
Team RuBot’s Experiences and Lessons from the ARIAC ⋆

Si Wei Fenga, Teng Guoa, Kostas E. Bekrisa and Jingjin Yua

aDepartment of Computer Science, Rutgers University

A R T I C L E I N F O

Keywords:
Industrial robot
Robot agility
Robotics challenge
Multi-robot system
Pick-and-place system

A B S T R A C T

We share experiences and lessons learned in participating the annual Agile Robotics for Industrial
Automation Competition (ARIAC). ARIAC is a simulation-based competition focusing on pushing
the agility of robotic systems for handling industrial pick-and-place challenges. Team RuBot started
competing from 2019, placing 2nd place in ARIAC 2019 and 3rd place in ARIAC 2020. The article
also discusses the difficulties we faced during the contest and our strategies for tackling them.
Video of system sketches: https://youtu.be/7H7YLeJz2zE.

1. Introduction
Millions of industrial robots are currently employed in

modern factories that significantly improve productivity and
reduce repetitive manual labor. In a vast number of industrial
robotics applications, the pick-and-place operation plays an
indispensable role in moving parts and products.

To help enhance the agility of industrial robots, the Na-
tional Institute of Standard and Technology (NIST) initiated
the Agile Robotics for Industrial Automation Competition
(ARIAC) in 2017 [12] and started to give cash awards to top
3 winners one year later. The competition focuses on testing
the agility of industrial robot with pick-and-place tasks and
has been held for four consecutive years.

Each year’s ARIAC comprises of at least two rounds, in-
cluding one or more qualification rounds, where every eligi-
ble person or team can register at the beginning, and a final
round among ∼5 teams selected based on their performance
in previous rounds. The competition has seen an increasing
number of registrations. In 2020, over 100 teams registered
in the qualification round.

ARIAC is a simulation-based competition using Gazebo
[8], an open-source 3D simulator by Open Source Robotics
Foundation (OSRF). Gazebo Environment for Agile Robotics
(GEAR), designed by OSRF and maintained by NIST, is
used as an interface software between competitor’s package
and the competition environment. In the competition, partic-
ipants are required to design a system in ROS [25] to fulfill
a set of shipments. One or more robots are provided, and
participants are to decide among a variety of sensor choices
including break beam, proximity sensor, laser scanner, cam-
era, and so on, to deploy in the environment. The antici-
pated system should be able to pick products from a set of
places including bins, shelves, and a conveyor belt. The
products are then to be placed on the tray of an Autonomous
Guided Vehicle (AGV) to fulfill a shipment. Scoring met-
ric of ARIAC takes into account the number of products
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successfully shipped, the pose of the shipped product, the
time used for each shipment, and the costs of sensor deploy-
ment. The contest aims to simulate the real industrial envi-
ronment for pick-and-place to the greatest possible extent by
considering an exhaustive list of events that could occur in
a warehouse environment and selecting a set of agility tasks
to fulfill. So far, organizers of ARIAC have selected eight
agility challenges based on industry feedback and brought
them into the competition scenarios. These eight scenarios
are: presence of faulty products, insufficiency of products,
flipped products, in-process order update, sensor blackout,
dropped products, in-process high priority order interrup-
tion, and moving obstacles.

Rutgers Algorithmic Robotics and Control Lab (ARCL)
started competing in ARIAC since 2019 with its Team RuBot
entry, consisting mainly of PhD students. Team RuBot placed
2nd in ARIAC 2019 and 3rd in ARIAC 2020. In this arti-
cle, we share our journey through the competitions and our
lessons learned in navigating the challenging multi-objective
optimization tasks. To that end, we start with a brief overview
of ARIAC and related research. We then outline our system
design for ARIAC 2019 and ARIAC 2020. As these sketches
are unfolded, we discuss the challenges we faced and how we
addressed them.

2. Background
Since the inception of ARIAC, the essential task for the

required robotic systems has been picking a set of products
(pulley, disk, piston rod, gear and gasket) from a conveyor
belt, bins, or shelves and placing them on a tray for deliv-
ery. In addition to the main pick-and-place task, eight agility
challenges, listed below, were provided to test the agility of
the systems designed by competition participants.

1. Faulty Products. Some products are faulty. After a
faulty product is placed on the AGV and detected by
the sensor in the AGV, it should be removed from the
shipment.

2. Insufficiency of products. When an insufficient num-
ber of products is present, competitors should consider
the alternative of submitting a shipment with the avail-
able products.
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(a) ARIAC 2019 with two UR-10 arms (b) ARIAC 2020 with a 15-DoF gantry robot

Figure 1: ARIAC Environments

3. Flipped products. Some products must be flipped first
before being put onto the shipment tray. This often
requires the collaboration between two arms.

4. In-process order update. After the announcement of a
shipment and before the submission of the shipment,
an order update may happen that can change the type
of products needed for the shipment.

5. Sensor blackout. During the competition, some sen-
sors may stop working for a period of time.

6. Dropped products. The grippers on the arms are sim-
ulated to have the possibility of dropping the products
they have grasped.

7. In-process high-priority order update. During the as-
sembling of an order, a higher priority order may come
in that ideally should be handled immediately.

8. Moving obstacles. Obstacles, e.g., human beings, are
simulated to move in the environment. Collisions with
these moving obstacles should be avoided.

In 2019, the robots provided were two UR10 robotic arms
mounted on a shared linear actuator (see Fig. 1a), making
each unit seven degrees of freedom (7-DoF). In 2020, a 15-
DoF robot was provided. The 15-DoF robot consists of a
gantry base with 3-DoF and two UR10 arms mounted on
it, each of which has 6-DoF. This made it possible for the
robot to move around in the workshop (see Fig. 1b). People
could use motion planning libraries like MoveIt [4] or sim-
ply publish a joint trajectory, which consists of a sequence of
waypoints and timestamps to the joint trajectory controller,
to control the robots. In both years, the end-effectors of the
robots provided were vacuum grippers, controlled through
the interactions with GEAR.

Participants can choose from a set of sensors and place
them inside the environment. Each of the sensors provided
is associated with a cost of deployment as follows.

$100: Break beam, proximity sensor and laser profiler.
$200: Depth camera.
$500: Logical camera and RGBD camera.

The scoring metrics of ARIAC considers various aspects;
readers are referred to [24] for detailed explanations. Here,
we give a brief explanation for the scoring metric equation:

𝑇 𝑟𝑖𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 = 𝐴𝐴𝐶 ∗ (𝐶𝐹 ∗ 𝐴𝑉 𝐺(𝐶𝑆)+
∑

𝑖
𝐸𝐹𝑖 ∗ 𝐶𝑆𝑖 )

𝐴𝐴𝐶 Arm/Arm Collision. 0 when arm/arm collision oc-
curs, 1 otherwise.

𝐶𝐹 Cost Factor. It is inversely proportional to the total
sensor cost.

𝐴𝑉 𝐺 Average over all shipments.
𝐶𝑆𝑖 Completion Score for shipment 𝑖, which is defined as

the number of correct products delivered plus the num-
ber of products in the correct pose, plus bonus points.

𝐸𝐹𝑖 Efficiency Factor for shipment 𝑖. This factor is in-
versely proportional to the time cost from order issue
to order delivery.

Related Work. Robot pick-and-place systems [2, 3, 11, 14,
22, 23, 27] have attracted enormous attentions from both
researchers and industrial practitioners. Whereas compo-
nents like motion or grasp planning [21], object rearrange-
ment [10, 19], 3D pose estimation [17], picking from con-
veyor [9, 15] and so on are investigated in individual stud-
ies, large scale physical deployment of holistic systems have
made great achievements, such as the Kiva system from Ama-
zon [26] and the DARPA Robotics Challenges [1, 7, 16, 20].
Even with so many successes in both academic research and
industrial systems, it has been pointed out that many charac-
teristics of robotics systems, although not novel, still remain
largely unexplored in literature [6]. Current robotics systems
have a long way to go before reaching their physical capabil-
ities; aspects like long programming time, failure to quickly
adapt to changing environments or failures, and scarcity of
abilities trained on industrial robots impact productivity and
agility of the system [18]. As such, NIST’s ARIAC compe-
tition timely promotes agility, which is essential for bringing
out the true potential of highly capable robotic hardware.

3. System Overview
Competitors in ARIAC are tasked to design a software in

the form of an ROS package and provide necessary scripts
for installing dependencies and running the software. The
software must be capable of retrieving the sensing data and
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Figure 2: State diagram for a single UR10 arm for ARIAC 2019.

control the robots in Gazebo simulations within an Ubuntu
Bionic and ROS Melodic environment. Team RuBot’s sub-
missions were implemented in C++ for both ARIAC 2019
and ARIAC 2020. No auxiliary software dependencies exist
in our robot control sub-system.

Team RuBot takes a hierarchical approach that can be
dissected into two levels or phases: high-level task plan-
ning followed by low-level motion planning. The former per-
forms high level planning, i.e., telling the robot what to do
next. In our implementation, one or more Finite State Ma-
chines (FSMs) were constructed for robot task allocation. To
fulfill these tasks, the latter low-level motion planning (i.e.,
trajectories planning of the two UR10 arms and the 15-DoF
gantry robot and controlling the grippers) is necessary.

While the competition allows a fairly flexible sensor se-
lection from a large group of sensors including break beam,
laser scanner, proximity sensor, and so on, well encapsulated
“logical cameras” are also provided which are able to carry
out pose estimation precisely in simulation. We opted to
heavily rely on “logical cameras” for pose estimation. Laser
scanners were also occasionally used to help with object de-
tection and simple classification of objects on the moving
conveyor belt (based on heights).

3.1. High-Level Task Planning
From the start of our participation of ARIAC, we con-

cluded that it is convenient and reliable to encode the core
logic required by the ARIAC task as an FSM with predefined
states and interconnections.

Generally, the tasks of the robot fall into two classes. The
first contains static tasks such as picking products from static
shelves, bins, or flipping a product. The second contains dy-
namic tasks that come during the run time, for example the
removal of faulty parts after they have been detected, pick-

ing products from moving conveyor belt when they arrive,
handling order update, and so on. Most of the tasks could
be handled in a single state, while others need to be refined
into smaller tasks. Dealing with order updates would be a
good example for the later, because each product in an order
update will create two sub tasks: picking the product from
the tray and putting the product back to their bins or shelves.

3.1.1. RuBot 2019
In ARIAC 2019, two UR10 robotic arms are provided,

which are mounted on a shared linear actuator (Fig. 1a). The
workspaces of these two robotic arms are separated enough
to allow us to handle them separately by adding some locks
for entering the shared region. Each robot is responsible for
the tray near the end the actuator on its side.

In Fig. 2, we show the state diagram designed for a single
robotic arm. The two arms are controlled by two separate
FSMs with similar structures. Each robot starts in the IDLE
state. From here, it may go to the state of receiving a product
from the other arm (Arm-arm handover R state), or go to
the state of picking a product from the conveyor belt or the
tray (Pick state), or start searching for a product inside the
bins (Bin fumbling state).

It is worth noting that, to reduce sensor cost, no sensor is
put above the bins which means the robot arms will need to
search in the bin for potential product. This creates the Bin
fumbling state. Since searching in the bin costs time and is
of lower priority, the state could be interrupted by products
from the convey belt or an order update, which set the state
to Pick state, or interrupted by the signals sent from other
arm, which set the state to Arm-arm handover R state.

After going through one of the above three states and the
corresponding manipulations, the robot will have a product
grasped in the gripper. The robot then brings the product
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to the “logical camera” for precise product classification and
position estimation (Pose estimate state). This state is a piv-
otal state as the whole system relies on the single “logical
camera” to estimate the pose of products for precise place-
ment of product onto the tray. It also helps with making
small position tuning for the Arm-arm hand-over task.

Once pose estimation is complete, there are three poten-
tial states to go to: 1. sending the product to the other arm
while deciding whether to flip the product (Arm-arm han-
dover S state), 2. placing the product onto the tray of an
AGV for shipment (Place on tray state), or 3. placing the
product into temporary bins (Place into temp. bin state).
When the arm finishes these manipulations, it will return to
the IDLE state to take new tasks. The arm may enter a faulty
removal state to remove the faulty product in the tray, if any.

3.1.2. Dual-Arm Collaboration in RuBot 2019
Two special states in the state diagram are the states of

Arm-arm handover when the synchronization of the state
machines of the two arms are needed. Specifically, when
one arm is waiting at Arm-arm handover S state to send a
product to the other arm, the other arm needs to get to Arm-
arm handover R state quickly to receive it.

In the Arm-arm handover states, two types of handover
manipulations were defined. The first type of manipulation
is a combination of actions shown in Fig. 3a and Fig. 3b
where one arm puts the product on the actuator while the
other arm comes to fetch the product later.In the second type,
one arm directly gives the product to the second arm which
flips the product during the transfer. When a product needs
to be flipped, the latter type of manipulation should be car-
ried out.

In early development, infinite loops were observed dur-
ing the simulation because of incorrect action priority set-
tings. The reason behind this phenomenon, which is quite
subtle, was that each arm considers cooperating with the
other arm to be more important. It happens that when arm 1
needs a product and arm 2 has that product, arm 2 will give
that product to arm 1, but later arm 1 finds out arm 2 also
needs that product, arm 1 will give the product back to arm
2. This can turn into an infinite loop. To resolve this, four
prioritized arm actions were defined after the Pose estimate
state to prevent this from happening:

1. Place the product grasped onto the tray for which the
arm is responsible.

2. Give the flipped product grasped to the other arm di-
rectly (Fig. 3c).

3. Place the product grasped on the actuator and notify
the other arm to fetch it (Fig. 3a).

4. Place the product grasped to a temporary bin as the
product is no longer required for shipment.

For example, if arm 1 holds a not flipped pulley part which
both tray 1 and tray 2 need for shipment, then arm 1 will
choose action 1, which places the part on tray 1, instead of
action 3, which places the part on the actuator in order to give
it to arm 2, because action 1 has higher priority. The priority
selection ensures that positive progress is always made.

(a) Arm 1 puts a product in the actuator

(b) Arm 2 fetches the product from the actuator

(c) Arm 2 gives the product directly to arm 1

Figure 3: Three arm-arm handover manipulations

3.1.3. RuBot 2020
In ARIAC 2020, two UR10 robotic arms are mounted on

a 3-DoF gantry base to obtain a single 15-DoF robot (Fig. 1b).
To simplify the control of the 15-DoF robot, we assume that
only one arm can be controlled at one time. The complex-
ity of planning and collision avoidance of allowing the two
arms picking or placing products simultaneously is hence-
forth eliminated, though simultaneously pick-and-place will
fully utilize the advantage of the dual-arm robot. With the
simplification, we use a single FSM to encode the logic and
control the robot.

To reduce the number of states in the state machine, thus
reducing interconnections among states, we merged a set of
similar tasks into the same state. For example, we merged
four types of picking operations (pick from bin, shelf, tray,
conveyor belt) into the same picking state. As we put more
cameras in ARIAC 2020, classification and pose estimation
can be carried out at almost everywhere where a product
could appear. As a result, there is not a standalone state for
pose estimation.

Initially, the FSM starts from the IDLE state. As the
robot picks an item from the conveyor belt, bin, or shelf, it
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Figure 4: State diagram for the 15-DoF robot for ARIAC 2020

goes to the Pick state. In particular, it is also possible that
the robot needs to pick an item from the tray in the Pick state
if an order update exists.

Then, if there is nothing else to pick, it goes into the
Place state in which the robot place an item on the tray for
shipment in the case of fulfilling an order or put the item
back to a bin if it corresponds to an order update.

As the robot has two arms, it is possible for the robot
to carry two items to the destination; another Pick state is
added to take advantage of the dual arm setup. Once a pick-
ing failed, the system will revert back to the previous state.

In the Place state, the robot may need to place one or
more items onto the tray for order fulfillment or bins for
putting products back during order update. This may cause
the Place state to repeat one more time. At the same time,
if the robot finds out that the product just placed is faulty, it
will immediately go into the Faulty removal state to use the
same gripper to pick the product from the tray and throw it
away. After all of these are finished, the state goes back to
the IDLE state. Along the way, the robot may enter the Flip
state to flip a product, if required.

3.2. Low-Level Motion Planning
3.2.1. Grasping

For grasping products, a vacuum gripper is attached to
each UR10 arm. The grippers provide messages indicating
whether a product has been attached to it, which can be used
for failure detection.

Grasping a product, though basic, is not a simple task.
For example, picking a product from a moving conveyor en-
tails much more than simply letting the vacuum gripper reach
the product, even when the object is a simple disk. On the
other hand, the products to grasp in the environment are not
too complicated and always lie flat on a surface. This allows
us to take a simplified ad-hoc approach to let the gripper go

straight downwards towards some product in order to grasp
it. For instance, if the product is static, the gripper will go
along the trajectory shown in Fig. 5a. In the case when the
product is on a moving conveyor, the gripper will start from
the top of the product and move along with the product at the
same horizontal speed while moving downwards, as shown
in Fig. 5b.

(a) Tabletop grasping

�

(b) Conveyor belt grasping

Figure 5: The vacuum gripper is always facing towards the
product when grasping. The black solid arrows show the di-
rection of gripper movement.

3.2.2. Trajectory Planning
In practice, arm trajectories are often simply specified by

human experts, using pre-computed waypoints or using pre-
computed roadmaps to navigate. In fact, human guidance
in robot trajectory planning has proved to be effective [5]
besides pure planning. In our approaches, pre-computed in-
termediate waypoints were employed to navigate the robots
to the destination, in place of using a planning package like
MoveIt [4]. The numbers of waypoints for the robotic arms
in our approaches are listed in Table 1 and 2.

These waypoints of the robotics arm were designed based
on human experiences. The values of the linear (prismatic)
joints in ARIAC 2019 and the three gantry joints in ARIAC
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#waypoints Action
3 pick from conveyor belt

13
pick a product from the actuator

trying 5 locations
5 pick from tray
4 search a product in the bin
4 place a product on the actuator
4 place a product on a tray

1
send a product near to the
camera for classification

2 throw a faulty product
2 (arm 1) + 3 (arm 2) flip a product

Table 1
Numbers of waypoints designed for the arm to complete each
action in RuBot 2019.

#waypoints Action
5 pick from the conveyor belt
4 pick from a bin
7 pick from an upper shelf
9 pick from a lower shelf
4 pick from a tray
3 place a product on a tray

4
place the product back to the

upper shelf or bin
1 throw a faulty product

8 (arm 1) + 10 (arm 2) flip a product

Table 2
Numbers of waypoints designed for the arm to complete each
action in RuBot 2020.

2020 are chosen as selected configurations near the desti-
nation. Because the mobility for the robot in the workshop
come mostly from these joints, choices of these joints’ val-
ues need to conform to the arm trajectories. This is the main
way for the robots to avoid collisions in our approach. Time
stamps to reach these waypoints are chosen empirically to
ensure feasibility of the trajectories.

A physical UR10 arm can be controlled by URScript,
a script language that commands the arms. Forward Kine-
matic (FK) and Inverse Kinematics (IK) are implemented
fairly efficiently in the firmware. However, for simulation in
Gazebo, the FK and IK need to be computed by the program
as there is no URScript engine simulation. Due to the de-
sign of UR robotic arms, the IK of UR10 has closed form
expressions [13] and can be even simpler when the vacuum
gripper is always facing downwards. However, there could
be as many as 8 solutions among which we need to choose
one that does not have collisions with the gantry base or the
environment.

Before the competition starts, we pre-compute the way-
points of these trajectories using IK functions of UR-10 [13]
and corresponding Denavit-Hartenberg (D-H) parameters.
With the pre-computation for each action, there is little cost
for trajectory planning at run time.

4. Lessons Learned
4.1. Learning from Failures

In 2019 and 2020 ARIAC final rounds, 15 tests covering
all the agility challenges were performed on the competitors’
software. From the logs traces of the finals tests, we could
identify where the systems failed. As a matter of fact, our
systems are still far from being perfect. In 2019, 4 out of 15
tests were not successfully carried out, while the number of
failed runs increased to 5 in 2020.

Compared with other mistakes like lacking precision for
products’ poses on the tray or missing products for a ship-
ment, system failures are much more serious because the
whole control logic cannot proceed once a system failure oc-
curs, resulting in a zero point for that run. Some screenshots
in Fig. 6 and Fig. 7 illustrate some typical failures experi-
ences by our system.

In ARIAC 2019, the submitted software scored 0 point in
4 tests in total. In test 3 and 9, a robot got stuck when picking
a product from the conveyor belt. When the arm has grasped
a gasket part (Fig. 6a), the collision created by the product
and the environment made the predefined trajectory prone to
getting stuck. In test 8 (Fig. 6b), the arm did not realize the
product it grasped has fallen and kept waiting for the product
information from the camera. In test 10 (Fig. 6c), a failure
happened when one arm was handing over a product to the
other arm. The two suction-based grippers coupled together
because the arm which was supposed to receive the product
from the other arm did not realize that it had grasped the
other gripper instead of the product.

In ARIAC 2020, there are a total of 3 tests (test 4, 8, 15)
where we failed to deliver anything due to a bug in handling
parts on the conveyor belt. Specifically, when an item moved
to the end of the conveyor belt, we did not delete it from the
queue for storing products on the conveyor belt. As a result,
impossible trajectory points were given to the gantry con-
troller and the robot was unable to reach it, and our system
froze up (Fig. 7a). The system failed to be robust in another
way as it neglected unknown products (Fig. 7b), a disc in the
given scenario, in the shipment orders or in the environment.
The disc products did not appear in the task description, and
our system would not detect any of the disc products. As a
consequence, accessing undefined areas (e.g., trying to ac-
cess a nonexistent array storing the positions of disc prod-
ucts) happened in run time when there exists an unknown
disc product in a shipment order. So, in test 9, the existence
of disk parts/products lead the system off the designed func-
tionality.

Sometimes, the product destinations are not reachable
from overhand grasps. The IK for grasping the red gasket
product in Fig. 7c, for instance, is not solvable if the grasping
is in a top-down manner towards the center of the product. In
RuBot 2019, this issue was resolved by distinguishing these
destinations and find a pose near the target but still reach-
able. In RuBot 2020, this issue was left unaddressed. As a
result, a set of “NaN” values (e.g., calling 𝑎𝑐𝑜𝑠(1.01)without
checking whether there is a solution will get NaN as result)
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(a) Arm stuck in a trajectory (b) Unaware of grasp failure (c) Gripper sucking gripper

Figure 6: Some system failures in RuBot’s ARIAC 2019 entry.

(a) Frozen for inaccessible waypoint (b) Unforeseen disc product (c) Frozen for unsolvable IK

Figure 7: Some system failures in RuBot’s ARIAC 2020 entry.

were set as the joint angles to the joint trajectory controller,
leading to the system failure shown in Fig. 7c.

Looking back into these issues, most of them seem pre-
ventable with a more careful design and sufficient tests. On
the flip side, to be less optimistic, considering all aspects of a
system and thoroughly carrying out robustness tests are time
consuming and error prone in general. This means design-
ing resilience into the system can be important. That is, the
system should be designed to be able to identify errors and
recover from them to some extent. In our system, if only we
had designed a simple mechanism for the robot to restart, for
example, closing the vacuum gripper and going back to its
original place whenever it has been stuck or frozen some-
where long enough, over half of the system failures could
have been avoided. An important lesson for us is to always
add such recovery module when running a robotics system.

4.2. Selection of Planning Method
As mentioned, we used pre-computed trajectories for our

motion planning realization. This choice benefits us from
the beginning as it is easier to start with, which gives us
more time to focus on the core logic of the robots’ actions.
However, relying on pre-computed trajectories and human-
defined waypoints turned out to require a lot of energy and
lack scalability despite our efforts in encapsulating the plan-
ning function and reuse certain trajectories. We believe that
using a stand-alone trajectory planner or pre-computation
backed by a general planner would be a better approach go-
ing forward.

4.3. Pose Representations
Pose estimation is probably the most important module

of a pick-and-place system after planning. In ARIAC, the
focus is not perception. Due to the focus, well encapsu-
lated “logical cameras” were provided for retrieving the ex-
act poses and types of the products in their ranges of visibil-
ity. The remaining task for us is to choose the proper repre-
sentations of the poses, i.e. pose of the grippers, cameras,
products, and desired product destinations on the tray.

In the message given from the task publisher, poses of
products are represented as a combination of a 3-D position
and a quaternion 𝑤+𝑥⋅𝑖+𝑦⋅𝑗+𝑧⋅𝑘, (𝑥2+𝑦2+𝑧2+𝑤2 = 1).
Quaternions are quite convenient when doing frame transfor-
mation (e.g., from the camera’s frame to the delivery tray’s
frame) as multiplication and inversion are the only things
needed. But in certain cases, conversion from quaternions
to other representations are needed.

First, in deciding whether a product is flipped, orienta-
tion representation of the product is converted into a rota-
tion matrix to determine the direction of the transformed 𝑧
axis. Second, though using Euler angles (or RPy specifi-
cally) introduces many problems (like quaternion to RPy is
not unique and have singularity issues), yet it is more read-
able and easier for debugging. In our solutions, poses of
products on the tray is represented with a yaw angle. A
Boolean variable indicates whether the product is flipped.

4.4. Sensor Choices
The scoring metrics [24] of ARIAC favor solutions whose

sensors cost less. In our 2019’s solution, only a laser scanner
and a logical camera were used in our entry. And in 2020’s
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solution, 9 logical cameras were used.
By using fewer sensors, we risk not having enough infor-

mation about the environment. As an example, in our solu-
tion for ARIAC 2019, no sensor was put on top of the bins.
The robot arms had to search or fumble around in the bin to
grasp a product or to find out that the bin is empty. The sig-
nificantly lower sensor cost, as compared with other teams,
turned out to benefit us overall.

5. Conclusion
Considering the amount of effort we put in, our team ex-

celled in producing an agile and well-functioning system.
Our submissions proved to be competitive, placing among
the top three in both 2019 and 2020. We have summarized
the approaches we took, including our task and motion plan-
ning architecture, pose representations, and the choices of
sensors. Our system’s failure modes, which we learned the
hard way, suggest that it is important for systems to be able
to agilely recover from errors and continue. In sharing our
lessons from our participation, we hope it will be of benefit
to future ARIAC competitions and the larger robotics com-
munity.
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