D(Bτ ) and H(KC) which are unitarily equivalent to 
one another under the action of Bτ . To describe the relevant subspaces of H(KC) we 
need a little more notation.

As on K, we fix once and for all a right Haar measure λ on KC, and typically write 
dz for λ(dz) and L2(KC) for L2(KC, λ). When s > 0, let D(s, s) ⊂ C+ denote the open 
disk of radius s centered at s.

Definition 1.4. Let s > 0 and τ = t + iu ∈ C. The (s, τ)-Laplacian Δs,τ on KC is the 
left-invariant differential operator

Δs,τ =
dim k∑
j=1

[(
s − t

2

)
X̃2

j + t

2 Ỹ 2
j − u X̃j Ỹj

]
(1.7)

where {Xj}dim k
j=1 is any orthonormal basis of k, and Yj = JXj where J is the operation 

of multiplication by i on kC = Lie(KC). Here, for any Z ∈ kC, we let Z̃ denote the 
left-invariant vector field on KC whose value at the identity is Z.
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Remark 1.5. Given s > 0 and τ = t + iu ∈ C+, from (1.7), it is not difficult to show that 
the operator Δs,τ is elliptic if and only if

α (s, τ) := det
[

s − t/2 −u/2
−u/2 t/2

]
= 1

4(2st − t2 − u2) > 0. (1.8)

This can be written equivalently as

2s > t + u2/t (1.9)

or, more succinctly, as τ ∈ D(s, s) (the disk of radius s, centered at s). Further notice 
that D(s, s) ↑ C+ as s ↑ ∞.

If the conditions in Remark 1.5 hold, then there exists a heat kernel density μs,τ ∈
C∞(KC, (0, ∞)) such that

(
eΔs,τ /2f

)
(w) =

∫
KC

μs,τ (w−1z) f(z) dz for all f ∈ L2(KC).

We are now prepared to state the main theorem of this paper.

Theorem 1.6 (Complex-time Segal–Bargmann transform). Let K be a connected, 
compact-type Lie group. For s > 0 and τ ∈ D(s, s), L2(K, ρs) ⊂ D(Bτ ); i.e., Bτ f

is holomorphic on KC for each f ∈ L2(K, ρs). The image of Bτ on this domain is 
Bτ

(
L2(K, ρs)

)
= HL2(KC, μs,τ ). Moreover,

Bs,τ := Bτ |L2(K,ρs)

is a unitary isomorphism from L2(K, ρs) onto HL2(KC, μs,τ ).

Theorem 1.6 is proved in Section 5. The τ = t ∈ R case of Theorem 1.9 was established 
in [14, Theorem 5.3]. (See also [23, Theorem 2.1].)

Remark 1.7. The condition in [14,23] for the two-parameter Segal–Bargmann transform 
Bs,t to be a well-defined unitary map was t > 0 and s > t/2, or equivalently t ∈ (0, 2s). It 
is therefore natural that, in complexifying t to τ , the optimal condition is that τ ∈ D(s, s), 
the most symmetric region whose intersection with R is the interval (0, 2s).

In the case that the group K is compact, there is a limiting s → ∞ variant (The-
orem 1.9) of Theorem 1.6. To state this variant, as in [22], we first introduce a one 
parameter family of “K-averaged heat kernels.”
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Definition 1.8. Let K be a compact Lie group. For t > 0, define the K-averaged heat 
kernel νt on KC by

νt(z) =
∫
K

μt,t(zk) dk for all z ∈ KC

where dk denotes the Haar probability measure on K.

In fact, one can replace μt,t by μs,τ for any τ ∈ D(s, s) in the above integral, and the 
resulting K-averaged density νt is the same: it only depends on t = Re τ ; see Proposi-
tion 5.15.

Theorem 1.9 (Large-s limit). Let K be a compact connected Lie group. For all s > 0
and τ = t + iu ∈ D(s, s), we have L2(K) = L2(K, ρs) and L2(KC, μs,τ ) = L2(KC, νt)
(equalities as sets). Furthermore, for all f ∈ L2(K) and all F ∈ L2(KC, νt), we have

lim
s→∞

‖f‖L2(K,ρs) = ‖f‖L2(K)

lim
s→∞

‖F‖L2(KC ,μs,τ ) = ‖F‖L2(KC ,νt) .

It follows that B∞,τ := Bτ |L2(K) is a unitary isomorphism from L2(K) onto 
HL2(KC, νt).

This theorem is proved in Section 5.3 below.

Remark 1.10. The unitarity of the map B∞,τ was previously established in [19, Prop. 
2.3]. Indeed, this unitarity result follows easily from the unitarity of the “C-version” 
Segal–Bargmann transform in [22] and the unitarity of the operator eiuΔ/2 : L2(K) →
L2(K). The significance of Theorem 1.9 is that the unitary map B∞,τ is, in a strong 
sense, the s → ∞ limit of the unitary map Bs,τ .

1.4. An outline of the proof

We now give a heuristic proof of the isometricity portion of Theorem 1.6, in the 
Euclidean case K = Rd, for motivation. The argument is a generalization of the method 
used in the appendix of [25]. By (1.5), if we restrict to real time τ = t > 0 and look at the 
transform (Bs,tf)(x) at a point x ∈ Rd, we simply have (Bs,tf)(x) =

∫
Rd ρt(x −y)f(y) dy; 

in other words, restricted to real time and K, Bs,tf is just the heat operator applied to 
f , Bs,tf = e

t
2 Δf where Δ is the standard Laplacian on Rd. Therefore, in general the 

transform can be described as “apply the heat operator, then analytically continue in 
space and time”. But if the function f itself already possesses a holomorphic extension 
fC to all of Cd (e.g., if f is a polynomial), then at least informally we should have
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Bs,τ f = e
τ
2 ΔfC,

where now Δ (the sum of squares of the Rd-derivatives) is acting on functions on Cd.
Let F = Bs,τ f ; we need to compute |F |2 = FF̄ . Since fC is holomorphic, we have 

∂
∂xj

fC = ∂
∂zj

fC, and so ΔfC =
∑d

j=1
∂2

∂z2
j
fC =: ∂2fC; similarly Δf̄C =

∑d
j=1

∂2

∂z̄2
j
f̄C =:

∂̄2f̄C. Again, since fC is holomorphic and f̄C is antiholomorphic, ∂2f̄C = 0 = ∂̄2fC; so 
we have

(FF̄ ) = (e τ
2 ∂2

fC)(e τ̄
2 ∂̄2

f̄C) = e( τ
2 ∂2+ τ̄

2 ∂̄2)fC f̄C. (1.10)

Now, we measure f in L2(Rd, ρs); setting x = 0 in the (additive form of) (1.4) defining 
the heat operator, we can compute

‖f‖2
L2(Rd,ρs) =

∫
Rd

ρs(y)|f(y)|2 dy =
(
e

s
2 Δ|f |2

)
(0) =

(
e

s
2 Δ|fC|2

)
(0). (1.11)

Similarly, we measure F in L2(Cd, μs,τ ), meaning

‖F‖2
L2(Cd,μs,τ ) =

(
e

1
2 Δs,τ |F |2

)
(0). (1.12)

Combining (1.10) and (1.12), and commuting partial derivatives to combine the expo-
nentials, we therefore have

‖Bs,τ f‖2
L2(Cd,μs,τ ) =

(
e

1
2 Δs,τ + τ

2 ∂2+ τ̄
2 ∂̄2 |fC|2

)
(0). (1.13)

Comparing (1.11) with (1.13), we see that to prove the isometry in Theorem 1.6, it 
suffices to have

sΔ = Δs,τ + τ∂2 + τ̄ ∂̄2.

Expressing the operators ∂2 and ∂̄2 in terms of real partial derivatives, we can then 
solve for Δs,τ ; this is how (1.7) arises. In the present Euclidean setting, we have

Δs,τ =
d∑

j=1

[(
s − t

2

)
∂2

∂x2
j

+ t

2
∂2

∂y2
j

− u
∂2

∂xj∂yj

]
. (1.14)

As in Remark 1.5, it is easily verified that Δs,τ is elliptic precisely when τ ∈ D (s, s). 
Moreover, by a standard Fourier transform argument, one shows that e 1

2 Δ̄s,τ f = f ∗ μs,τ

where

μs,τ (z) = (2π
√

α)−d

(
− t/2 |x|2 − s − t/2 |y|2 − u

x · y

)
, (1.15)
2α 2α 2α
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where z = x + iy ∈ Rd + iRd = Cd, and α := α (s, τ) as in Eq. (1.8).
When u = 0, the density μs,τ becomes a product of a Gaussian in the x variable and 

a Gaussian in the y variable, but with typically unequal variances. If u = 0 and s = t, 
the formula for μs,τ reduces to

μt,t(z) = (πt)−de−|z|2/t,

which is the density for the standard Segal–Bargmann space over Cd.
For a general Lie group K of compact type, we replace the partial derivatives in 

the preceding argument with left-invariant vector fields. The heuristic argument then 
goes through unchanged, except that we must remember that left-invariant vector fields 
do not, in general, commute. Thus, we must also verify that the particular operators 
involved in the calculation do, in fact, commute, allowing us to combine the exponents 
as above. For this, we need to use an inner product on the Lie algebra of K that is 
Ad-invariant; this is the reason for the assumption that K be of compact type.

Most of this paper is devoted to making the above argument rigorous. The key is to 
introduce a dense subspace (consisting of matrix entries; see Section 4.2) of the domain 
Hilbert space on which integration against the heat kernel can be computed rigorously 
by a power series in the relevant Laplacian. This argument can be found in Section 5.

The operator Δs,τ was the starting point for the current investigation. It is the Lapla-
cian for a left-invariant Riemannian metric on KC for which the corresponding inner 
product on the Lie algebra is invariant under the adjoint action of K. While the Lie 
algebra of the complexified Lie group KC does not possess a fully Ad-invariant inner 
product (unless K is commutative), it does possess many inner products that are invari-
ant under the adjoint action of K. These are the most natural from the perspective of 
diffusion processes, particularly in high dimension (cf. [36]). In fact, there is a natural 
three (real) parameter family of Ad(K)-invariant inner products on Lie(KC) (see (3.8)
for the relation to the Segal–Bargmann transform parameters s and τ = t + iu). In the 
case that K is simple, this is a complete characterization of all such invariant inner prod-
ucts; this is the statement of Theorem 3.2 below. It was this fact that led the authors 
backward to discover the complex-time Segal–Bargmann transform, which is therefore 
a natural completion of the versions of the transform previously introduced by Segal, 
Bargmann, and the first two authors of the present paper.

1.5. Motivation

In the case K = U(n) and KC = GL(n; C), we may give one motivation for the 
complex-time Segal–Bargmann transform as follows: choosing matrices at random from 
GL(n; C) with distribution μs,τ is an interesting random matrix model and the trans-
form is a tool for studying that model. We now elaborate on this statement, starting by 
thinking of the heat kernel measure on GL(n; C) as giving a random matrix model. The 
heat kernel measure μs,τ (g) dg on GL(n; C) is just the group analog of a Gaussian mea-
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sure on its Lie algebra, the space of all n × n matrices. In the two-parameter case (i.e., 
with τ = t ∈ R), the Gaussian measure is a scaled version of the Ginibre ensemble. In 
the large-n limit, the eigenvalues of a random matrix chosen according to this Gaussian 
measure are uniformly distributed on an ellipse with axes lying along the real and imag-
inary axes. One can certainly add a third parameter to the Gaussian measure, but one 
does not really get anything new by doing so: The resulting random matrix is just the 
two-parameter case multiplied by a fixed complex number. Thus, the limiting eigenvalue 
distribution is uniform over an ellipse in C—but an ellipse that has been rotated so its 
axes no longer lie along the real and imaginary axes.

For the heat kernel measure on GL(n; C), the problem is much richer. In the two-
parameter case (i.e., with τ = t ∈ R), the second and third authors have used [30] the 
large-n Segal–Bargmann transform developed in [3,15,32] to identify the domain Σs,t in 
C on which the “Brown measure” of the limiting object is supported. We expect that 
this is the domain into which the eigenvalues of random matrices chosen from GL(n; C)
and distributed as μs,t cluster in the n → ∞ limit. In the case s = t, the authors then 
computed the Brown measure—not just its support—in [9].

Already in the two-parameter case, the domains Σs,t display an interesting structure, 
changing from simply connected to doubly connected at s = 4. If we then allow τ to 
be complex, the associated random matrix model is no longer just a complex number 
times the two-parameter case. Thus the domain into which the eigenvalues cluster will 
not be simply a rotation of Σs,t. Rather, simulations indicated that the domain gets 
twisted around in a much more complicated (and therefore interesting) way. The large-n
limit of the complex-time Segal–Bargmann transform has already been developed in 
[6]. We expect that this limiting transform will be an important tool in studying the 
large-n eigenvalue distribution of μs,τ , in the same way that the large-n limit of the 
two-parameter transform was used in [30].

In the rest of this subsection, we provide motivation for considering the complex-time 
transform for a fixed, finite-dimensional Lie group of compact type. The Segal–Bargmann 
transform (Bτ f)(z) is computed by integration of f against the function

χz
τ (x) := ρC(τ, x−1z). (1.16)

These functions may be thought of as “coherent states” on K. In the case K = R1, 
coherent states are often defined as minimum uncertainty states, namely those giving 
equality in the classic Heisenberg uncertainty principle. There is, however, a stronger 
form of the uncertainty principle, due to Schrödinger [46], which says that

(ΔχX)2 (ΔχP )2 ≥ �2

4 + |Covχ(X, P )|2 , (1.17)

where ΔχX is the uncertainty of the observable X in state χ, and

Covχ(X, P ) := 〈(XP + PX)/2〉χ − 〈X〉χ 〈P 〉χ



B.K. Driver et al. / Journal of Functional Analysis 278 (2020) 108303 11
is the quantum covariance. (The classic Heisenberg principle omits the covariance term 
on the right-hand side of (1.17).)

States that give equality in (1.17) are Gaussian wave packets, but where the quadratic 
term in the exponent can be complex, as follows:

χ(x) = C exp{iax2 − b(x − c)2 + idx} (1.18)

with a, b, c, d ∈ R and b > 0. This class of states is actually more natural than the usual 
ones with a = 0, because the collection of states of the form (1.18) is invariant under the 
metaplectic representation; that is, the natural (projective) unitary action of the group 
of symplectic linear transformations of R2.

If we specialize the states in (1.16) to the Rd case, we find that they are Gaussian 
wave packets, and that if Im τ �= 0 then the quadratic part of the exponent is complex. 
We see, then, that allowing the time-parameter in the Segal–Bargmann transform to be 
complex amounts to considering a larger and more natural family of coherent states. 
In the Rd case, unitary Segal–Bargmann-type transforms using general Gaussian wave 
packets were constructed by J. Sjöstrand [50] and L. Hörmander [34], with applications 
to semiclassical analysis. In these works, it is essential to allow the quadratic part of the 
exponent to be complex, in order to achieve invariance of the theory under symplectic 
linear transformations.

In the s → ∞ transform B∞,t+iu of Theorem 1.9, the domain Hilbert space is L2(K). 
Since eiuΔ/2 is a unitary map of L2(K) to itself, in this case it is possible to derive the 
complex-time transform from the real one B∞,t (denoted as the C-version of the trans-
form Ct in [22]) by the decomposition e

1
2 (t+iu)Δ = etΔ/2eiuΔ/2. This possibility has been 

exploited, for example, in the papers [18,19] of C. Florentino, J. Mourão, and J. Nunes 
on the quantization of nonabelian theta functions on SL(n, C) = SU(n)C. The authors 
show that these functions arise as the image of certain distributions on SU(n) under 
the heat operator, evaluated at a complex time, and use the Segal–Bargmann transform 
in the complexification process. These papers, then, show the utility of introducing a 
complex time-parameter into the (C-version) Segal–Bargmann transform. The present 
paper extends this complex time-parameter to the two-parameter transform.

Meanwhile, the Segal–Bargmann transform for K is related to the study of complex 
structures on the cotangent bundle T ∗(K). There is a natural one-parameter fam-
ily of “adapted complex structures” on T ∗(K) arising from a general construction of 
Guillemen–Stenzel [20,21] and Lempert–Szőke [40,51]. Motivated by ideas of Thiemann 
[52], the second author and W. Kirwin in [31] showed that these structures arise from 
the “imaginary-time geodesic flow” on T ∗(K). The Segal–Bargmann transform can then 
be understood [16,17,26] as a quantum counterpart of the construction in [31].

As observed in [41], the adapted complex structures on T ∗(K) extend to a two-
parameter family, by including both a real and an imaginary part to the time-parameter 
in the geodesic flow in [31]. The corresponding quantum construction has been done in 
[42] and can be thought of as adding a complex parameter to the C-version of the Segal–
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Bargmann transform for K. (Compare work of Kirwin and Wu [38] in the Rd case.) The 
present paper then extends the complex-time transform to its most natural range, in 
which the domain Hilbert space is taken to be L2 of K with respect to a heat kernel 
measure.

Finally, we mention the paper [28], which shows that certain operators on L2(KC, νt)
of the form CtAC−1

t , where A is an operator on L2(K), can be represented as Toeplitz 
operators. Here Ct, for t ∈ R, is the C-version Segal–Bargmann transform, which coin-
cides with the limiting transform B∞,t in Theorem 1.9. Using the results of the present 
paper, a similar analysis can be performed for operators of the form Ct+iuAC−1

t+iu, where 
Ct+iu is the limiting transform B∞,t+iu in Theorem 1.9.

2. Compact-type Lie groups and their complexifications

We now introduce the class of Lie groups in which we are interested: those of compact 
type and their complexifications.

Definition 2.1. A connected Lie group K with Lie algebra k is said to be of compact type
if there exists an Ad-K-invariant inner product on k; that is, an inner product such that

〈AdxX, AdxY 〉 = 〈X, Y 〉 , ∀x ∈ K, X, Y ∈ k.

Clearly a commutative group is of compact type. Furthermore, every compact group is 
of compact type, since any inner product on its Lie algebra can be made Ad-invariant by 
averaging over the adjoint action. A key result says that products of these two examples 
account for all Lie groups of compact type.

Proposition 2.2 ([43], Lemma 7.5). If K is a compact-type Lie group with a specified 
Ad-invariant inner product, then K is isometrically isomorphic to a direct product group: 
K ∼= K0 × Rd for some compact Lie group K0 and some non-negative integer d.

If G is a connected real Lie group, a complexification of G is a pair (GC, ι) consisting 
of a complex Lie group GC and a smooth homomorphism ι : G → GC such that the 
following universal property holds: for any complex Lie group H and any smooth ho-
momorphism Φ : G → H, there is a unique holomorphic homomorphism ΦC : GC → H

such that

ΦC ◦ ι = Φ.

Suppose K = K0 × Rd is a connected Lie group of compact type. It is known ([33, 
XVII Theorem 5.1] or [4, Theorem 4.1, Propositions 8.4 and 8.6]) that the Lie alge-
bra of the complexification of K0 is the complexification of its Lie algebra k0—that is, 
Lie((K0)C) = k + ik—and that ι maps K0 injectively into its complexification. Mean-
while, the complexification of Rd is Cd, with ι being the obvious inclusion map. Thus, 
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the Lie algebra of KC is the complexification of its Lie algebra, and ι : K → KC is 
injective. From now on, we always identify K with the subgroup ι(K) of KC.

Example 2.3. The compact Lie groups SO(n), SU(n), and U(n) have the following com-
plexifications:

SO(n)C = SO(n;C), SU(n)C = SL(n;C), U(n)C = GL(n;C).

We recall that a Lie group is called unimodular if every left Haar measure is also right 
invariant.

Proposition 2.4. If K is a connected Lie group of compact type, both K and KC are 
unimodular.

Proof. The existence of an invariant inner product guarantees that the Lie algebra k of 
K decomposes as the Lie algebra direct sum of a commutative algebra and a semisimple 
algebra [27, Proposition 7.6]. It then follows from Corollary 8.31 in [39] that K is uni-
modular. Meanwhile, the complexification of each simple summand in k is also simple as 
a real Lie algebra [27, Theorem 7.32 and Exercise 12]. Thus, kC, when viewed as a real 
Lie algebra, is also the direct sum of a commutative algebra and a semisimple algebra 
and is therefore unimodular. �

Let K be a connected Lie group of compact type and let KC its complexification. It 
is convenient, for reasons that will be apparent shortly, to write the “multiplication by 
i” map on kC as J : kC → kC. (Thus, J2 = −I.) Since kC is a complex Lie algebra, the 
bracket on kC is bilinear over C, and in particular

[JX, Y ] = J [X, Y ] (2.1)

for all X, Y ∈ kC.
For any X ∈ kC, the left-invariant vector field X̃ is given by

(X̃f)(g) = d

dt
f(getX)

∣∣∣∣
t=0

(2.2)

for any smooth real- or complex-valued function f on KC. We may now appreciate the 
utility of the notion J for the “multiplication by i” map on kC: in general, J̃Xf is not 
the same as i X̃f (for example, if f is real valued). On the other hand, a complex-valued 
function f on KC is holomorphic if and only if the differential of f at each point g ∈ KC

is a complex-linear map from Tg(KC) to C. Thus, if f is holomorphic, then for all X ∈ g

and g ∈ KC, we have

J̃Xf(g) = iX̃f(g) (f holomorphic). (2.3)
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3. Invariant metrics on K and KC

3.1. Invariant metrics

If G is a Lie group with Lie algebra g and K ⊆ G is a compact Lie subgroup, one 
can produce an Ad(K)-invariant inner product on g by averaging any inner product 
over the adjoint representation of K, as above. This raises the question: how many 
Ad(K)-invariant inner products does g possess? We now answer this question in the case 
that K is simple (and compact type), and G = KC is the complexification of K.

Fix a compact-type Lie group K, and an Ad(K)-invariant inner product 〈·, ·〉k on its 
Lie algebra k. Let KC denote the complexification of K (cf. Section 2); in particular 
kC ≡ Lie(KC) = k ⊕ Jk. Consider the following three-parameter family of inner products 
on KC:

〈X1 + JY1, X2 + JY2〉a,b,c := a〈X1, X2〉k + b〈Y1, Y2〉k + c(〈X1, Y2〉k + 〈X2, Y1〉k) (3.1)

for X1, X2, Y1, Y2 ∈ k, where a, b > 0 and c2 < ab. It is straightforward to verify that 
the symmetric bilinear forms in (3.1) are real inner products on kC (precisely under 
the conditions on a, b, c stated below the equation), and are all Ad(K)-invariant. The 
main theorem of this section is that, in the case that K is simple, this is a complete 
characterization of all Ad(K)-invariant inner products on KC.

Definition 3.1. A Lie group K is called simple if dim K ≥ 2, and the Lie algebra k of K
has no nontrivial ideals.

Theorem 3.2. Let K be a simple (or 1-dimensional) Lie group of compact type. Then 
k has a unique (up to scale) Ad-invariant real inner product 〈·, ·〉k. Furthermore, all 
Ad(K)-invariant real inner products on kC have the form (3.1).

Remark 3.3. For example, K = SU(n) is simple, with complexification KC = SL(n, C). 
Hence (3.1) characterizes all Ad(SU(n))-invariant inner products on SL(n, C), where 
〈X, Y 〉su(n) = Tr(XY ∗) = −Tr(XY ) is the unique (up to scale) Ad-invariant inner 
product on su(n). In that case, the family can be written explicitly in terms of the trace 
as

〈A, B〉a,b,c = 1
2(b + a)Re Tr(AB∗) + 1

2Re [(b − a + 2ic)Tr(AB)] . (3.2)

Extending to U(n) and its complexification GL(n, C), it is easy to compute that all 
Ad(U(n))-invariant inner products on gl(n, C) are of the form (3.1) plus one more term, 
involving the 1-dimensional subspace spanned by the identity matrix; extending (3.2), 
there is one more term involving Tr(A)Tr(B). In [5,37,36], the third author studied the 
large-n limits of the diffusion processes on GL(n, C) invariant with respect to the inner 
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products 〈 , 〉a,b,0. Part of the motivation for the present work was the question of whether 
those were the largest class of appropriately invariant diffusions; the answer provided by 
Theorem 3.2 is no.

Remark 3.4. The first statement of Theorem 3.2, that the Ad-invariant inner product on 
K is unique up to scale when K is simple, is well known; it was proved, for example, in 
[43, Lemma 7.6].

We will use Schur’s lemma as a tool in the proof of Theorem 3.2, but this is complicated 
by the fact that the inner products in question are real. We must therefore be careful 
about how and when we complexify.

Lemma 3.5. If K is a simple (real) Lie group with Lie algebra k, then the (real) ad-
joint representation of K on k is irreducible. Moreover, if K is compact type, then the 
(complex) adjoint representation of K on kC is also irreducible.

Proof. If I ⊆ k is an invariant real subspace for Ad(K), then AdetX (Y ) ∈ I for all t ∈ R, 
X ∈ k, and Y ∈ I. Taking the derivative at t = 0 shows that adX(Y ) = [X, Y ] ∈ I for all 
X ∈ k and Y ∈ I, which means I ⊆ k is an ideal in k. Thus I ∈ {0, k}, yielding the first 
statement of the lemma.

Now, [27, Theorem 7.32] states that the simplicity of k implies that kC is also simple 
as a complex Lie algebra. (The statement given there assumes K is compact, but the 
proof only uses the fact that it is compact type.) So, let J ⊆ kC be an invariant complex 
subspace for Ad(K). The same argument above shows that [X, W ] ∈ J for all X ∈ k and 
W ∈ J. Any Z ∈ kC has the form Z = X + JY for X, Y ∈ k, and by (2.1), we therefore 
have

[Z, W ] = [X + JY, W ] = [X, W ] + J [Y, W ] ∈ J + JJ = J, ∀ Z ∈ kC, W ∈ J

where the final equality follows from the fact that J is a complex subspace. Hence J is 
a complex ideal in kC, and therefore J ∈ {0, kC}. This concludes the proof of the second 
statement. �

We now prove the algebraic result that constitutes most of the proof of Theorem 3.2.

Proposition 3.6. Let K be a simple (or 1-dimensional) real compact-type Lie group, and 
fix an Ad-invariant inner product 〈·, ·〉k on its Lie algebra k. If B : kC × kC → R is an 
Ad(K)-invariant symmetric bilinear form, then B has the form (3.1) for some a, b, c ∈ R.

Proof. The result is straightforward when K is 1-dimensional, so we focus on the case 
that K is simple. We use the inner product 〈·, ·〉1,1,0 (cf. (3.1)) as a reference; there is 
then some endomorphism M : kC → kC such that
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B(Z, W ) = 〈Z, M(W )〉1,1,0 ∀ Z, W ∈ kC.

The symmetry of B forces M to be self-adjoint. We identify kC = k ⊕ Jk with k ⊕ k. Thus 
we can decompose the endomorphism M in block diagonal form

M =
[

A C

C� B

]
(3.3)

where A and B are symmetric matrices.
Since the adjoint representation of K commutes with J , it follows that, under the 

isomorphism kC ∼= k ⊕ k, Adk acts diagonally for all k ∈ K. Using the fact that both the 
inner product 〈·, ·〉1,1,0 and the bilinear form B are Adk-invariant, it is straightforward to 
compute that the matrices A, B, C, and C� all commute with Adk for each k ∈ K. The 
same therefore applies to the complex-linear extensions of these endomorphisms to kC. 
It then follows from Lemma 3.5 and Schur’s lemma that there are constants a, b, c ∈ C

with A = aI, B = bI, and C = C� = cI. Since each of the endomorphisms preserves the 
real subspace k, it follows that a, b, c ∈ R.

Hence, for Z = X + JY ∈ kC, (3.3) yields M(Z) = (aX + cY ) + J(cX + bY ). From 
the definition of the inner product 〈·, ·〉1,1,0, we therefore have

B(X1 + JY1, X2 + JY2) = 〈X1 + JY1, aX2 + cY2 + J(cX2 + bY2)〉1,1,0

= 〈X1, aX2 + cY2〉k + 〈Y1, cX2 + bY2〉k

= a〈X1, X2〉k + c〈X1, Y2〉k + c〈Y1, X2〉k + b〈Y1, Y2〉k

= 〈X1 + JY1, X2 + JY2〉a,b,c

concluding the proof. �
The proof of Theorem 3.2 now follows quite easily.

Proof of Theorem 3.2. Let 〈·, ·〉k and 〈·, ·〉′
k denote two Ad-invariant inner products on 

K. We may view the second inner product as a symmetric (degenerate) bilinear form 
on kC, which is Ad(K)-invariant. By Proposition 3.6, it follows that 〈·, ·〉′

k = a〈·, ·〉k for 
some a ∈ R (the other terms in (3.1) are 0); the fact that both are inner products forces 
a > 0. This proves the uniqueness, up to scale, of the Ad-invariant inner product on K.

Now, any real inner product 〈·, ·〉 on kC is a symmetric bilinear form on kC, and so by 
Ad(K)-invariance, Proposition 3.6 shows that it has the form (3.1) for some a, b, c ∈ R. 
Since it is an inner product, it follows that the matrix M of (3.3) is positive definite, 
and given its block diagonal form, this is equivalent to a, b > 0 and ab − c2 > 0. This 
concludes the proof. �
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3.2. Laplacians

We use the notation X̃ for the left-invariant vector field associated to a Lie algebra 
element X, as in (2.2). We fix an Ad(K)-invariant inner product 〈·, ·〉

k
on K. Then if 

{Xj}dim k
j=1 is an orthonormal basis for k with respect to 〈·, ·〉

k
, we define ΔK to be the 

operator given by

ΔK =
dim k∑
j=1

X̃2
j . (3.4)

The operator is easily seen to be independent of the choice of orthonormal basis. Since 
K is unimodular, this operator is the Laplace–Beltrami operator for the left-invariant 
metric determined by 〈·, ·〉

k
[12, Remark 2.2]. Since 〈·, ·〉

k
is Ad(K)-invariant, the metric 

on K is actually bi-K-invariant and thus ΔK is bi-K-invariant.
We now fix real numbers a, b, and c with a, b > 0 and c2 < ab, as in Section 3.1, 

and let 〈·, ·〉a,b,c be the associated Ad(K)-invariant inner product. We then choose an 
orthonormal basis {Zj}2 dim k

j=1 for kC with respect to this inner product and define the 
Laplacian La,b,c by

La,b,c =
2 dim k∑

j=1
Z2

j , (3.5)

similarly to (3.4).

Proposition 3.7. Let La,b,c denote the Laplacian in (3.5). Fix any basis {Xj}d
j=1 of k

orthonormal with respect to the given Ad(K)-invariant inner product on k, and let Yj =
JXj. Then

La,b,c = 1
ab − c2

d∑
j=1

[
bX̃2

j + aỸ 2
j − 2cX̃j Ỹj

]
. (3.6)

Proof. We use the basis {Zj}2 dim k
j=1 consisting of X1, Y1, . . . , Xdim k, Ydim k (in that order). 

We let {qlm}2 dim k
l,m=1 be the associated Gram matrix; that is, the matrix of inner products 

of these basis elements with respect to the inner product 〈·, ·〉a,b,c. If q−1 is the inverse 
matrix to q, it is an elementary computation to verify that

La,b,c =
2 dim k∑
l,m=1

(q−1)lmZ̃lZ̃m. (3.7)

Now, we can compute directly from (3.1) and the orthonormality of {Xj}d
j=1 that

〈Xi, Xj〉a,b,c = aδij , 〈Yi, Yj〉a,b,c = bδij , 〈Xi, Yj〉a,b,c = 〈Yi, Xj〉a,b,c = cδij .
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It follows that the matrix q is block diagonal with 2 × 2 diagonal blocks all equal to the 
matrix B (below). Thus q−1 is also block diagonal with 2 × 2 diagonal blocks all equal 
to B−1 (below):

B =
[

a c

c b

]
, B−1 = 1

ab − c2

[
b −c

−c a

]
.

Combining this with (3.7) yields (3.6). �
To dispense with the cumbersome determinant in the denominator in (3.6), and to 

match the parametrization relevant to the Segal–Bargmann transform, we make the 
following change of parametrization:

(s, t, u) = Φ(a, b, c) := 1
ab − c2 (a + b, 2a, 2c). (3.8)

It is straightforward to verify that Φ is a diffeomorphism

Φ: {(a, b, c) : a, b > 0, c2 < ab} → {(s, t, u) : t > 0, u ∈ R, 2s > t + u2/t}

with inverse

(a, b, c) = Φ−1(s, t, u) = 4
2st − t2 − u2 ( t

2 , s − t
2 , u

2 ) = 1
α ( t

2 , s − t
2 , u

2 ) (3.9)

referring to the constant α of (1.8), which is positive precisely in range of Φ. From here on, 
we use the parameters (s, t, u) which leads to the notation used in Definition 1.4 of Δs,τ

on KC in the introduction. In particular, this means that the Laplacian Δs,τ corresponds 
to the inner product 〈·, ·〉a,b,c where (a, b, c) are given as in (3.9). The fact that Φ is a 
bijection shows that there is a one-to-one correspondence between the Laplacians Δs,τ

and the inner products 〈·, ·〉a,b,c.

4. Heat kernels and matrix entries

We refer the reader to [45] or [54] for the general theory of heat kernels on Lie groups.

4.1. Heat kernels on K and KC

We now fix a connected Lie group K of compact type, together with an Ad(K)-invar-
iant inner product 〈·, ·〉

k
on k. We let ΔK be the associated Laplacian on K, as in 

Section 3.2. We then let ρt be the associated heat kernel on K, i.e., the fundamental 
solution at the identity to the heat equation

∂u = 1ΔKu.

∂t 2
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Then the heat operator may be computed as

(etΔ/2f)(x) =
∫
K

ρt(xy−1)f(y) dy, (4.1)

where dy is the Riemannian volume measure associated to the left-invariant Riemannian 
metric on K induced by the inner product 〈·, ·〉

k
on k.

Remark 4.1. For a general left-invariant metric on K, the right-hand side of (4.1) should 
have ρt(y−1x) rather than ρt(xy−1). Since, however, our metric is Ad(K)-invariant, the 
heat kernel ρt is a class function, so that ρt(y−1x) = ρt(xy−1). We write ρt(xy−1) to 
maintain consistency with [22].

We fix s > 0 and τ ∈ C with τ ∈ D(s, s) (the disk of radius s, centered at s). We 
consider a left-invariant metric on KC whose value at the identity is one of the inner 
products considered in Section 3.1. The associated Laplacian, denoted Δs,τ , is the one 
considered in Definition 1.4. We emphasize that, although τ is a complex number, the 
Laplacian Δs,τ is a real elliptic operator on KC. We then let μs,τ,r be the associated 
heat kernel, i.e., the fundamental solution at the identity to the heat equation

∂u

∂r
= 1

2Δs,τ u,

with r being the time-variable in the heat equation. We will mainly be interested in the 
value of this heat kernel at r = 1:

μs,τ := μs,t,1.

That is to say, formally,

μs,τ = eΔs,τ /2(δ),

where δ is a δ-function at the identity.

Lemma 4.2 (Averaging lemma). Assume K is compact. For each s and τ with τ ∈ D(s, s), 
let νs,τ be the associated K-averaged heat kernel, given in Definition 1.8:

νs,τ (g) =
∫
K

μs,τ (gk) dk.

Then there exist constants as,τ and bs,τ such that

as,τ νs,τ (g) ≤ μs,τ (g) ≤ bs,τ νs,τ (g)
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for all g ∈ KC. Specifically, for each s and τ , let σ be any positive number such that 
τ ∈ D(s − σ, s − σ). Then we may take

as,τ = min
k∈K

ρσ(k); bs,τ = max
k∈K

ρσ(k).

Proof. We write the operator Δs,τ , as defined in (1.7), in the form

Δs,τ = σ

dim k∑
j=1

X̃2
j + Δs−σ,τ . (4.2)

Now, the operator Δs−σ,τ is constructed from left-invariant vector fields and is therefore 
a left-invariant operator on KC. Since the inner product in the construction of Δs,τ

is Ad(K)-invariant, Δs,τ is also invariant under the right action of K. It follows that 
Δs,τ commutes with the left-invariant vector field X̃ on KC, with X ∈ k, since X̃ is an 
infinitesimal right translation. We conclude that the two terms on the right-hand side of 
(4.2) commute. Once this observation has been made, the proof of the averaging lemma 
from [22, Lemma 11] tells us that

μs,τ (g) =
∫
K

μs−σ,τ (gk−1)ρσ(k) dk.

Since ρs(k) dk is a probability measure, the integral of μs,τ over each K-orbit is the same 
as the corresponding integral of μs−σ,τ . Thus, we obtain

μs,τ (g) ≤ max
k∈K

ρσ(k)
∫
K

μs−σ,τ (gk−1) dk = max
k∈K

ρσ(k)νs,τ (g),

as claimed, and similarly for the lower bound. �
4.2. Matrix entries

In the case K = Rd, it is convenient to do computations with the heat operator on 
polynomials. Although these functions are not in L2(Rd), one can naïvely make sense of 
e

t
2 ΔRd f as a terminating power series for any polynomial f . It is then an easy matter 

to verify that the integral formula for the heat operator coincides with its Taylor series. 
That is to say, if f is a polynomial on Rd, then∫

Rd

ρt(x − y)f(y) dy =
∞∑

n=0

(t/2)n

n! (ΔRd)nf(x). (4.3)

Equation (4.3) is easy to prove directly; the result is also a special case of Proposition 4.7
below.
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We will need a counterpart of polynomial functions on a general (compact-type) Lie 
group; these are matrix entries, which we define as follows.

Definition 4.3. Let G be a Lie group. Let (π, Vπ) be a finite-dimensional complex repre-
sentation of G, and let A ∈ End(Vπ) be a fixed endomorphism. The associated matrix 
entry function fπ,A on G is the function

fπ,A(x) = Tr(π(x)A).

If G is a complex Lie group and the representation π : G → GL(Vπ) is holomorphic, 
then we refer to fπ,A as a holomorphic matrix entry. In particular, every holomorphic 
matrix entry on a complex Lie group is a holomorphic function.

Remark 4.4. A number of comments on matrix entries are in order.

(1) Although some authors might require π to be irreducible in order to call fπ,A a matrix 
entry, we make no irreducibility assumption in our definition. If G is compact, every 
finite-dimensional representation of G decomposes as a direct sum of irreducibles, in 
which case every matrix entry is a linear combination of matrix entries for irreducible 
representations. In general, not every matrix entry (in the sense of Definition 4.3) 
will decompose as a sum of matrix entries of irreducible representations.

(2) Some authors require a matrix entry to be of the form f(x) = ξ(π(x)v) for some 
v ∈ V and ξ ∈ V ∗. This is a special case of Definition 4.3 with f = fπ,A where 
A(w) = ξ(w)v, i.e., A = ξ ⊗ v. The more general matrix entries of Definition 4.3 are 
linear combinations of these more restricted “rank-1” entries.

(3) Matrix entries are smooth functions on G.
(4) If G = Rd, all polynomials are matrix entries. Indeed: if q is a polynomial of degree 

≤ n, take the representation space V to be all polynomials p of degree ≤ n, where 
π(x)p = p( · +x). If ξ0(p) = p(0) is the evaluation linear functional, then ξ0(π(x)q) =
q(x), so q is a matrix entry.

(5) Even if G is complex, we will have a reason to consider matrix entries associated to 
representations of G that are not holomorphic.

Lemma 4.5. For any Lie group G, the set of matrix entries on G forms a self-adjoint 
complex algebra.

Proof. It is straightforward to compute that, for λ ∈ C, λfπ,A = fπ,λA, while sums and 
products satisfy fπ,A + fσ,B = fπ⊕σ,A⊕B and fπ,Afσ,B = fπ⊗σ,A⊗B . For complex conju-
gation, we must define the complex conjugate of a representation and an endomorphism. 
This can be done invariantly, but for our purposes there is no reason not to simply 
choose a basis. Given a representation (π, Vπ) of dimension d, choose a complex-linear 
isomorphism ϕ : Vπ → Cd, and let [π(x)] = ϕ ◦π(x) ◦ϕ−1 and [A] = ϕ ◦A ◦ϕ−1. As d ×d
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complex matrices, both [π(x)] and [A] have complex conjugates [π(x)] and [A], defined 
entry-wise. Then

f̄π,A(x) = Tr(π(x)A) = Tr([π(x)][A]) = Tr([π(x)] [A]). (4.4)

The map [π] : G → GL(Cd) given by [π](x) = [π(x)] is a representation of G on Cd, and 
(4.4) shows that

f̄π,A = f[π],A

is also a matrix entry of G. This concludes the proof. �
We now establish two key results about matrix entries.

Theorem 4.6. Let K be a real Lie group of compact type. For any s > 0, the matrix 
entries on K are dense in L2(K, ρs). If s > 0 and τ ∈ D(s, s), then the holomorphic 
matrix entries on KC are dense in HL2(KC, μs,τ ).

Proof. We consider first the case that K = Rd and KC = Cd. Then ρs is a Gaussian 
measure on K. Since every polynomial on Rd is a matrix entry, we may appeal to the 
classical result that polynomials are dense in L2 of Gaussian measures on Rd. (For a proof 
of a more general result, see [14, Theorem 3.6].) On the complex side, every holomorphic 
polynomial is a holomorphic matrix entry, and the measure μs,τ on Cd is Gaussian. 
Thus, by [14, Proposition 3.5], matrix entries are dense in HL2(Cd, μs,τ ). (Note that, in 
general, the measure μs,τ is not invariant under multiplication by eiθ and monomials of 
different degrees are not necessarily orthogonal. Thus the proof of density of holomorphic 
polynomials in [1, Section 1b] does not apply.)

We consider next the case that K is compact. In that case, the heat kernel density ρs on 
K is bounded and bounded away from zero for each fixed s > 0. Thus, the Hilbert space 
L2(K, ρs) is the same as the Hilbert space L2(K), with a different but equivalent norm. 
Hence, the density of matrix entries in L2(K, ρs) follows from the Peter–Weyl theorem. 
On the complex side, we appeal to the averaging lemma (Lemma 4.2), which tells us 
that the Hilbert space HL2(KC, μs,τ ) is the same as the Hilbert space HL2(KC, νt), 
with a different but equivalent norm. Thus, it suffices to establish the density of matrix 
entries in HL2(KC, νt); this claim follows verbatim from the proof of the “onto” part of 
Theorem 2 in [22, Section 8].

We consider finally the case of a general compact-type group K. Recall (Proposi-
tion 2.2) that K is isometrically isomorphic to K0 ×Rd for some compact Lie group K0
and some d ≥ 0. Thus, the heat kernel measure ρs on K factors as a product of the heat 
kernel measures ρ0

s on K0 and ρ1
s on Rd. Now, a standard result from measure theory tells 

us that there is a unitary map U from L2(K0, ρ0
s) ⊗ L2(Rd, ρ1

s) onto L2(K, ρs) uniquely 
determined by the requirement that U(f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2). If f1 and f2 are 
matrix entries on K0 and Rd, respectively, then f1(x1)f2(x2) is a matrix entry on K
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(by an argument very similar to the proof of Lemma 4.5). Using the density results for 
K0 and for Rd and the unitary map U , we can easily show that linear combinations of 
matrix entries of this sort (which are again matrix entries) are dense in L2(K, ρs).

On the complex side, KC is isomorphic to (K0)C ×Cd. If we restrict our Ad-invariant 
inner product on k to the Lie algebras of K0 and of Rd, these restrictions will also 
be Ad-invariant. We may then construct left-invariant metrics on (K0)C and Cd by 
the same procedure as for KC. In that case, it is easily verified that the isomorphism 
KC

∼= (K0)C × Cd is isometric. Thus, the heat kernel measure μs,τ on KC is a product 
of the associated heat kernel measures μ0

s,τ on (K0)C and μ1
s,τ on Cd.

Then, as on the real side, we have a unitary map V from L2((K0)C, μ0
s,τ ) ⊗L2(Cd, μ1

s,τ )
onto L2(KC, μs,τ ). According to the Appendix of [23], the restriction of V to the tensor 
product of the two HL2 spaces maps onto HL2(KC, μs,τ ). (It is easy to see that V maps 
the tensor product of the two HL2 spaces into HL2(KC, μs,τ ); it requires some small 
argument to show that it maps onto.) Thus, as on the real side, the density result for 
KC reduces to the previously established results for (K0)C and for Cd. �
Proposition 4.7. Let fπ,A be a matrix entry on K. Then

∫
K

ρt(xy−1)fπ,A(x) dx =
∞∑

n=0

tn

2nn! (ΔK)nfπ,A(x)

= Tr(π(x)etCπ/2A) (4.5)

with absolute convergence of the integral on the left-hand side and locally uniform con-
vergence of the sums on the right-hand side. Here Cπ =

∑dim k

j=1 π∗(Xj)2, where π∗ is the 
Lie algebra representation associated to the Lie group representation π.

Let fπ,A be a matrix entry on KC. Then

∫
KC

fπ,A(g)μs,τ (g) dg =
∞∑

n=0

1
2nn! (Δs,τ )nfπ,A(e),

= Tr(π(x)eDπ,s,τ /2A) (4.6)

with absolute convergence of the integral on the left-hand side and locally uniform con-
vergence of the sum on the right-hand side. Here

Dπ,s,τ =
dim k∑
j=1

[(
s − t

2

)
π∗(Xj)2 + t

2π∗(Yj)2 − u π∗(Xj)π∗(Yj)
]

where π∗ is the Lie algebra representation associated to the Lie group representation π.

We note that unless K is compact (as opposed to merely being of compact type), 
matrix entries on K are typically not in L2(K, dx) and thus not in the usual domain of 
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definition of the heat operator etΔK/2. Similarly, matrix entries on KC are typically not 
in the usual domain of the heat operator eΔs,τ /2.

Proof. The proposition is an immediate consequence of Langland’s theorem (cf. [45, 
Theorem 2.1]). See also [22, Lemma 8]. If one assumes it is valid to differentiate under 
the integral and to integrate by parts, one can prove the proposition easily; see the proof 
of [10, Theorem 2.13]. �
Remark 4.8. If f is a matrix entry on K or KC, then by Lemma 4.5, |f |2 is also a matrix 
entry. Thus, the absolute convergence of the integral in Proposition 4.7 tells us that f is 
in L2(K, ρt) or L2(KC, μs,τ ).

5. The Segal–Bargmann transform

We analyze the complex-time Segal–Bargmann transform for a connected Lie group 
of compact type in two stages. In the first stage, we consider a transform Mτ (see 
Definition 5.1 below) defined on matrix entries using a power-series definition of the 
heat operator. Using the strategy outlined in Section 1.4 along with density results in 
Theorem 4.6, we show that Mτ maps a dense subspace of L2(K, ρs) isometrically onto a 
dense subspace of HL2(KC, μs,τ ). Thus, Mτ extends to a unitary map Ms,τ of L2(K, ρs)
onto HL2(KC, μs,τ ).

In the second stage, we show that the heat kernel ρt(x) on K has a holomorphic 
extension in both t and x, denoted ρC(·, ·). We then prove that the unitary map Ms,τ

may be computed by “convolution” with the holomorphically extended heat kernel. That 
is to say,

(Ms,τ f)(z) =
∫
K

ρC(τ, zk−1)f(k) dk

for all s > 0, f ∈ L2(K, ρs), τ ∈ D(s, s), and z ∈ KC.
The advantage of the two-stage approach to the proof is that we can use the unitary 

map Ms,τ to establish the existence of the holomorphic extension of the heat kernel, thus 
avoiding the representation-theoretic estimates used in [22, Section 4]. Although this 
approach was used already in [10], a number of details are different in the complex-time 
case. We therefore provide full proofs here.

5.1. Constructing a unitary map

As usual, we work on a connected Lie group K of compact type, with a fixed 
Ad(K)-invariant inner product on its Lie algebra k. According to Theorem 4.6, the space 
of matrix entries is dense in L2(K, ρs) and the space of holomorphic matrix entries is 
dense in HL2(KC, μs,τ ).
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We now define a transform Mτ directly by its action on matrix entries. Let fπ,A be 
a matrix entry on K acting on a complex vector space Vπ. By the universal property of 
complexifications, the representation π extends uniquely to a holomorphic representation 
πC of KC on Vπ. Hence, the matrix entry fπ,A has an analytic continuation as well,

(fπ,A)C(g) = Tr(πC(g)A) = fπC,A(g), g ∈ KC.

Definition 5.1. For τ ∈ C+, define Mτ on matrix entries on K as

Mτ fπ,A =
[ ∞∑

n=0

(τ/2)n

n! (ΔK)nfπ,A

]
C

.

Note that, by (4.5), Mτ fπ,A is again a matrix entry, and thus has a holomorphic 
extension.

5.1.1. Complex vector fields and commutation relations
We would now like to emulate the proof of the Segal–Bargmann isometry for the Rd

case outlined in Section 1.4. To that end, we must introduce the complex vector fields 
generalizing the complex derivatives ∂/∂zj and ∂/∂z̄j in the Euclidean context.

Definition 5.2. Let G be a complex Lie group with Lie algebra g and let X be an element 
of g. The holomorphic and antiholomorphic vector fields associated to X are complex 
vector fields ∂X and ∂̄X on G defined by

∂X ≡ 1
2

(
X̃ − i J̃X

)
and ∂̄X ≡ 1

2

(
X̃ + i J̃X

)
. (5.1)

In the special case G = Cd, if X = ∂/∂xj then ∂X = ∂/∂zj and ∂̄X = ∂/∂z̄j . By (2.3), 
if X ∈ g and F is holomorphic on G then

∂XF = X̃F, ∂̄XF = 0 (5.2)

∂X F̄ = 0, ∂̄XF = X̃F. (5.3)

Lemma 5.3. If X, V ∈ g, then

[∂V , J̃X] = i[∂V , X̃], and [∂̄V , J̃X] = −i[∂̄V , X̃].

Proof. By (2.1), for any W1, W2 ∈ g, [JW1, W2] = J [W1, W2] = [W1, JW2] and therefore 
by the definition of the Lie bracket,

[J̃W1, W̃2] = ˜[JW1, W2] = ˜J [W1, W2] = ˜[W1, JW2] = [W̃1, J̃W2].

We can then compute from the definition that
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[∂V , J̃X] = 1
2 [Ṽ − iJ̃V , J̃X] = 1

2 [J̃V − iJ̃JV , X̃] = 1
2 [J̃V + iṼ , X̃] = i[∂V , X̃].

The calculation for ∂̄V is similar. �
We now specialize to the case G = KC for a compact-type Lie group K.

Definition 5.4. Fix an orthonormal basis {X1, . . . , Xd} for k, and let ∂j := ∂Xj
as in (5.1). 

Then set

∂2 ≡
d∑

j=1
∂2

j , and ∂̄2 ≡
d∑

j=1
∂̄2

j . (5.4)

A routine calculation shows that the operators ∂2 and ∂̄2 are well-defined, independent 
of the choice of orthonormal basis.

Lemma 5.5. The operators ∂2 and ∂̄2 commute with the right action of K on KC.

This is a routine computation and is left to the reader.
This brings us to the main commutator result of this section.

Proposition 5.6. For any A ∈ kC,

[∂2, Ã] = [∂̄2, Ã] = 0.

Proof. As any A ∈ kC has the form A = V + JW for some V, W ∈ k, it suffices by 
linearity to prove that ∂2 and ∂̄2 commute with Ṽ and J̃V for any V ∈ k. For the former 
statement, apply Lemma 5.5 to the right action of k = etV , and differentiate at t = 0
to yield the result. For the second statement, we employ Lemma 5.3 and compute as 
follows.

[∂2, J̃V ] =
d∑

j=1
[∂j∂j , J̃V ] =

d∑
j=1

(
∂j [∂j , J̃V ] + [∂j , J̃V ]∂j

)

= i

d∑
j=1

(
∂j [∂j , Ṽ ] + [∂j , Ṽ ]∂j

)
= i

d∑
j=1

[∂j∂j , Ṽ ] = i[∂2, Ṽ ]

and we already showed that [∂2, Ṽ ] = 0. A similar calculation proves the result for ∂̄2. �
Corollary 5.7. The operators ∂2, ∂̄2, ΔK , and Δs,τ all mutually commute.

Here we regard ΔK as a left-invariant operator on KC.

Proof. Since ΔK and Δs,τ are linear combinations of squares of left-invariant vector 
fields on KC, Proposition 5.6 shows that they both commute with ∂2 and ∂̄2. Similarly, 
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letting Yj = JXj , since ∂2
j and ∂̄2

j are linear combinations of X̃2
j , Ỹ 2

j , and X̃j Ỹj = ỸjX̃j

(cf. (2.1)), the commutator [∂2, ∂̄2] = 0 also follows from Proposition 5.6. Now, since Δs,τ

is the Laplacian associated to an Ad(K)-invariant inner product on kC, it commutes with 
the right action of K. Thus, Δs,τ commutes with each X̃j and thus with ΔK . �
Remark 5.8. The fact that [∂2, ∂̄2] = 0 holds quite generally. Indeed, on any complex 
manifold, if Z =

∑
j aj(z) ∂

∂zj
and W =

∑
j bj(z) ∂

∂zj
are two holomorphic vector fields, 

than a simple computation shows that [Z, W ] = 0.

5.1.2. The transform Mτ , and the isomorphism Ms,τ

The usefulness of the ∂2 and ∂̄2 operators and the commutation result in Corollary 5.7
in the present context lies in the following result.

Lemma 5.9. Let s > 0 and τ ∈ D(s, s). Let Δs,τ denote the KC Laplacian of Defini-
tion 1.4, and let ΔK denote the Laplacian of K acting on C∞(KC) as usual. Then

sΔK = Δs,τ + τ∂2 + τ̄ ∂̄2

where all operators appearing in this identity are mutually commuting.

Proof. Fix an orthonormal basis {X1, . . . , Xd} of k. For ease of reading, let Yj = JXj . 
To begin, we compute that, for each j,

∂2
j + ∂̄2

j = 1
4(X̃j − iỸj)2 + 1

4(X̃j + iỸj)2 = 1
2(X̃2

j − Ỹ 2
j ), (5.5)

∂2
j − ∂̄2

j = 1
4(X̃j − iỸj)2 − 1

4(X̃j + iỸj)2 = −iX̃j Ỹj (5.6)

where we have used the fact that [X̃j , Ỹj ] = 0 (cf. (2.1)).
Now, let τ = t + iu. Then for each j,

τ∂2
j + τ̄ ∂̄2

j = t(∂2
j + ∂̄2

j ) + iu(∂2
j − ∂̄2

j ) = t

2(X̃2
j − Ỹ 2

j ) + uX̃j Ỹj .

Thus, we have [(
s − t

2

)
X̃2

j + t

2 Ỹ 2
j − uX̃j Ỹj

]
+ τ∂2

j + τ̄ ∂̄2
j = sX̃2

j . (5.7)

Summing (5.7) on j proves the lemma. �
We can now prove that Mτ is a bijection from the space of matrix entries on K to the 

space of holomorphic matrix entries on KC, isometric from L2(K, ρs) into L2(KC, μs,τ ).
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Theorem 5.10. Let f be a matrix entry function on K. Then for s > 0 and τ ∈ D(s, s),

‖Mτ f‖L2(KC,μs,τ ) = ‖f‖L2(K,ρs). (5.8)

Moreover, every holomorphic matrix entry F on KC has the form F = Mτ f for some 
matrix entry f on K.

The proof of (5.8) follows the strategy outlined in Section 1.4, using left-invariant 
vector fields in place of the partial derivatives in the Euclidean case. A key step in the 
argument requires us to combine exponentials, which is possible only if the operators 
in the exponent commute. It is at this point that we use the commutativity result in 
Corollary 5.7.

Proof. Let F = Mτ f . The matrix entry f on K has a holomorphic extension fC to KC. 
Now, ΔK , viewed as a left-invariant differential operator on KC, is a sum of squares of 
left-invariant vector fields; thus, it preserves the space of holomorphic functions. Thus, 
we have that ((ΔK)nf)C = (ΔK)n(fC) for all n ≥ 0. It follows that F may be computed 
as F = eτΔK/2(fC). Since fC is holomorphic, we may use (5.2) to rewrite this relation 
as

F = eτ∂2/2(fC).

It is then straightforward, using (5.2) and (5.3), to see that

|F |2 = eτ∂2/2eτ̄ ∂̄2/2(fC f̄C).

Thus, using Proposition 4.7, we may compute the norm of F as

‖F‖2
L2(KC ,μs,τ ) =

(
eΔs,τ /2|F |2

)
(e)

=
(

eΔs,τ /2eτ∂2/2eτ̄ ∂̄2/2(fC f̄C)
)

(e). (5.9)

By the commutativity result in Corollary 5.7, we may combine the exponents in the 
last expression in (5.9). Note that there are no domain issues to worry about here: All 
the exponentials in (5.9) are defined by power series and since fCf̄C is a matrix entry 
(cf. Lemma 4.5), all exponentials are acting in a fixed finite-dimensional subspace of 
functions on KC. Using Lemma 5.9, (5.9) therefore becomes

‖F‖2
L2(KC ,μs,τ ) = (esΔK/2 |fC|2)(e) = (esΔK/2 |f |2)(e).

The last equality holds because e belongs to K and ΔK is a sum of squares of left-
invariant vector fields associated to elements of k. Using Proposition 4.7 again, we finally 
conclude that
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‖F‖2
L2(KC,μs,τ ) = ‖f‖2

L2(K,ρs)

establishing (5.8).
Suppose now that F is a holomorphic matrix entry on KC; that is, F = fπC ,A for 

some finite-dimensional holomorphic representation πC of KC. Then F |K = fπ,A, where 
π is the restriction of πC to K. We may then define

f = e− τ
2 ΔK (F |K) = f

π,e− τ
2 Cπ A

.

Then f is a matrix entry and we have Mτ f = (e τ
2 ΔK f)C = F . �

Theorem 5.11. The map Mτ has a unique continuous extension to L2(K, ρs), denoted 
Ms,τ , and this extension is a unitary map from L2(K, ρs) onto HL2(KC, μs,τ ).

Proof. Theorem 4.6 tells us that Mτ is defined on a dense subspace of L2(K, ρs). Since 
Mτ is isometric, the bounded linear transformation theorem (e.g., Theorem I.7 in [44]) 
tells us that Mτ has a unique continuous extension to a map Ms,τ of L2(K, ρs) into 
HL2(KC, μs,τ ). This extension is easily seen to be isometric, and since (by Theorem 4.6
again) the image of Mτ is dense, the extension is actually a unitary map. �

For a general f ∈ L2(K, ρs), the value of Ms,τ may be computed by approximating 
f by a sequence fn of matrix entries and setting

Ms,τ f = lim
n→∞

Mτ fn. (5.10)

(The bounded linear transformation theorem guarantees that the limit exists and that 
the value of Ms,τ is independent of the choice of approximating sequence.) Now, (5.10)
is not a very convenient way to compute. In the next section, we will seek a direct 
way of computing Ms,τ , which will also demonstrate that Ms,τ coincides with the way 
we defined the complex-time Segal–Bargmann transform in the introduction; cf. (1.5). 
A first step in that direction is proving that (Ms,τ f)(z) is holomorphic in both τ and z.

Lemma 5.12. Fix s > 0. For each f ∈ L2(K, ρs), the function (τ, z) �→ (Ms,τ f)(z) is a 
holomorphic function on D(s, s) × KC.

Proof. If f = fπ,A is a matrix entry, then

(Ms,τ fπ,A)(z) = (Mτ fπ,A)(z) = Tr(πC(g)eτCπ/2A)

which is easily seen to depend holomorphically on τ and z.
We then approximate an arbitrary f ∈ L2(K, ρs) by a sequence fn of matrix entries. 

Then Mτ fn = Ms,τ fn will converge to Ms,τ f in HL2(KC, μs,τ ). It is well known that 
the evaluation map F �→ F (z) on HL2(KC, μs,τ ) is a bounded linear functional; this is 
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due to the ubiquitous pointwise L2 estimates in this holomorphic space (cf. [11,24]). We 
claim that we can actually find locally uniform bounds on this functional. That is to say: 
for each precompact open subset U of KC and r ∈ (0, s), there exists C = C(r, U) < ∞
such that, for all τ ∈ D(s, r) and F ∈ HL2(KC, μs,τ ),

sup
z∈U

|F (z)| ≤ C(r, U) ‖F‖L2(KC ,μs,τ ) . (5.11)

Assuming this result for the moment, we can conclude that the convergence of 
(Ms,τ fn)(z) to (Ms,τ f)(z) is locally uniform jointly in (τ, z), and since each function in 
the sequence is holomorphic, it follows that the limit (Ms,τ f)(z) is jointly holomorphic 
in (τ, z) as claimed.

To establish the bound in (5.11), we observe that the norm of the pointwise evaluation 
functional can be estimated in terms of lower bounds on the density μs,τ . For example, 
[11, Theorem 3.6] shows (in our context) that, for any precompact neighborhood V of 
the identity e, there is a constant C(V ) so that, for all holomorphic F and z ∈ KC,

|F (z)| ≤ C(V )
infv∈V

√
μs,τ (vz)

‖F‖L2(KC ,μs,τ ).

The constant C(V ) is determined only by the holomorphic structure of the group (given 
by averaging a symmetrized bump function on V , applying the Cauchy integral formula); 
hence, C(V ) is independent of s and τ . Hence, it suffices to show that μs,τ (z) is bounded 
strictly above 0 locally uniformly in τ and z.

Since KC factors as (K0)C × Cd (recall Proposition 2.2), the heat kernel μs,τ also 
factors over this product. On the Cd side, there is an explicit formula for μs,τ (z) (given 
in (1.15)) which is manifestly bounded away from zero locally in both τ and z. Thus, it 
suffices to assume that K is compact, which we do from now on.

Denote t = Re τ . From the averaging lemma (Lemma 4.2) and Proposition 5.15, we 
see that there is a strictly positive constant C ′(s, τ) such that μs,τ �C′(s,τ) μt,t, and 
the constants can be chosen to depend continuously on (s, τ). Note that μt,t is the heat 
kernel for a single metric, which is therefore a continuous positive function of (t, z) ∈
(0, ∞) × KC. In particular, μt,t(z) is bounded strictly away from 0 for (t, z) in compact 
subsets of (0, ∞) × KC. It follows from the continuity of the function (s, τ) �→ C ′(s, τ)
that the same holds true for μs,τ (z), establishing (5.11) and completing the proof. �
5.2. The analytic continuation of the heat kernel

In this section, we show that the unitary map Ms,τ : L2(K, ρs) → HL2(KC, μs,τ )
constructed in Section 5.1 may be computed as a “convolution” against a holomorphic 
extension of the heat kernel ρt on K. The following theorem makes this precise.

Theorem 5.13. Let K be a compact-type Lie group.
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(1) There exists a unique holomorphic function ρC : C+ × KC → C such that for t > 0
and x ∈ K we have

ρC(t, x) = ρt(x).

(2) If s > 0 and τ ∈ D(s, s), then for each z ∈ KC, the function

x �→ ρC(τ, zx−1)
ρs(x)

belongs to L2(K, ρs).
(3) The unitary map Ms,τ may be computed as

(Ms,τ f)(z) =
∫
K

ρC(τ, zk−1)f(k) dk

for all f ∈ L2(K, ρs) and all z ∈ KC.

Since

ρC(τ, zk−1)f(k) dk = ρC(τ, zk−1)
ρs(k) f(k) ρs(k)dk

it follows by the Cauchy–Schwarz inequality and Theorem 5.13(2) that the function 
k �→ ρC(τ, zk−1)f(k) is integrable. Using the decomposition of K as K0 ×Rd, where K0
is compact (Proposition 2.2), we may easily reduce the general case to the compact case 
and the Euclidean case, which we now address separately.

5.2.1. The compact case
It is possible to construct the holomorphic extension of the heat kernel on K using 

the method of [22, Section 4], which is based on a term-by-term analytic continuation 
of the expansion of the heat kernel in terms of characters. Indeed, replacing t by t + iu

in the heat kernel makes no change to the (absolute) convergence estimates in [22]. 
(The time-parameter occurs only linearly in the exponent there, so the absolute value 
of each term would be independent of u.) On the other hand, the argument in [22]
requires detailed knowledge of the representation theory of K. We present here a different 
argument (similar to the proof of Corollary 4.6 in [10]) that uses the unitary map Ms,τ

of Theorem 5.11 to construct the desired analytic continuation.

Lemma 5.14. If K is compact, s > 0, 0 < t < 2s, and Ms,t is the unitary map as in 
Theorem 5.11, then for any f ∈ L2(K, ρs),

(Ms,tf) (x) = (ρt ∗ f) (x) =
∫

ρt(xk−1)f(k) dk ∀ x ∈ K ⊂ KC. (5.12)

K
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(Note: for K compact, L2 (K) = L2(K, ρs) independent of s > 0 and hence Ms,tf does 
not really depend on s.)

Proof. By Definition 5.1, we have that for any matrix entry fπ,A on K,

(Ms,tfπ,A)(g) = (Mtfπ,A)(g) = Tr(πC(g)etCπ/2A),

where πC is the holomorphic extension of π from K to KC. Thus, by (4.5), we have(
Ms,tfπ,A

)
|K(x) = Tr(π(x)etCπ/2A) = (ρt ∗ fπ,A) (x) .

This suffices to complete the proof as matrix entries are dense in L2 (K) and both 
L2 (K) � f →

(
Ms,tf

)
(x) ∈ C and L2 (K) � f → (ρt ∗ f) (x) ∈ C are continuous 

linear functionals on L2 (K) for each fixed x ∈ K. The first assertion holds since Ms,τ :
L2(K, ρs) → HL2(KC, μs,τ ) is unitary and pointwise evaluation on HL2(KC, μs,τ ) is 
continuous and the second follows by Hölder’s inequality. �
Proof of Theorem 5.13 in the compact group case. We begin with point (1): the space-
time analytic continuation of the heat kernel. Let 0 < δ < r < ∞, and consider the 
vertically symmetric rectangle Uδ,r = {τ ∈ C+ : δ < Re τ < r, |Im τ | < r}. Let 0 < ε < δ, 
and fix s > 0 large enough that Uδ,r − ε ⊂ D(s, s). The function ρε is continuous and 
hence in L2(K, ρs). We then define ρC : Uδ,r × KC → C by

ρC(τ, z) =
(
Ms,τ−ερε

)
(z). (5.13)

By Lemma 5.12, ρC is analytic in both variables so long as τ − ε ∈ D(s, s); in particular, 
ρC is analytic on Uδ,r × KC. For the moment, it appears a priori that the value of ρC

depends on s and ε.
Now consider the restriction of ρC to (t, x) ∈ (Uδ,r ∩R) × K. By Lemma 5.14 and the 

semigroup property of the heat kernel,

ρC(t, x) =
(
Ms,t−ερε

)
(x) = (ρt−ε ∗ ρε) (x) = ρt(x) ∀ x ∈ K. (5.14)

Thus, ρC is a holomorphic extension of the heat kernel ρt(x) in t and x. Analytic con-
tinuation from K to KC is unique (cf. [53, Lemma 4.11.13]), and also from Uδ,r ∩ R to 
Uδ,r by elementary complex analysis. In particular, since ρt(x) does not depend on s or 
ε, neither does the function ρC.

Thus, for each rectangle Uδ,r, there is a unique analytic continuation of the heat kernel 
to a holomorphic function ρC on Uδ,r × KC. Let δn and rn be sequences with δn ↓ 0 and 
rn ↑ ∞, let Un = Uδn,rn

, and let ρn
C be the analytic continuation of ρt(x) to Un. The 

rectangles Un are nested with union C+; since ρn
C and ρm

C agree on (Un∧m ∩ R) × K, 
uniqueness of analytic continuation shows that they agree on their common domain 
Un∧m × KC. Thus, there is a globally defined holomorphic function ρC whose value in 
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Un × KC is ρn
C, and thus restricts to ρt(x) on (Un ∩ R) × K; ergo ρC(t, x) = ρt(x) for 

t > 0 and x ∈ K, as desired. Uniqueness again follows from [53, Lemma 4.11.13]. This 
establishes point (1).

Point (2) is immediate since K is compact and the function in question is continuous. 
For point (3), we first note that, by Lemma 5.12, (Ms,τ f)(z) is holomorphic in τ and z. 
Meanwhile, since ρC(τ, zk−1) is holomorphic in τ and z for each fixed k ∈ K, we may 
use Fubini’s theorem and Morera’s theorem to verify that 

∫
K

ρC(τ, zk−1)f(k) dx is also 
holomorphic in τ and z. Since both sides of the desired equality are holomorphic in 
τ and z, it suffices by uniqueness of analytic continuation to verify the result when 
τ = t ∈ (0, 2s) and z = x belongs to K. Using Lemma 5.14 and the defining property of 
ρC, the desired equality thus becomes

(etΔK/2f)(x) =
∫
K

ρt(xk−1)f(k) dk,

which is true. This concludes the proof. �
5.2.2. The Euclidean case

The heat kernel ρs on Rd is explicitly known to be the Gaussian density mentioned 
in the introduction:

ρs(x) = (2πs)−d/2 exp
(

−|x|2
2s

)
and the density μs,τ (z) in this case has been described in (1.15) in the introduction.

Proof of Theorem 5.13 in the Euclidean case. For point (1), the desired holomorphic 
extension is given by

ρC(τ, z) :=
(√

2πτ
)−d

exp
(

−z · z

2τ

)
(5.15)

where z · z =
∑d

j=1 z2
j and where 

√
2πτ is defined by the standard branch of the square 

root (with branch cut along the negative real axis).
Point (2) of the theorem is an elementary computation. Using additive notation for 

the group operation, we need to verify that

∫
Rd

|ρC(τ, z − x)|2

ρs(x)2 ρs(x) dx < ∞ (5.16)

for all z ∈ Cd, provided that s > 0 and τ ∈ D(s, s) (or, equivalently, provided that 
α > 0; cf. (1.8)). Equation (5.16) is a Gaussian integral whose computation is tedious 
but straightforward. (The integral factors into separate integrals over each copy of R, 
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which may then be evaluated in a computer algebra system.) We record the result here: 
if z = ξ + iη and τ = t + iu, then

∫
Rd

|ρC(τ, z − x)|2

ρs(x)2 ρs(x) dx =
(

πs√
α

)d

exp
(

t/2
2α

|ξ|2 + s − t/2
2α

|η|2 + u

2α
ξ · η

)
(5.17)

where, as in (1.8), α = (2st − t2 − u2)/4.
For point (3), we must show that (Ms,τ f)(z) may be computed as

(Ms,τ f)(z) =
∫
Rd

ρC(τ, z − x)f(x) dx (5.18)

for all f ∈ L2(Rd, ρs). If f is a polynomial (and thus a matrix entry) and τ ∈ R and 
z ∈ Rd, (5.18) follows from Proposition 4.7. Furthermore, when f is a polynomial, both 
sides of (5.18) are holomorphic in τ and z, so the result continues to hold when τ ∈ C+
and z ∈ Cd. Now, both sides of (5.18) depend continuously on f ∈ L2(Rd, ρs)—the 
left-hand side by the unitarity of Ms,τ and the continuity of pointwise evaluation, and 
the right-hand side by the fact that ρC(t, z − x) is square-integrable in x. Thus, we may 
pass to the limit starting from polynomials to obtain the result for all f ∈ L2(Rd, ρs), 
thus completing the proof of Theorem 5.13 in the Rd case. �

We note that, by (5.17), we have bounds on the value of (Ms,τ f)(z) in terms of the 
L2 norm of f . Since Ms,τ maps isometrically onto HL2(Cd, μs,τ ), these bounds translate 
into pointwise bounds in HL2(Cd, μs,τ ) as follows:

|F (ξ + iη)|2 ≤
(

πs√
α

)d

exp
(

t/2
2α

|ξ|2 + s − t/2
2α

|η|2 + u

2α
ξ · η

)
‖F‖2

L2(Cd,μs,τ ) , (5.19)

where μs,τ is given as in (1.15). Note that the bounds on |F (z)|2 are, up to a constant, 
just the reciprocal of the density μs,τ . This is typical behavior for HL2 spaces over Cd

with respect to a Gaussian measure.

5.3. The s → ∞ limit

Throughout this section, we assume that the compact-type group K is actually com-
pact and we normalize the Haar measure dk on K to be a probability measure. Recall 
that νt ∈ C∞ (KC, (0, ∞)) is the K-averaged heat kernel measure, as in Definition 1.8.

Proposition 5.15. For all s > 0 and τ = t + iu with τ ∈ D(s, s), we have∫
μs,τ (gk) dk = νt(g). (5.20)
K
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That is to say, the integral on the left-hand side of (5.20) is independent of s and u and 
therefore equals its value when u = 0 and s = t, which is νt.

For the moment, we give only a heuristic argument for Proposition 5.15; a full proof 
requires some functional-analytic technicalities, which will be provided in Appendix A. 
By Corollary 5.7, the three terms in the definition (1.7) of Δs,τ all commute with one 
another. Thus, formally, we can differentiate in the naive way, as if the terms in the 
exponents were scalars rather than operators. Assuming this approach is valid, we would 
get

∂μs,τ

∂s
=

dim k∑
j=1

X̃2
j μs,τ ; ∂μs,τ

∂u
=

dim k∑
j=1

X̃j Ỹjμs,τ . (5.21)

We now denote the integral on the left-hand side of (5.20) by νs,τ . Then (5.21) would 
tell us that

∂νs,τ

∂s
=

dim k∑
j=1

X̃2
j νs,τ ; ∂νs,τ

∂u
=

dim k∑
j=1

X̃j Ỹjνs,τ .

But νs,τ is by construction invariant under the right action of K, so that X̃jνs,τ = 0. 
Since X̃j commutes with Ỹj = J̃Xj , we would find that νs,τ is independent of s and u, 
as claimed.

We will use the following well-known result for the heat kernel measure on a compact 
Lie group at large time.

Lemma 5.16. If K is a compact Lie group, the heat kernel ρs converges to the constant 
1 uniformly over K as s → ∞.

This result holds more generally on compact Riemannian manifolds. (Apply Theo-
rem 2 on p. 141 of [7] to the heat kernel ρε, for ε > 0.) In the case of a compact 
Lie group, the result follows easily from the expansion of the heat kernel in terms of 
characters (e.g., Eq. (15) in [22]).

With these results in hand, we may now prove Theorem 1.9, describing the large-s
limit of the transform Bs,τ .

Proof of Theorem 1.9. Since K is compact, the function ρs is bounded and bounded 
away from zero, showing that L2(K) = L2(K, ρs) as sets. The equality of L2(KC, νt) and 
L2(KC, μs,τ ) as sets follows from the averaging lemma (Lemma 4.2) and Proposition 5.15. 
We then note that as s tends to infinity with τ fixed, the parameter σ in the averaging 
lemma can be chosen to tend to infinity. Thus, by Lemma 5.16, the constants in the 
averaging lemma tend to 1 as s tend to infinity, from which the claimed convergence of 
norms follows. The equalities of the various Hilbert spaces as sets and the convergence 
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of the norms allows us to deduce the unitarity of B∞,τ from the unitarity of the maps 
Bs,τ . �
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Appendix A. Proof of Proposition 5.15

In this section, we provide a proof of Proposition 5.15, which we argued for heuristi-
cally in Section 5.3.

Theorem A.1. Let G be a Lie group with Lie algebra g and fix an inner product on g. 
For any subspace V ⊆ g, define

ΔV =
∑

j

X̃2
j ,

where {Xj} is an orthonormal basis for V , with domain D(ΔV ) = C∞
c (G). Then ΔV is 

essentially self-adjoint as an unbounded operator on L2(G, dg), where dg is a right Haar 
measure. Moreover, its closure Δ̄V is non-positive, and the associated heat operators 
e

t
2 Δ̄V are left-invariant for each t > 0.

We give here a proof based on work of Jørgensen; a brief outline of a more elementary 
argument was given in [13, p. 950], based on a method communicated to the first author 
by L. Gross. We emphasize that we do not assume that the smallest Lie algebra containing 
the Xj ’s is all of g; thus, Hörmander’s criterion for hypoellipticity need not apply.

Proof. We fix a left Haar measure m in addition to the right Haar measure λ on G. Let R
be the unitary right regular representation on L2(G, λ), i.e. for x ∈ G and ϕ ∈ L2(G, λ)
let

(R(x)ϕ)(y) = ϕ(yx) for all y ∈ G.

For f ∈ C∞
c (G) and ϕ ∈ L2(G, λ) we associate a “Gårding vector”, g := R(f)ϕ ∈

L2(G, λ), defined by



B.K. Driver et al. / Journal of Functional Analysis 278 (2020) 108303 37
(R(f)ϕ)(y) :=
∫
G

f(x)(R(x)ϕ)(y) dm(x)

=
∫
G

f(x)ϕ(yx) dm(x) =
∫
G

f(y−1x)ϕ(x) dm(x). (A.1)

(According to a result of Malliavin and Dixmier [8], the space of Gårding vectors coincides 
with the space of “C∞ vectors.”)

For X ∈ g let X̂ denote the right-invariant vector field on G which agrees with X at 
the identity (as compared with the left-invariant vector field X̃). By general theory in 
[35, Theorem 1.1] or by direct computation, R(f)ϕ ∈ C∞(G) ∩ L2(G, λ) and

X̃g = X̃R(f)ϕ = R
(

−X̂f
)

ϕ ∈ C∞(G) ∩ L2(G, λ), ∀ X ∈ g. (A.2)

Let D(L1) denote the span of the Gårding vectors and L1 := L0|D(L1). According to 
[35, Theorem 1.1] with U = R, the operator L1 is essentially self-adjoint. To complete 
the proof it suffices to show L̄ = L̄1 and for this it suffices to show L1 ⊂ L̄ and L ⊂ L̄1. 
We now verify the two desired operator inclusions.

• (L1 ⊂ L̄) Let g := R(f)ϕ ∈ D(L1) be a Gårding vector as above. Choose a sequence 
{hn}∞

n=1 ⊂ C∞
c (G, [0, 1]) as in [12, Lemma 3.6] such that hn = 1 on a Rieman-

nian ball of radius n relative to the left-invariant Riemannian metric on G, and so 
supx∈G |Shn(x)| < ∞ whenever S is any left-invariant differential operator on G. By 
the dominated convergence theorem, the fact that Sg ∈ C∞(G) ∩ L2(G, λ) for any 
left-invariant differential operator S on G (see (A.2)), and the stated properties of 
{hn}∞

n=1, it is easily shown that hng → g and L(hng) → L1g in L2(G, λ) as n → ∞. 
This shows that g ∈ D(L̄) and L̄g = L1g, i.e., L1 ⊂ L̄.

• (L ⊂ L̄1) Choose δn ∈ C∞
c (G, [0, ∞)) such that 

∫
G

δn(x) dm(x) = 1 for each n and 
supp(δn) ↓ {e} as n → ∞. Let ι : G → G denote the inversion map, i.e. ι(x) = x−1

for all x ∈ G. If f ∈ C∞
c (G), then gn := R(f ◦ ι))δn → f in L2(G, λ) as n → ∞ (see 

(A.1)). Moreover, gn ∈ D(L1) ∩ D(L) and

L1gn = R

⎧⎨⎩
k∑

j=1
X̂2

j (f ◦ ι)

⎫⎬⎭ δn = R ((Lf) ◦ ι) δn → Lf, as n → ∞

where the convergence is in L2(G, λ). Thus, it follows that f ∈ D(L̄1) and L̄1f = Lf , 
i.e., L ⊂ L̄1.

This concludes the proof of self-adjointness. The non-positivity of the self-adjoint 
extension L̄ and the left invariance of the operators etL̄ are now standard exercises. �
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Lemma A.2. Let H be a separable Hilbert space, let A and B be two essentially self-adjoint 
non-positive operators on H, and suppose Q : H → H is a bounded operator such QB ⊆
AQ; i.e., Q(D(B)) ⊆ D(A) and QB = AQ on D(B). Then QetB̄ = etĀQ for all t ≥ 0.

Proof. If f ∈ D(B̄) and fn ∈ D(B) such that fn → f and Bfn → B̄f , then Qfn → Qf

and AQfn = QBfn → QB̄f as n → ∞. Therefore it follows that Qf ∈ D(Ā) and 
ĀQf = QB̄f for all f ∈ D(B̄); i.e., QB̄ ⊆ ĀQ. So for any λ ∈ C we may conclude that 
(λI − Ā)Qf = Q(λI − B̄)f for all f ∈ D(B̄). If we assume λ > 0 and g ∈ H, we may 
take f = (λI − B̄)−1g ∈ D(B̄) in the previous identity to find

(λI − Ā)Q(λI − B̄)−1g = Qg.

Multiplying this equation by (λI − Ā)−1 and using the fact that g was arbitrary shows 
that Q(λI − B̄)−1 = (λI − Ā)−1Q or, equivalently,

Q(I − λ−1B̄)−1 = (I − λ−1Ā)−1Q for all λ > 0.

A simple induction argument then shows that

Q(I − λ−1B̄)−n = (I − λ−1Ā)−nQ for all λ > 0. (A.3)

Now, note that limn→∞(1 − y
n )−n = ey and 0 ≤ (1 − y

n )−n ≤ 1 for y ≤ 0. We 
thus obtain the following strong operator limits, using the spectral theorem and the 
dominated convergence theorem:

etB̄ = lim
n→∞

(
I − t

n
B̄

)−n

and etĀ = lim
n→∞

(
I − t

n
Ā

)−n

.

Therefore, taking λ = n/t in (A.3) and then letting n → ∞ shows QetB̄ = etĀQ for all 
t > 0. This completes the proof for t > 0, and the t = 0 case is immediate. �
Corollary A.3. If K is a Lie subgroup of G, V ⊆ g is an Ad(K)-invariant subspace, 
and 〈·, ·〉V is an Ad(K)-invariant inner product on V , then e

t
2 Δ̄V commutes with right 

translations by elements of K.

Proof. If Q is a right-translation by an element of K and A = B = ΔV with D(ΔV ) =
C∞

c (G), then QB = AQ, and Q preserves D(ΔV ) in this case. The result now follow by 
an application of Lemma A.2. �
Definition A.4 (K-averaging). Let P be the K-averaging operator defined on L1

loc(KC)
by
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(Pf) (z) =
∫
K

f(zk) dk

where dk denotes the Haar probability measure on K.

Since the Haar measure on K is invariant under inversion and the convolution with 
itself is still Haar measure, we can easily check that P : L2(KC) → L2(KC) is an orthog-
onal projection. The operator P also preserves the subspaces C∞(KC) and C∞

c (KC)
and if f ∈ C(KC) we have Pf(zk) = Pf(z) for all k ∈ K and z ∈ KC. Proposition 5.15
states, in this language, that Pμs,τ = νt, where t = Re τ .

Proof of Proposition 5.15. If X ∈ k and f ∈ C∞
c (KC), then (Pf) (zerX) = (Pf) (z) for 

all z ∈ KC and r ∈ R. Differentiating at r = 0 shows that X̃Pf = 0 for any X ∈ k. 
Using the fact that X̃jỸj = ỸjX̃j , which follows from the definition Yj = JXj and (2.1), 
it follows from Definition 1.4 that

Δs,τ P = t

2ΔJkP = P
t

2ΔJk on C∞
c (KC), where ΔJk :=

d∑
j=1

Ỹ 2
j . (A.4)

For the last equality, we have used that ΔJk commutes with right translations by elements 
of K and therefore with P . An application of Lemma A.2 with Q = P , A = Δs,τ , and 
B = t

2ΔJk gives Pe
t
2 Δ̄Jk = eΔ̄s,τ P for all τ ∈ D (s, s) with Re τ = t. In particular we 

may conclude that

eΔ̄s,τ P = eΔ̄s,tP ∀ τ = t + iu ∈ D (s, s) (A.5)

or equivalently that

〈eΔ̄s,τ Pv, w〉L2(KC) = 〈eΔ̄t,tPv, w〉L2(KC) ∀ u, v ∈ Cc(KC,R). (A.6)

For the rest of the proof let μ̄s,τ = Pμs,τ be the K-average of μs,τ . We may rewrite 
the left-hand-side of (A.6) as

〈eΔ̄s,τ Pv, w〉L2(KC) =
∫

K2
C

μs,τ (g)(Pv)(zg)w(z) dg dz

=
∫

K2
C×K

μs,τ (g)v(zgk)w(z) dg dz dk

=
∫

K2
C×K

μs,τ (gk−1)v(zg)w(z) dg dz dk

=
∫

2

μs,τ (gk)v(zg)w(z) dg dz dk
KC×K
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=
∫

K2
C

μ̄s,τ (g)v(zg)w(z) dg dz.

This equation with τ = t also shows the right-hand-side of (A.6) is given by

〈eΔ̄t,tPv, w〉L2(KC) =
∫

K2
C

νt(g)v(zg)w(z) dg dz.

Comparing the last two identities shows, for all v, w ∈ Cc(KC),∫
K2

C

μ̄s,τ (g)v(zg)w(z) dg dz =
∫

K2
C

νt(g)v(zg)w(z) dg dz.

As Cc(KC) is dense in L2(KC), we may conclude that, for all v ∈ Cc(KC),∫
KC

μ̄s,τ (g)v(zg) dg =
∫

KC

νt(g)v(zg) dg for a.e. z

and hence for every z ∈ KC as both sides of the previous equation are continuous in z. 
Thus, taking z = e, it follows that,∫

KC

μ̄s,τ (g)v(g) dg =
∫

KC

νt(g)v(g) dg ∀ v ∈ Cc(KC,R).

So as above, the density of Cc(KC) in L2(KC) along with the continuity of both μ̄s,τ

and νt, allows us to conclude that μ̄s,τ (g) = νt(g) for all g ∈ KC. �
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