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Abstract
Game-based learning environments are designed to provide effective and engaging
learning experiences for students. Predictive student models use trace data extracted
from students’ in-game learning behaviors to unobtrusively generate early assessments
of student knowledge and skills, equipping game-based learning environments with the
capacity to anticipate student outcomes and proactively deliver adaptive scaffolding or
notify instructors. Reflection is a key component of self-regulated learning, and it is
critical in effective learning. However, there is currently limited work exploring the
utility of reflection for inducing accurate predictive student models. This article
presents a predictive student modeling framework that leverages natural language
responses to in-game reflection prompts to predict student learning outcomes in a
game-based learning environment for middle school microbiology, CRYSTAL IS-
LAND. With data from a pair of classroom studies involving 118 middle school
students, we investigate the accuracy of early prediction models that utilize features
extracted from student trace data combined with word embedding-based representa-
tions (i.e., GloVe, ELMo) of student reflection responses. We evaluate the accuracy of
the predictive models over time using data from incremental segments of each student’s
interaction with the game-based learning environment, and we compare against models
that omit student reflection features. Results reveal that models encoding students’
natural language reflections with ELMo word embeddings yield significantly improved
accuracy compared to other representations, with the greatest accuracy demonstrated by
an ensemble of predictive models. We discuss the implications of these results for the
design of game-based learning environments.
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Introduction

Game-based learning holds considerable potential for student engagement, learning,
and motivation (de Freitas 2018; Plass et al. 2020; Qian and Clark 2016). Because
game-based learning environments can create learning experiences that are effective
and engaging, they have shown success across a diverse range of subject matter
(Brezovszky et al. 2019; Pesare et al. 2016; Tsatsou et al. 2019). Game-based learning
environments can provide students with adaptive support in the form of personalized
hints and feedback as well as tailored curricular sequencing. Delivering adaptive
support requires access to a student model to estimate the learner’s current knowledge
and competencies that can drive pedagogical decision making and timely interventions.
Accurate student models are critical in successfully employing adaptive support, as
incorrectly tailored support can negatively affect student learning outcomes (San Pedro
et al. 2013; Chen and Law 2016).

There are multiple approaches to student modeling, including stealth assess-
ment and knowledge tracing, which aim to model student competencies based on
their interactions with a learning environment. These approaches, while exhibiting
significant differences, both require an explicit mapping from student actions to
knowledge content that is developed by subject matter experts. This mapping can
be challenging to generate for game-based learning environments, where an action
may not neatly pair with specific content knowledge or skills (e.g., movement,
picking up item). Another important approach to student modeling is to predict
future student competencies using data acquired from a student up to a specific
moment. This type of modeling, predictive student modeling, automatically in-
duces a student model using features extracted from trace logs of students’
gameplay interactions to predict student learning outcomes, eliminating the need
for labor-intensive encoding of human domain knowledge. Recent years have seen
significant interest in machine learning approaches to predictive student modeling
in game-based learning environments (Akram et al. 2018; Emerson et al. 2019;
Falakmasir et al. 2016; Karumbaiah et al. 2018; Min et al. 2017b, 2020; Sabourin
et al. 2013b). Deep neural networks, in particular, have demonstrated significant
improvements over other machine learning approaches for inducing accurate
predictive student models (Akram et al. 2018; Geden et al. 2020; Min et al.
2017b, 2020; Piech et al. 2015; Wang et al. 2017), although these improvements
have not proven universal (Xiong et al. 2016).

A promising direction for enriching predictive student models is to leverage
evidence of self-regulated learning (SRL). Effective use of SRL strategies has
been shown to yield positive learning outcomes in game-based learning environ-
ments (Nietfeld et al. 2014; Sabourin et al. 2013a; Taub et al. in press). Predictive
student models that leverage trace log data interactions have been shown to model
SRL behaviors in a wide range of computer-based learning environments (Biswas
et al. 2018; Desmarais and Baker 2012; Kinnebrew et al. 2015). Reflection is a
key component of SRL (Greene and Azevedo 2007; Schunk and Greene 2018;
Winne and Hadwin 1998) that involves the deliberate examination of one’s own
knowledge, skills, motivational beliefs, emotions, and goals following a learning
activity (e.g., post-problem-solving episode). A common approach to examining
students’ reflection processes is prompting students to create written (i.e., textual)
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descriptions of their reflections (Thorpe 2004; Minott 2008; Hume 2009; Bannert
and Reimann 2012; Van den Boom et al. 2004). Reflection responses may
describe new information that the student has learned or goals that the student
may have recently accomplished or a new understanding of potentially novel ways
to learn, use strategies, and acquire skills. Reflection can be prompted periodically
during a student’s interaction with a game-based learning environment, or it can
be prompted after a student has finished interacting with the game.

To assess students’ reflection processes, written reflections are often annotated
using a manual coding process. Manual coding is labor-intensive (Shute 2011;
Poldner et al. 2014; Prilla and Renner 2014; Bannert and Reimann 2012), which is
an obstacle to providing real-time adaptive support for student reflection. An
alternative approach is utilizing natural language processing to automatically
assess students’ written reflections. Automated assessment methods have been
devised that employ latent semantic analysis (LSA) to derive features from text
responses to predict the quality of student reflections (Cheng 2017; Kovanović
et al. 2018). Word embedding techniques have also been investigated (Pennington
et al. 2014; Peters et al. 2018). Word embedding techniques enable automatic
distillation of syntactic and semantic meaning from text, and they have been
shown to consistently outperform LSA with respect to capturing word relation-
ships. Using these automated text analysis methods, it is possible to build predic-
tive student models that utilize features from written reflections to drive real-time
adaptive support in game-based learning environments.

In this work, we incorporate student written responses to in-game reflection prompts
using word embedding methods for early prediction of student learning. We extract
features from students’ reflections in an unsupervised fashion by using GloVe and
ELMo pre-trained word embeddings (Pennington et al. 2014; Peters et al. 2018), which
have been shown to yield significant benefits in automated text analytics. GloVe word
embeddings are generated using a co-occurrence matrix derived from a large corpus of
text. ELMo embeddings are generated with stacked bi-directional LSTMs and capture
additional information related to the specific context in which a word was used. By
using word embeddings that are pre-trained on a large text corpus, we are able to
capture complex syntactic and semantic characteristics of students’ natural language
reflections from a comparatively small dataset. We compare predictive models that use
word embedding representations to models that do not incorporate student reflection
features using a range of supervised learning techniques, including deep recurrent
neural networks, ensemble techniques, and several traditional classification algorithms
(e.g., naïve Bayes, k-nearest neighbor, support vector machines). We explore the
effectiveness of this approach in a game-based learning environment for middle school
microbiology, CRYSTAL ISLAND. Word embedding-based reflection feature repre-
sentations are evaluated on a dataset consisting of log data from student interactions
with CRYSTAL ISLAND during two classroom studies (N = 118). In addition to
evaluating model accuracy, we measure the success of early prediction models by
evaluating the standardized convergence point and convergence rate of each model
(Min et al. 2020; Blaylock and Allen 2003; Min et al. 2016). Results point toward the
promise of leveraging features extracted from students’ reflection processes to devise
predictive student models that can inform adaptive support in game-based learning
environments.
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Background

Reflection

Reflection is a key component of self-regulated learning (Greene and Azevedo 2007; Winne
andHadwin 1998;Winne andAzevedo 2014). Reflection is a deliberate process that involves
performing an introspective examination of one’s own experience, perspective, and feelings
with respect to a personally relevant problem (Ullmann 2015). Effective reflection can lead
students toward novel insights about their own learning (Rogers 2001), resulting in novel
understanding, new perspectives, or the acquisition of knowledge and skills (Schön 2017;
Boud et al. 2013). Self-regulatory strategies, such as reflection, are critical to student learning
(Greene et al. 2011) and can lead to positive learning outcomes in adaptive learning
environments (Van den Boom et al. 2004; Bannert 2006; Van den Boom et al. 2007).

A common practice for fostering reflection is prompting students to engage in
written reflection after a learning activity (Thorpe 2004; Minott 2008; Hume 2009).
Reflective writing can enhance learning outcomes by encouraging students to think
critically about the educational materials and their meta-cognitive judgments (Bisman
2011; Burrows et al. 2001; Cisero 2006). There are many formats for reflection
prompts depending upon the context in which they are used, but generally, they entail
individuals writing about their thoughts and feelings on their previous experiences.
While written reflections produce a measurable artifact of an individual’s reflection
process, assessing student reflection typically requires labor-intensive manual coding
(Shute 2011; Poldner et al. 2014; Prilla and Renner 2014).

There are numerous methods for assessing reflection quality, but they broadly
belong to two types of measurement: depth and breadth. Depth of reflection represents
the sophistication and complexity of a student’s reflection, and it is typically measured
on a binary (e.g., non-reflective, highly reflective; Lai and Calandra 2010) or ordinal
scale (Kember 1999; Poldner et al. 2014; Wong et al. 1995). Ordinal scales of reflection
can involve different levels of reflection complexity (Wise and Jung 2019), forms of
reflection (Lai and Calandra 2010), or types of information included in the reflection
(Poldner et al. 2014). Breadth of reflection can be assessed by categorizing the range of
subjects present in written reflections, such as understanding, content, assumptions,
perspectives, and personal beliefs (Prilla and Renner 2014; Kember et al. 2008;
Boenink et al. 2004; Ullmann 2019; Bell et al. 2011).

There is a growing interest in developing and utilizing automated methods for assessing
reflection by analyzing written responses to reflection prompts. While there has been some
work onmodeling students’ reflective process as a whole (Blaney et al. 2014; Ullmann 2011,
2019), the majority of existing work has investigated the primary subjects of students’
reflections, such as their experiences, difficulties, intentions, and beliefs (Cheng 2017;
Kovanović et al. 2018). Priorwork has largely utilized dictionarymethods and latent semantic
analysis to extract features for trainingmachine learningmodels such as naïve Bayes, support
vector machines, or random forests to predict metrics of student reflection (e.g., quality,
category). We utilize word embedding techniques to extract general syntactic and semantic
features from the reflective text in lieu of latent semantic analysis due to their ability to transfer
accurate representations leveraged from large corpora (Peters et al. 2018). We then provide
the word embedding-based representation of student reflection directly to a predictive student
model.
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Predictive Student Modeling

Devising predictive models of student knowledge and behavior in game-based learning
environments has shown significant promise (Min et al. 2016, 2017a; Wang et al. 2017;
Emerson et al. 2019; Wu et al. 2019). Predictive student modeling focuses on making early
predictions about students’ future performance, knowledge, or skills using currently avail-
able data. A primary characteristic of predictive student modeling is that predictive student
modeling infers future performance rather than current knowledge and skills. For example,
knowledge tracing typically focuses onmodelingwhether a student hasmastered a particular
knowledge component or skill during their interactions with an adaptive learning environ-
ment. Knowledge tracing is often performed using hidden Markov models or recurrent
neural networks (Baker et al. 2008; Piech et al. 2015). Stealth assessment uses trace data
from student interactions with a game-based learning environment to predict student
knowledge based on an evidence-centered design (ECD) framework (Shute et al. 2016;
Kim et al. 2016). Computational models of stealth assessment often utilize Bayesian
networks to link individual student actions to content knowledge. Temporal representations
of student data can be captured through the use of sequence-based models, such as long
short-term memory (LSTM) networks. In Min et al. (2020), LSTMs were used to predict
student post-test performance following interactions with a game-based learning environ-
ment for middle grade computational thinking. This approach, called deep stealth assess-
ment, minimizes the need to manually create a mapping between in-game actions and
student knowledge; instead, the mapping is constructed automatically using deep learning
techniques. In our work, we utilize a similar formulation of student modeling and develop
predictive models that converge toward an accurate early prediction of student post-test
performance, assessingmodel fit through a diverse set of accuracy and convergencemetrics.
Additionally, we investigate the use of students’ in-game reflection responses as a comple-
mentary data channel with which to model post-test performance. While previous work has
investigated using data from student dialogue with virtual agents in adaptive learning
environments to inform models of student learning (Graesser 2016), utilizing student
responses to in-game reflection prompts to enhance predictive student models is a novel
contribution of this work.

Early Prediction

Early prediction enables adaptive learning environments to proactively deliver support
to students (Acharya and Sinha 2014; Mao et al. 2019; Sabourin et al. 2013b; Winchell
et al. 2018; Emerson et al. 2019). There is a growing literature on methods for
accurately predicting student performance at key early points in a student’s interaction
with an adaptive learning environment. Common predictor features include static
attributes such as demographic data, survey data, and pre-test scores. Olivé et al.
(2019) use static features extracted from student data collected up to two days before
an assignment deadline to predict on-time submissions. Other feature representations
include sequential data on students’ academic behavior or interactions with an adaptive
learning environment. For example, Jiménez et al. (2019) use sequences of student data
(e.g., course enrollment history, grades) in a three-year computer science program with
the goal of finding the earliest moment in a student’s academic career in which a
reliable prediction of dropout is possible.
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Many early prediction tasks in adaptive learning environments are formalized as classi-
fication problems. A classic example is predicting whether a student will be a high or low
performer in a course (Costa et al. 2017; Gitinabard et al. 2019; Polyzou and Karypis 2019).
Student performance is often discretized by performing a median split on student outcome
data or by distinguishing between pass versus fail outcomes. Gitinabard et al. (2019)
predicted student performance in a blended class that mixed in-person instruction with
online learning platforms, splitting students into two groups: A- and above, and B+ and
below. They segmented the data by defining a time threshold for consecutive actions in the
online platforms. Then, they extracted features from the segmented data at different points in
the semester, identified the most predictive features, and compared the predictive
performance of using features encompassing the entire semester to features extracted
using only data from earlier points in the semester. Polyzou and Karypis (2019) predicted
student course grades in future semesters, with a focus on poor-performing students.

When making early predictions about student outcomes, it is common to use a small set
of discrete data segments defined by course milestones (e.g., semester start, semester end,
assignment due dates, examination dates). For example, Baneres et al. (2019) split a course
timeline into deciles to generate predictions about student success at each time point.
Kostopoulos et al. (2019) split the academic year into four consecutive time periods,
separating demographic and survey data from time-variant data as two “views” in order to
predict if a student will pass or fail a class. These methods require access to the entire set of
data prior to segmentation and would be challenging to apply to game-based learning
environments where there can be an absence of clear event boundaries. A range of
computational techniques have been utilized for early prediction, with recent years focusing
increasingly on deep neural networks (Lykourentzou et al. 2009; Min et al. 2020). Botelho
et al. (2019) built multi-task deep learning models to predict student attrition and wheel
spinning at each learning opportunity in an adaptive learning environment.

We build upon the literature on predictive student modeling by leveraging deep
recurrent neural networks to generate early predictions of student post-test performance
following interactions with a game-based learning environment. We show how the
predictive model performs during early phases of students’ action sequences, and we
use an absolute measure of time (i.e., minutes elapsed) rather than a relative measure
(e.g., percentage-based) to segment student data. Furthermore, we utilize features
extracted from students’ in-game reflection responses, yielding an enriched view of
student learning processes in order to enhance the predictive accuracy of student
models in game-based learning environments.

Crystal Island

CRYSTAL ISLAND is a game-based learning environment for middle school micro-
biology education (see Fig. 1). Students take the role of a medical investigator who has
recently arrived on a remote island research station to identify the cause of an outbreak
that is spreading among a team of scientists. Students must identify what type of
pathogen is causing the illness, what is the disease’s transmission source, and what is
the proper treatment for the disease. The events of CRYSTAL ISLAND take place in
an open-world game environment. Students are free to explore the island and interact
with any of the island’s non-player characters (NPCs) or educational resources. Stu-
dents can ask NPCs about their symptoms, read in-game informational texts about
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various microorganisms and illnesses, and test various food objects for pathogenic
contaminants in a virtual laboratory. Additionally, students fill out a diagnosis
worksheet to keep track of key information they have learned during their investigation.
CRYSTAL ISLAND has been used by thousands of middle school students world-
wide, and it has been shown to yield significant science learning benefits (Lester et al.
2014; Meluso et al. 2012; Rowe et al. 2011).

Students interacted with a version of CRYSTAL ISLAND that periodically prompted
them to reflect on what they have learned and their upcoming plans in the game (i.e., “In
your own words, please describe the most important things that you’ve learned so far, and
what is your plan moving forward?”). The embedded reflection prompts were designed to
elicit reflective thinking, thus encouraging students to monitor and adapt their self-regulated
learning processes based on their previous game-based learning behavior and problem-
solving plans (van den Boom et al. 2007). After the reflection prompt, students were
instructed to self-report their problem-solving progress on a 10-point Likert scale. The
prompts were delivered following key milestones in the game’s science problem scenario.

Students were prompted to reflect on their actions thus far and to comment on their
plans moving forward (Table 1). The reflection prompt took the form of a message,
delivered via the student’s in-game smartphone, requesting an update about the stu-
dent’s investigation (see Fig. 2). When students finished the game, they were asked to
reflect on whether their approach to solving the mystery was successful, and whether
they would do anything differently when solving a similar problem in the future. In
total, students spent an average of about 6 min interacting with reflection prompts,
corresponding to approximately 8% of their total time in CRYSTAL ISLAND.

Student responses to the reflection prompts varied significantly in length, specificity,
quality, and content (Table 2). Some responses exhibited limited reflection by the
student, providing only proximal information about the student’s latest and current
actions. (See second row of Table 2.) Other students provided detailed responses which
incorporated updates about their beliefs and hypotheses. (See fourth row of Table 2).

Methods

Participants

Eighth-grade students from a middle school in the mid-Atlantic region were enrolled in
2018 and 2019 as part of two separate classroom studies. The studies shared the same

Fig. 1 CRYSTAL ISLAND game-based learning environment
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version of CRYSTAL ISLAND, procedure, and materials, but there were also several
differences. The studies were conducted in different classrooms and at different points
in the semester. We combine the data collected across the 2018 (n = 61) and 2019 (n =
95) studies into a single dataset and analyze it in aggregate. A binary variable
representing which data collection the student belonged to was added as a feature to

Table 1 In-game reflection prompts

Trigger In-game Investigation Update Request Presence of
Progress
Self-report

After talking to the camp nurse for
the first time

“Agent, it looks like you’ve spoken with the camp nurse.
Before you continue, we’d like a report on your
progress”

Yes

After reading six virtual books “Agent, it looks like you’ve found several materials that
may be useful. Before you continue, we’d like a report
on your progress.”

Yes

After obtaining a positive test result
in the virtual laboratory

“Agent, it looks like you found an object that tested positive
for pathogenic contaminants. Before you continue, we’d
like a report on your progress.”

Yes

After submitting a proposed
diagnosis and getting it wrong.

“Agent, it looks like you are making progress on
diagnosing the illness, but you’re not quite there yet.”

Yes

After solving the mystery “Well done, Agent! You’ve saved everyone on the island.
Now that you are finished, we would like to ask a couple
of final questions. “

- “Please explain how you approached solving the
mystery”.

- “If you were asked to solve a similar problem in the
future, what would you do the same and/or differently?”

No

After time expires, but the student
has not solved the mystery

“Thank you for playing CRYSTAL ISLAND. Now that you
are finished, we would like to ask a couple of final
questions.”

- “Please explain how you approached solving the
mystery.”

- “If you were asked to solve a similar problem in the
future, what would you do the same and/or differently?”

No

Fig. 2 In-game reflection prompt
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account for systematic differences between years. After removing students with miss-
ing data, the final dataset was composed of data from 118 students. Missing data was
due to a number of factors, including student absences, failure to complete the post-
study surveys, and forgetting assigned participant IDs during the pre-survey or post-
survey phases of the study. There were 37 participants with missing pre- or post-survey
data. The average age of students was 13.6 (SD = 0.5). There was approximately an
equivalent number of students who identified as male (n = 55) and female (n = 60), with
3 students responding as Other. There were 43 students who identified as White, 32 as
Black or African American, 21 as Hispanic or Latino, 3 as Asian, 1 as American Indian
or Alaskan Native, and 18 as Other.

Measures

Demographics The pre-study survey began with a short series of demographic ques-
tions involving the student’s current age, gender, and race. None of these items were
included as features in the predictive student model to avoid disparate treatment of
students based on protected attributes.

Emotions and Values Questionnaire Following the demographic questions, the pre-
study survey contained a 16-item questionnaire on emotions using a 5-point Likert
scale adapted from Pekrun et al. (2011). The response options pertained to the student’s
degree of agreement about their contemporaneous experience of the following emo-
tions: happy, hopeful, proud, angry/frustrated, anxious/fearful, ashamed, hopeless,
bored, surprised, contemptuous/disgusted, neutral, confused, interested/curious, sad,
eureka/sudden understanding, and that the task/activity is valuable. The items were
treated as continuous features for model input.

Microbiology Content Knowledge Test The pre-study survey included a 17-item mul-
tiple-choice content knowledge assessment on the student’s microbiology content
knowledge (M = 6.78, SD = 2.75). This pre-test consisted of thirteen factual and four
application questions. An example question from the test was “Which of the following
diseases is caused by a viral infection?” The response options included, “Anthrax,”
“Smallpox,” “Salmonellosis,” and “Sickle Cell.” The items were converted to binary
variables based on the correctness of the student’s responses, and they were included in
the predictive model as input features. After the student played CRYSTAL ISLAND,
they were presented with a post-test that contained a separate set of 17-items addressing

Table 2 Examples of reflection responses

1 “I have learned that the disease is either a mutagen, pathogen, or carcinogen. Moving forward, I am going
to discover which one the disease on the island is.”

2 “I think I have a diagnosis. I am going to test my findings.”

3 “To move forward I will just keep testing foods.”

4 “I learned that the disease spreading is either a pathogen, mutagen, or carcinogen, but I am leaning
towards pathogen because of how I think it spread. I am talking to the patients now to learn their
symptoms in order to verify.”

5 “The sickness is passing from one person to the other”
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the same microbiology content knowledge (M = 7.36, SD = 3.36). The post-test
consisted of fourteen factual and three application questions. All of the information
needed to answer the questions on both assessments could be found in CRYSTAL ISLAND,
whether through books or articles, conversations with in-game characters, or by
viewing informational posters. Pearson correlations indicated significant relationships
between the pre- and post-tests (r = 0.53, p < 0.01). Both the pre- and post-tests were
created by an interdisciplinary team of researchers.

Gameplay Features While students played CRYSTAL ISLAND, the game automati-
cally time-stamped and logged their gameplay actions. Similar to Min et al. (2017a), we
encoded students’ in-game actions in terms of several components. The first component
was the completion of any of the eight key milestones within the game (e.g., talked to
the camp nurse, submitted a diagnosis for the epidemic). The second component was
the action type, which denoted whether the student had moved to a new location,
conversed with an NPC, read a virtual book or article, completed a problem-solving
milestone (e.g., submitting a correct diagnosis worksheet), used the testing equipment
in the virtual laboratory, or recorded notes in the diagnosis worksheet. In this study, the
data included nine action types. The third component of an in-game action was the
action argument, which varied based upon the action type. Action arguments included
the titles of virtual books, the names of NPCs with whom the student conversed, the
type of food object the student tested in the virtual laboratory, and the content entered
into the diagnosis worksheet. The data included 95 different action arguments. The
fourth component of an in-game action encoding was the location where the action
occurred. The data included 24 non-overlapping, discrete locations in the virtual
environment. Finally, three of the features were count-based action arguments that
pertained to only a specific action type (e.g., number of edits in the diagnosis
worksheet). In total, this yielded 130 distinct action features (8 milestones, 24 locations,
95 binary actions, 3 count-based actions). We represent actions with a one-hot
encoding of each action component (i.e., action type, action argument, action location)
to produce 127 binary features and three count-based features. Each encoded action
also included the timestamp for the action’s occurrence during a gameplay session.

Reflection Prompt Responses At several milestones in the game, students were
prompted to reflect on their learning by providing a free-response description of their
recent progress and upcoming problem-solving plans. Students also responded to a self-
report question about their progress using a 10-point Likert scale (M = 6.6, SD = 2.3).
Students were prompted up to five times at selected trigger points in the game chosen to
minimize disruption to gameplay. (See the left column in Table 1 for several example
trigger points.) Students’ reflections added information to the predictive student models
that was complementary to the pre-test and gameplay data to describe student behavior.

Procedure

After students completed the pre-study survey, researchers briefly described the
overall purpose of the study. Next, all students watched a brief video that
introduced the game’s science mystery storyline. Afterward, students began
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playing the tutorial phase of the game, which introduced them to the controls and
game environment. Once finished with the tutorial, students had full agency to
explore the island and investigate the mystery. Students in the 2018 study were
allotted approximately two class periods and students in the 2019 study were
allotted approximately three class periods to play the game until they either solved
the mystery or ran out of time. The average playtime across all students was
76.3 min (SD = 19.5). After all students had either solved the mystery (72%) or
run out of time (28%), they were directed to the post-study survey.

Reflection Writing Processing

Students’ written responses to the reflection prompts underwent a series of pre-
processing steps. First, punctuation was removed and all text was converted to
lowercase. Next, misspellings were identified and corrected with a plausible
candidate that was found within a Levenshtein (edit) distance of two. Incorrectly
spelled words for which a plausible correction could not be found were removed.
Word embeddings for each response were computed using one of two methods:
300-dimensional GloVe embeddings (Pennington et al. 2014) or 1024-dimensional
ELMo embeddings (Peters et al. 2018). These embedding sizes were chosen
because they are the most similar in size—the largest pre-trained GloVe embed-
dings are of size 300, and the smallest pre-trained ELMo embeddings are of size
1024. GloVe generates word embeddings based on non-sparse elements of a
global co-occurrence matrix through a log-bilinear regression on a local context
window. ELMo generates context specific word embeddings through concatenat-
ing the output of the top layer of stacked bi-directional LSTMs. We utilized the
final hidden layer of the ELMo language model to derive embeddings.

A single representation of each reflection response was then created by aver-
aging the word-level embeddings (Wieting et al. 2016; Adi et al. 2017). Word
embeddings were averaged along each dimension across all words included in a
student’s written reflection. The limited sample size made the averaged word
embedding approach advantageous compared to a sequential representation of
the word embeddings, because a sequential approach (e.g., GRU, LSTM) would
require learning many more model parameters. Additionally, averaging word
embeddings has been shown to perform similarly or better than more complex
methods across a number of datasets (Shen et al. 2018). These average word
embeddings differentiated between reflection responses based on the words used
and the structure of the response. For example, responses that included statements
that were structurally similar to “I have learned...disease/illness...I plan to…” had
similar embeddings, as did responses that contained phrases like “tested positive
for pathogenic/nonpathogenic bacteria/virus” (see Fig. 3). Finally, a single repre-
sentation of the student’s overall reflections at the time of model prediction was
created by averaging their mean reflection embeddings across all reflection
prompts to which they had responded. For example, if the student, at the 16-min
mark, had responded to two reflection prompts, then their reflection features
would be the average of their two word-level averaged embeddings up to that
point. At time points prior to the student’s first reflection prompt, a zero-vector
was used.
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Results

All models were constructed in Python using Keras and Scikit-learn (Pedregosa et al.
2011). Model training and evaluation were conducted using 10-fold cross-validation on
the student-level. The outcome variable was a binary indicator derived from a median
split of post-test scores (low/high performance). The median post-test score was 7, and
the split exhibited an approximate bimodal distribution (see Fig. 4). By using this
outcome variable, the predictive student modeling task centered on predicting student

Fig. 3 t-SNE visualizations of embedding-based representations of student reflections: (a) GloVe embedding
t-SNE plot, (b) ELMo embedding t-SNE plot, (c) Example student reflections

Fig. 4 Histogram of student post-test scores
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knowledge at the end of the session, rather than predicting the change in knowledge
during the session. The input features for the models consisted of each question from
the emotions questionnaire (k = 16), pre-test questions (k = 17), and a one-hot encoding
of student gameplay actions (k = 131). The predictive accuracy of the models was
compared across three conditions, which varied in their utilization of reflection feature
data: no reflection data, GloVe embeddings of reflection data (k = 300), and ELMo
embeddings of reflection data (k = 1024). The conditions incorporating the reflection
embeddings also included the self-report Likert item asking about the student’s
problem-solving progress.

Student performance on the post-test was predicted at two-minute intervals of gameplay
as well as at the conclusion of the game. Given that large sections of the game involve
reading text, this time interval allows for the inclusion of several game actions and events
within each prediction interval. For each interval, we used a cumulative representation of
student data up to that point. For example, the first interval’s prediction was based upon the
first two minutes of gameplay for each student. The second interval’s prediction was based
upon the first four minutes, and so on. The construction of the gameplay intervals caused
students with long gameplay durations to be overrepresented during training compared to
students who solved the problem scenario quickly. To counterbalance this effect, within
each training fold, the training data was sampled with replacement so that all students had
the same number of instances. Early prediction was evaluated using standardized conver-
gence point with no penalty (Min et al. 2016) and convergence rate (Blaylock and Allen
2003), as well as several standard classification metrics (i.e., F1 score, precision, recall,
AUC, and accuracy). Standardized convergence point is the proportion of the sequence of
predictions which had converged, with 0 indicating the sequence never converged and 1
indicating an entirely accurate sequence. Convergence rate is the proportion of sequences
with an accurate final prediction when utilizing the entirety of the student’s data.

Several classification algorithms were compared across each of the embedding
conditions (no reflection features, GloVe embeddings of reflection, ELMo embeddings
of reflection): majority classifier, naïve Bayes, k-nearest neighbors (KNN), linear
support vector machine (LinearSVM), logistic least absolute shrinkage and selection
operator (LASSO), random forest, and Adaboost. The input features were the pre-test
items, the sum of the one-hot encoded gameplay features, elapsed game time, and the
reflection embeddings. All features were standardized within the 10-fold cross-valida-
tion, and then hyperparameter tuning of non-neural classification models occurred on
an additional internal 10-fold cross-validation. The internal cross-validation split the
training set into a training and validation set which were iteratively used to evaluate a
range of model hyperparameters.

In addition, a recurrent neural network was evaluated that utilized a sequential
representation of the gameplay features. The neural network consisted of a gated
recurrent unit (GRU; Cho et al. 2014) for the gameplay features and a fully connected
layer for the concatenation of the pre-test and reflection features. The output of the
GRU and fully connected layers were then concatenated and propagated into an
additional fully connected layer before the output layer (Fig. 5).

For regularization, dropout was applied after the GRU and both fully connected
layers at a rate of 0.66 (Srivastava et al. 2014). The model was optimized with
RMSprop, and training was terminated through early stopping with a patience of 5 or
a maximum of 50 epochs. Early stopping used a validation split from the training data
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within the 10-fold cross-validation. The number of units in both fully connected layers
was selected through hyperparameter tuning based on the validation data across 16, 32,
64, and 128 units. The number of units selected from hyperparameter tuning for the
fully connected layer following the pre-test/reflection concatenation and the fully
connected layer following GRU were 32/32 for the no-embedding model, 64/16 for
the GloVe embedding model, and 128/128 for the ELMo embedding model. Finally, an
ensemble was created using predictions from all seven models (e.g., naïve Bayes,
KNN, linear SVM) using hard voting. The results for each model using either no-
embeddings, GloVe embeddings, or ELMo embeddings are respectively presented in
Tables 3, 4, and 5.

The accuracy of the predictions across each interval of a student’s sequence from the
best early prediction model, the ensemble of models with ELMo embeddings, is
presented in Fig. 6. Generally, predictions look to stabilize after the first 20 min of
gameplay with the exception of a set of students whose predictions continued to
oscillate throughout the entirety of their sequence of predictions. There were several
students whose predictions never reached an accurate prediction throughout the entire
sequence. However, no discernible characteristics were found that distinguished this set
of students from the larger set of students (e.g., no significant differences in pre-test
performance or questionnaires).

Fig. 5 Recurrent neural network architecture for predictive student modeling with student reflections

Table 3 Early prediction models for classification on post-test without reflection data

Early Prediction Overall Classification

Models Standardized
Convergence
Point

Convergence
Rate

F1 Score Precision Recall Accuracy AUC

Majority .44 .55 .71 .55 1.0 .55 .50

Naive Bayes .61 .61 .48 .58 .42 .59 .58

KNN .40 .66 .62 .63 .62 .65 .65

LinearSVM .44 .68 .65 .69 .61 .70 .69

LASSO .45 .63 .62 .67 .58 .68 .67

Random Forest .51 .56 .49 .55 .44 .58 .57

Adaboost .52 .56 .52 .53 .51 .57 .56

Sequential NN .37 .66 .58 .66 .52 .66 .62

Ensemble .47 .62 .63 .67 .59 .68 .67
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Discussion

Game-based learning environments show significant promise by providing adaptive
learning experiences to individual students, but the effectiveness of adaptive learning
experiences is dependent upon access to accurate, reliable student models. Predictive
student modeling is critical for building effective adaptive learning environments,
enabling the delivery of student-specific coaching and feedback. We examined several
machine learning models for early prediction of student post-test scores within a game-
based learning environment, CRYSTAL ISLAND. The predictive models utilized three
alternate feature representations incorporating word embedding-based encodings of
student reflection data: no reflection features, GloVe embeddings of reflection, and

Table 4 Early prediction models for classification on post-test using GloVe embeddings for reflection data

Early Prediction Overall Classification

Models Standardized
Convergence
Point

Convergence
Rate

F1 Score Precision Recall Accuracy AUC

Majority .44 .55 .71 .55 1.0 .55 .50

Naive Bayes .59 .60 .43 .60 .34 .59 .58

KNN .41 .67 .61 .62 .60 .65 .64

LinearSVM .46 .71 .61 .65 .57 .66 .65

LASSO .43 .70 .62 .66 .58 .67 .66

Random Forest .53 .61 .46 .55 .40 .57 .56

Adaboost .57 .61 .48 .51 .45 .55 .54

Sequential NN .41 .71 .67 .66 .68 .69 .69

Ensemble .43 .74 .63 .67 .58 .68 .67

Table 5 Early prediction models for classification on post-test using ELMo embeddings for reflection data

Early Prediction Overall Classification

Models Standardized
Convergence
Point

Convergence
Rate

F1 Score Precision Recall Accuracy AUC

Majority .44 .55 .71 .55 1.0 .55 .50

Naive Bayes .56 .69 .58 .59 .57 .62 .62

KNN .36 .72 .67 .66 .69 .70 .70

LinearSVM .44 .73 .73 .71 .75 .75 .75

LASSO .40 .73 .70 .74 .66 .74 .73

Random Forest .45 .69 .60 .61 .59 .64 .64

Adaboost .43 .69 .58 .63 .53 .65 .64

Sequential NN .37 .74 .68 .68 .68 .71 .71

Ensemble .41 .77 .71 .74 .69 .75 .74
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ELMo embeddings of reflection. The linear SVM model and an ensemble consisting of
seven models (e.g., naïve Bayes, recurrent neural network, linear SVM) that utilized
ELMo embeddings of student reflection data demonstrated the best performance on
overall classification accuracy and convergence rate, and substantially improved per-
formance on F1 score and standardized convergence point relative to baseline models.
The ensemble model achieved superior early prediction accuracy, while the linear SVM
demonstrated superior overall accuracy.

The incorporation of features extracted from student reflections provided a substan-
tial improvement to the model’s predictive performance when utilizing ELMo embed-
dings. However, the GloVe embeddings provided little additional benefit compared to
the no reflection feature representation. The large difference in classification accuracy
across the GloVe and ELMo embeddings of reflection could be due to the additional
capability of ELMo to encode contextual information into the feature representation.
Through the use of contextual representations, ELMo is able to effectively disambig-
uate word sense, unlike GloVe, which forces a single representation for polysemous
words. These results indicate that the incorporation of an additional information
channel based upon student reflection text-based responses contributes toward the
creation of predictive student models and student reflections can assist in inducing
more effective predictive models. Additionally, the utilization of word embeddings
allows for the integration of students’ written reflection responses to reflection prompts
without requiring resource intensive annotation by subject matter experts on the breadth
and depth of the student’s reflections.

The best performing models varied significantly across the six evaluation metrics.
Standardized convergence point results revealed limited variability across the three

Fig. 6 Early prediction accuracy by student for the ensemble model using ELMo embeddings of reflection.
Sorted by length for interpretability
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different feature representations, while convergence rate, F1 score, AUC, and accuracy
all varied substantially. Given the use of a median split for post-test score, it was not
surprising to see similar model selection across the accuracy and F1 score. Conver-
gence rate consistently selected different models from the standardized convergence
point, indicating a tradeoff between how early a model can get an accurate prediction
and how reliably the early predictions are accurate. These results show the benefit of
evaluating early prediction models using a diverse set of metrics, including conver-
gence metrics borrowed from the research literature on planning and goal recognition
(Min et al. 2020; Blaylock and Allen 2003; Min et al. 2016).

Predictive student modeling has great potential to satisfy the requirements of
adaptive learning environments by providing efficient, accurate, and reliable student
models. The creation of predictive models that leverage automatically generated
representations of student reflections circumvents the need for resource-intensive
annotations of students’ natural language writing in the assessment process. The
improved accuracy of early prediction models that utilize word embedding representa-
tions of student reflection allows for game-based learning environments that confident-
ly adapt to student actions early in their problem-solving experience, thus providing
greater opportunity to support the student. For example, if the predictive student model
indicates that a student will perform poorly after 15 min, it may recognize that the
student has missed several critical resources in the game, triggering a prompt to the
student directing their attention toward the missed resources. Conversely, a confident
prediction about student knowledge that occurs near the end of a student’s gameplay
session has limited utility, because there is limited opportunity remaining to intervene
by providing adaptive coaching and support. Generally, early prediction models that
can accurately and efficiently predict student learning outcomes offer the ability to alert
instructors or drive adaptive scaffolding features to provide assistance to struggling
students.

Limitations

A limitation of this study is that, in order to utilize the convergence metrics, students’
post-test scores were converted into a binary variable. Ideally, post-test scores would be
modeled directly as a regression problem, removing issues associated with classifying
students near the median boundary as different classes. A second limitation is the
treatment of students’ reflection responses as an average of mean embeddings. This
bag-of-words approach loses sequential information about how the student’s reflections
change over time during in-game problem solving and contextual information about
word ordering in the written reflections. Investigating the use of convolutional or
recurrent neural networks instead of average word embedding models is a promising
approach to address this limitation, especially since word-order information is impor-
tant when working with short responses. An additional limitation is the assumption that
the content of prompted written reflection is representative of self-generated naturalistic
reflection. Students with low motivation or engagement could produce responses to the
written reflection prompts with limited authentic reflective thinking. Finally, while the
incorporation of student written reflections using word embedding methods sidesteps
the need for subject matter expert annotations of reflection quality, it does not provide a
clear understanding of which features extracted from the written reflections lead to
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improved accuracy of the predictive student model. On the one hand, it is possible that
the models may encode key attributes of the students’ reflections based on the word
embeddings. On the other hand, it is also possible that the model simply utilizes
surface-level attributes of the reflection texts, such as word complexity, word usage,
and sentence length.

Conclusion

Predictive student models enable game-based learning environments to adapt to indi-
vidual students’ needs in real-time. Therefore, it is critical that the models be accurate
and reliable. Reflection is a central component of self-regulated learning, and leverag-
ing data on students’ reflective thinking processes can greatly improve the accuracy of
predictive student models. This study leveraged written reflections elicited throughout
each student’s interaction with a game-based learning environment by prompting the
student to respond to embedded reflection prompts at different moments in the game.
These written reflections were integrated into predictive student models, along with
other data channels, by using pre-trained word embedding representations, such as
GloVe and ELMo, to represent students’ natural language responses to reflection
prompts. Leveraging word embedding techniques removes the need for manual coding
to extract relevant features from the written reflections. Additionally, the use of word
embeddings that account for the context of each word in the student written reflections
significantly improves the performance of predictive student models, as demonstrated
using ELMo word embeddings. By combining student interaction data and written
reflections represented using ELMo embeddings, predictive student models are able to
accurately predict student learning outcomes at early points in the student’s interaction
with the game-based learning environment. Specifically, an ensemble of machine
learning models employing ELMo word embeddings of written reflections demonstrat-
ed the best early prediction performance compared to other feature representations and
model architectures. This approach grants the utilization of written reflections while
eschewing the need to acquire resource-intensive annotations of the text. These findings
highlight the importance of both capturing available data channels on student learning
processes and encoding them automatically in ways that are beneficial for modeling
student learning outcomes. Capturing these data channels not only enhances the
promise of incorporating predictive student models into run-time game-based learning
environments, but also provides insight into student learning processes.

Future Directions

There are several promising future directions for this work. Developing convergence
metrics for continuous variables will be an important next step for evaluating early
prediction in student models. Additionally, analyzing written responses can be extend-
ed beyond the direct application of unsupervised word embedding methods to more
explicitly extracted qualitatively relevant reflection features. One approach is to pre-
train word embeddings of written reflections to predict expert annotations of reflection
characteristics (e.g., depth, categories, knowledge). The word embeddings from the
pre-trained model could then be fine-tuned in a second supervised model predicting
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student knowledge. Finally, it will be important to investigate the application of
predictive student modeling within run-time game-based learning environments, setting
the stage for empirically assessing the efficacy of early predictive models that integrate
student reflection data to improve student learning outcomes.
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