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Abstract

Modern neural networks have the capacity to overfit noisy labels frequently found
in real-world datasets. Although great progress has been made, existing techniques
are limited in providing theoretical guarantees for the performance of the neural
networks trained with noisy labels. Here we propose a novel approach with strong
theoretical guarantees for robust training of deep networks trained with noisy labels.
The key idea behind our method is to select weighted subsets (coresets) of clean
data points that provide an approximately low-rank Jacobian matrix. We then prove
that gradient descent applied to the subsets do not overfit the noisy labels. Our
extensive experiments corroborate our theory and demonstrate that deep networks
trained on our subsets achieve a significantly superior performance compared to
state-of-the art, e.g., 6% increase in accuracy on CIFAR-10 with 80% noisy labels,
and 7% increase in accuracy on mini Webvision1.

1 Introduction

The success of deep neural networks relies heavily on the quality of training data, and in particular
accurate labels of the training examples. However, maintaining label quality becomes very expensive
for large datasets, and hence mislabeled data points are ubiquitous in large real-world datasets [21].
As deep neural networks have the capacity to essentially memorize any (even random) labeling of
the data [49], noisy labels have a drastic effect on the generalization performance of deep neural
networks. Therefore, it becomes crucial to develop methods with strong theoretical guarantees for
robust training of neural networks against noisy labels. Such guarantees become of the utmost
importance in safety-critical systems, such as aircraft, autonomous cars, and medical devices.

There has been a great empirical progress in robust training of neural networks against noisy labels.
Existing directions mainly focus on: estimating the noise transition matrix [13, 34], designing robust
loss functions [12, 42, 44, 52], correcting noisy labels [26, 36, 41], using explicit regularization
techniques [7, 50, 51], and selecting or reweighting training examples [9, 14, 17, 27, 37, 44]. In
general, estimating the noise transition matrix is challenging, correcting noisy labels is vulnerable
to overfitting, and designing robust loss functions or using explicit regularization cannot achieve

1Code available at https://github.com/snap-stanford/crust.
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state-of-the-art performance [16, 23, 51]. Therefore, the most promising methods rely on selecting
or reweighting training examples by knowledge distillation from auxiliary models [14, 17, 27], or
exploiting an extra clean labelled dataset containing no noisy labels [17, 25, 37, 43, 50]. In practice,
training reliable auxiliary models could be challenging, and relying on an extra dataset is restrictive
as it requires the training and extra dataset to follow the same distribution. Nevertheless, the major
limitation of the state-of-the-art methods is their inability to provide theoretical guarantees for the
performance of neural networks trained with noisy labels.

There has been a few recent efforts to theoretically explain the effectiveness of regularization and
early stopping in generalization of over-parameterized neural networks trained on noisy labels
[16, 23]. Specifically, Hu et al. [16] proved that when width of the hidden layers is sufficiently
large (polynomial in the size of the training data), gradient descent with regularization by distance to
initialization corresponds to kernel ridge regression using the Neural Tangent Kernel (NTK). Kernel
ridge regression performs comparably to early-stopped gradient descent [35, 45], and leads to a
generalization guarantee in presence of noisy labels. In another work, Li et al. [23] proved that
under a rich (clusterable) dataset model, a one-hidden layer neural network trained with gradient
descent first fits the correct labels, and then starts to overfit the noisy labels. This is consistent with
the previous empirical findings showing that deep networks tend to learn simple examples first, then
gradually memorize harder instances [5]. In practice, however, regularization and early-stopping
provide robustness only under relatively low levels of noise (up to 20% of noisy labels) [16, 23].

Here we develop a principled technique, CRUST, with strong theoretical guarantees for robust training
of neural networks against noisy labels. The key idea of our method is to carefully select subsets of
clean data points that allow the neural network to effectively learn from the training data, but prevent
it to overfit noisy labels. To find such subsets, we rely on recent results that characterize the training
dynamics based on properties of neural network Jacobian matrix containing all its first-order partial
derivatives. In particular, (1) learning along prominent singular vectors of the Jacobian is fast and
generalizes well, while learning along small singular vectors is slow and leads to overfitting; and (2)
label noise falls on the space of small singular values and impedes generalization [32]. To effectively
and robustly learn from the training data, CRUST efficiently finds subsets of clean and diverse data
points for which the neural network has an approximately low-rank Jacobian matrix.

We show that the set of medoids of data points in the gradient space that minimizes the average
gradient dissimilarity to all the other data points satisfies the above properties. To avoid overfitting
noisy labels, CRUST iteratively extracts and trains on the set of updated medoids. We prove that for
large enough coresets and a constant fraction of noisy labels, deep networks trained with gradient
descent on the medoids found by CRUST do not overfit the noisy labels. We then explain how mixing
up [51] the centers with a few other data points reduces the error of gradient descent updates on the
coresets. Effectively, clean coresets found by CRUST improve the generalization performance by
reducing the ratio of noisy labels and their alignment with the space of small singular values.

We conduct experiments on noisy versions of CIFAR-10 and CIFAR-100 [22] with noisy labels
generated by random flipping the original ones, and the mini Webvision datasets [24] which is a
benchmark consisting of images crawled from websites, containing real-world noisy labels. Empirical
results demonstrate that the robustness of deep models trained by CRUST is superior to state-of-the-art
baselines, e.g. 6% increase in accuracy on CIFAR-10 with 80% noisy labels, and 7% increase in
accuracy on mini Webvision. We note that CRUST achieves state-of-the-art performance without the
need for training any auxiliary model or utilizing an extra clean dataset.

2 Additional Related Work
In practice, deeper and wider neural networks generalize better [40, 48]. Theoretically, recent results
proved that when the number of hidden nodes is polynomial in the size of the dataset, neural network
parameters stay close to their initialization, where the training landscape is almost linear [1, 4, 8, 11],
or convex and semi-smooth [2]. For such networks, (stochastic) gradient descent with random
initialization can almost always drive the training loss to 0, and overfit any (random or noisy) labeling
of the data. Importantly, these results utilize the property that the Jacobian of the neural network is
well-conditioned at a random initialization if the dataset is sufficiently diverse.

More closely related to our work is the recent result of [32] which proved that along the directions
associated with large singular values of a neural network Jacobian, learning is fast and generalizes
well. In contrast, early stopping can help with generalization along directions associated with small

2



singular values. This is consistent with prior results proving the effectiveness of regularization and
early stopping for providing robustness against noisy labels [16, 23]. These results, however, are
restricted to unrealistically wide networks, and in practice are only effective under low levels of noise.

On the other hand, our method, CRUST, provides rigorous guarantees for robust training of arbitrary
deep neural networks against noisy labels, by efficiently extracting subsets of clean data points that
provide an approximately low-rank Jacobian matrix during the training. Effectively, the extracted
subsets do not allow the network to overfit noise, and hence CRUST can quickly train a model that
generalizes well. Unlike existing analytical results that are limited to a neighborhood around a
random initialization, our method captures the change in Jacobian structure of deep networks for
arbitrary parameter values during training. As a result, it achieves state-of-the-art performance both
under mild as well as severe noise.

3 Problem Setting: Learning from Noisy Labeled Data

In this section we formally describe the problem of learning from datasets with noisy labels. Suppose
we have a dataset D = {(xi, yi)}ni=1 ⊂ Rd × R, where (xi, yi) denotes the i-th sample with input
xi ∈ Rd and its observed label yi ∈ R. We assume that the labels {yi}ni=1 belong to one of C classes.
Specifically, yi ∈ {ν1, ν2,⋯, νC} with {νj}Cj=1 ∈ [−1,1]. We further assume that the labels are
separated with margin δ ≤ ∣νr − νs∣ for all r, s ∈ [C], r ≠ s. Suppose we only observe inputs and their
noisy labels {yi}ni=1, but do not observe true labels {ỹi}ni=1. For each class 1 ≤ j ≤ C, a fraction of
the labels associated with that class are assigned to another label chosen from {νj}Cj=1.

Let f(W ,x) be an L-layer fully connected neural network with scalar output, where x ∈ Rd is
the input and W = (W (1),⋯,W (L)) is all the network parameters. Here, W (l) ∈ Rdl×dl−1 is the
weight matrix in the l-th layer (d0 = d, dL = 1). For simplicity, we assume all the parameters are
aggregated in a vector, i.e.,W ∈ Rm, where m = ∑Ll=2 dl × dl−1. Suppose that the network is trained
by minimizing the squared loss over the noisy training dataset D = {(xi, yi)}ni=1:

L(W ) =
1

2
∑
i∈V
(yi − f(W ,xi))

2, (1)

where V ={1,⋯, n} is the set of all training examples. We apply gradient descent with a constant
learning rate η, starting from an initial pointW 0 to minimize L(W ). The iterations take the form

W τ+1
=W τ

− η∇L(W τ ,X), ∇L(W ,X) = J T (W ,X)(f(W ,X) − y), (2)

where J (W ,X) ∈ Rn×m is the Jacobian matrix associated with the nonlinear mapping f defined as

J (W ,X) = [
∂f(W ,x1)

∂W
⋯

∂f(W ,xn)

∂W
]
T
. (3)

The goal is to learn a function f ∶ Rd → R (in the form of a neural network) that can predict
the true labels {ỹi}ni=1 on the dataset D. In the rest of the paper, we use X = (x1,⋯,xn),y =
(y1,⋯, yn)

T , ỹ = (ỹ1,⋯, ỹn)
T . Furthermore, we use XS , yS , and J (W ,XS) to denote inputs,

labels, and the Jacobian matrix associated with elements in a subset S ⊆ V of data points, respectively.

4 Our Approach: CRUST

In this section we present our main results. We first introduce our method CRUST that selects subsets
of clean data points that has an approximately low-rank Jacobian and do not allow gradient descent
to overfit noisy labels. Then, we show how mixing up the subsets with a few other data points can
further reduce the error of gradient descent updates, and improve the generalization performance.

4.1 Extracting Clean Subsets with Approximately Low-rank Jacobian

The key idea of our method is to carefully select subsets of data points that allow the neural network
to effectively learn from the clean training data, but prevent it to overfit noisy labels. Recent result on
optimization and generalization of neural networks show that the Jacobian of typical neural networks
exhibits an approximately low-rank structure, i.e., a number of singular values are large and the
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remaining majority of the spectrum consists of small singular values. Consequently, the Jacobian
spectrum can be split into information space I , and nuisance space N , associated with the large and
small singular values [32]. Formally, for complementary subspaces S−,S+ ⊂ Rn, and for all unit
norm vectors v ∈ S+, w ∈ S−, and scalars 0 ≤ µ≪ α ≤ β, we have

α ≤ ∥J T (W ,X)v∥2 ≤ β, and ∥J
T
(W ,X)w∥2 ≤ µ. (4)

There are two key observations [23, 32]: (1) While learning over the low-dimensional information
space is fast and generalizes well, learning over the high-dimensional nuisance space is slow and
leads to overfitting; and (2) The generalization capability and dynamics of training is dictated by
how well the label, y, and residual vector, r = f(W ,X) − y, are aligned with the information space.
If the residual vector is very well aligned with the singular vectors associated with the top singular
values of J (W ,X), the gradient update, ∇L(W ) = J T (W ,X)r, significantly reduces the misfit
allowing substantial reduction in the training error. Importantly, the residual and label of most of the
clean data points fall on the information space, while the residual and label of noisy data points fall
on the nuisance space and impede training and generalization.

To avoid overfitting noisy labels, one can leverage the first observation above, and iteratively selects
subsets S of k data points that provide the best rank-k approximation to the Jacobian matrix. In doing
so, gradient descent applied to the subsets cannot overfit the noisy labels. Formally:

S∗(W ) = arg minS⊆V ∥J
T
(W ,X) − PSJ

T
(W ,X)∥2 s.t. ∣S∣ ≤ k, (5)

where J (W ,XS) ∈ Rk×m is the set of k rows of the Jacobian matrix associated to XS , and
PS = J

T (W ,XS)J (W ,XS) denotes the projection onto the k-dimensional space spanned by
the rows of J (W ,XS). Existing techniques to find the best subset of k rows or columns from
an n ×m matrix have a computational complexity of poly(n,m,k) [3, 10, 20], where n,m are the
number of data points and parameters in the network. Note that the subset S∗(W ) depends on the
parameter vectorW and a new subset should be extracted after every parameter update. Furthermore,
calculating the Jacobian matrix requires backpropagation on the entire dataset which could be very
expensive for deep networks. Therefore, the computational complexity of the above methods becomes
prohibitive for over-parameterized neural networks trained on large datasets. Most importantly, while
this approach prohibits overfitting, it does not help identifying the clean data points.

To achieve a good generalization performance, our approach takes advantage of both the above
mentioned observations. In particular, our goal is to find representative subsets of k diverse data
points with clean labels that span the information space I, and provide an approximately low-rank
Jacobian matrix. The important observation is that as nuisance space is very high dimensional,
data points with noisy labels spread out in the gradient space. In contrast, information space is
low-dimensional and data points with clean labels that have similar gradients cluster closely together.
The set of most centrally located clean data points in the gradient space can be found by solving the
following k-medoids problem:

S∗(W ) ∈ arg minS⊆V ∑
i∈V

min
j∈S

dij(W ) s.t. ∣S∣ ≤ k, (6)

where dij(W ) = ∥∇L(W ,xi) −∇L(W ,xj)∥2 is the pairwise dissimilarity between gradients of
data points i and j. Note that the above formulation does not provide the best rank-k approximation
of the Jacobian matrix. However, as the k-medoids objective selects a diverse set of clean data points,
the minimum singular value of the Jacobian of the selected subset projected over the subspace S+,
i.e., σmin(J (W ,X∗S),S+), will be large. Next, we weight the derivative of every medoid j ∈ S∗ by
the size of its corresponding cluster rj = ∑i∈V I[j = arg mins∈S∗dis] to create the weighted Jacobian
matrix Jr(W ,XS∗) = diag([r1,⋯, rk])J(W ,XS∗) ∈ Rk×m. We can establish the following upper
and lower bounds on the singular values σi∈[k](Jr(W ,XS∗),S+) of the weighted Jacobian over S+:

√
rminσmin(J (W ,XS∗),S+) ≤ σi∈[k](Jr(W ,XS∗),S+) ≤

√
rmax∥J (W ,XS∗)∥, (7)

where rmin=minj∈[k] rj and rmax=maxj∈[k] rj , and we get an error of ε in approximating the largest
singular value of the neural network Jacobian, ε ≤ ∣

√
rmax∥J (W ,XS∗)∥ − ∥J (W ,X)∥∣. Now, we

apply gradient descent updates in Eq. (2) to the weighted Jacobian Jr(W ,XS∗) of the k extracted
medoids:

W τ+1
=W τ

− ηJ Tr (W ,XS∗)(f(W ,XS∗) − yS∗), (8)
Note that we still need backpropagation on the entire dataset to be able to compute pairwise dissimilar-
ities dij . For neural networks, it is shown that the variation of the gradient norms is mostly captured

4



by the gradient of the loss w.r.t. the input to the last layer of the network [19]. This argument can be
used to efficiently upper-bound the normed difference between pairwise gradient dissimilarities [30]:

dij(W ) = ∥∇L(W ,xi) −∇L(W ,xj)∥2 ≤ c1∥Σ
′
L(z

L
i )∇

L
i L −Σ′L(z

L
j )∇

L
j L∥2 + c2, (9)

where Σ′L(z
L
i )∇

L
i L is gradient of the loss function L w.r.t. the input to the last layer L for data

point i, and c2, c2 are constants. The above upper-bound is marginally more expensive to calculate
than the value of the loss since it can be computed in a closed form in terms of zL. Hence, duij =
∥Σ′L(z

L
i )∇

L
i L−Σ′L(z

L
j )∇

L
j L∥2 can be efficiently calculated. We note that although the upper-bounds

duij have a lower dimensionality than dij , noisy data points still spread out in this lower-dimensional
space, and hence are not selected as medoids. This is confirmed by out experiments (Fig. 1 (a)).

Having upper-bounds on the pairwise gradient dissimilarities, we can efficiently find a near-optimal
solution for problem (6) by turning it into a submodular maximization problem. A set function
F ∶ 2V → R+ is submodular if F (S ∪ {e}) − F (S) ≥ F (T ∪ {e}) − F (T ), for any S ⊆ T ⊆ V and
e ∈ V ∖ T . F is monotone if F (e∣S) ≥ 0 for any e∈V ∖S and S ⊆ V . Minimizing the objective in
Problem (6) is equivalent to maximizing the following submodular facility location function:

S∗(W ) ∈ arg maxS⊆V,
∣S∣≤k

F (S,W ), F (S,W ) = ∑
i∈V

max
j∈S

d0 − d
′
ij(W ), (10)

where d0 is a constant satisfying d0 ≥ d
u
ij(W ), for all i, j ∈ V . For maximizing the above monotone

submodular function, the classical greedy algorithm provides a constant (1 − 1/e)-approximation.
The greedy algorithm starts with the empty set S0 = ∅, and at each iteration t, it chooses an
element e ∈ V that maximizes the marginal utility F (e∣St) = F (St ∪ {e}) − F (St). Formally,
St = St−1 ∪ {arg maxe∈V F (e∣St−1)}. The computational complexity of the greedy algorithm is
O(nk). However, its complexity can be reduced to O(∣V ∣) using stochastic methods [29], and can
be further improved using lazy evaluation [28] and distributed implementations [31]. Note that this
complexity does not involve any backpropagation as we use the upper-bounds calculated in Eq. (9).
Hence, the subsets can be found very efficiently, in parallel from all classes. Unlike majority of the
existing techniques for robust training against noisy labels that has a large computational complexity,
robust training with CRUST is even faster than training on the entire dataset. We also note that
Problem (10) can be addressed in the streaming scenario for very large datasets [6].

Our experiments confirm that CRUST can successfully find almost all the clean data points (c.f. Fig.
1 (a)). The following theorem guarantees that for a small fraction ρ of noisy labels in the selected
subsets, deep networks trained with gradient descent do not overfit the noisy labels.

Theorem 4.1 Assume that we apply gradient descent on the least-squares loss in Eq. (2) to train a
neural network on a dataset with noisy labels. Furthermore, suppose that the Jacobian mapping is
L-smooth2. Assume that the dataset has a label margin of δ, and coresets found by CRUST contain a
fraction of ρ < δ/8 noisy labels. If the coresets approximate the Jacobian matrix by an error of at
most ε ≤ O( δα2

kβ log(
√
k/ρ)
), where α=

√
rminσmin(J (W ,XS)), β=∥J (W ,X)∥+ε, then for L ≤ αβ

L
√

2k

and step size η = 1
2β2 , after τ ≥ O( 1

ηα2 log(
√
n
ρ
)) iterations the network classifies all the selected

elements correctly.

The proof can be found in the Appendix. Note that the elements of the selected subsets are mostly
clean, and hence the noise ratio ρ is much smaller in the subsets compared to the entire dataset. Very
recently, [32] showed that the classification error of neural networks trained on noisy datasets of size n
is controlled by the portion of the labels that fall over the nuisance space, i.e., ∥ΠN (y)∥/

√
n. Coresets

of size k selected by CRUST are mostly clean. For such subsets, the label vector is mostly aligned with
the information space, and thus ∥ΠN (yS)∥/

√
k is smaller. Our method improves the generalization

performance by extracting subsets S of size k for which ∥ΠN (yS)∥/
√
k ≤ ∥ΠN (y)∥/

√
n. While

defer the formal generalization proof to future work, our experiments show that even under severe
noise (80% noisy labels), CRUST successfully finds the clean data points and achieves a superior
generalization performance (c.f. Fig. 1).

Next, we discuss how to reduce the error of backpropagation on the weighted centers.

2Note that, if ∂J (W ,X)
∂W

is continuous, the smoothness condition holds over any compact domain (albeit for
a possibly large L).
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Algorithm 1 CORESETS FOR ROBUST TRAINING AGAINST NOISY LABELS (CRUST)
Input: The noisy set D = {(xi, yi)}ni=1, number of iterations T .
Output: Output model parametersW T .

1: for τ = 1,⋯, T do
2: Sτ = ∅.
3: for c ∈ {1,⋯,C} do
4: Uτc = {(xi, yi) ∈ D∣f(W

τ ,xi) = νc}, nc = ∣Uτc ∣/n. ▷ Classify based on predictions.
5: duij =upper-bounded pairwise gradient dissimilarities for i, j ∈ Uτc ▷ Eq. 9.
6: Sτc = {k ⋅nc-medoids from Uτc using duij} ▷ The greedy algorithm.
7: for j ∈ Sτc do
8: V τj = {i ∈ U

τ
c ∣j = arg minv∈Sτc d

u
iv}

9: Rτj = small random sample from V τj .

10: D̂τ
j =Mixup (xj , yj) with {(xi, yi) ∣ i ∈ Rτj } ▷ Eq. (11).

11: ri = ∣V
τ
j ∣/∣R

τ
j ∣, ∀i ∈ R

τ
j ▷ Coreset weights in Eq. (8).

12: Sτ = Sτ ∪ D̂τ
j

13: end for
14: end for
15: Update the parametersW τ using weighted gradient descent on Sτ . ▷ Eq. (2).
16: end for

4.2 Further Reducing the Error of Coresets

There are two potential sources of error during weighted gradient descent updates in Eq. (8). First,
we have an ε error in estimating the prominent singular value of the Jacobian matrix. And second,
although the k-medoids formulation selects centers of clustered clean data points in the gradient
space, there is still a small chance, in particular early in training process when the gradients are more
uniformly distributed, that the coresets contain some noisy labels. Both errors can be alleviated if we
slightly relax the constraint of training on exact feature vectors and their labels, and allow training on
combinations of every center j ∈S with a few examples in its corresponding cluster Vj .

This is the idea behind mixup [51]. It extends the training distribution with convex combinations
of pairs of examples and their labels. For every cluster Vj , we select a few data points Rj ⊂
Vj ∖ {j}, ∣Rj ∣≪ ∣Vj ∣ uniformly at random, and for every data point (xi,yi), i∈Rj , we mix it up with
the corresponding center (xj ,yj), j ∈S∗, to get the set D̂j of mixed up points:

D̂j = {(x̂, ŷ) ∣ x̂ = λxi + (1 − λ)xj , ŷ = λyi + (1 − λ)yj ∀i ∈ Rj}, (11)

where λ ∼ Beta(α,α) ∈ [0,1] and α ∈ R+. The mixup hyper-parameter α controls the strength
of interpolation between feature-label pairs. Our experiments show that the subsets chosen by
CRUST contain mostly clean data points, but may contain some noisy labels early during the training
(Fig. 1 (a)). Mixing up the centers with as few as one example from the corresponding cluster, i.e.
∣Rj ∣ = 1, can reduce the effect of potential noisy labels in the selected subsets. Therefore, mixup can
further help improving the generalization performance, as is confirmed by our experiments (Table 2).

4.3 Iteratively Reducing Noise

The subsets found in Problem (10) depend on the parameter vector W and need to be updated
during the training. Let W τ be the parameter vector at iteration τ . At update time τ ∈ [T ],
we first classify data points based on the updated predictions yτ = f(W τ ,X). We denote by
Uτc = {(xi, yi) ∈ D∣f(W

τ ,xi) = νc} the set of data points labeled as νc in iteration τ . Then, we
find S(W τ) by greedily extracting k ⋅nc medoids from each class, where nc = ∣Uc∣/n is the fraction
of data points in class c ∈ [C]. Finding separate coresets from each class can further help to not
cluster together noisy data points spread out in the nuisance space, and improves the accuracy of the
extracted coresets. Next, we partition the data points in every class to by assigning every data point to
its closest medoid. Formally, for partition V τj we have V τj = {i ∈ U

τ
c ∣j = arg minj∈Sτ d

u
ij}. Finally,

we take a small random sample Rτj from every partition V τj , and for every data point i ∈ Rτj we mix
it up with the corresponding medoid j ∈ S(W τ) according to Eq. (11), and add the generated set
D̂τ
j of mixed up data points to the training set. In our experiments we use ∣Rτj ∣ = 1. At update time τ ,
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Table 1: Average test accuracy (5 runs) on CIFAR-10 and CIFAR-100. The best test accuracy is
marked in bold. CRUST achieves up to 6% improvement (3.15% in average) over the strongest
baseline INCV. We note the superior performance of CRUST under 80% label noise.

Dataset CIFAR-10 CIFAR-100

Noise Type Sym Asym Sym Asym

Noise Ratio 20 50 80 40 20 50 40

F-correction 85.1 ± 0.4 76.0 ± 0.2 34.8 ± 4.5 83.6 ± 2.2 55.8 ± 0.5 43.3 ± 0.7 42.3 ± 0.7
Decoupling 86.7 ± 0.3 79.3 ± 0.6 36.9 ± 4.6 75.3 ± 0.8 57.6 ± 0.5 45.7 ± 0.4 43.1 ± 0.4
Co-teaching 89.1 ± 0.3 82.1 ± 0.6 16.2 ± 3.2 84.6 ± 2.8 64.0 ± 0.3 52.3 ± 0.4 47.7 ± 1.2
MentorNet 88.4 ± 0.5 77.1 ± 0.4 28.9 ± 2.3 77.3 ± 0.8 63.0 ± 0.4 46.4 ± 0.4 42.4 ± 0.5

D2L 86.1 ± 0.4 67.4 ± 3.6 10.0 ± 0.1 85.6 ± 1.2 12.5 ± 4.2 5.6 ± 5.4 14.1 ± 5.8
INCV 89.7 ± 0.2 84.8 ± 0.3 52.3 ± 3.5 86.0 ± 0.5 60.2 ± 0.2 53.1 ± 0.4 50.7 ± 0.2

T-Revision 79.3 ± 0.5 78.5 ± 0.6 36.2 ± 1.6 76.3 ± 0.8 52.4 ± 0.3 37.6 ± 0.3 32.3 ± 0.4
L_DMI 84.3 ± 0.4 78.8 ± 0.5 20.9 ± 2.2 84.8 ± 0.7 56.8 ± 0.4 42.2 ± 0.5 39.5 ± 0.4
CRUST 91.1 ± 0.2 86.3 ± 0.3 58.3 ± 1.8 88.8 ± 0.4 65.2 ± 0.2 56.4 ± 0.4 53.0 ± 0.2

we train on the union of sets generated by mixup, i.e. Dτ = {D̂τ
1 ∪⋯ ∪ D̂

τ
k}, where every data point

i ∈ D̂τ
j is weighted by ri = ∣V τj ∣/∣R

τ
j ∣. The pseudo code of CRUST is given in Algorithm 1.

Note that while CRUST updates the coreset during the training, as almost all the clean data points
are contained in the coresets in every iteration, gradient descent can successfully contract their
residuals in Theorem 4.1 and fit the correct labels. Since CRUST finds a new subset at every iteration
τ , we need to use α=minτ

√
rτminσmin(J (W

τ ,XSτ )), and β =maxτ
√
rτmax∥J (W

τ ,XSτ )∥ in
Theorem 4.1, where α and β are the minimum and maximum singular values of the Jacobian of the
subsets weighted by rτ found by CRUST, during T steps of gradient descent updates.

5 Experiments

We evaluate our method on artificially corrupted versions of CIFAR-10 and CIFAR-100 [22] with
controllable degrees of label noise, as well as a real-world large-scale dataset mini WebVision [24],
which contains real noisy labels. Our algorithm is developed with PyTorch [33]. We use 1 Nvidia
GTX 1080 Ti for all CIFAR experiments and 4 for training on the mini WebVision dataset.

Baselines. We compare our approach with multiple state-of-the-art methods for robust training
against label corruption. (1) F-correction [34] first naively trains a neural network using ERM, then
estimates the noise transition matrix T . T is then used to construct a corrected loss function with
which the model will be retrained. (2) MentorNet [17] first pretrains a teacher network to mimic
a curriculum. The student network is then trained with the sample reweighting scheme provided
by the teacher network. (4) D2L [26] reduces the effect of noisy labels on learning the true data
distribution after learning rate annealing using corrected labels. (3) Decoupling [27] trains two
networks simultaneously, and the two networks only train on a subset of samples that do not have
the same prediction in every mini batch. (5) Co-teaching [14] also maintains two networks in the
training time. Each network selects clean data (samples with small loss) and guide the other network
to train on its selected clean subset. (6) INCV [9] first estimates the noise transition matrix T
through cross validation, then applies iterative Co-teaching by including samples with small losses.
(7) T-Revision [46] designs a deep-learning-based risk-consistent estimator to tune the transition
matrix accurately. (8) L_DMI [47] proposes information theoretic noise-robust loss function based
on generalized mutual information.

5.1 Empirical results on artificially corrupted CIFAR

We first evaluate our method on CIFAR-10 and CIFAR-100, which contain 50,000 training images
and 10,000 test images of size 32 × 32 with 10 and 100 classes, respectively. We follow testing
protocol adopted in [9, 14], by considering both symmetric and asymmetric label noise. Specifically,
we test noise ratio of 0.2, 0.5, 0.8 for symmetric noise, and 0.4 for asymmetric noise.

In our experiments, we train ResNet-32 [15] for 120 epochs with a minibatch of 128. We use
SGD with an initial learning rate of 0.1 and decays at epoch 80, 100 by a factor of 10 to optimize
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Table 2: Ablation study on CIFAR-10 with 20% and 50% symmetric noise. ✓ indicates the corre-
sponding component. coreset w/label and coreset w/label correspond to finding coresets separately
from every class based on their observed noisy labels, or labels predicted by the model being trained.

Component Noise Ratio

coreset w/ label coreset w/ pred. w/o mixup w/ mixup 20 50

✓ ✓ 90.21 84.92
✓ ✓ 90.48 85.23

✓ ✓ 90.71 85.57
✓ ✓ 91.12 86.27

the objective, with a momentum of 0.9 and weight decay of 5 × 10−4. We only use simple data
augmentation following [15]: we first pad 4 pixels on every side of the image, and then randomly
crop a 32× 32 image from the padded image. We flip the image horizontally with a probability of 0.5.
For CRUST, we select coresets of size 50% of the size of the dataset unless otherwise stated.

We report top-1 test accuracy of various methods in Table 1. Our proposed method CRUST outper-
forms all the baselines in terms of average test accuracy. While INCV attempts to find a subset of
the training set with heuristics, our theoretically-principled method can successfully distinguish data
points with correct labels from those with noisy labels, which results in a clear improvement across
all different settings. It can be seen that CRUST achieves a consistent improvement by an average of
3.15%, under various symmetric and asymmetric noisy scenarios, compared to the strongest baseline
INCV. Interestingly, CRUST achieves the largest improvement of 6% over INCV, under sever 80%
label noise. This shows the effectiveness of our method in extracting data points with clean labels
from a large number of noisy data points, compared to other baselines.

5.2 Ablation study on each component

Here we investigate the effect of each component of CRUST and its importance, for robust training on
CIFAR-10 with 20% and 50% symmetric noise. Table 2 summarizes the results.

Effect of the coreset. Based on the empirical results, the coreset plays an important role in improving
the generalization of the trained networks. It is worthwhile noticing that by greedily finding the
coreset based on the gradients, we can outperform INCV already. This clearly corroborate our theory
and shows the effectiveness of CRUST in filtering the noise and extracting data points with correct
labels, compared to other heuristics. It also confirms our argument that although upper-bounded
gradient dissimilarities in Eq. (9) has a much lower dimensionality compared to the exact gradients,
noisy data points still spread out in the gradient space. Therefore, CRUST can successfully identify
central data points with clean labels in the gradient space.

Effect of mixup and model update. As discussed in Sec. 4.2, mixup can reduce the bias of
estimating the full gradient with the coreset. Moreover, finding separate coresets from each class
can further help filtering noisy labels, and improves the accuracy of the extracted coresets. At the
beginning of every epoch, CRUST updates the predictions based on the current model parameters and
extract corsets from every class separately. We observed that both components, namely mixup and
extracting coresets separately from each class based on the predictions of the model being trained,
further improve the generalization and hence the final accuracy.

Size of the coresets. Fig. 1 demonstrates training curve for CIFAR-10 with 50% symmetric noise.
Fig. 1(a) shows the accuracy of coresets of size 30%, 50%, and 70% selected by CRUST. We observe
that for various sizes of coresets, the number of noisy centers decreases over time. Furthermore,
the fraction of correct labels in the coresets (label accuracy) decreases when the size of the selected
centers increases from 30% to 70%. This demonstrates that CRUST identifies clean data points
first. Fig. 1 (b), (c) show the train and test accuracy, when training with CRUST on coresets of
various sizes. We can see that coresets of size 30% achieve a lower accuracy as they are too small
to accurately estimate the spectrum of the information space and achieve a good generalization
performance. Coresets of size 70% achieve a lower training and test accuracy compared to coresets
of size 50%. As 50% of the labels are noisy, subsets of size 70% contain at least 20% noisy labels
and the model eventually overfits the noise.
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Figure 1: Training curve for CIFAR-10 with 50% symmetric noise. (a) The fraction of correct labels
in the coreset (label accuracy) with respect to epochs. (b) The accuracy on the whole training set with
respect to epochs. (c) The accuracy on test set with respect to epochs. Here we consider coresets of
size 30%, 50%, and 70% of the CIFAR-10 training dataset.

Table 3: Test accuracy on mini WebVision. The best test accuracy is marked in bold. CRUST achieves
up to 7.16% improvement (6.46% in average) in top-1 accuracy over the strongest baseline INCV.

WebVision ImageNet
Method Top-1 Top-5 Top-1 Top-5

F-correction 61.12 82.68 57.36 82.36
Decoupling 62.54 84.74 58.26 82.26
Co-teaching 63.58 85.20 61.48 84.70
MentorNet 63.00 81.40 57.80 79.92

D2L 62.68 84.00 57.80 81.36
INCV 65.24 85.34 61.60 84.98

CRUST 72.40 89.56 67.36 87.84

5.3 Empirical results on mini WebVision

WebVision is real-world dataset with inherent noisy labels [24]. It contains 2.4 million images
crawled from Google and Flickr that share the same 1000 classes from the ImageNet dataset. The
noise ratio in classes varies from 0.5% to 88% (Fig. 4 in [24] shows the noise distribution). We
follow the setting in [17] and create a mini WebVision that consists of the top 50 classes in the
Google subset with 66,000 images. We use both WebVision and ImageNet test sets for testing the
performance of the model trained on coresets of size 50% of the data found by CRUST. We train
InceptionResNet-v2 [39] for 90 epochs with a starting learning rate of 0.1. We anneal the learning
rate at epoch 30 and 60, respectively. The results are shown in Table 3. It can be seen that our method
consistently outperforms other baselines, and achieves an average of 5% improvement in the test
accuracy, compared to INCV.

6 Conclusion

We proposed a novel approach with strong theoretical guarantees for robust training of neural networks
against noisy labels. Our method, CRUST, relies on the following key observations: (1) Learning along
prominent singular vectors of the Jacobian is fast and generalizes well, while learning along small
singular vectors is slow and leads to overfitting; and (2) The generalization capability and dynamics
of training is dictated by how well the label and residual vector are aligned with the information
space. To achieve a good generalization performance and avoid overfitting, CRUST iteratively selects
subsets of clean data points that provide an approximately low-rank Jacobian matrix. We proved
that for a constant fraction of noisy labels in the subsets, neural networks trained with gradient
descent applied to the subsets found by CRUST correctly classify all its data points. At the same
time, our method improves the generalization performance of the deep network by decreasing the
portion of noisy labels that fall over the nuisance space of the network Jacobian. Our extensive
experiments demonstrated the effectiveness of our method in providing robustness against noisy
labels. In particular, we showed that deep networks trained on the our subsets achieve a significantly
superior performance, e.g., 6% increase in accuracy on CIFAR-10 with 80% noisy labels, and 7%
increase in accuracy on mini Webvision, compared to state-of-the-art baselines.
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Broader Impact

Deep neural networks achieve impressive results in a wide variety of domains, including vision and
speech recognition. The quality of the trained deep models on such datasets increases logarithmically
with the size of the data [38]. This improvement, however, is contingent on the availability of reliable
and accurate labels. In practice, collecting large high quality datasets is often very expensive and
time-consuming. For example, labeling of medical images depends on domain experts and hence
is very resource-intensive. In some applications, it necessitate obtaining consensus labels or labels
from multiple experts and methods for aggregating those annotations to get the ground truth labels
[18]. In some domains, crowd-sourcing methods are used to obtain labels from non-experts. An
alternative solution is automated mining of data, e.g., from the Internet by using different image-level
tags that can be regarded as labels. These solutions are cheaper and more time-efficient than human
annotations, but label noise in such datasets is expected to be higher than in expert-labeled datasets.
Noisy labels have a drastic effect on the generalization performance of deep neural networks. This
prevents deep networks from being employed in real-world noisy scenarios, in particular in safety
critical applications such as aircraft, autonomous cars, and medical devices.

State-of-the art methods for training deep networks with noisy labels are mostly heuristics and cannot
provide theoretical guarantees for the robustness of the trained model in presence of noisy labels.
Failure of such systems can have a drastic effect in sensitive and safety critical applications. Our
research provides a principled method for training deep networks on real-world datasets with noisy
labels. Our proposed method, CRUST, is based on the recent advances in theoretical understanding
of neural networks, and provides theoretical guarantee for the performance of the deep networks
trained with noisy labels. We expect our method to have a far-reaching impact in deployment of deep
neural networks in real-world systems. We believe our research will be beneficial for deep learning in
variety of domains, and do not have any societal or ethical disadvantages.
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Appendix

Our main contribution is to show that for any dataset, clean data points cluster together in the
gradient space and hence medoids of the gradients (1) have clean labels, and (2) provide a low-rank
approximation of the Jacobian, J , of an arbitrary deep network. Hence, training on the medoids is
robust to noisy labels. Our analysis of the residuals during gradient descent builds on the analysis
of [23], but generalize it to arbitrary deep networks without the need for over-parameterization,
and random initialization. Crucially, [23] relies on the following assumptions to show that gradient
descent with early stopping is robust to label noise, with a high probability: (1) data X ⊂ Rn×d

has K clusters, (2) neural net f has one hidden layer with k neurons, i.e., f =φ(XW T )ν, (3)
output weights ν are fixed to half +1/

√
k, and half −1/

√
k, (4) network is over-parameterized, i.e.,

k ≥K4, where K=O(n), (5) the input-to-hidden weightsW 0 have random Gaussian initialization.
Indeed, from the clusterable data assumption it easily follows that the neural network covariance
Σ(X) = E[(φ′(XW T )φ′(W TX)) ⊙ (XXT )] = 1

k
EW 0[J (W 0)J T (W 0)] is low-rank, and

hence early stopping prevents overfitting noisy labels. In contrast, our results holds for arbitrary deep
nets without relying on the above assumptions.

A Proofs for Theorems

The following Corollary builds upon the meta Theorem 7.2 from [23] and captures the contraction of
the residuals during gradient descent updates on a dataset with corrupted labels, when the Jacobian
is exactly low-rank. The original theorem in [23] is based on the assumptions that the fraction of
corrupted labels in the dataset is small, and the dataset is clusterable. Hence S+ is dictated by the
membership of data points to different clusters. In contrast, our method CRUST applies gradient
descent only to the selected subsets. Note that the elements of the selected subsets are mostly clean,
and hence the extracted subsets have a significantly smaller fraction of noisy labels. The elements
selected earlier by CRUST are medoids of the main clusters in the gradient space. As we keep
selecting new data points, we extract medoids of the smaller groups of data points within the main
clusters. Therefore, in our method the support subspace S+ is defined by the assignment of the
elements of the extracted subsets to the main clusters.

More specifically, assume that there are K < k main clusters in the gradient space. We denote the set
of central elements of the main clusters by S̄. For a subset S ⊆ V of size k selected by CRUST and
upper-bounds du on gradient dissimilarities from Eq. (9), let Λ` = {i ∈ [k]∣` = arg mins∈S̄d

u
is} be the

set of elements in S that are closest to an element ` ∈ S̄, i.e., they lie within the main cluster l in the
gradient space. Then, S+ is characterized by

S+ = {v ∈ Rk ∣ vi1 = vi2 for all i1, i2 ∈ Λ` and for all 1 ≤ ` ≤K}. (12)

The following corollary captures the contraction of the residuals during gradient descent on subsets
found by CRUST, when the Jacobian is low-rank. In Theorem 4.1, we characterize the contraction of
the residuals, when the Jacobian is approximately low-rank, i.e., over S− the spectral norm is small
but nonzero.

Corollary A.1 Consider a nonlinear least squares problem of the form L(W ,X) =
1
2
∥f(W,X) − y)∥

2
`2

. Assume that the weighted Jacobian of the subset S found by CRUST is
low-rank, i.e., for all v ∈ S+ and w ∈ S− with unit Euclidean norm, and β ≥ α > 0 we have that
α ≤ ∥J Tr (W ,XS)v∥`2

≤ β and ∥J Tr (W ,XS)w∥`2
= 0. Moreover, assume that the Jacobian

mapping J (W,XS) associated to the nonlinear mapping f is L-smooth, i.e., for allW 1,W 2 ∈ Rm

we have ∥J (W 2) −J (W 1)∥ ≤ L ∥W 2 −W 1∥
`2

.3 Also let ys, ỹS ,e = yS − ỹS ∈ Rk denote the
corrupted and uncorrupted labels associated with the selected subset, and label corruption, respec-
tively. Furthermore, suppose the initial residual f(W 0,XS) − ỹS with respect to the uncorrupted
labels obey f(W 0,XS) − ỹS ∈ S+. Then, iterates of gradient descent updates of the from (2) with a

3Note that, if ∂J (W )
∂W

is continuous, the smoothness condition holds over any compact domain (albeit for a
possibly large L).
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learning rate η ≤ 1
2β2 min(1, αβ

L∥r0∥`2
), obey

∥W τ
−W 0

∥`2 ≤
4∥r0∥`2

α
=

4∥f(W 0,XS) − yS∥`2
α

.

Furthermore, if λ > 0 is a precision level obeying λ ≥ ∥ΠS+(e)∥`∞ , then running gradient descent

updates of the from (2) with a learning rate η ≤ 1
2β2 min(1, αβ

L∥r0∥`2
), after τ ≥ 5

ηα2 log (
∥r0∥`2
λ
)

iterations,W τ achieves the following error bound with respect to the true labels

∥f(W τ ,XS) − ỹS∥`∞ ≤ 2λ.

Finally, if e has at most s nonzeros and S+ is γ-diffused i.e., for any vector v ∈ S+ we have
∥v∥`∞ ≤

√
γ/n∥v∥`2 for some γ > 0, then using λ = ∥ΠS+(e)∥`∞ , we get

∥f(W τ ,XS) − ỹS∥`∞ ≤ 2∥ΠS+(e)∥`∞ ≤
γ
√
s

n
∥e∥`2 .

Lemma A.2 Let {(xi, yi)}i∈S be the subset selected by CRUST, and {ỹi}i∈S be the corresponding
noiseless labels. Note that the elements of the selected subsets are mostly clean, but may contain
a smaller fraction ρ of noisy labels. Let J (W ,XS) be the Jacobian matrix corresponding to the
selected subset which is rank k, and S+ be its column space. Then, the difference between noiseless
and noisy labels satisfy the bound

∥ΠS+(yS − ỹS)∥`∞ ≤ 2ρ.

Proof The proof is similar to that of Lemma 8.10 in [23], but using S+ as defined in Eq. (12).

A.1 Proof of Theorem 4.1

We first consider the case where the set S ⊆ V of k weighted medoids found by CRUST approximates
the largest singular value of the neural network Jacobian by an error of ε = 0. Therefore, we can
apply Corollary A.3 to characterize the behavior of gradient descent on the weighted subsets found
by CRUST. The following Corollary summarizes the results:

Corollary A.3 Assume that we apply gradient descent on the least-squares loss in Eq. (2) to
train a neural network on subsets found by CRUST from a dataset with class labels {νj}Cj=1 ∈
[−1,1], label margin δ. Suppose that the Jacobian mapping is L-smooth, and let α =
minτ

√
rτminσmin(J (W

τ ,XSτ )), and β = maxτ
√
rτmax∥J (W

τ ,XSτ )∥ be the minimum and
maximum singular values of the Jacobian of the subsets weighted by rτ found by CRUST, during τ
steps of gradient descent updates. If subsets contain a fraction of ρ ≤ δ/8 noisy labels, using step size
η = 1

2β2 min(1, αβ

L
√

2k
), after τ = O( 1

ηα2 log(
√
k
ρ
)) iterations, the neural network classifies all the

selected elements correctly.

Proof Fix a vector v and let p̃ = Jr(W ,XS)v and p = J (W ,XS)v. Entries of p̃ multiply the
entries of p somewhere between rmin and rmax. This establishes the upper and lower bounds on the
singular values of Jr(W ,XS) over S+ in terms of the singular values of J (W ,XS). I.e.,
√
rminσmin(J (W ,XS∗),S+) ≤ σi∈[k](Jr(W ,XS∗),S+) ≤

√
rmax∥J (W ,XS∗)∥. (13)

Therefore, we get that α =minτ
√
rτminσmin(J (W

τ ,Xτ
S)), β =maxτ

√
rτmax∥J (W

τ ,Xτ
S)∥.

Moreover, we have f ∶ Rd → [−1,1], and class labels {νj}Cj=1 ∈ [−1,1]. Hence, for every element
i ∈ S, we have ∣f(W ,xi) − yi∣ ≤ 2, and the upper-bound on the initial misfit is ∥r0∥l2 ≤

√
2k.

Now, using Lemma A.2, we know that

∥ΠS+(y − ỹ)∥`∞ ≤ 2ρ.

Substituting the values corresponding to α,β in Theorem 4.1, we get that after

5

ηα2
log(
∥r0∥`2

2ρ
) ≤

5

ηα2
log(

√
2k

2ρ
) ≤ τ (14)
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gradient descent iterations, the error bound with respect to the true labels is ∥f(Wτ ,XS) − ỹS∥`∞ ≤
2ρ. If gradient clusters are roughly balanced, i.e., there are O(k/K ′) data points in each cluster, we
get that for all gradient iterations with

5

ηα2
log(
∥r0∥`2

2ρ
) ≤

5

ηα2
log(

√
2k

2ρ
) = O(

K

ηkσ2
minJ (W ,XS)

log(

√
k

ρ
)) ≤ τ, (15)

the infinity norm of the residual obeys (using λ = ∥ΠS+(e)∥`∞ ≤ 2ρ)
∥f(W ,XS) − ỹ∥`∞ ≤ 4ρ.

This implies that if ρ ≤ δ/8, the labels predicted by the network are away from the correct labels by
less than δ/2, hence the elements of the subsets (including noisy ones) will be classified correctly.

A.2 Completing the Proof of Theorem 4.1

Next, we consider the case where weighted subsets found by CRUST approximate the prominent
singular value of the Jacobian matrix by an error of at most ε. Here, we characterize the behavior of
gradient descent by comparing the iterations with and without error.

In particular, starting from W 0 = W̄ 0 consider the gradient descent iterations on the weighted
subsets S̄ that estimating the largest singular value of the neural network Jacobian without an error,

W̄ τ+1
= W̄ τ

− ηJ Tr (W̄
τ ,XS̄τ )(f(W̄

τ ,X) − yS̄τ ), (16)
and gradient descent iterations on the weighted subsets S with an error of at most ε in estimating the
largest singular value of the neural network Jacobian,

W τ+1
=W τ

− ηJ Tr (W
τ ,XSτ )(f(W

τ ,XSτ ) − ySτ ). (17)
To proceed with the proof, we use the following short hand notations for residuals and Jacobian
matrix in iteration τ of gradient descent:

rτ = f(W τ ,XSτ ) − ySτ , r̄
τ
= f(W̄ τ ,XS̄τ ) − yS̄τ (18)

J
τ
= Jr(W

τ ,XSτ ), J
τ+1,τ

= Jr(W
τ+1,W τ ,XSτ ), (19)

J̄
τ
= Jr(W̄

τ ,XSτ ), J̄
τ+1,τ

= Jr(W̄
τ+1,W̄ τ ,XS̄τ ) (20)

dτ = ∥W τ
− W̄ τ

∥F , p
τ
= ∥rτ − r̄τ∥F , (21)

where Jr(W 1,W 2,XS) denotes the average weighted neural network Jacobian at subsetXS , i.e.,

Jr(W
1,W 2,XS) = ∫

1

0
Jr(αW

1
+ (1 − α)W 2,XS)dα.

We first proof the following Lemma that bounds the normed difference between Jr(W̄ 1,W̄ 2,XS̄)

and Jr(W 1,W 2,XS).

Lemma A.4 Let XS ,XS̄ be the subset of data points found by CRUST, that approximates the
Jacobian matrix on the entire data by and error of 0 and ε, respectively. Given parameters
W 1,W 2,W̄ 1,W̄ 2, we have that

∥Jr(W
1,W 2,XS) −Jr(W̄

1,W̄ 2,XS̄)∥ ≤ (
∥W̄ 1 −W 1∥F + ∥W̄

2 −W 2∥F

2
+ ε).

Proof GivenW ,W̄ , we can write
∥Jr(W ,XS) −Jr(W̄ ,XS̄)∥ ≤ ∥Jr(W ,XS) −Jr(W̄ ,XS)∥ + ∥Jr(W̄ ,XS̄) −Jr(W̄ ,XS)∥

(22)

≤ L∥W − W̄ ∥ + ε. (23)

To get the result on ∥J (W 1,W 2,XS) −Jr(W̄
1,W̄ 2,XS̄)∥, we integrate

∥J (W 1,W 2,XS) −Jr(W̄
1,W̄ 2,XS̄)∥ ≤ ∫

0
1
(L∥α(W̄ 1

−W 1
) + (1 − α)(W̄ 1

−W 1
)∥F + ε)dα

(24)

≤
L(∥W̄ 1 −W 1∥F + ∥W̄

2 −W 2∥F )

2
+ ε. (25)
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Now, applying Lemma A.4, we have

∥Jr(W
τ ,XSτ ) −Jr(W̄

τ ,XS̄τ )∥ ≤ L∥W̄
τ
−W τ

∥F + ε ≤ Ld
τ
+ ε (26)

∥Jr(W
τ+1,W τ ,XSτ ) −Jr(W̄

τ+1,W̄ τ ,XS̄τ )∥ ≤ L(d
τ
+ dτ+1

)/2 + ε. (27)

Following this and since the normed noiseless residual is non-increasing and satisfies ∥r̄τ∥`2 ≤ ∥r̄
0∥`2 ,

we can write

W τ+1
=W τ

− ηJ τrτ , W̄ τ+1
= W̄ τ

− η(J̄ τ)T r̄τ (28)

∥W τ+1
− W̄ τ+1

∥F ≤ ∥W
τ
− W̄ τ

∥F + η∥J
τ
− J̄

τ
∥∥r̄τ∥`2 + η∥J

τ
∥∥rτ − r̄τ∥`2 , (29)

dτ+1
≤ dτ + η((Ldτ + ε)∥r̄0

∥`2 + βp
τ
). (30)

For the residual we have

rτ+1
= rτ − f(W τ ,XS) + f(W

τ+1,XS) (31)

= rτ +J τ+1,τ
(W τ+1

−W τ
) (32)

= rτ − ηJ τ+1,τ
(J

τ
)
Trτ , (33)

where in Eq. (33) we usedW τ+1 −W τ = η∇L(W τ) = η(J τ)Trτ . Furthermore, we can write

rτ+1
− r̄τ+1

= (rτ − r̄τ) − η(J τ+1,τ
− J̄

τ+1,τ
)(J

τ
)
Trτ (34)

− ηJ̄τ+1,τ((J
τ
)
T
− (J̄

τ
)
T )rτ − ηJ̄ τ+1,τ

(J̄
τ
)
T
(rτ − r̄τ) (35)

= (I − ηJ̄ τ+1,τ
(J̄

τ
)
T )(rτ − r̄τ) − η(J τ+1,τ

− J̄
τ+1,τ

)(J
τ
)
Trτ (36)

− ηJ̄ τ+1,τ((J
τ
)
T
− (J̄

τ
)
T )rτ . (37)

Using I ⪰ J̄ τ+1,τ(J̄ τ)T /β2 ⪰ 0, we have

∥rτ+1
− r̄τ+1

∥`2 ≤ ∥r
τ
− r̄τ∥`2 + ηβ∥r

τ
∥`2(L(3d

τ
+ dτ+1

)/2 + 2ε) (38)

≤ ∥rτ − r̄τ∥`2 + ηβ(∥r̄
0
∥`2 + p

τ
)(L(3dτ + dτ+1

)/2 + 2ε), (39)

where we used ∥rτ∥`2 ≤ p
τ + ∥r̄0∥`2 and ∥(I − ηJ̄ τ+1,τ(J̄ τ)T )v∥`2 ≤ ∥v∥`2 which follows from

the contraction of the residual. This implies that

pτ+1
≤ pτ + ηβ(∥r̄0

∥`2 + p
τ
)(L(3dτ + dτ+1

)/2 + 2ε). (40)

We use a similar inductive argument as that of Theorem 8.10 in [23]. The claim is that if for all t ≤ τ0,
we have (using ∥r̄0∥`2 ≤ Θ)

ε ≤ O(
α2

β log(
√
k/ρ)

) ≤ O(
kσ2

min(J (W ,XS))

Kβ log(
√
k/ρ)

), and L ≤
2

5τ0ηΘ(1 + 8ητ0β2))
, (41)

then it follows that

pt ≤ 8tηεΘβ, dt ≤ 2tηεΘ(1 + 8ητ0β
2
) ≤ 20tη2τ0εΘβ

2
≤ O(tη2τ0k

3/2ε). (42)

The proof is by induction. Suppose for t ≤ τ0 − 1, we have that

pt ≤ 8tηεΘβ ≤ Θ, dt ≤ 2tηεΘ(1 + 8ητ0β
2
). (43)

At t + 1, from (30) we know that

dt+1 − dt

η
≤ LdtΘ + εΘ + 8τ0ηβ

2εΘ (44)

Now, using L ≤ 2
5τ0ηΘ(1+8ητ0β2)) ≤

1
2ητ0Θ

from (41), and replacing dt from (43) into (44) we get

dt+1 − dt

η
≤ LdtΘ + εΘ + 8τ0ηβ

2εΘ
?
≤ 2εΘ(1 + 8ητ0β

2
). (45)
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This establishes the induction for dt+1.

To show the induction on pt, following (8.64) and using pt ≤ Θ, we need
pt+1 − pt

η
≤ βΘ(L(3dτ + dτ+1

) + 4ε)
?
≤ 8εΘβ (46)

L(3dτ + dτ+1
) + 4ε

?
≤ 8ε (47)

L(3dτ + dτ+1
)

?
≤ 4ε (48)

10Lτ0η(1 + 8ητ0β
2
)Θ

?
≤ 4, (49)

where in the last inequality we used 3dt + dt+1 ≤ 10τ0ηεΘ(1 + 8ητ0β
2). Note that η =

1
2β2 min(1, αβ

L
√

2k
). Hence, if αβ

L
√

2k
≥ 1, we get that η = 1

2β2 ≥
1

τ0β2 , and thus ητ0β2 ≥ 1. This allows
upper-bounding 3dt + dt+1. Now, for L we have

L≤
2

5τ0ηΘ(1 + 8ητ0β2))
. (50)

This concludes the induction since the condition on L is satisfied.

Now, from (44) and using ητ0β2 ≥ 1 we get

dt ≤ 2tηεΘ(1 + 8ητ0β
2
) ≤ O(tη2τ0

√
kε). (51)

Finally, from (43) we have pt ≤ 8tηεΘβ ≤ Θ. Using ητ0 = O( K
kσ2

min
J (W ,XS) log(

√
k
ρ
)) and noting

that α ≤ β we have that for τ ≥ t

ε ≤
1

8τ0ηβ
≤ O(

α2

β log(
√
k/ρ)

) ≤ O(
kσ2

min(J (W ,XS))

Kβ log(
√
k/ρ)

).

Now we calculate the misclassification error. From Corollary A.3 and Eq. (43) we have that for
η = 1

2β2 min(1, αβ

L
√

2k
) and Θ =

√
2k, after τ = O( K

ηkσ2
min
J (W ,XS) log(

√
k
ρ
)) iterations, we get

∥r̄τ∥`∞ ≤ 4ρ and (52)

∥pt∥`2 = ∥r
τ
− r̄τ∥`2 ≤ cε

Kβ
√
kσ2

minJ (W ,XS)
log(

√
k

ρ
). (53)

To calculate the classification rate, we denote the residual vectors r̄τ = f(W̄ τ ,XS̄τ ) − ỹSτ and
rτ = f(W τ ,XSτ ) − ỹSτ . Now, we count the number of entries of rτ that is larger than the label
margin δ/2 in absolute value. Let I be the set of entries satisfying this condition. For i ∈ I we have
∣rτi ∣ ≥ δ/2. Therefore,

∣r̄τi ∣ + ∣r
τ
i − r̄

τ
i ∣ ≥ ∣r

τ
i + r̄

τ
i − r̄

τ
i ∣ ≥ δ/2, (54)

Since ρ = (1 − γ)δ/8 < δ/8 for 0 < γ ≪ 1, we get ∥r̄τ∥`∞ ≤ 4ρ ≤ (1 − γ)δ/2 and
∣rτi − r̄

τ
i ∣ ≥ γδ/2. (55)

Thus, the sum of the entries with a larger error than the label margin is
∥rτ − r̄τ∥`1 ≥ ∣I ∣γδ/2. (56)

Consequently, we have

∣I ∣γδ/2 ≤ ∥rτ − r̄τ∥`1 ≤
√
k∥rτ − r̄τ∥`2 ≤ cε

Kβ

σ2
minJ (W ,XS)

log(

√
k

ρ
). (57)

Hence, the total number of errors is at most

∣I ∣ ≤ c′ε
Kβ

γδσ2
minJ (W ,XS)

log(

√
k

ρ
) = O(

εkβ

γδα2
log(

√
k

ρ
)). (58)

For the network to classify all the data points correctly, we need ∣I ∣ ≤ c′ε Kβ
γδσ2

min
J (W ,XS) log(

√
k
ρ
) < 1.

Hence, we get that

ε <
c0γδσ

2
min(J (W ,XS))

Kβ log(
√
k
ρ
)

<
c1δσ

2
min(J (W ,XS))

Kβ log(
√
k
ρ
)

. (59)
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