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High-throughput single-cell transcriptional profiling has 
enabled remarkable progress in our understanding of cel-
lular mechanisms of disease and development1–4. Cell atlas 

datasets, including the Mouse Cell Atlas5,6 and Human Cell Atlas7, 
systematically measure the transcriptome of individual cells in mul-
tiple sites in the organism and at several time points during growth 
and development. These datasets have contributed to the discovery 
of new cell types and cell transcriptional states8–11. However, to assist 
with the identification of new cell types, there is currently a big gap 
as this requires techniques that (1) harmonize heterogeneous and 
time-varying datasets, (2) learn dataset-invariant cell representa-
tions and (3) use the learned representations to decide whether 
groups of measured cells represent previously uncharacterized 
cell types and cell states. Such techniques would have the power to 
reveal new cell types, enable investigation of biology that underlies 
those cell types and their cellular activity, and would thus form a 
crucial tool in an expanding single-cell computational toolbox.

Existing single-cell tools train deep neural network models to 
learn how to embed cells into a vector space. The structure of the 
space is optimized during model training to reflect geometry of the 
training dataset12–17. After the method learns cell embeddings, it 
clusters them to find groups of cells with similar gene expression 
programs. Finally, the method then annotates/assigns each group 
to a cell type for which enough annotated cells already exist in the 
training dataset18,19. However, current methods are unable to anno-
tate cells that are not characterized in existing datasets or have not 
been measured before. Also these methods cannot classify cells into 
new cell types that do not exist in the training data. While recent 
semisupervised and supervised methods20–23 have made initial 
steps toward empowering single-cell analyses by reusing previously 
annotated datasets, these methods require that all cell types have 
many annotated examples in the training data. As a result, current 
methods are unable to identify new/unseen cell types.

Here we introduce MARS, an approach for annotating known/
seen as well as new/unseen cell types in heterogeneous and 
time-varying single-cell datasets. MARS uses meta-learning, a par-
adigm in machine learning that focuses on efficient use of limited 

annotations24–27. In particular, MARS first constructs a meta-dataset 
by integrating (1) any number of single-cell experiments in which 
cells are annotated (that is, labeled) by a cell type, and (2) an unan-
notated experiment, which does not necessarily share any cell types 
with the labeled data. Using the meta-dataset, MARS jointly learns 
a set of cell-type landmarks and an embedding function that proj-
ects cells into a shared embedding space, such that cells are close to 
their cell-type landmarks. The embedding space, learned by a deep 
neural network, identifies gene expression programs and lever-
ages commonalities between experiments in the meta-dataset. This 
gives MARS a unique ability to generalize to unannotated experi-
ments and identify cell types that were never seen during train-
ing. We apply MARS to Tabula Muris6 and Tabula Muris Senis28 
cell atlases. We find that MARS successfully transfers knowledge 
between diverse tissues and aligns the same cell types, even when 
they originate from different tissues. Further, we find that MARS 
learns meaningful cell-type-specific signatures of aging in a mouse. 
Our results show that MARS considerably outperforms current 
techniques for cell-type classification. MARS is able to accurately 
identify cell types it has never seen during training and can proba-
bilistically recommend interpretable names for them.

Results
Meta-learning in MARS. MARS takes as input single-cell gene 
expression profiles from heterogeneous or time-varying experi-
ments, such as different tissues or stages of development. MARS 
creates a meta-dataset that consists of (1) experiments in which 
cells are annotated according to their cell types, and (2) a com-
pletely unannotated experiment in which cell types are unknown. 
The unannotated experiment can originate from different source 
and does not need to share any cell types with the annotated experi-
ments. The goal then is to annotate cells in the unannotated experi-
ment, such as never-before-seen tissue or stage of development. 
This is a new setup not considered by previous single-cell methods.

Overview of MARS. Given a meta-dataset as input, MARS learns  
a set of cell-type landmarks and a nonlinear embedding function. 
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The embedding function projects a high-dimensional expres-
sion profile of each cell to a low-dimensional vector (that is, cell 
embedding), which directly captures the cell-type identity (Fig. 1a). 
Cell-type landmarks are defined as cell-type representatives and 
are learned for both annotated and unannotated experiments. The 
embedding function is a deep neural network that maps cells to the 
embedding space. The embedding space is defined, such that cells 
embed close to their cell-type landmarks. The embedding function 
is shared between all experiments in the meta-dataset, which gives 
MARS the ability to generalize to an unannotated experiment and 
to capture the similarity of cell types across annotated and unan-
notated experiments.

Mathematically, MARS uses regularization in the form of pre-
training the neural network with a deep autoencoder that mini-
mizes a data reconstruction error (Methods). The pretraining step 
serves as a prior for the parameter space, which is useful for gen-
eralization to an unannotated dataset. Using the pretrained net-
work as initialization, MARS then learns mapping of all cells to the 
shared embedding space such that similar cells are close to each 
other, while dissimilar cells are far way. Equipped with the con-
cept of cell-type landmarks, we design an objective function that 
aims to learn a representation in which cells group close to their 
corresponding landmarks (Methods). The objective function con-
sists of three parts (Fig. 1b): (1) in the annotated experiments, the 
distance between cell embeddings and ground-truth cell-type land-
mark is minimized; (2) in the unannotated experiment, the distance 
between cell embeddings and the nearest cell-type landmark is min-
imized and (3) distance between cell-type landmarks within each 
experiment is maximized. The rationale is to encourage cells from 
the same cell type to have similar representations, while representa-
tions of cells from different cell types are far apart. MARS does not 
impose any constraint on the radius of a discovered cell type, so cell 
types can form clusters that reflect their transcriptional similarity to 
other cell types.

MARS identifies cell-type-specific signatures of aging. We assess 
MARS’s ability to infer cell-type trajectories on the Tabula Muris 
Senis dataset28, covering the life span of a mouse. In particular, we 
analyze whether the same cell types from different time points are 
embedded close together (that is, aligned) in the embedding space. 
We use the brown adipose tissue (BAT) data from 3-, 18- and 
24-month-old mice as annotated experiments. We regard BAT data 
from each time point as a separate experiment; therefore, MARS 
assigns different landmarks to the same cell types across time 
points. We then evaluate MARS on a different tissue by using BAT 
from three time points as three annotated experiments. We find 
that natural killer (NK) cells change their position at every time 
point (Fig. 1c), indicating the MARS detects the existence of tran-
scriptional changes. On the contrary, in the joint low-dimensional 
embedding, inferred using principal component analysis with the 
same number of components as the dimensionality of MARS, NK 
cells are joined with T cells and aligned across different time points 
(Extended Data Fig. 1). To confirm that the motion of NK cells as 
detected by MARS is meaningful, we further analyze the variabil-
ity in gene expression of differentially expressed genes across three 
time points. Populations of NK cells indeed show higher variabil-
ity than other cell types with a coefficient of determination (R2) of 
0.80 between 3- and 18-month-old mice, and 0.58 between 18- and 
24-month-old mice (Fig. 1d). In contrast, the median of R2 of other 
cell types is 0.93 (Q1–Q3, 0.89–0.95) and 0.89 (Q1–Q3, 0.84–0.89), 
respectively. Furthermore, populations of NK cells share 6% of 
differentially expressed genes across three time points compared 
to the average of 26.8% shared genes on other cell types in BAT, 
confirming that the representation learned by MARS captures tran-
scriptional changes in aging NK cells. Moreover, this finding has 
been well-characterized experimentally29–31, suggesting that cellular 

functions of NK cells are impaired in aging mice and can lower the 
resistance to cancer and pathogenic microorganisms.

MARS outperforms other methods by a large margin. To dem-
onstrate the performance of MARS on a cell-type annotation task, 
we use the manually curated Tabula Muris dataset6. We consider 
each tissue as a separate experiment (Methods and Supplementary 
Note 1). We leave one tissue out as unannotated and use all oth-
ers as annotated experiments. We then test the performance on the 
unannotated held-out tissue experiment. Note that often the unan-
notated held-out tissue shares no cell types with the annotated tis-
sues, which means that MARS has to be able to identify entirely new 
cell types it has never seen during training.

We compare MARS to four methods that can also apply to 
this task: deep generative model ScVi12, kernel-learning approach 
SIMLR32 and two community detection approaches, Leiden33 and 
Louvain34, which are used in two popular single-cell analysis tools, 
Scanpy35 and Seurat36 (Supplementary Note 2). MARS achieves a 
45% gain in adjusted Rand index (ARI) score over the second-best 
performing SIMLR (Fig. 2a). When measuring performance using 
various other classification or clustering metrics, MARS retains 
substantially better performance than all other methods. In par-
ticular, MARS achieves 20, 27, 30, 21 and 21% improvement over 
the second-best baseline in terms of adjusted mutual informa-
tion, accuracy, macro-F1 score, macro-precision and macro-recall, 
respectively (Extended Data Fig. 2a–e and Supplementary Note 3). 
To directly measure the effect of our objective function that jointly 
learns landmarks and cell embedding function across independent 
experiments, we compare MARS to the K-means clustering applied 
in the autoencoder’s latent space the end of the MARS pretrain-
ing. MARS achieves 20–52% relative improvement in performance 
across all evaluation metrics, clearly demonstrating the advantage of 
our meta-learning setting (Extended Data Fig. 2f). Of note, MARS 
uses the same set of parameters across all tissues and shows high 
robustness to the choice of the neural network architecture. In par-
ticular, MARS’s average performance across tissues is not affected 
when the embedding dimension changes (Extended Data Fig. 2g).

We further compare cell-type-level F1 score between MARS and 
the second-best performing SIMLR on never-before-seen cell types 
(Supplementary Note 3). MARS outperforms SIMLR by a large 
margin and performs exceptionally well on cell types with very 
few annotated cells (Fig. 2b), and cell types with very few differen-
tially expressed genes (Extended Data Fig. 3a). Across all previously 
unseen cell types, MARS achieves a 14% median improvement in 
F1 score over SIMLR. A similar trend is observable when consid-
ering all cell types (Extended Data Fig. 3b,c). When comparing 
performance on individual tissues, MARS performs better than 
SIMLR on 20 out of 21 tissues and achieves 34% higher area under 
the curve than SIMLR, and 44% compared to ScVi (Extended Data 
Fig. 4). For instance, for heart tissue that contains seven out of 11 
never-before-seen cell types, MARS improves SIMLR’s ARI score 
by 25.8%.

Additionally, we assess MARS performance on three bench-
mark datasets: (1) two CellBench datasets37,38 consisting of lung 
cancer cells sequenced with different sequencing protocols (10X 
and CEL-Seq2); (2) three Allen brain datasets38,39 consisting of dif-
ferent species (mouse and human), as well as single-cell RNA-seq 
and single-nucleus RNA-seq datasets and (3) two clustering 
benchmark datasets consisting of diverse human cell types40 and 
mouse pluripotent cells41. Within each benchmark dataset, we 
regard each dataset as a separate experiment and train MARS in 
a leave-one-experiment-out manner. MARS substantially outper-
forms other baselines and effectively transfers information across 
sequencing technologies and species, even when experiments con-
sist of a small number of annotated cells (Extended Data Fig. 5 and 
Supplementary Note 4).
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Fig. 1 | MARS is a meta-learning approach for discovery of new cell types across heterogeneous single-cell experiments. a, Illustration of the 
MARS method. Given a set of heterogeneous annotated experiments (for example, pancreas, lung, heart tissues), MARS aims to annotate a new, 
completely unannotated experiment (for example, brain tissue), even if it does not have any cell type in common with annotated experiments. Using 
deep neural networks, MARS projects all cells in the meta-dataset (annotated and unannotated) to the shared embedding space and learns nonlinear 
embedding function f such that cells from the same cell types are embedded close to each other, while cells from different cell types are embedded far 
away. b, MARS relies on the notion of a cell-type landmarks. Objective function of MARS simultaneously optimizes three parts: (1) within annotated 
experiment, distance to the ground-truth landmark is minimized; (2) within unannotated experiment, distance to the closest landmark is minimized 
and (3) within each experiment, distance between landmarks is maximized. Cell-type landmarks and experiment-invariant cell representations are 
learned jointly and in an end-to-end fashion. c, MARS reconstructs a trajectory of BAT cell types during the life span of a mouse. All BAT cell types 
except NK cells retain the same position across three different time points. d, Comparison of gene expressions of differentially expressed genes in BAT 
across different time points. Top plot shows average gene expression of differentially expressed genes of 3- and 18-month-old mice for NK cells and 
myeloid cells. Bottom plot shows average gene expression of 18- and 24-month-old mice for NK cells and B cells. Average is calculated over n!=!(17, 
27, 4, 168, 201, 211, 120) for NK cells in 3-, 18- and 24-month-old mice, myeloid cells in 3- and 18-month-old mice and B cells in 18- and 24-month-old 
mice, respectively.
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MARS achieves positive knowledge transfer across tissues. We 
show that MARS achieves better performance as the number of 
annotated experiments increases. Specifically, we start with the 
meta-dataset consisting of only one annotated experiment, and 
then gradually add more annotated experiments in the meta-dataset 
based on their similarity to the unannotated experiment (Methods).  

We find that MARS performs considerably better on large 
meta-datasets (Fig. 2c). In particular, when using heart and mesen-
teric fat as the unannotated experiments, MARS improves by 64.1 
and 34.5%, respectively, between using one and all tissues (Extended 
Data Fig. 6). Although subcutaneous fat, mesenteric fat, heart  
and BAT do not have any cell types in common with large intestine 

a b

MARS SIMLR ScVi Louvain Leiden

AR
I

Never-before-seen cell types

F1
 sc

or
e

Number of cells in a cell type
<25 [25,100〉 [100,200〉 >200

c d Diaphragm: MARS

UM
AP

2

UMAP1

MS

Endothelial

SMSMacrophage

B cell

T cell

Diaphragm: ScVi

UMAP1

B cell
T cell

MS

SMS

Endothelial

Macrophage

e
Liver: MARS

UM
AP

2

UMAP1

Hepatocyte

Kupffer

Endothelial HS

MNKTC

ML 

B cell
Liver: ScVi

UMAP1

Endothelial HS

Hepatocyte

Kupffer
MNKTC

B cell

ML

f g

700
600

300

500
400

200
100

800

600

400

200

0 0.5
Silhouette coefficient Silhouette coefficient

1

ScViMARS
Diaphragm

Nu
m

be
r o

f c
ell

s

SMSMSMacrophage
EndothelialT cellB cell

ScViMARS
Liver

Nu
m

be
r o

f c
ell

s

0 0.5 1 0 0.5 1 0 0.5 1

B cell Kupffer cell Endothelial HS
Hepatocyte MNKTC ML

1 2 4 8 12 16
0.50

0.55

0.60

0.65

0.70

0.75

AR
I

Hard prediction Easy prediction

Number of annotated tissues

0.4

0.5

0.6

0.7

0.8

0.9

+45%

0.3 0

0.2
0.3
0.4
0.5

MARS
SIMLR

0.6
0.7
0.8

+80.0%

+18.9%
+13.7%

–11.8%

0.9

0.1

Fig. 2 | MARS achieves positive learning transfer and accurately annotates cells. a, Median performance of MARS and four baseline methods evaluated 
using ARI score across 21 different tissues (Methods). Higher value indicates better performance, where 1 is perfect performance and 0 indicates random 
clustering. Error bars are standard errors estimated as a standard deviation of the mean by bootstrapping cells within tissue with n!=!20 iterations. MARS 
is trained in leave-one-tissue-out manner, and the held-out tissue was completely unannotated (Methods). b, Cell-type-level comparison of MARS’s F1 
score with the SIMLR on cell types that have never been seen in the annotated experiments. Standard errors are estimated as a standard deviation of the 
mean by bootstrapping cells within each tissue with n!=!20 iterations. Cell types are grouped based on the number of cells in the Tabula Muris annotations, 
where cell types with fewer number of cells are harder to recognize as a separate cluster. c, Effect of the number of annotated tissues in the meta-dataset 
on MARS’s performance. Performance is measured as average ARI. Error bands are standard deviation across 20 runs of the method. Annotated 
tissues are selected according to their similarity to an unannotated tissue. d,e, UMAP visualizations of deep variational autoencoder ScVi’s and MARS’s 
embeddings for diaphragm tissue (d) and liver tissue (e). SMS stands for skeletal muscle cell, MS for mesenchymal stem, HS for hepatic sinusoid, ML for 
myeloid leukocyte and MNKTC for mature NK T cell. Color indicates Tabula Muris cell-type annotations. Only cell types with more than five annotated 
cells are shown. f,g, Quality of the neural embeddings of MARS and ScVi measured as silhouette coefficient on diaphragm tissue (f) and liver tissue (g).

NATURE METHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


ARTICLESNATURE METHODS

tissue, including them into meta-dataset improves performance by 
20.6% when predicting cell types of large intestine. This analysis 
demonstrates that MARS effectively reuses annotated experiments, 

even when they differ in their gene expression profiles from the 
unannotated experiment. Our results suggest that more annotated 
experiments yield higher-quality cell embeddings.
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MARS discovers new cell types and subtypes. We visualize rep-
resentations of cells learned by MARS in the two-dimensional 
uniform manifold approximation and projection (UMAP)42 space. 
MARS learns to embed similar cells close to each other, while dis-
similar cells are embedded far, agreeing well with the Tabula Muris 
annotations. In contrast, in the ScVi embedding space, different cell 
types are often mixed without a clear decision boundary between 
cell types (Fig. 2d,e). To quantitatively evaluate the quality of the 
neural embeddings, we use the silhouette coefficient, which com-
pares inter- and intracluster distance of data points, indicating how 
well is a data point matched to its own cluster with −1 as the lowest 
and 1 as the highest score. In both tissues, MARS achieves a sil-
houette coefficient of 0.8, whereas ScVi achieves a score of 0.3 (Fig. 
2f,g). Additionally, we compare latent space at the end of the MARS 
pretraining step and the final MARS model. While some cell types 
form clusters after a pretraining step, most cell types can only be 
separated with the final MARS model (Extended Data Fig. 7).

We further observe that MARS discovers new cell subtypes. In 
particular, we analyze mammary gland tissue for which the cell 
types discovered by MARS differ from the Tabula Muris annota-
tions. MARS separates cells annotated as luminal epithelial cells by 
Tabula Muris into two different clusters (Fig. 3a). To check whether 
luminal epithelial cells in two clusters detected by MARS are indeed 
different, we run a permutation test, comparing Jaccard similarity 
of Gene Ontology (GO)43 enriched terms of differentially expressed 
genes in the sampling distribution to Jaccard similarity of clusters 
detected by MARS (Methods). Results confirm that luminal epithe-
lial cells in clusters detected by MARS differ significantly (P < 10−3; 
Fig. 3b), indicating that MARS discovers subtypes of luminal epi-
thelial cell. We also compare discovered subtypes to free annota-
tions that provide additional cell-type resolution for mammary 
gland tissue. We find that MARS annotations entirely agree with the 
free annotations, and a discovered subtype represents luminal pro-
genitor cells (Extended Data Fig 8a,b). Using these free annotations, 
we additionally evaluated whether MARS can separate cell subtypes 
of basal cell of the epidermis and dendritic cells and obtained per-
fect performance (Extended Data Fig. 8c,d).

MARS correctly aligns and annotates cell types across tissues. 
MARS uses a meta-dataset to learn embedding space, which effec-
tively generalizes to never-before-seen experiments. Next, we exam-
ine whether the same cell types across tissues in the annotated and 
unannotated experiments are embedded close to each other. We 
first investigate endothelial cells, which appear in 11 tissues. We use 
thymus tissue as an unannotated experiment and 21 other tissues as 
annotated experiments. According to the tissue-level performance, 
we select thymus as the most challenging tissue with endothelial 
cells (Extended Data Fig. 4b). We find that endothelial cells are 
exceptionally well aligned across diverse tissues, even in the unan-
notated thymus tissue (Fig. 3c). We observe near-perfect alignment 
for other cell types that appear across many tissues, such as B cells 
(Extended Data Fig. 9). We further evaluate a small neutrophil cell 
type that appears in only lung and liver tissues by using the lung as 
an unannotated experiment. Remarkably, neutrophils from unan-
notated lung tissue align well to only four liver neutrophil cells 
(Fig. 3d). Finally, we note that MARS does not explicitly correct for 
batch effects, but it is complementary to integrative approaches for 
batch correction, including refs. 17,22,23,44. MARS can be applied to 
batch-corrected datasets returned by these methods.

MARS can name new cell types. Last, we demonstrate the ability of 
MARS to assign interpretable names to discovered groups of cells. 
MARS relies on the cell-type landmarks in the annotated experi-
ments to probabilistically define cell type based on its region in 
the low-dimensional embedding space. Probabilities are assigned 
to landmarks in proportion to their probability density under a 

Gaussian distribution centered at a target unannotated cell type 
(Methods). To demonstrate our approach, we analyze whether cell 
types with more than ten cells from the limb muscle tissue are cor-
rectly assigned. Indeed, MARS accurately identifies satellite mus-
cle cells and endothelial cells with 100% probability, macrophages 
with over 87% probability and B cells with more than 45% prob-
ability (Fig. 3e). At first glance, it may look like MARS misclassi-
fies mesenchymal stem cells (MSCs) by assigning them to stromal 
cells with high confidence; however, MSCs are adherent stromal 
cells45. Furthermore, with a 37.2% of probability, MSCs are assigned 
to the fibroblast cell type, which is indistinguishable from MSCs 
using morphology and cell-surface markers45,46. Hence, distances 
in MARS’s embedding space can also be used to infer the similar-
ity between cell types. Even if datasets are not corrected for batch 
effects, MARS can be used to discover new cell types; however, our 
post hoc naming approach relies on the distances across experi-
ments. Therefore, if batch effects across experiments are present, 
datasets need to be corrected first with existing approaches for batch 
correction17,22,23,44 for our naming approach to return meaningful 
results.

Discussion
MARS has a unique ability to transfer knowledge of cell embed-
dings across heterogeneous experiments that possibly do not have 
any cell types in common. In doing so, MARS introduces a practical 
setting for the analysis of single-cell data, in which the experiment 
of interest can be completely new and unannotated, thereby requir-
ing generalization to never-before-seen cell types.

MARS addresses this challenge by learning cell-type-specific 
landmarks and a nonlinear embedding function that maps all cells 
in a joint low-dimensional embedding space shared by annotated 
and unannotated experiments. Using the learned landmarks to 
identify new cell types, MARS provides a framework for annotation 
of discovered cell types by probabilistically assigning cell types to 
the neighborhood of the annotated landmarks. As a result, MARS 
can considerably alleviate the post hoc manual analyses of cell types. 
However, post hoc annotation relies on distances and MARS does 
not perform batch correction. Therefore, for annotation to be effec-
tive, the datasets need to be batch-corrected beforehand.

MARS allows for knowledge transfer across tissues, time-varying 
experiments, species and sequencing protocols. Our approach 
has important implications for other types of knowledge transfer, 
including the transfer of cell representations across different omics 
measurements and transfer of cell states across related diseases.

Finally, MARS is complementary to tools for correcting batch 
effects and data integrative studies, including Scanorama44, 
Harmony17 and Seurat V3 (ref. 22). Results returned by these tools 
can be directly used as input to MARS. As new comprehensive atlas 
datasets are generated in line with Human Cell Atlas7 efforts, we 
envision that MARS will become a useful tool to help in unraveling 
an unknown cellular diversity of healthy and diseased tissues.
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Methods
Dataset preprocessing. We downloaded raw read Tabula Muris6 and Tabula 
Muris Senis28 datasets with cell-type annotations (see Data availability). We filtered 
low-quality cells with fewer than 5,000 reads and 500 genes, as well as genes 
expressed in less than five cells. We used Scanpy35 to normalize each cell to 10,000 
read counts, and then log transformed the data. Finally, we scaled the dataset to unit 
variance and zero mean, and we truncated values with maximum value set to ten. 
#e normalization and scaling steps remove experiment-specific differences and 
enable alignment based on the relative gene expression values. We find that jointly 
scaling data is an important preprocessing step. A'er preprocessing, the number 
of retained genes was 22,903. #e number of annotated cells was 105,960 in Tabula 
Muris Senis and 44,516 in Tabula Muris. #e number of cells per dataset ranged from 
906 to 13,417 cells in Tabula Muris Senis, and 366 to 5,067 cells in Tabula Muris. To 
demonstrate the ability of MARS to detect aging signatures, we used Tabula Muris 
Senis dataset. For all other analyses, we used Tabula Muris dataset with reannotations 
from Tabula Muris Senis. Additional details are provided in Supplementary Note 1.

Overview of MARS. The key idea in the MARS model is that representation 
that encourages clustering of cells in one experiment also helps in learning to 
separate cells in a distinct experiment. We aim to accomplish the goal of learning 
experiment-invariant representations by transferring knowledge of the right distance 
metric from previously annotated experiments to a new, completely unannotated 
experiment. We refer to the set of all experiments (annotated and unannotated) 
over which MARS learns as a meta-dataset; that is, a dataset for learning to learn 
representation that can easily adapt to new tasks. To achieve transferable features, 
MARS learns shared representation across all experiments in the meta-dataset. 
Specifically, given gene expression profiles and cell-type annotations in the annotated 
experiments, and gene expression profiles of an unannotated target experiment, 
MARS learns the nonlinear mapping function fθ that maps cells from all experiments 
into a joint embedding space such that cells are grouped according to their cell types. 
The function f is parameterized by learnable feature mapping parameters θ of a deep 
neural network. MARS consists of two stages: (1) pretraining on an unannotated 
target experiment with deep autoencoder, and (2) learning cell-type landmarks and 
nonlinear cell embedding with deep neural network. MARS optimizes cell-type 
landmarks and parameters θ in an end-to-end manner.
 1. Pretraining. We first pretrain MARS with an autoencoder. An autoencoder 

network takes as input normalized gene expression profiles of unannotated 
experiment Xu 2 RN ´G

I
, where N denotes number of cells and G denotes 

number of genes. Input is mapped to a lower-dimensional dense representa-
tion vector (that is, encoding). #e decoder part maps encoding vector to the 
reconstruction of the input X̂u

I
. Autoencoder is trained to minimize recon-

struction loss LðXu; X̂
uÞ

I
, given as the mean squared error between Xu

I
 and 

X̂
u

I
. A'er pretraining, we remove the decoder part and use learned weights to 

initialize neural network.
 2. Initialization of cell-type landmarks. To initialize cell-type landmarks, we 

first map all cells into a lower-dimensional representation vector learned by 
autoencoder. #en, for each experiment in the meta-dataset we separately run 
K-means clustering in the embedding space. We use ten random initializa-
tions and take the best one in terms of the sum of squared distances of cells to 
their closest cluster landmark.

 3. Loss function. Let Dmeta ¼ DðiÞ! "M

i¼1 ∪U
I

 be a set of (M + 1) distinct 
experiments to which we refer to as a meta-dataset. We assume that 
each experiment DðiÞ

I
 consists of a matrix of normalized gene expres-

sion profiles XðiÞ ¼ xðiÞj 2 RG
n oNi

j¼1

I

, and a vector of cell-type annotations 
yðiÞ ¼ yj 2 1; ¼ ;Kif g

! "Ni

j¼1

I
, where G denotes number of genes, Ni number 

of cells and Ki number of cell types in the experiment DðiÞ

I
. Furthermore, let 

U consists of a matrix of gene expression profiles XðuÞ ¼ xj 2 RG
! "N

j¼1

I
, with 

unknown cell annotations, where N denotes number of cells in U. Given a 
meta-dataset Dmeta

I
, MARS learns a set of cell-type landmarks in the anno-

tated experiments pðiÞk 2 RZ
n oKi

k¼1

! "M

i¼1
I

, a set of cell-type landmarks in the 

unannotated experiment pk 2 RZ
! "K

k¼1
I

 and a nonlinear mapping function 

fθ : RG ! RZ

I
, where K denotes number of cell types in the unannotated ex-

periment, Z is dimension of the embedding space and θ are learnable param-
eters. In MARS, we seek to find a joint embedding space such that within each 
experiment cells group around a single-cell-type landmark and landmarks are 
far away. #erefore, the mapping function fθ is shared between all experiments 
in the meta-dataset and maps all cells into the joint embedding space. 
In the annotated meta-dataset, cell-type annotations are known and MARS 
encourages cells to be close to their ground-truth cell-type landmarks. For 
each annotated experiment DðiÞ 2 Dmeta

I
, MARS incorporates the following 

part in the objective function:

Li ¼
1
Ni

XKi

k¼1

XNi

j¼1

I
yðiÞj ¼k

! "d fθ x ið Þ
j

# $
; p ið Þ

k

# $
$ λ
KiðKi $ 1Þ

XKi

k1¼1

XKi

k2¼1

d p ið Þ
k1
; p ið Þ

k2

# $
; ð1Þ

where λ is a regularization constant, I denotes the indicator function and d is 
a distance function. We use squared Euclidean distance as a distance function, 
but others can be easily incorporated. Of note, all distances are calculated in 
the low-dimensional embedding space. The first part of the equation measures 
intracluster distance between cells and ground-truth landmarks, whereas the 
second part measures intercluster distance between all pairs of landmarks. 
Intracluster distance is minimized to achieve compact representations within 
a cluster, whereas intercluster distance is maximized to push representations of 
distinct landmarks far away from each other. 
Next, we include in the objective function term that encourages clustering 
structure of the unannotated experiment U. With the same intuition as above, 
we again measure intra- and intercluster distance. However, in this case cell-type 
assignments are unknown, so MARS minimizes the distance to the closest cell-type 
landmark in the unannotated experiment. Formally, for U 2 Dmeta

I
, MARS extends 

the objective function with the following term:

Lu ¼ 1
N

XN

j¼1

min
k¼1;¼ ;K

d fθ xj
! "

; pk
! "

" λ
K K " 1ð Þ

XK

k1¼1

XK

k2¼1

d pk1 ; pk2
! "

: ð2Þ

The final objective function optimizes for the annotated and unannotated 
experiments jointly:

LMARS ¼ min
θ; p ið Þ

kf gi;k
; pkf gk

XM

i¼1

Li þ τLu: ð3Þ

The objective function balances between intracluster minimization and intercluster 
maximization. Both parts are optimized within each experiment, allowing clusters 
across experiments to align with each other. Cluster landmarks and representation 
parameters θ learned by deep neural network are optimized simultaneously. In 
each iteration, we first optimize for landmarks while fixing the parameters θ. 
Then, we optimize for θ while fixing the landmarks. In the annotated experiments, 
landmarks are obtained as a closed-form solution of equation (1). In the 
unannotated experiment, we update landmarks with the Adam optimizer.
 4. Inference. Embeddings of cells in the meta-dataset are obtained by the 

representation learned in the last layer of the neural network. At the inference 
time, we annotate cells from the unannotated experiment. In particular, 
MARS embeds cells from the unannotated experiment into the learned 
shared embedding space and assigns them to the cluster of the closest 
cell-type landmark from the unannotated dataset.

 5. Cell-type naming. MARS probabilistically assigns interpretable names to 
discovered clusters by relying on the annotated cell-type landmarks in the 
meta-dataset. Probabilities are estimated for every cell type seen in the 
annotated experiments in proportion to their probability density under a 
Gaussian distribution centered at the mean of a discovered cluster. #en, 
annotations are assigned to the discovered cluster based on the annotations 
of the most similar annotated landmarks. Formally, given cell-type landmarks 

pðiÞk 2 RZ
n oKi

k¼1

! "M

i¼1
I

 in the annotated experiments, conditional probability 

that jth cluster in the unannotated experiment adds kth landmark from the 
annotated experiments in the set of the most similar landmarks is calculated 
as follows:

pkjj ¼
exp "jjpk " μjjj

2=2σ2j
! "

PM
i¼1

PKi

k0 exp "jjp ið Þ
k0 " μjjj

2=2σ2j
! " ;

where μj is the mean of cell embedding vectors assigned to target cluster j and σj 
is estimated based on the standard deviation of pairwise Euclidean distances of 
cells assigned to cluster j. Empirically, we observe that embedding data points 
beforehand in the low-dimensional space with UMAP improves the results. We 
used ten UMAP components.

Architecture and hyperparameters. The neural network used in MARS consists 
of two fully connected layers. We used 1,000 neurons in the first layer, and 100 
neurons in the second layer of the neural network. On the Tabula Muris data, the 
input is given by gene expression profiles of 22,903 genes. During pretraining, we 
used a mirror-image of this neural network as a decoder. During meta-learning 
stage, we removed decoder part and optimized the parameters with the loss 
introduced in MARS. Best parameters were found in a small grid search according 
to the best mean performance across all tissues. We used Adam optimizer with 
learning rate 0.001 for pretraining and fine tuning. Activities of the neurons 
were normalized using layer normalization that estimates the normalization 
statistics over all hidden units in the same layer. The ELU function, defined as 
ELU xð Þ ¼ max 0; xð Þ þmin 0; α exp xð Þ % 1ð Þð Þ
I

, was used as a nonlinear activation 
with α set to 1. We pretrained the network for 25 epochs, and fine-tuned for 30 
epochs. Regularizers λ and τ in the MARS’s objective function were set to 0.2 and 
1, respectively. We assessed the robustness of MARS to the selection of architecture 
by varying embedding dimension across a range of possible values, while keeping 
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all other parameters fixed (Extended Data Fig. 2g), as well as robustness to the 
regularizers λ and τ (Extended Data Fig. 10a,b). Additionally, we evaluated 
performance when training for more or fewer epochs (Extended Data Fig. 10c).

Number of clusters. MARS requires the number of cell types for the unannotated 
dataset to be predefined as a parameter. By varying the number of cell types, 
MARS can be used for a multi-resolution exploration and more fine-grained 
annotation of the cell types. Empirically, we find that if the number of clusters 
is set to a slightly too high value, MARS does not use unneeded landmarks. In 
particular, in our experiments we find that if during optimization none of the cells 
chooses some landmark as its cell-type representative, then the initial number of 
clusters can be reduced.

Pretraining step. Pretraining is a required step of the MARS model, and it gives 
a substantial boost in the performance compared to starting from the random 
weights. MARS can be pretrained on only an unannotated experiment, or 
jointly on annotated and unannotated experiments. Empirically, we find that on 
the Tabula Muris dataset the performance is not boosted by adding annotated 
experiments during pretraining, while the pretraining time increases. Including 
an unannotated experiment during pretraining is crucial to initialize the model 
toward configurations of the parameter space that are useful for learning a good 
representation of the unannotated experiment.

Performance evaluation. We evaluated MARS performance in 
leave-one-tissue-out manner. We used all except one tissue as the set of 
annotated experiments, and held-out tissue as an unannotated experiment. We 
evaluated performance by comparing cell-type assignments of the unannotated 
experiment to the ground-truth clusters. To evaluate how the number of annotated 
experiments in the meta-dataset affects performance, we used as annotated 
experiments n most similar tissues to unannotated tissue, while varying n from 
1 to 16. Similarity between tissues was computed as the Euclidean distance of 
their mean gene expression profiles. More details on evaluation are provided in 
Supplementary Note 3.

Choice of baselines. MARS is designed as an inherently unsupervised technique. 
Opposed to the existing supervised and semisupervised methods20–23 that transfer 
annotations across experiments, MARS uses annotated experiments solely to learn 
a good embedding space. Therefore, annotated and unannotated experiments do 
not need to have any cell type in common. Even if a same cell type appears in the 
annotated and unannotated experiments, MARS will assign a new landmark to that 
cell type in the unannotated experiment. Our naming approach is the only part 
that transfers annotations across experiments and requires that the experiments are 
batch-corrected. Therefore, it is designed as a post hoc step that users can decide 
whether to use. Tasks that can be uniquely solved by MARS can be compared 
only to existing clustering methods; however, clustering methods cannot transfer 
information across datasets.

Visualization. We visualized cell embeddings using UMAP42. Cell neighborhood 
graph was calculated with the number of neighbors set to 30. For the visualization 
of the alignment and our naming approach (Fig. 3c–e), we calculated 
neighborhood graph and performed UMAP on MARS’s cell embeddings  
across all tissues.

Differential gene expression. We performed differential gene expression analysis 
using Scanpy package35. We used a t-test as the statistical test, and Benjamini–
Hochberg method for the adjustment of P values. For Figs. 1d and 3b we consider 
all genes with a Benjamini–Hochberg false-discovery rate adjusted P value <0.1 as 
differentially expressed (two-tailed t-test). Maximum number of genes was set to 
100, which is the default value in Scanpy.

Permutation test and functional enrichment analyses. To check whether 
two clusters of luminal epithelial cells in Fig. 3a are significantly different, we 
performed permutation test. We chose Jaccard similarity of enriched GO43 terms 
between differentially expressed genes of two samples as the test statistic. To 
calculate differential gene expression, the reference set of cells consisted of all cells 
that are not annotated as luminal epithelial cells (stromal, basal and endothelial 
cells). The observed value of the test statistic was Jaccard similarity of enriched GO 
terms between differentially expressed genes of two clusters of luminal epithelial 
cells detected by MARS. Sampling distribution of the test statistic was estimated 

by randomly permuting luminal epithelial into two groups and calculating 
Jaccard similarity between the groups. GO-enriched terms were calculated 
using GOATOOLS package47. GO terms were propagated to parent terms before 
functional enrichment tests were calculated.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The Tabula Muris Senis dataset is publicly available at https://figshare.com/
projects/Tabula_Muris_Senis/64982. The Tabula Muris dataset is publicly 
available at https://doi.org/10.6084/m9.figshare.5829687.v8. We retrieved data 
from the website on 2 November 2019. We made Tabula Muris and Tabula Muris 
Senis datasets in h5ad format available at https://snap.stanford.edu/mars/data/
tms-facs-mars.tar.gz. The Pollen dataset40 is available in the NCBI Sequence Read 
Archive under accession number SRP041736. Kolodziejczyk41 sequencing data are 
available in the ArrayExpress database under accession number E-MTAB-2600. 
CellBench37 and Allen Brain datasets39 are downloaded from https://doi.
org/10.5281/zenodo.3357167. Originally, three brain datasets—Allen Mouse Brain 
(AMB), VISp and ALM—were from the Allen Institute Brain Atlas (http://celltypes.
brain-map.org/rnaseq) and are available under accession number GSE115746. The 
CellBench 10X dataset is available under accession number GSM3618014, while 
CellBench CEL-Seq2dataset is from three datasets (GSM3618022, GSM3618023, 
GSM3618024). The project website with links to data and code can be accessed at 
http://snap.stanford.edu/mars/.

Code availability
MARS is written in Python using the PyTorch library. The source code is available 
on Github at https://github.com/snap-stanford/mars.
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Extended Data Fig. 1 | Brown adipose tissue embedding using PCA. Joint low-dimensional embedding of brown adipose tissue (BAT) cell types during the 
life span of a mouse obtained using the PCA. We performed PCA using 100 components, corresponding to the dimensionality of low-dimensional MARS’s 
embeddings. Opposed to the MARS embedding space, NK cells do not change their position across different time points and are joined with the T-cells.
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Extended Data Fig. 2 | MARS outperforms other baselines and it is robust to embedding dimension. Median performance of MARS and baseline 
methods evaluated using (a) adjusted mutual information (b) accuracy, (c) macro-F1-score, (d) macro-precision, and (e) macro-recall. For Leiden33 and 
Louvain34 we report adjusted mutual information and accuracy (Supplementary Note 3). Median is calculated across 21 different tissues. Error bars are 
standard errors estimated as a standard deviation of the mean by bootstrapping cells within tissue with n!=!20 iterations. f, Median performance of MARS 
and K-means clustering applied in the latent space of the autoencoder at the end of the MARS pretraining. ARI stands for adjusted Rand index, F1 for 
macro-F1 score, and AMI for adjusted mutual information. Median is calculated across 21 different tissues. Error bars are standard errors estimated as a 
standard deviation of the mean by bootstrapping cells within tissue with n!=!20 iterations. g, Performance of MARS when varying number of neurons in the 
last layer of the neural network which corresponds to the dimension of learned low-dimensional cell representation. Distribution is estimated with n!=!20 
runs of the method with different initial random seeds.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cell-type level performance. Cell-type level comparison of MARS’s F1-score with the SIMLR32 on (a) cell types that appear in only 
one tissue grouped by the number of differentially expressed genes in a cell type, (b) all cell types grouped by the number of differentially expressed genes 
in a cell type, and (c) all cell types grouped by the number of cells in a cell type. Standard errors are estimated as a standard deviation of the mean by 
bootstrapping cells within each tissue with n!=!20 iterations. Number of differentially expressed genes is calculated using the Tabula Muris annotations by 
taking all genes with Benjamini-Hochberg FDR adjusted p-value<0.01 (two-tailed t-test).
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Extended Data Fig. 4 | Tissue-level performance. Comparison of the MARS’s performance on individual tissues with the baseline methods. Performance 
is measured as adjusted Rand index score. a, Across all tissues, MARS achieves 34.3% higher area under the curve compared to the SIMLR, and 44.3% 
higher compared to the ScVi baseline. For each method, tissues are ranked in the decreasing order of the achieved score. b, Comparison with the second 
best performing method SIMLR32 on individual tissues. MARS significantly outperforms SIMLR (p!=!1e!−!4; two-tailed Wilcoxon signed-rank test). Tissues 
are ranked according to the MARS’s ARI score. Performance is measured in a single run for both methods.
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b

a

c

Extended Data Fig. 5 | Performance on other datasets. Mean performance of MARS and four baseline methods evaluated using adjusted Rand 
index (Adj-Rand), F1-score (F1) and adjusted mutual information (Adj-MI) on (a) two CellBench datasets37,38 (b) Pollen40 and Kolodziejczyk 
clustering benchmark datasets41, and (c) three Allen Brain datasets38,39. For all metrics, higher value indicates better performance. MARS is trained in 
leave-one-dataset-out manner, and the held out dataset was completely unannotated.
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Extended Data Fig. 6 | Positive knowledge transfer on heart and mesenteric fat tissues. Effect of the number of annotated tissues in the meta-dataset 
on MARS’s performance when using (a) heart tissue as unannotated experiment, and (b) mesenteric fat as unannotated experiment. Performance is 
measured as average adjusted Rand index across 20 runs of the method. Error bands are confidence intervals (95%) determined across 20 runs.
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Extended Data Fig. 7 | Embeddings after pretraining step. UMAP visualizations of embeddings obtained with the MARS autoencoder (left), and the 
final MARS model (right) on (a) diaphragm tissue, and (b) liver tissue. Color indicates Tabula Muris cell type annotations. Autoencoder embeddings are 
obtained at the end of the MARS pretraining. Network parameters of the encoder and cluster centers from the K-means clustering are used to initialize 
MARS network and landmarks, respectively. MARS then learns new embeddings and new landmarks. SMS stands for skeletal muscle cell, MS for 
mesenchymal stem cell, HS for hepatic sinusoid, and MNKTC for mature NK T-cell.
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Extended Data Fig. 8 | MARS discovers cell subtypes. a,b,UMAP visualization of MARS’s embedding of mammary gland tissue cells. Colors indicate (a) 
Tabula Muris cell type annotations according to Cell Ontology class, and (b) free annotations in Tabula Muris that provide additional cell type resolution. 
Separation of cells labeled as luminal epithelial cells into two different clusters agrees perfectly with the free annotations and separate cluster found 
by MARS is labeled as luminal progenitor cells. MARS also correctly assigns one basal cell misannotated as luminal epithelial cells by Cell Ontology 
class annotations. c,d, UMAP visualization of MARS’s embedding of subtypes of (c) basal cells of epidermis, and (d) dendritic cells. Colors indicate free 
annotations in Tabula Muris. We use all tissues as annotated experiments except the ones in which basal cells of epidermis or dendritic cells appear, and 
test the MARS ability to separate subtypes of these cell types. Clusters discovered by MARS perfectly agree with the free annotations.
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Extended Data Fig. 9 | Alignment of B cells. Using MARS, B-cells in Tabula Muris data are extremely well aligned across 11 different tissues, including 
brown adipose tissue, diaphragm, gonodal fat, heart, kidney, limb muscle, lung, liver, mesenteric fat, subcutaneous fat, and spleen. Limb muscle is used as 
an unannotated tissue.
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Extended Data Fig. 10 | Robustness to hyperparameters. MARS’s performance when varying (a) regularizer λ, (b) regularizer τ, and (c) number of 
epochs. Performance is measured as average adjusted Rand index score. Average is calculated over all tissues by including each tissue as an unannotated 
dataset and using other tissues as annotated experiments. Error bars are standard errors estimated as a standard deviation of the mean by bootstrapping 
cells within tissue with n!=!20 iterations. For each value, we train MARS with all other parameters fixed.
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Supplementary Note 1 Datasets and preprocessing

We downloaded Tabula Muris Senis 1 datasets with annotations from https://figshare.

com/projects/Tabula_Muris_Senis/64982. Raw data for the Tabula Muris dataset
is obtained from https://doi.org/10.6084/m9.figshare.5829687.v8. Due to the
updated Tabula Muris annotations on the Tabula Muris Senis dataset, we used annotations for both
datasets from Tabula Muris Senis. In particular, we used field cell ontology class reannotated as
cell type labels and selected only 3 months old data from Tabula Muris Senis to obtain Tabula
Muris data. For cross-age transfer analysis, we used Tabula Muris Senis dataset for 3 months, 18
months and 24months old mouse. For cross-tissue transfer analysis, we used Tabula Muris dataset.
We observed that all methods are incapable to distinguish cell types in brain myeloid tissue that
consists of microglial and macrophage cell types. The difficulty is biologically explainable by
many shared molecular markers between these cell types, among which TMEM119 is the only
known stable marker highly expressed by microglial cells but not expressed by macrophages 2.
Furthermore, microglial cells cover 99% of cells in brain myeloid of TabulaMuris dataset 3, making
it hard to detect small macrophage cluster. For that reason, we did not include brain myeloid tissue
in the analysis. At the time of writing the paper, marrow tissue annotations were not validated by
expert so we did not perform any experiments on the marrow tissue. Pretraining of the MARS was
performed on the unannotated tissue of the Tabula Muris Senis dataset.
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Supplementary Note 2 Baseline methods

We compared MARS to four unsupervised methods used for clustering single-cell data: Louvain
4, Leiden 5, SIMLR 6 and ScVi 7.

For Louvain and Leiden, we first performed PCA and retained 43 principal components3. We
computed neighborhood graph with number of neighbors set to 30. We used Scanpy’s implemen-
tations of Louvain and Leiden with the resolution parameter set to 1.0.

For SIMLR and ScVi, we used implementations provided by the authors. For SIMLRwe first
performed PCA and retained 500 principal components. Number of neighbors for constructing
cell-cell similarity graph was set to 30. For ScVi we first pretrained network with variational
autoencoder for 150 epochs. We tried two pretraining strategies: (i) pretraining on the same data
as MARS (only unannotated tissues from Tabula Muris Senis), and (ii) pretraining on the Tabula
Muris data from all tissues. The latter achieved better performance, so we used that setting in
all our analysis and comparison with the ScVi method. After pretraining, we used all parameters
recommended by the authors. Specifically, we trained network for 200 epochs with learning rate
0.001 and Adam optimizer. Neural network consisted of two layers with widths 128 and 32. To
obtain clustering assignments, we applied K-means clustering on the learned cell embeddings.
Since K-means depends on initialization, we reported mean score across 20 runs.
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Supplementary Note 3 Evaluation

We evaluated MARS and other baselines on the Tabula Muris dataset 3 using six different metrics:
adjusted Rand index, adjusted mutual information, accuracy, macro-F1-score, macro-precision and
macro-recall. MARS is solving unsupervised/clustering task on the unannotated dataset and each
cell type in the unannotated dataset (previously seen or unseen) gets a new landmark. Therefore,
each discovered cell type corresponds to a new cluster and we evaluated MARS as a clustering
method. For adjusted Rand index and adjusted mutual information, we compared clusters obtained
using MARS and other baselines to ground truth cell type annotations where each cell type cor-
responds to a different cluster. For accuracy, F1-score, precision and recall we first solve optimal
assignment problem using Hungarian algorithm 8. Once estimated clusters are assigned to the
ground-truth cell type annotations, we calculated accuracy, macro-F1-score, macro-precision and
macro-recall.

For Louvain and Leiden we reported only adjusted Rand index, adjusted mutual information
and accuracy. The reason is that these methods often lead to overclustering and additionally as-
signed clusters are not matched to ground truth annotations during assignment with the Hungarian
algorithm. Clustering metrics such as adjusted Rand index and adjusted mutual information do not
suffer from this drawback, and clearly demonstrate that all other baselines significantly outperform
Louvain and Leiden.

When evaluating performance on never-before-seen cell types, we selected 63 cell types that
appear in only one tissue, and conservatively filtered all cell types with ‘endothelial’,‘basal’,‘smooth
muscle’,‘epithelial’,‘B cell’,‘T cell’,‘fibroblast’,‘mesenchymal’,‘macrophage’ in their name, ex-
cept ‘kidney collecting duct epithelial cell’ and ‘kidney loop of Henle ascending limb epithelial
cell’. For instance, we filtered ‘fibroblast of lung’,‘lung macrophage’,‘regulatory T cell’,‘respiratory
basal cell’,‘pancreatic B cell’,‘smooth muscle cell of trachea’,‘epithelial cell of thymus’.
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Supplementary Note 4 Benchmark datasets

We tested MARS on three benchmark datasets: (i) two CellBench datasets 9, (ii) three Allen brain
datasets 10, and (iii) two clustering benchmark datasets consisting of diverse human cell types
(Pollen 11) and mouse pluripotent cells (Kolodziejczyk 12).

Two CellBench datasets consist of five sorted lung cancer cell lines sequenced with 10X
and CEL-Seq2 protocols. Three Allen brain datasets VISp, ALM, and MTG, consist of mouse
and human species, as well as single-cell RNA-seq and single-nucleus RNA-seq datasets. We
use coarse-grained cell type annotations (excitatory, inhibitory and non-neuronal). Pollen dataset
consists of 11 diverse human cell types: skin cells, pluripotent stem cells, blood cells, and neural
cells. Kolodziejczyk dataset consists of three cell types of mouse pluripotent cells.

Within each benchmark dataset, we joined individual datasets by taking common subset of
genes. For CellBench dataset we obtained 4,373 cells and 10, 217 genes, for Pollen and Kolodziejczyk
we obtained 953 cells and 8,138 genes, whereas for Allen Brain datasets were already joined 13,
resulting in 34,735 cells and 16,024 genes. We normalized each cell to 10,000 read counts, and
then jointly scaled the datasets to unit variance and zero mean, truncating values with maximum
value set to 10. We used Scanpy 14 for preprocessing. In all three benchmarks, we considered
each individual dataset as a separate experiment and trained MARS in leave-one-experiment-out
manner. First two benchmarks have exactly the same set of cell types across experiments, while
the third benchmark requires generalization to novel cell types.

CellBench and Allen Brain datasets 13 were downloaded from https://doi.org/10.

5281/zenodo.3357167). Originally, three brain datasets, Allen Mouse Brain (AMB), VISp,
ALM (GSE115746), are from the Allen Institute Brain Atlas http://celltypes.brain-map.
org/rnaseq. The CellBench 10X dataset is from (GSM3618014), and the CellBench CEL-
Seq2 dataset is from 3 datasets (GSM3618022, GSM3618023, GSM3618024) and joined into one
dataset 13. We downloaded Pollen and Kolodziejczyk datasets from https://github.com/

BatzoglouLabSU/SIMLR.
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