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Abstract. We propose a Dynamic Directed Graph Convolutional Net-
work (DDGCN) to model spatial and temporal features of human actions
from their skeletal representations. The DDGCN consists of three new
feature modeling modules: (1) Dynamic Convolutional Sampling (DCS),
(2) Dynamic Convolutional Weight (DCW) assignment, and (3) Directed
Graph Spatial-Temporal (DGST) feature extraction. Comprehensive ex-
periments show that the DDGCN outperforms existing state-of-the-art
action recognition approaches in various testing datasets.
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1 Introduction

Human action recognition is an active research topic that attracted great at-
tention in recent years [34]. It has broad applications in video analysis and an-
notation, content retrieval, human-computer interaction, virtual reality, and so
on. However, action recognition remains challenging when the videos have noisy
background with complex occlusion or illumination conditions, changing camera
view angles, or inconsistency between individuals’ motions and their semantics
(e.g., different people could perform semantically similar motions differently).
The majority of action recognition and analysis algorithms directly model ac-
tion features on images using deep Convolutional Neural Networks (CNNs) [6].
But image-based approaches are usually sensitive to the aforementioned noisy
background, occlusions, and different camera viewpoints. Another modality to
mode]l human actions is through human skeletons. The skeleton modality has
some advantages over the image modality for its more compact representation,
better robustness against occlusion and viewpoint change, and higher expressive
power in capturing features in both temporal and spatial domains [18]. An ap-
propriate way to represent human skeletons is using graphs where skeleton joints
and bones are defined as graph nodes and edges respectively. Then to extract
features from graphs one can use the Graph Convolutional Network (GCN),
whose effectiveness is demonstrated in recent action recognition work [30].
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Many GCN-based action recognition approaches use multi-stream networks
to process spatial and temporal information of skeleton graphs separately [33,
8], which are usually complex and computationally costly. Recently, the Spatial-
Temporal (ST) graph is introduced [30] to represent the skeletal graph sequence.
A key advantage of using the ST graph is its capability to build a single end-to-
end network that comes with better efficiency. Nevertheless, GCN-based action
recognition methods still have their own limitations. Our observations are that
solving the following two issues could enhance the performance of GCN in ac-
tion recognition. First, there are spatial-temporal correlations between different
parts of a human skeleton. Exploring such correlation patterns helps improve
the modeling and recognition of actions. But such correlations are dynamic and
varied for different human actions in both spatial and temporal domains. Hence,
extracting these correlations effectively is difficult. The standard convolutional
operations commonly adopted in traditional GCN [30] are static and only de-
scribes spatial correlations between neighboring nodes, thus, cannot capture such
dynamic spatial-temporal correlations properly. Second, the spatial hierarchical
structure of skeletons and the temporal sequential properties of motions both
encode order information that is important in action recognition. But most ex-
isting ST graph models [30] describe the actions using undirected graphs, which
cannot capture such order information.

To tackle these issues, we propose an end-to-end Dynamic Directed Graph
Convolutional Network (DDGCN), to recognize human actions on ST graphs.
We develop three new modules that can adaptively learn the spatiotemporal
correlations and model spatial and temporal order information in actions:

Dynamic Convolutional Sampling (DCS). In action ST graphs, the
relationship between spatially or temporally correlated joints provides useful
information. We call this relationship ST correlations and describe it using a
feature vector fsr(v) on each node v. We compute fgr(v) using a convolution
of shared kernel weights W on an ST graph node v and its neighboring node
set B(v). B(v) includes v’s spatiotemporal correlated nodes. We observe that
ST-correlations among nodes, and hence B(v), are varied for different actions.
Hence, unlike existing approaches, we propose to dynamically model such ST-
correlations and compute each node’s neighboring node set from the data. We
design a novel Dynamic Convolutional Sampling (DCS) module (Section 3.2) to
define B adaptively using ST correlations explored in different actions.

Dynamic Convolutional Weights (DCW). To perform an element-wise
ordered convolution within the neighbor B(v) of a node v, we need to assign
the learned weights W (of the convolution kernels) to v’s neighboring nodes.
However, the spatial order of neighboring nodes in a graph is often ambiguous. To
make our proposed GCN order-invariant, we develop a Dynamic Convolutional
Sampling (DCW) module (Section 3.3) to compute the order of weights W in
an adaptive and dynamic procedure.

Directed Spatial-Temporal Graph (DSTG) Features. The inputs to
DDGCN are ST graphs created by spatial and temporal connections in actions.
However, existing ST graphs are usually designed as undirected graphs [30],
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which cannot capture spatial and temporal order information effectively. How-

ever, such order information encodes important attributes of actions. Hence,

we propose to use a Directed Spatial-Temporal Graph (DSTG), and develop a

DSTG feature extraction module to capture such order information and make the

action features more (spatially) structure-aware and (temporally) order-aware.
The main contributions of this work are as follows:

— We propose a new Dynamic Directed GCN (DDGCN) architecture to model
the spatial and temporal correlations effectively in human actions. Our com-
prehensive experiments showed that DDGCN outperforms existing state-of-
the-art approaches on various public benchmarks.

— We develop two new modules, DCS and DCW, to make DDGCN dynamic
and action-adaptive. These new modules can effectively capture ST correla-
tions exhibited among non-adjacent joints.

— We develop a new DSTG feature extraction module to enhance the action
feature modeling by including spatial-temporal order information.

2 Related Work

Action recognition algorithms can be classified based on data modalities they
run on. The majority of action recognition methods model actions on image
sequence directly. Accordingly, they have developed various strategies based on
handcrafted features [31, 26, 15], Convolutional Neural Network (CNN) [2, 9, 27],
or Generative Adversarial Network (GAN) [14, 25, 29] to perform action recog-
nition. However, using only appearance modality such as RGB images has its
limitations including high inference of background, high dimensional inputs, sen-
sitivity to image transformations, and low expressive capability.

To enhance the expressive capability of the appearance modality, some re-
searchers add a new depth dimension to the modality to help extract features
from actions. Kamel et al. [8] proposed an Action-Fusion network using both
depth maps and posture data based on three CNNs defined on different modal-
ities. Zhang et al. [33] used a multi-stream deep neural network to learn the
motion attributes based on depth and joints inputs, and then represented the
motions based on the combination of their attributes. However, depth images
are sensitive to background inference and local transformations.

Compared with the depth images, motion flows are less sensitive to back-
ground inference and has a greater expressive capability. Some recent studies
aimed to effectively compute motion flows. Piergiovanni et al. [16] proposed a
method to reduce the computational cost of generating optical flows by capturing
the flow within the model where the flow parameters are iteratively optimized by
jointly learning other CNN model parameters. Sun et al. [22] designed a compact
motion representation named Optical Flow guided Feature (OFF) that allows
the CNN to extract the spatial-temporal information required for computing
the flow between frames. Despite its better reliability, the motion flow is in gen-
eral expensive to compute and still has limited capability in modeling moving
background and dynamic motions.
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The skeleton is a compact and expressive modality, and is insensitive to
dynamic background and changing camera viewpoint. Li et al. [13] suggested an
approach to capture richer motion-specific dependencies by using an encoder-
decoder structure. The network automatically creates actional and structural
links representing motions where each encoder-decoder block is called as actional-
structural graph convolution network. Si et al. [20] proposed a method to extract
high-level spatial-temporal features using a novel Attention Enhanced Graph
Convolutional LSTM Network. The network captures co-occurrence relationship
between spatial and temporal domains where the spatial features extracted by
the GCN is fed to the LTSM to extract temporal dependencies.

3 Methodology

3.1 Overview
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Fig. 1. An overview of the proposed action recognition pipeline.

The main pipeline of our proposed end-to-end action recognition pipeline
DDGCN is illustrated in Fig. 1. Given an action sequence X, DDGCN outputs
its action class label ¢ € {0, 1,...,C}, C being the number of classes. Let action
X be a sequence of skeletal graphs X = {G;,t = 1,2,...,T}, where each skeletal
graph in time t, Gy = {V;, EY} consists of node (joint) set V; = {v; € R3 k =
0,1,...,m} and spatial edge (bone) set Ef = {v{v}|(i,j) € H}, where m is the
skeletal node number. Here H is the set of bones (spatial edges) connecting
joints (nodes) in a static human body skeleton template; subscripts 7 and j are
the indices of joints, t is the index of the time frame, and T is the length of
action sequence.

Spatial-Temporal Graph Construction. From a skeletal graph sequence,
we construct an ST graph Ggr = (V, E), following the notation given in [30], to
store all the skeletal joints and their spatial and temporal relationship. Specifi-
cally, nodes V' = {v} correspond to skeletal joints and are connected by edges E
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following two rules. (1) Spatially, joints on the same skeleton are connected by
spatial edges E°. (2) Temporally, each node and its counterparts in the previous
and next frames are connected by temporal edges, i.e., {vaf“} c ET.
Dynamic Directed Convolutional (DDC). The DGCNN takes the ST
graph as its input, and builds the feature maps F,,; using multiple DDC blocks
(Fig. 1). Each DDC block consists of (1) two dynamic convolutional modules,
namely, Dynamic Convolutional Sampling (DCS) and Dynamic Convolutional
Weight (DCW) assignment, and (2) a Directed Spatial- Temporal Graph (DSTG)
feature extraction module that captures the spatial-temporal order information.
The last, say g-th, DDC block outputs a probability feature vector fI .. and it

out»
is finally converted to a resultant one-hot vector ¢ through a softmax operator.

3.2 Dynamic Convolutional Sampling (DCS)

Fig. 2. Sample frames of a running motion, in which correlated patterns can be found
on non-adjacent nodes

(a) Skeletal graph template from [4] (b) Skeletal graph template of [17]

Fig. 3. Our two (directed) skeletal graph representations, where the joint indexing
follows (a) [4] and (b) [17].
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Adjacent sub-parts of a human body are often correlated in human actions.
Meanwhile, in many actions, some non-adjacent sub-parts are also correlated.
Fig. 2 illustrates an example of running motion, where arm and leg joints exhibit
similar spatial-temporal patterns and are correlated. But ST correlations of sub-
parts are varied in different actions. So they need to be captured dynamically
according to the data. Dai et al. [5] developed a procedure to find the non-local
neighbors of a given pixel in an image. Inspired by this, we have generalized this
idea to graphs to develop a Dynamic Convolutional Sampling (DCS) module to
identify correlated non-adjacent nodes.

DCS runs on a static graph Gy defined by the given skeleton template. In
other words, Gy is from a specific time frame of the ST-graph Ggr. For each
node v in a Gg, we first define its correlative nodes on edges connecting v and
its neighbors. Note that v’s neighboring nodes could contain not only its adja-
cent nodes in Gy, but also other non-adjacent nodes that are correlated (i.e.,
exhibiting correlated motion patterns). We initiate v’s neighbor list B(v) with
its adjacent nodes in the Gy, then the dynamic convolutional sampling (DCS)
algorithm will update B(v) to include those non-adjacent nodes according to
correlated patterns exploited from action X. Specifically, the DCS computes the
feature values on each node v; in two steps. (1) First, we detect all the correla-
tive node pairs {(v;,v;)},vi,v; € G, then we include those non-adjacent nodes
to each node v;’s neighboring set B(v;) accordingly. We connect each v; and
its newly included non-adjacent neighbor v; using a new edge. The update on
B(v;) is done by performing a dynamic sampling procedure on v;’s non-adjacent
correlative nodes. This dynamic procedure adaptively samples v;’s correlative
nodes indexes and update their order using an index shift (offset). We use a
function p; to indicate the sampling for v;, and Ap; to denote an index shift.
So pi(B(v;)) + Ap;(B(v;)) orders all the nodes v; € B(v;) and outputs a list
of indexes (a permutation of these nodes). We iteratively update the order of
v;’s neighboring nodes to find a better ordering, or offsets, such that under the
new neighbor sampling, the recognition accuracy improves, namely, the recog-
nition loss L decreases. (2) Second, on each edge connecting v; and its neighbor
vj € B(v;), we aggregate the correlative information indicating relative informa-
tion of node v; with respect to v; to get the correlative features. Such correlative
features can be defined as f(v;, pi(B(vi)) + Api(B(v;))) with respective to node
v; and its neighbor v; = p;(B(v;)) + Ap;(B(v;)).

This DCS Algorithm can be summarized as follows.

1) initialize the static graph Gg following a skeleton template, and initialize
indexes of all the nodes accordingly;

2) initialize neighbor sampling: for Yv; € Gg, create its initial ordered neigh-
boring set p;(B(v;)) in two steps:

e create an ordered node set O; including all the other nodes in the graph
sorted by their graph distance to v;. When two nodes v; and v, have the
same graph distance (e.g., both are r-hop away from v;), then sort them
based on their initialized indexes;

e given a kernel size r, pick the first » nodes from O;, these nodes form
the ordered neighboring set in this step p;(B(v;));
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3) update sampling neighbors: Vv;, update the index offsets and neighbor sam-
pling by learning optimal offsets Ap; that reduces recognition loss L.

Finally, on Ggr, the feature map fgr is computed through a graph convolu-
tion following Equation (1):

fsr(i) = Y w(vi)- (pi(v;) + Api(vy)), (1)

v; EB(v;)

where ¢ and j are indices for the central and neighboring sampling nodes re-
spectively, B is the dynamic neighboring sampling nodes set, w is the dynamic
weight function, p; is the dynamic neighboring sampling function and Ap; is the
offset sampling function.

3.3 Dynamic Convolutional Weights

Both CNN and GCN extract features from input data by performing con-
volutions. On an image, each pixel’s neighboring pixels are spatially ordered
and the convolution kernel weights are learned following the same order. On a
graph, however, each node’s adjacent nodes are often unordered, and the num-
ber of neighbors could vary. To make our graph convolution order-invariant and
valence-insensitive, we develop a DCW weight assignment module to order the
computed convolution weights adaptively.

Inspired by [7] that aligns/re-orders weights for each pixel’s neighboring pix-
els on images in CNN’s convolutions, we propose a DCW assignment scheme to
compute the order/assignment of weights in W on graph nodes. This makes the
convolution order-insensitive; and also improves the GCN performance.

Specifically, given a node v and its neighboring nodes B(v) = {v;,i =
1,..., K}, where K is the size of neighboring nodes, our DCW assignment re-
orders the kernel weights W = {w; € R®,i=1,...,r} so that w; is dynamically
assigned to the corresponding node v;. We compute this assignment as a r x 2
matrix P, = DTW,qu, (W, B(v)) that minimizes the distance between the two
vectors B(v) and the re-ordered W. The first column in P, defines the ordered
indices of elements in W, and the second column indicates the selected elements
and their order in B(v). We compute P,, using the Dynamic Time Warping
(DTW) algorithm [1].

With this dynamically computed P,, W is adjusted according to B(v), mak-
ing the GCN convolution order-insensitive, and also, capturing the feature pat-
terns in B(v) more effectively.

The DCW assignment naturally handles the varied size of B(v) through
this assignment. While the kernel size r is fixed, the size of B(v), denoted as
K could change. Note that K is v’s valence plus the size of its non-adjacent
correlated vertex set. If K is larger than r, then the top-r significant nodes
will be considered (using the DTW algorithm) while the others ignored. This
flexibility allows us to use shared fixed-size kernels to have a fully-connected
layer without over-adjusting the hyperparemeters [24].
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3.4 Directed Spatial-Temporal Graph

We design a Directed Spatial-Temporal Graph (DSTG) feature extraction mod-
ule to enhance the initial features fsp obtained from the DCS and DCW mod-
ules. DSTG considers the spatial and temporal order information of actions
which follow hierarchical (spatial) structure of human skeleton and sequential
(temporal) properties of human motions respectively. Unlike existing approaches
such as [19] that incorporate spatial and temporal order information using 3D
joint /bone coordinates, the DSTG uses a high-dimension feature vector pointing
from the feature vector of a joint v; to the feature vector of its correlative joint
v;. The advantage of our method is that it can jointly learn bones and temporal
high dimensional features using the spatial-temporal (ST) representation on the
ST graph through an end-to-end network. For each node v; we assign a feature
vector F; = {f/, f2, fI'} which is the concatenation of three features vectors of
joint features f{, bone features fZ and temporal features f.

Directed Spatial Graph. We model the human body skeleton following stan-
dard templates. Two widely used skeletal graph templates are from [3] and [17].
Existing ST graphs are developed to be undirected. Based on observations we
discussed previously, modeling spatial and temporal information in order is ben-
eficial. Therefore, we change these undirected graphs to directed graphs. We
define bone directions following a breadth-first search traversal from the root.
The resultant edge directions are illustrated in Fig. 3. The hierarchical structure
of skeleton joints is represented as directed bone vectors connecting adjacent
joints. Each joint v; is spatially correlated to its parent node v;_; with a bone
b; = v;_1v;. In this hierarchical structure, movement of a parent joint usually
affects its children joints. In the opposite direction, the relationship may not be
the same though. Following these bone vectors, we define the bone features as
fB = fiifi = fio1 — fi, where f; and f;_; are feature vectors of node v; and
its parent v;_q.

Directed Temporal Graph. Temporal sequence information in actions are im-
portant attributes, sometimes referred to as motion trajectory [32], in building
action features. The temporal sequence order in an ST graph can be defined by
directed edges connecting a joint and its counterpart in the next time frame.
Such information has not been properly modeled in existing ST graph based ap-
proaches. To exploit such information, in ST graphs we calculate the temporal
features f! for each node v; by fl = fI — fffl where f! and fitf1 are feature
vectors of the node v; in the current frame with respect to the previous frame.

3.5 Network Architecture

DDC Block. We compose the DCS, DCW, and DSTG modules to form a DDC
block, and build the DDGCN pipeline by integrating multiple DDC blocks, as
shown in Fig. 4. The first DDC block DDCj takes in an ST skeleton sequence,
fo € RT>*7*3_ composed from an ST-graph, where T and J are frame and joint
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Fig.4. The DDGCN architecture consisting of DDC blocks, Dropout (DO) layers,
Dimension Modifier (DM) and ReLU.

numbers and 3 indicates the 3D coordinates. DDCy outputs the feature maps
0.+ € RT*IXC where C is the channel size. The ST-graph is processed by the
DCS to produce dynamic neighboring sets for nodes, upon which the DCW is
applied to create ST correlations fsr and then the final features f,,; are created
by the DSTG module. The output features from a DDC block is processed by a
ReLU layer then regularized by a DropOut (DO) layer to prevent over-fitting.
Composing Multiple DDC Blocks. We then build our DDGCN pipeline
using multiple (9 in the current implementation) DDC blocks, as shown in Fig. 4.
Except for the block DDCy, a subsequent ¢g-th DCC block DDC, takes in a
feature map f{ € RT*/*¢ and outputs a feature map fI, € RT < , where
C and C’ are the channel sizes. T = % 1f g =3k,k={1,2} and T = T for
other g values, C' = C x 2 if g =3k, k = 1, 2,...and ¢’ = C for other ¢ values.
The dimension of the DCC output is controlled by a Dimension Modifier (DM).
Network Parameters. Our current implementation has 9 DDC blocks. The
dimension for fiut for i = 1,2,3 is (300, 18,64); for i = 4,5,6 and i = 7,8,9,
they are (150, 18,128) and (75, 18, 256), respectively. In our network, the learning
rate, dropout probability, and kernel size are 0.01, 0.5 and 3 respectively.

4 Experimental Results

4.1 Datasets and Evaluation Metrics
We evaluated our proposed action recognition algorithm on two public datasets.

1) Kinect [10] contains around 300,000 video clips retrieved from YouTube.
The videos cover 400 human action classes and each clip is 30 seconds. The
joint locations were extracted from the video clips using the open-source al-
gorithm OpenPose [4]. Following the commonly adopted evaluation in recent
action recognition algorithms on this dataset, among these samples we used
240,000 for training and 20,000 for testing, and to evaluate the recognition
accuracy we used two metrics: (1) Top-1 accuracy (i.e., how often the high-
est classification score, or our prediction, corresponds to the correct label)
and (2) Top-5 accuracy (i.e., how often the correct label corresponds is in
one of the top-five predictions).
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2) NTU-RGB+D [17] contains 56,000 action clips in 60 action classes, with
annotated joint locations. We used these provided skeletons to build our
skeletal graph sequence and ST-graphs. Two evaluation metrics developed
on this dataset are: (a) Cross-Subject (CS) Evaluation: 40 different persons
are separated into training and testing groups, each containing 20 persons.
The training and testing sets have 40, 320 and 16, 560 samples, respectively.
Cross-View (CV) Evaluation: samples from two cameras-views are used for
training, and samples from another camera-view are used for testing. The
training and testing sets have 37,920 and 18,960 samples, respectively.

Table 1. Comparing action recognition accuracy of our approach with that of other
state-of-the-art approaches on NTU-RGB+D [17] dataset.

MetricDDGCN (ours)| [18] | [20] | [19] | [21] | [23] | [35] | [30] | [11] | [12]
CS 91.05%  [89.90%|89.20%|88.5%|84.8%|83.5%|81.8%|81.50%]79.6%|83.1%
CV 97.14%  [96.10%]95.00%]95.1%92.4%|89.8%|89.0%|88.30%|84.8%| 74.3%

Table 2. Comparing action recognition accuracy of our approach with that of other
state-of-the-art approaches on Kinect [10] dataset .

Metric| DDGCN (ours)| [18] [[19]| [30] | [12]
top-1 38.12% 36.9%36.1|30.7%|20.3%
top-5 60.79% 59.6%58.7|52.8%(40.0%

4.2 Comparison with Existing Methods on Benchmarks

On the aforementioned benchmarks, we compared our method with existing
state-of-the-art methods, including d-GCN (CVPR19) [18], LSTM-GCN (CVPR19) [20],
2S-GCN (CVPR19) [19], ST-TSL (ECCV18) [21], DPRL (CVPR18) [23], Bayesian-
GCN (ICCV19) [35], ST-GCN (AAAT18) [30], LSTM-CNN (CVPRI17) [11], and
T-CNN (CVPRI17) [12]. The NTU-RGB+D results are shown in Table 1, and
the Kinect results are shown in Table 2. Note that the performance of some ap-
proaches is only available on NTU-RGB+D dataset, so Table 2 has a shorter list
of compared methods. In both benchmarks, our proposed DDGCN outperforms
the existing methods in recognition accuracy.

For qualitative (visual) examination and comparison, we also randomly se-
lected a set of testing action samples from the benchmark (the Kinect dataset)
and illustrate the results from DDGCN (ours), ST-GCN [30], d-GCN [18], and
2S-GCN [19] (only these papers released their codes). For example, we picked
the videos with indexes number 30 X k,k =1,..., so actions #30, #60, . .. from
the Kinect dataset and perform the comparison. Some recognition results are
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shown in Table 3. Some of these actions are and their recognition results are
visualized in Fig. 5, and more are provided in the supplemental video.

Table 3. Comparing our DDGCN with other methods on randomly selected sample
actions from the Kinect dataset. The actions with ground truth labels are listed on the
left column; each method’s results are reported in the table.

Action Sequencee DDGCN|ST-GCN [30]|d-GCN [18]|2S-GCN [19]
class #30 (bookbinding) #30 #30 #30 #137
class #60 (clean and jerk) #60 #60 #60 #60
class #90 (decorating Christmas)| #90 #315 #15 #90
class #120 (exercising arm) #120 #224 #217 #372
class #150 (headbanging) #96 #353 #150 #150
class #180 (krumping) #180 #180 #31 #180

DDGCN: #30  Flifsa=i ity B DDGCN: #60 e DDGCN: #90
ST-GSCN: #60 PRRLEI ST-GSCN: #315
d-GCN: #15

ST-GSCN: #30

d-GCN: #30 d-GCN: #60

(b) Action #60

DDGCN: #96 - DDGCN: #269 DDGCN: #300
ST-GSCN: #315 By | ST-GSCN: #269 ST-GSCN: #300
| d-GCN: #150 d-GCN: #273 d-GCN: #31

(d) Action #150 (e) Action #270 (f) Action #300

Fig. 5. Recognition of action samples (a) #30 (bookbinding), (b) #60 clean and jerk,
(¢) #90 (decorating Christmas tree), (d) #150 (headbanging), (e) #270 (riding ele-
phant), and (f) #300 (shoveling snow) from the Kinect dataset [10].

4.3 Real-time Experiments

We also conducted our real-time experiments by having a volunteer performing
actions defined in the Kinect dataset. Some comparison results are illustrated in
Fig. 6, and more results are provided in the supplementary video.
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v DDGCN: Label # 261
= ST-GCN: Label # 53
= d-GCN: Label # 330

v DDGCN: Label # 217
= ST-GCN: Label # 247
= d-GCN: Label # 180

[INPIEP
v/ DDGCN: Label # 120
= ST-GCN: Label # 250
= d-GCN: Label # 45

v DDGCN: Label # 398
= ST-GCN: Label # 204
= d-GCN: Label # 77

Fig. 6. Recognizing user-performed actions #217 (plastering), #261 (pushing up),
#398 (yawning), and #120 (exercising arm), following actions defined in Kinect [10].

4.4 Ablation Study

Table 4. Comparing effectiveness of different modules in the DDC block.

Dataset/Models |Baseline| DCS |DCW |DSTG|DCS + DCW +DSTG
Kinect/top-1 30.7% |34.6%|32.1%|35.5% 38.12%
Kinect/top-5 52.8% |55.3%]|54.6%| 58.1% 60.79%

NTU-RGB+D/CS| 81.5% |84.5%|81.9%|85.4% 91.05%
NTU-RGB+D/CV| 88.3% [90.3%|89.4%|92.6% 97.14%

We designed an ablation study to evaluate the effectiveness of different com-
ponents in the DDC block and also their combinations. We choose [30] as the
Baseline, where standard convolutional layers and GCN blocks are used. Our
proposed DDGCN is designed based on three new modules DCS, DCW, and
DSTG. The recognition results are reported in Table 4. From these results, we
can see that incorporating DCS, DCW, and DSTG brings 3.9% , 1.4% and 4.8%
performance gains respectively for the Kinect/top-1. On other datasets/metrics,
these components demonstrate similar performance improvement. Using the full
DDC block yields the best accuracy.
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4.5 Recognition of Incomplete Actions

Real-world videos often contain incomplete actions. Occlusion, fast motion, chang
ing illumination, or hardware noise could result in blocked body parts, missing
frames, or incomplete action sequences [28]. Many existing methods were not
designed to address such incomplete action data specifically and cannot recog-
nize them properly. Incomplete actions can sometimes be ambiguous, as similar
motion subroutines could exist in different actions, and without a long enough
sequence, sometimes they cannot be effectively differentiated. Our DGCNN can
enhance the extraction of Spatial-Temporal dependencies and order information.
Hence, it could tackle incomplete actions more reliably.

We intentionally removed some frames in the benchmark action videos and
conduct experiments to compare our method’s recognition performance. We sim-
ulated three types of incompleteness: (1) missing frames at the beginning of the
motion, (2) missing frames at the end, and (3) random missing frames in the se-
quence. Different levels of data incompletion are tested on the NTU-RGB+D/CS
dataset; each testing experiment run on 16.5%k action samples.

We compared our algorithm with three other methods d-GCN (CVPRI19) [18],
2S-GCN (CVPR19) [19] and ST-GCN (AAAI18) [30], whose source codes were
released. The experimental results on the aforementioned three incompleteness
types are reported in Tables 5 and 6. The results indicate the better robustness of
the DDGCN over the existing approaches, especially when the missing rates are
high. In most action sequences, we found a major portion of the features/patterns
exists during the beginning of the action, hence, removing frames at the begin-
ning of the sequence makes the recognition harder. This is also demonstrated in
the experiments: when the first 30% of frames at the beginning of a sequence are
removed, the recognition accuracy drops dramatically; but when a same amount
of frames are removed at the end of a video, the recognition is still effective.

Table 5. Recognition of actions with missing frames at the beginning.

Missing Rate DDGCN]ST-GCN [30][d-GCN [18][2S-GCN [19]
0% 91.5% | 81.5% 89.8% 88.3%
10% 82.3% | 65.2% 72.5% 71.7%
20% 43.7% |  28.5% 31.9% 30.9%
30% 21.1% 5.9% 9.1% 10.3%

5 Conclusions

We have developed a Dynamic Directed Graph Convolutional Network (DDGCN)
algorithm for action recognition based on skeleton graphs. The DDGCN consists
of three new modules: Dynamic Convolutional Sampling (DCS), Dynamic Con-
volutional Weight (DCW) assignment, and Directed Graph Spatial-Temporal
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Table 6. Recognition of actions with missing frames, where (1) missing frames are at
the end (End), and (2) frames are randomly missing (Rand). The two numbers reported
here reflect the recognition accuracy under these two cases, respectively.

Missing Rate DDGCN ST-GCN [30] | d-GCN [18] | 2S-GCN [19]
0% (End / Rand) |91.5% / 91.5%|81.5% / 81.5%|89.8% / 89.8%|88.4% / 88.4%
30% (End / Rand)|91.5% / 87.9%81.5% / 76.0%|89.8% / 85.2%|88.3% / 85.3%
60% (End / Rand)|91.2% / 79.0%|  80.4% 82.3% 82.5%
70% (End / Rand)|86.3% / 68.8%|  72.5% 76.9% 79.5%
80% (Eud / Rand)|65.3% / 51.3%|  48.1% 51.1% 55.9%

(DGST) features extraction. These new modules help better capture the spatial-
temporal dependencies as well as hierarchical and sequential structures for hu-
man action modeling and recognition. Experiments demonstrated that DDGCN
has outperformed the state-of-the-art algorithms in action recognition accuracy
on multiple public benchmarks.

Limitations and Future Work. The recognition accuracy on the Kinect
dataset is significantly lower than the NTU dataset. A main reason is that the
Kinect data include some videos that have severe occlusion and missing joints.
Some failure examples are illustrated in Fig. 5 (d,e). In both examples, the
skeletons are significantly truncated and incomplete, resulting in incorrect action
identifications. Currently, the DDGCN (and other existing methods) has not
designed specific module to tackle missing joints. We will explore this for action
recognition in unconstrained videos.
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