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Fast, High-Quality Two-Arm Rearrangement in
Synchronous, Monotone Tabletop Setups

Rahul Shome1 Kiril Solovey2 Jingjin Yu3 Kostas Bekris3 Dan Halperin4

Abstract—Rearranging objects on a planar surface arises in a
variety of robotic applications, such as product packaging. Using
two arms can improve efficiency but introduces new computa-
tional challenges. This paper studies the problem structure of
object rearrangement using two arms in synchronous, monotone
tabletop setups and develops an optimal mixed integer model.
It then describes an efficient and scalable algorithm, which first
minimizes the cost of object transfers and then of moves between
objects. This is motivated by the fact that, asymptotically, object
transfers dominate the cost of solutions. Moreover, a lazy strategy
minimizes the number of motion planning calls and results in
significant speedups. Theoretical arguments support the benefits
of using two arms and indicate that synchronous execution, in
which the two arms perform together either transfers or moves,
introduces only a small overhead. Experiments support these
claims and show that the scalable method can quickly compute
solutions close to the optimal for the considered setup.

Note to Practitioners—Monotone tabletop rearrangement chal-
lenges arise in a variety of automation scenarios including
product sorting or packing. Performing this task with two robotic
manipulators introduces the overhead of coordinating them in
the shared workspace, as well as an increase in the size of the
underling search space. The objective of this work is to study the
feasibility of such dual-arm solutions, providing both theoretical
bounds, as well as a fast, and approximate solution. The approach
leverages an effective algorithmic decomposition of the problem
so as to take advantage of efficient motion planners and mixed-
integer linear programming solvers. The proposed solution has
been evaluated in settings that include delta-robots as well as 7-
dof manipulators. Interesting extensions of this work correspond
to studying the case of additional arms, non-monotone and
general manipulation scenarios.

I. INTRODUCTION

AUTOMATION tasks in industrial and service robotics,
such as product packing or sorting, often require sets of

objects to be arranged in specific poses on a planar surface.
Efficient and high-quality single-arm solutions have been
proposed for such setups [1]. The proliferation of robot arms,
however, including two-arm setups, implies that industrial
settings can utilize multiple robots in the same workspace
(Fig 1). This work explores a) the benefits and trade-offs of
using two arms for solving object rearrangement instead of
a single-arm, b) the combinatorial challenges involved and c)
computationally efficient, high-quality and scalable methods.
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Fig. 1. Two-arm setups that can utilize algorithms proposed in this work.

A major motivation for this work is that the coordinated
use of multiple arms to move multiple objects at the same
time can result in significant improvements in efficiency of
object rearrangement solutions. This arises from the following
argument.

Observation 1: There are classes of tabletop rearrangement
problems, where a k-arm (k ≥ 2) solution can be arbitrarily
better than the optimal single-arm one.

For instance, assume two arms that have full (overhand)
access to a unit square planar tabletop. There are n objects
on the table, divided into two groups of n

2 each. Objects in
each group are ε-close to each other and to their goals. Let
the distance between the two groups be on the order of 1, i.e.,
the two groups are at opposite ends of the table. The initial
position of each end-effector is ε-close to a group of objects.
Let the cost of each pick and drop action be cpd, while moving
the end-effector costs ct per unit distance. Then, the 2-arm cost
is no more than 2ncpd+2nεct. A single arm solution costs at
least 2ncpd+(2n−1)εct+ct. If cpd and ε are sufficiently small,
the 2-arm cost can be arbitrarily better than the single-arm one.
The argument also extends to k-arms relative to (k−1)-arms.

In most practical setups, the expectation is that a 2-arm
solution will be close to half the cost (e.g., time-wise) of
the single-arm case, which is a desirable improvement. While
there is coordination overhead, the best 2-arm solution cannot
do worse; simply let one of the arms carry out the best single
arm solution while the other remains outside the workspace.
This means whenever there is enough available space for k
arms, it can be said:

Observation 2: For any rearrangement problem, the best k-
arm (k ≥ 2) solution cannot be worse than an optimal single
arm solution.

The above observations motivate the development of scal-
able algorithmic tools for such two-arm rearrangement in-
stances. This work considers certain relaxations to achieve
this objective. In particular, monotone tabletop instances are
considered, where the start and goal object poses do not
overlap. Furthermore, the focus is on synchronized execution
of pick-and-place actions by the two arms. i.e., where the two
arms simultaneously transfer (different) objects, or simulta-
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neously move towards picking the next objects. Theoretical
arguments and experimental evaluation indicate that this does
not significantly degrade solution quality.

It should be noted here that the solutions presented in
this paper go beyond purely reasoning about task allocation
and scheduling of objects to robots. The two-arm object
rearrangement solution needs to consider geometric interac-
tions and collisions between robots and obstacles through
coordinated motion planning. Information about these real-
world interactions need to be considered to yield solutions
that are ultimately valid and collision-free.

The first contribution is the study of the combinatorial
structure of synchronous, monotone two-arm rearrangement.
Then, a mixed integer linear programming (MILP) model
is proposed that achieves optimal coordinated solutions in
this domain. The proposed efficient algorithm Tour Over
Matching (TOM) significantly improves in scalability. TOM
first optimizes the cost of object transfers and assigns objects
to the two arms by solving an optimal matching problem.
It minimizes the cost of moves from an object’s goal to
another object’s start pose per arm as a secondary objective
by employing a TSP solution. Most of the computation time
is spent on the many calls to an underlying motion planner
that coordinates the two arms. A lazy evaluation strategy is
proposed, where motion plans are evaluated and validated for
candidate solution sequences, as opposed to performing this
expensive motion plan computation for the entire search space.
This results in significant computational improvement and
reduces the calls to the motion planner. An analysis studies the
expected improvement in solution quality versus the single arm
case, as well as the expected cost overhead from a synchronous
solution.

Finally, experiments for i) a simple planar picker setting,
and ii) two 7-DOF Kuka arms, demonstrate a nearly two-
fold improvement against the single arm case for the proposed
approach in practice. The algorithm exhibits close to optimal
solutions and good scalability. The lazy evaluation strategy
significantly improves computation costs for both the optimal
and proposed methods.

The current archival version is an extension of previous
work [2]. In particular, several additions have been made to
provide a more holistic study of the problem:

1) A detailed illustration and expository text is provided
for describing the algorithmic steps, especially regarding
Section V.

2) Further analysis has been performed to study the prob-
lem (Section VII). Specifically, the result describing the
asymptotic cost bound for asynchronous operation has
been extended to the k-arm case. Additionally, a more
detailed proof is provided for the asymptotic cost bound
estimate in the case of synchronized two-arm operation.

3) The solutions from the benchmarks were post-processed
so as to minimize delays introduced due to the synchro-
nization assumption, and the data from this smoothing
operation is provided in Section VIII-C.

4) A benchmark (Section VIII-D) has been included to
demonstrate the efficacy of the proposed approach in

problem domains where initial or target poses of objects
do not lie in the shared workspace.

II. RELATED WORK

The current work dealing with two-arm object rearrange-
ment touches upon the challenging intersection of a variety
of rich bodies of prior work. It is closely related to multi-
robot planning and coordination where a challenge is the high
dimensionality of the configuration space. Optimal strategies
were developed for simpler instances of the problem [3],
although in general the problem is known to be computation-
ally hard [4]. Decentralized approaches [5] also used velocity
tuning [6]. General multi-robot planning tries to plan for
multiple high-dimensional platforms [7], [8] using sampling-
based techniques. Recent advances provide scalable [9] and
asymptotically optimal [10], [11] sampling based frameworks.

In some cases, by restricting the input of the problem to a
certain type, it is possible to cast known hard instances of a
problem as related algorithmic problems which have efficient
solvers. For instance, unlabeled multi-robot motion planning
can be reduced to pebble motion on graphs [12]; pebble motion
can be reduced to network flow [13]; and single-arm object
rearrangement can be cast as a traveling salesman problem [1].
These provide the inspiration to closely inspect the structure
of the problem to derive efficient solutions.

In this work we leverage a connection between two-arm
rearrangement and two combinatorial problems: (1) optimal
matching [14] and (2) TSP. On the surface the problem seems
closely related to multi-agent TSP. Prior work has formulated
the k-TSP solution in terms of splitting a single tour [15]
or as an optimization task [16]. Some work [17] deals with
asymmetric edge weights which are more relevant to the
problems of our interest. The problem can be posed as an
instance of multi vehicle pickup and delivery (PDP) [18]. Prior
work [19] has applied the PDP problem to robots, taking into
account time windows and robot-robot transfers. The seminal
work [20], [21] has explored its complexity, and concedes
to the hardness of the problem, while others studied cost
bounds [22], and proposed ILP formulations [21]. Typically
this line of work ignores coordination costs, though some
methods [23] reason about it on candidate solutions.

Navigation among movable objects deals with the com-
binatorial challenges of multiple objects [24], [25], and has
been shown to be a hard problem, and extended to manipu-
lation applications [26]. Despite a lot of interesting work on
challenges of manipulation and design choices [27] in grasp
planning, the current work shall make assumptions that avoid
complexities arising from them. The availability of manipula-
tors opened the door to solve rearrangement tasks [28], [29],
including instances where objects can be grasped only once
or monotone [26], as well as non-monotone instances [30],
[31]. Efficient solutions to assembly planning problems [32],
[33] typically assume monotonicity, as without it the problem
becomes much more difficult. Recent work has dealt with the
hard instances of task planning [34], [35] and rearrangement
planning [36], [37], [1]. Sampling-based task planning has
made a recent push towards guarantees of optimality [38],
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[39]. These are broader approaches that are invariant to the
combinatorial structure of the application domain. The current
work draws inspiration from these varied lines of research.

General task planning methods are unaware of the underly-
ing structure studied in this work. Single-arm rearrangement
solutions will also not be effective in this setting. The current
work tries to bridge this gap and provide insights regarding
the structure of two-arm rearrangement. Under assumptions
that enable this study, an efficient solution emerges for this
problem.

III. PROBLEM SETUP AND NOTATION

Consider a planar surface and a set of n rigid objects
O = {o1, o2 · · · on} which can rest on the surface in stable
poses pi ∈ Pi ⊂ SE(3). The arrangement space A =
P1 × P2 . . . × Pn is the Cartesian product of all Pi, where
every rearrangement A ∈ A is an n-tuple (p1, . . . , pn). In valid
arrangements Aval ⊂ A, the objects are pairwise disjoint.

Fig. 2. An example of object rearrangement involving two robotic arms.
Initial (left) and final (right) object configuration.

Two robot arms 1 m1 and m2 can pick and place the objects
from and to the surface. Ck

free is the set of collision-free con-
figurations for arm mk (while ignoring possible collisions with
objects or the other arm), and is assumed here to be a subset of
d-dimensional Euclidean space Rd. A path for mk is denoted
as πk : [0, 1]→ Ck

free and includes picking and placing actions
throughout the entire rearrangement process. Let the set of
collisions induced between the geometries of both the arms
at two configurations along the path (at t) be denoted by
the expression π1(t) ⊖ π2(t). If there are no collisions then
π1(t) ⊖ π2(t) = ∅. The space of dual-arm paths D is made
of pairs of paths for the two arms: D = (π1, π2) ∈ D. Then,
A(Ainit, D) is the resulting arrangement when the objects are
at Ainit and moved according to D. Let cost(D) : D → R be
a cost function over dual-arm paths.

Definition 1 (Optimal Two-arm Rearrangement): Given
arms m1, m2 and objects O to be moved from initial arrange-
ment Ainit ∈ Aval to target arrangement Agoal ∈ Aval, the
optimal dual-arm rearrangement problem asks for a dual-arm

1We shall use superscripts to denote arms, and subscripts to index into some
sequence or data-structure dependent on context, unless stated otherwise.

path D∗ ∈ D, which optimizes a cost function, and solution
paths belong to the valid configuration space.

D∗ = (π∗1, π∗2) = argmin
∀D∈D

cost(D) (1)

such that A(Ainit, D
∗) = Agoal ,and ∀t ∈ [0, 1]

π∗1(t) ∈ C1
free, π∗2(t) ∈ C2

free, π
∗1(t)⊖ π∗2(t) = ∅

Assumptions are introduced to deal with the problem’s
combinatorics. The reachable task-space T k ⊂ SE(3) of arm
mk is the set of SE(3) poses that objects attached to the arm’s
end effector can acquire.

Let the ordered set of objects moved during the arm path
πk be denoted as Ō(πk). In general, an object can appear
many times in Ō(πk). The current work, however, focuses on
monotone instances, where each object is moved once.

Assumption 1 (Monotonicity): There are dual-arm paths
D = (π1, π2) that satisfy Eq. 1, where each object oi ∈ O
appears once in Ō(π1) or Ō(π2).

For the problem to be solvable, all objects are reach-
able by at least one arm at both Ainit and Agoal: ∀ pi ∈
Ainit and ∀ pj ∈ Agoal and ∃ k ∈ [1, 2] : pi, pj ⊂ T k. The
focus will be on simultaneous execution of transfer and move
paths.
Transfers: Dual-arm paths T (π1

i , π
2
i ) ∈ D, where Ō(πk

i ) =
oki and each mk:
− starts the path in contact with an object oki at its initial
pose in Ainit,
− and completes it in contact with object oki at its final
pose in Agoal.

Moves or Transits: Paths M(π1
i→i′ , π

2
i→i′) ∈ D, Ō(πk

i→i′) =
∅, and each mk:
− starts in contact with object oki at its final pose in Agoal,
− and completes it in contact with object oki′ at its initial
pose in Ainit.
Assumption 2 (Synchronicity): Consider dual-arm paths,

which can be decomposed into a sequence of simultaneous
transfers and moves for both arms:

D =(T (π1
1 , π

2
1),M(π1

1→2, π
2
1→2), . . . ,M(π1

ℓ−1→ℓ, π
2
ℓ−1→ℓ),

T (π1
ℓ , π

2
ℓ )). (2)

For simplicity, Eq. 2 does not include an initial move from
qksafe ∈ Ck

free and a final move back to qksafe (an odd number
of objects can also be easily handled). Then, the sequence of
object pairs moved during a dual-arm path as in Eq. 2 is:

Ω(D) =

(
ωi = (o1i , o

2
i ) | i, j ∈ [1 · · · ℓ],

⋃
i

(o1i ∪ o2i ) = O,∀k, k′ ∈ [1, 2], oki ̸= ok
′

j

)
. (3)

Given the pairs of objects ωi, it is possible to express a transfer
as T (ωi) and a move as M(ωi→j). Then, D(Ω) is the syn-
chronous, monotone dual-arm path due to Ω = (ω1, . . . , ωℓ),
i.e., D(Ω) = (T (ω1),M(ω1→2), . . . ,M(ωℓ−1→ℓ), T (ωℓ)).

Assumption 3 (Object Non-Interactivity): There are
collision-free transfers T (ωi) and moves M(ωi→i′) regardless
of the object poses in Ainit and Agoal. This entails that there
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is no interaction between the n resting objects and the arms
during transits. Similarly, there are no interactions between
the arm-object system and the n−2 resting objects during the
transfers. Collisions involving the arms, static obstacles and
picked objects are always considered.

The metric this work focuses on relates to makespan and
minimizes the sum of the longest distances traveled by the
arms in each synchronized operation. Let ∥πk∥ denote the
Euclidean arc length in Ck

free ⊂ Rd of path πk. Then,
for transfers cost(T (π1

i , π
2
i )) = max{∥π1

i ∥, ∥π2
i ∥}. Similarly,

cost(M(π1
i→i′ , π

2
i→i′)) = max{∥π1

i→i′∥, ∥π2
i→i′∥}. Then, over

the entire dual-arm path D define:

cost(D) =

ℓ∑
i=1

cost(T (ωi)) +

ℓ−1∑
i=1

cost(M(ωi→i+1)). (4)

Note that the transfer costs do not depend on the order in
which the objects are moved but only on the assignment of
objects to arms. The transit costs arise out of the specific
ordering in Ω(D). Then, for the setup of Definition 1 and
under Assumptions 1-3, the problem is to compute the optimal
sequence of object pairs Ω∗ so that D(Ω∗) satisfies Eq. 1 and
minimizes the cost of Eq. 4.

A. Discussion on Assumptions

This work restricts the study to a class of monotone
problems that relate to a range of industrial packing and
stowing applications. The monotonicity assumption is often
used in manageable variants of well-studied problems [32],
[33]. A monotone solution also implies that every object’s
start and target is reachable by at least one arm. Objects
do not need to be in the commonly reachable workspace as
long as the problem is monotone and solvable. Section VI
discusses a NO_ACT task that can deal with unbalanced object
assignments between two arms.

The synchronicity assumption allows to study the combi-
natorial challenges of the problem, which do not relate to
the choice of time synchronization of different pickups and
drop-offs. Section VI describes the use of dRRT∗[10], [11]
as the underlying motion planner that can discover solutions
that can synchronize arm motions for simultaneous picks,
and simultaneous placements. The synchronicity assumption
is relaxed through smoothing (Section VI).

The non-interactivity assumption comes up naturally in
planar tabletop scenarios with top-down picks or delta robots.
Such scenarios are popular in industrial settings. Once the
object is raised from the resting surface, transporting it to its
target does not introduce interactions with the other resting
objects. This assumption is also relaxed in Section VI, with
a lazy variant of the proposed method. Once a complete
candidate solution is obtained, collision checking is performed
with the entire scene.

Overall, under Assumptions 1-3, the current work identifies
a problem structure, which allows arguments pertaining to the
search space, completeness, and optimality. Nevertheless, the
smoothed, lazy variant of the proposed method will still, in
the experiments that were carried out, often return effective
solutions in practice, even if these assumptions do not hold.

Scope and Limitations: A variety of automation applications
like packing, stowing, or sorting involve different singulated
objects arriving at designated source regions, and require their
rearrangement to a disjoint target region or container. Such au-
tomation applications also create semi-structured workspaces
that guarantee that all objects of interest are easily graspable
(top-down for planar surfaces). This class of problems is
monotone since the source and target poses are disjoint, and
no transfer will require an intermediate location. In this case
object non-interactivity essentially implies that the workspace
is well-behaved enough to allow feasible single-arm motion
plans between top-down reachable poses of the object. The
current work addresses what we need to do in order to
go beyond single arm setups and in particular in order to
effectively deploy two arms to speed up such tasks. Our work
also theoretically motivates the use of two arms over a single
arm in monotone object rearrangement.

The assumptions on the domain laid out in this work serve
to identify the class of problems where our theoretical bounds
will be close to the attained performance. The lazy variant
proposed in this work is assured to iterate over all possible
orderings of object-to-arm assignments, and take into account
planning feasibility of the same. As such it is guaranteed to
discover a solution as long as the two-arm rearrangement
problem is monotone. Admittedly, in domains where these
assumptions are pathologically violated the theoretical and
practical gains highlighted in this work will be compromised.
The proposed method has limiting applicability to some in-
teresting domains where objects are occluded, overlap, or lie
in unstructured piles. Any non-monotone problems, i.e., prob-
lems that necessitate using an intermediate location, cannot be
addressed by the current pipeline. These include puzzle-like
or highly cluttered scenarios.

IV. BASELINE APPROACHES AND SIZE OF SEARCH SPACE

This section highlights two optimal strategies to discover
D(Ω∗): a) exhaustive search, which reveals the search space of
all possible sequences of object pairs Ω and b) an MILP model.
Both alternatives, however, suffer from scalability issues as
for each possible assignment, it is necessary to solve a coor-
dinated motion planning problem for the arms. This motivates
minimizing the number of assignments ω considered, and the
number of motion planning queries it requires for discovering
D(Ω∗), while still aiming for high quality solutions.

A. Exhaustive Search

The exhaustive search approach, illustrated in Fig. 3 is a
brute force expansion of all possible sequences of object pairs
Ω. Nodes correspond to transfers T (ωi) and edges are moves
M(ωi→i′). The approach evaluates the cost for all possible
branches to return the best sequence Ω. The total number of
possible distinct plans is n!.

nP 2 +
nP 2 × n−2P 2 + ...+ nP 2 × n−2P 2 × n−4P 2...× 2P 2 =

n/2∑
L=1

2L−1∏
k=0

(n− k) (5)
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Fig. 3. Search tree for 4 objects (A,B,C,D) where each branch orders a
sequence of object-arm assignments.

where nP k is the k-permutations of n.
Motion plans can be reused, however, and repeated occur-

rences of T (ωi) and M(ωi→i′) should be counted only once
for a total of:
− nP 2 transfers of objects, and
− nP 2 × n−2P 2 transits between all possible valid ordered

pairs of ω.
Additional motion plans are needed for the initial move from
qksafe and the return to it at the end of the process, introducing
2× nP 2 transits:

# of Transfers + # of Moves =
nP 2 +

(
(nP 2 × n−2P 2) + (2× nP 2)

)
(6)

This returns an optimal synchronized solution but performs
an exhaustive search and requires exponentially many calls to
a motion planner.

B. MILP Formulation

Mixed Integer Linear Programming (MILP) formulations
can utilize highly optimized solvers [40]. Prior work has
applied these techniques for solving m-TSP [16], [17] and
pickup-and-delivery problems [19], [21], but viewed these
problems in a decoupled manner. This work outlines an MILP
formulation for the synchronized two-arm rearrangement prob-
lem that reasons about coordination costs arising from arm
interactions in a shared workspace.

Graph Representation: The problem can be represented as
a directed graph where:
• vertices v = ωv = (o1v, o

2
v) correspond to a transfer T (ωv);

• edges e(u, v) are valid moves M(ωu→v).
A valid edge e(u, v) is one where an object does not appear
more than once in the transfers of nodes u and v. The cost of
a directed edge e(u, v) encodes both the cost of the transfer
T (ωu) and the cost of the move M(ωu→v). There is also a
vertex S, which connects moves from and to the safe arm
configurations qksafe. The directed graph Ĝ(V̂ , Ê) is defined:

V̂ ={S} ∪ {v = ωv = (o1v, o
2
v) |

∀ o1v, o
2
v ∈ O, o1v ̸= o2v},

Ê ={e(u, v) | ∀ u, v ∈ V̂ so that u ̸= v,

okv ̸= oℓu ∀ k, ℓ ∈ [1, 2]}∪
{e(S, v) ∀ v ∈ V̂ \ S}∪
{e(v, S) ∀ v ∈ V̂ \ S}

coste(u,v) =cost(u) + cost(u, v)
=cost(T (ωu)) + cost(M(ωu→v))

Let cost(S) = 0. The total number of motion planning
queries needed to be answered to define the edge costs is
given in Eq. 6. The formulation proposed in this section tries
to ensure the discovery of Ω∗ on Ĝ as a tour that starts and
ends at S, while traversing each vertex corresponding to Ω∗.
To provide the MILP formulation, define δin(v) as the in-edge
set v, and δout(v) as the out-edge set. Then, γ(o) is the object
coverage set γ(o) = {e(u, v) | e ∈ Ê, o ∈ ωu}, i.e., all the
edges that transfer an object o.

Model: Set the optimization objective as:

min
∑
e∈Ê

costexe [A]

Eq. [B] below defines indicator variables. Eqs. [C-E] ensure
edge-flow conserved tours. Eqs. [F-G] force S to be part of
the tour. Eq. [H] transfers every object only once. Eq. [I] lazily
enforces the tour to be of length n

2 +1 [41]. While the number
of motion-planning queries to be solved is the same as in
exhaustive search, efficient MILP solvers [40] provide a more
scalable search process.

xe ∈ {0, 1} ∀e ∈ Ê [B]∑
e∈δin(v)

xe ≤ 1 ∀v ∈ V̂ [C]

∑
e∈δout(v)

xe ≤ 1 ∀v ∈ V̂ [D]

∑
e∈δin(v)

xe =
∑

e∈δout(v)

xe ∀v ∈ V̂ [E]

∑
e∈δin(S)

xe = 1 [F]

∑
e∈δout(S)

xe = 1 [G]

∑
e∈γ(o)

xe = 1 ∀o ∈ O [H]

∑
e(u,v)∈T

xe < |T| ∀T ⊂ V̂ , |T| ≤ n

2
[I]

V. EFFICIENT SOLUTION VIA TOUR OVER MATCHING

The optimal baseline methods described above highlight the
problem’s complexity. Both methods suffer from the large
number of motion-planning queries they have to perform
to compute the cost measures on the corresponding search
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structures. For this purpose it needs to be seen whether it
is possible to decompose the problem into solvable sub-
problems.

A. Importance of Transfers

In order to draw some insight, consider again the tabletop
setup with a general cost measure of ct per unit distance.
Observation 1 suggests that under certain conditions, there
may not be a meaningful bound on the performance ratio
between a k-arm solution and a single-arm solution. This
motivates the examination of another often used setting—
randomly chosen non-overlapping start and goal locations
for n objects (within a unit square). In order to derive a
meaningful bound on the benefit of using a 2-arm solution to
a single-arm solution, we first derive a conservative cost of a
single-arm solution. A single-arm optimal cost has three main
parts: 1) the portion of the transfer cost involving the pickup
and drop-off of the n objects with a cost of Cpd = ncpd, 2)
the remaining transfer cost from start to goal for all objects
Csg , and 3) the transit cost going from the goals to starts Cgs.
The single arm cost is

Csingle = ncpd + Csg + Cgs. (7)

To estimate Eq. 7, first note that the randomized
setup will allow us to obtain the expected Csg[42] as
2+

√
2+5 ln(1+

√
2)

15 nct ≈ 0.52nct. Approximate Cgs by simply
computing an optimal assignment of the goals to the starts of
the objects excluding the matching of the same start and goal.
Denoting the distance cost of this matching as CM

gs , clearly
Cgs > CM

gs because the paths produced by the matching may
form multiple closed loops instead of the desired single loop
that connects all starts and goals. However, the number of
loops produced by the matching procedure is on the order of
lnn and therefore, Cgs < CM

gs + ct lnn, by [22]. By [43],
CM

gs = Θ(
√
n lnn). Putting these together, we have,

Θ(ct
√
n lnn) = CM

gs < Cgs < CM
gs + ct lnn =

Θ(ct
√
n lnn) + ct lnn

which implies that Cgs ≈ CM
gs because for large n, lnn ≪√

n lnn. It is estimated in [44] that CM
gs ≈ 0.44

√
n lnnct for

large n. Therefore,

Csingle ≈ ncpd + (0.52n+ 0.44
√
n lnn)ct

≈ (cpd + 0.52ct)n (8)

noting that the 0.44
√
n lnnct term may also be ignored for

large n. The cost of dual arm solutions will be analyzed
in Section VII. We summarize the discussion above in the
following lemma.

Lemma 1: For large n, the transfers dominate the cost of
the solution.

We formulate a strategy to reflect this importance of trans-
fers. The proposed approach gives up on the optimality of the
complete problem, instead focusing on a high-quality solution,
which:

− first optimizes transfers and selects an assignment of
object pairs to arms,
− and then considers move costs and optimizes the schedule

of assignments.
This ends up scaling better by effectively reducing the size
of the search space and performing fewer motion planning
queries. It does so by optimizing a related cost objective and
taking advantage of efficient polynomial-time algorithms.

B. Foundations

Consider a complete weighted directed graph G(V, E)
(Eqs. 9), where v ∈ V corresponds to a single object o. Each
directed edge, e = (oi, oj) ∈ E is an ordered pair of objects
oi and oj , where the order determines the assignment of an
object to an arm m1 or m2. The cost of an edge cost(e) is the
coordinated motion planning cost of performing the transfer
corresponding to ω = (oi, oj). For instance, as shown in
Fig 4(top-middle), e(A,B) corresponds to m1 transferring ‘A’,
while m2 transfers ‘B’, and the cost(e(A,B)) = cost(T (ω =
(A,B)) is the cost of such a concurrent motion. It should
also be noted that since the arms are different, in general,
cost(e(A,B)) ̸= cost(e(B,A)).

G(V, E)
V = {v = o,∀o ∈ O}

E = {e(u, v) : ω = (u, v),∀u, v ∈ V}
cost(e(u, v)) = cost(T (ω = (u, v))) (9)

By Eq. 4, the cost of the transfers can be reasoned about
independent of their order. Define {Ω} as the unordered set of
ω ∈ Ω, then unordered transfer cost component corresponds
to
∑

ω∈{Ω} cost(T (ω)). Since G is a complete graph (shown
in Fig 4(top-right)) where every edge corresponds to every
possible valid ω, by construction {Ω} ⊂ E . A candidate
solution of a monotone two-arm rearrangement problem must
transfer every object exactly once. In terms of the graph, this
means that in the subset of edges {Ω} every vertex appears in
only one edge. We arrive at the following crucial observation.

Lemma 2 (Perfect Matching): Every candidate solution to a
monotone dual-arm rearrangement problem comprises a set of
unordered object-to-arm assignments {Ω} that is also a perfect
matching solution on G.

As per the decomposition of the costs in Eq. 4, it follows
that the cost({Ω}) is the cost of the transfers in the solution.
The solution to the minimum-weight perfect edge matching
problem on such a graph would correspond to a {Ω} that
optimizes the cost of transfers of all the objects.

Lemma 3 (Optimal Matching): The set of object-to-arm
assignments {Ω}∗ that minimizes the cost of object transfers
is a solution to the minimum-weight perfect matching problem
on G.

Once such an optimal assignment {Ω}∗ is obtained, the
missing part of the complete solution is the set of transits be-
tween the object transfers and their ordering. Construct another
directed graph GΓ (Eqs. 10), where the vertices comprise of
the ω ∈ {Ω}∗, i.e., the optimal object-to-arm assignments. An
edge e(ωu→v) corresponds to the coordinated transit motion
between them. For instance, as in Fig 4(bottom-middle) for
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Fig. 4. (Top-left) A two-arm rearrangement problem. (Top-middle) Directed edges between objects represents the assignment of arms to object transfers.
(Top-right) The problem of optimizing object transfers reduces to a minimum weight edge matching on a fully connected directed graph of transfers. (Bottom-
left) The legends for the different symbols used in the diagrams. (Bottom-middle) A directed edge between object pairs represents the transit between the
target poses of the previous objects to the initial poses of the next. (Bottom-right) Each transit moves the arms from the target poses of the current objects,
to the initial poses of the next objects in the object-arm assignments. A sequence of object-arm assignments form an optimal tour over a transit graph.

an edge between ω(A,B) and ω(C,D), m1 moves from the
target pose of object ‘A’ to the starting pose of object ‘C’, and
similarly m2 moves from the target of ‘B’ to the start of ‘D’.
An additional vertex corresponding to the starting (and ending)
configuration of the two arms (S) is added to the graph. The
graph (shown in Fig 4(bottom-right)) is fully connected again
to represent all possible transits or moves.

GΓ(VΓ, EΓ)
VΓ = {v = ω,∀ω ∈ {Ω}∗} ∪ {ωS}
EΓ = {e(u, v) : ωu→v,∀u, v ∈ VΓ}

cost(e(u, v)) = cost(M(ωu→v)) (10)

A complete candidate solution to the problem now requires
the sequence of ω, which is a complete tour over GΓ, that
visits all the vertices i.e., an ordered sequence of vertices Γ =
(S,ΩΓ, S).

Lemma 4 (Tour): Any complete tour Γ over the graph
GΓ, corresponds to a sequence of object-to-arm assignments
ΩΓ and is a candidate solution to the synchronous two-arm
rearrangement problem.

Let P{Ω} represent the set of all possible ordering of the
elements in {Ω}. This means, any candidate tour corresponds
to a ΩΓ ∈ P{Ω}. An optimal tour on GΓ minimizes the transit
costs over the all possible candidate solutions in P{Ω}∗

Ω+ = argmin
Ω∈P{Ω}∗

∑
e(u,v)∈Γ

cost(M(ωu→v))). (11)

This differs from the true optimal Ω∗, since the second
step of finding the optimal transit tour only operates over all

Algorithm 1: TOM(O, S,Ainit, Agoal)

1 G ← transfer graph(O, Ainit, Agoal);
2 {Ω}∗ ← optimal matching(G);
3 GΓ ← transit graph({Ω}∗, S);
4 Ω+ ← optimal tour(GΓ);
5 return D(Ω+);

possible solutions that include the optimally matched transfers
obtained in the first step. The insight here is that, even though
Ω+ reports a solution to a hierarchical optimization objective,
the search space is much smaller, and the sub-problems more
efficient to solve.

C. Algorithm : Tour-Over-Matching

This section describes the algorithm (TOM) outlined in the
previous section. The steps correspond to Algo 1.

- transfer graph: This function constructs a directed
graph G defined by Eqs. 9. This step creates a graph
with n vertices and nP 2 edges.

- optimal matching: This function takes the graph G
constructed as an argument and returns the unordered set
of edges, corresponding to the set of optimal transfers
over G. Optimal matching over an undirected graph
can be solved using Edmond’s Blossom Algorithm [14],
[45], [46]. The directed graph G is converted into an
equivalent undirected graph GU . Since G is complete,
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every pair of vertices shares two directed edges. GU
only preserves the minimally weighted connection for
every vertex pair. The result of matching is a subset of
edges on GU which correspond to a set of directed edges
on G i.e., {Ω}∗. The runtime complexity of the step is
O(|E||V| log |V|) = O(nP 2n log n) = O(n3 log n).

- transit graph: This function constructs the directed
transit graph GΓ as per the set of Eqs. 10. This constructs
n
2 + 1 vertices and (n

2 +1)P 2 edges.
- optimal tour: Standard TSP solvers like Gurobi [40]

can be used to find the optimal tour over GΓ correspond-
ing to Ω+.

The costs are deduced from coordinated motion plans over
edges. The total number of such calls compared to the count
from the baseline in Equ. 6, shows a saving of a factor of
O(n2) queries (# of Transfers + # of Moves).

Baseline #

TOM #
=

nP 2 +
(
nP 2 × n−2P 2

)
+
(
2× nP 2

)
nP 2 +

(n
2 +1)P 2

=
4(n− 1)((n− 5)n+ 9)

5n− 2
(12)

The evaluation performed here focuses on the maximum
of distances (Eq. 4) covered by the arms in a solution for a
fair comparison with the other methods. The prioritization of
optimization objective, however, is also amenable to other cost
functions, where carrying objects is often more expensive than
object-free motions.

VI. INTEGRATION WITH MOTION PLANNING

The algorithms described so far are agnostic to the un-
derlying motion planner. Depending upon the model of the
application domain, different motion planning primitives might
be appropriate. For planar environments with disk robot pick-
ers (similar to delta robots), recent work [47] characterizes the
optimal two-disk coordinated motions. The current implemen-
tation uses a general multi-robot motion planning framework
dRRT∗ [10], [11] for dual-arm coordinated planning.

In practice the cost of generating and evaluating two-
arm motions can dominate the overall running time of the
algorithm, when compared to the combinatorial ingredients
that discover the high-level plan, i.e., execution order and
and arm assignment. Even though TOM reduces this, further
improvements can be made with lazy evaluation.
Lazy Evaluation: Recent work [48] introduces heuristics for
dRRT∗, which pre-process estimates of the shortest path costs
for the arms. Two-arm rearrangement can be significantly sped
up if the motion planning queries are replaced with look-ups
of such heuristics. Once a candidate Ω is obtained, motion
planning can expand the solution D(Ω) to obtain the actual
solution paths. If this fails, the algorithm tries other sequences.

The algorithm Algo 2 takes as input the algorithm ALGO,
a heuristic H, and a motion planner MP. Eb keeps track of
the blocked edges. The process keeps generating candidate
solutions using the ALGO (Line 3). Line 5 motion plans over
the candidate solution, and appends to the result (Line 6). Any
failures are recorded in Eb (Lines 8,10), and inform subsequent
runs of ALGO.

Algorithm 2: Lazy_Evaluation(ALGO,H, MP)
1 Eb ← ∅; D ← ∅;
2 while D = ∅ ∧ time not exceeded do
3 Ω← ALGO(H, Eb);
4 for ωi, ωi→i+1 ∈ Ω do
5 Di, Di→i+1 ← MP(ωi), MP(ωi→i+1);
6 D ← (D,Di, Di→i+1);
7 if Di = ∅ then
8 Eb ← Eb ∪ {ωi}; D ← ∅;
9 if Di→i+1 = ∅ then

10 Eb ← Eb ∪ {ωi→i+1}; D ← ∅;
11 if D = ∅ then break ;
12 return D

Completeness: The lazy variants give up on optimality for the
sake of efficiency but given enough retries the algorithms will
eventually solve every problem that ALGO can. The motion
planning and evaluation is performed in sequence of the
order of execution. The object non-interactivity assumption
is relaxed since all the object positions are effectively known
during the evaluation of a candidate solution.
Smoothing: Applying velocity tuning over the solution tra-
jectories for the individual arms relaxes the synchronization
assumption by minimizing any waits that might be a by-
product of the synchronization. Smoothing does not change
the maximum of distances, only improves execution time.
Indications that the smoothed variants of the synchronous
solutions do not provide significant savings in execution time
are included in the results for the interested reader in Fig 9.

It should be noted that in an iterative version of TOM, in or-
der to explore variations in optimal object-to-arm assignments
{Ω}∗ if failures occur in finding Γ, some edges need to be
temporarily blocked on {Ω}∗. The search structures can also
be augmented with NO_ACT tasks, for possible ω where one
of the arms do not move.

VII. BOUNDING COSTS UNDER PLANAR DISC
MANIPULATOR MODEL

This section studies the dual arm costs in the randomized
unit tabletop setting, where ct is the cost measure per unit
distance. Assume for simplicity that each arm’s volume is
represented as a disc of some radius r. Eq. 8 derives the
cost estimate for a single arm solution as approximately
(cpd +0.52ct)n. Firstly the following arguments can be made
for k-arms.

Theorem 1: A k-arm solution can have an asymptotic
improvement of 1

k over the single arm solution, when rear-
ranging objects with non-overlapping starts and goals that
are uniformly distributed in a unit square.

Proof: In the planar unit-square setting, with k arms, there
are n

k objects for each arm to work with. Consider the transfers
and transits of a set of k objects, one for each arm. By [49],
the arbitrary rearrangement of k discs can be achieved in a
bounded region with a perimeter of O(kr). Clearly, the per
robot additional (makespan or distance) cost is bounded by
some function f(k, r)ct, which goes to zero as r goes to zero.
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Adding up all the potential cost that can be incurred, a k-arm
solution has a cumulative cost of:
Ck-arm = Csingle + nf(k, r)ct ≈ (cpd + 0.52ct + f(k, r)ct)n .
For fixed k and small r, Ck-arm is almost the same as
Csingle. Upon considering the maximum of the two arc lengths
or makespan, the k-arm cost becomes Ct

k-arm ≈ (cpd +
0.52ct)

n
k + nf(k, r)ct.

The cost ratio is
Ct

k-arm

Csingle
≈

(cpd + 0.52ct)
n
k + nf(k, r)ct

(cpd + 0.52ct)n

=
1

k
+

f(k, r)ct
cpd + 0.52ct

. (13)

When r is small or when ct
cpd

is small, the k-arm solution
is roughly 1

k as costly as the single arm solution. On the other
hand, in this model a k-arm solution does not do better than
1
k of the single arm. □

For obtaining a 2-arm solution, first partition the n objects
randomly into two sets of n

2 objects each. Then, obtain the
two initial solutions similar to the single arm case.

Corollary 1: A 2-arm solution can have an asymptotic
improvement of 1

2 over the single arm solution for rearrang-
ing objects with non-overlapping starts and goals that are
uniformly distributed in a unit square

Proof: From the initial 2-arm solution, we construct an
asynchronous 2-arm solution that is collision-free. Assume
that pickups and drop-offs can be achieved without collisions
between the two arms, which can be achieved with properly
designed end-effectors. The main overhead is then the potential
collision between the two (disc) arms during transfer and move
operations. Because there are n

2 objects for each arm to work
with, an arm may travel a path formed by n+ 1 straight line
segments. Since we can have at most four intersections for the
transfers and transits associated with a pair of objects (one for
each arm), there are at most 2n potential collisions to handle.
For each intersection, let one arm wait while the other circles
around the first arm, which incurs a cost that is bounded by
2π · r · ct.

Adding up all the potential cost that a 2-arm solution can
incur, the following cumulative cost is obtained:
Cdual = Csingle + 2n(2πrct) ≈ (cpd + 0.52ct + 4πrct)n .

For small r, Cdual is almost the same as Csingle, and ct is a
distance (e.g., energy) cost. Upon considering the maximum
of the two arc lengths or makespan (Eq. 4), the 2-arm cost
becomes Ct

dual ≈ (cpd + 0.52ct)
n
2 + 4nπrct.

The cost ratio is
Ct

dual

Csingle
≈

(cpd + 0.52ct)
n
2 + 4nπrct

(cpd + 0.52ct)n

=
1

2
+

4πrct
cpd + 0.52ct

(14)

When r is small or when ct
cpd

is small, the 2-arm solution is
roughly half as costly as the single arm solution. On the other
hand, in this model a 2-arm solution does not do better than
1
2 of the single arm solution. □

Theorem 2: For rearranging objects with non-overlapping
starts and goals that are uniformly distributed in a unit
square, a randomized 2-arm synchronized solution can have

an asymptotic improvement of 1
2 over the single arm solution

if ct
cpd

is small, and an improvement of roughly 0.64 when both
cpd and r are small.

Proof: In preparation for the proof of Theorem 2, we
develop the following lemma.

Lemma 5: The expected measure of the maximum of lengths
of two random lines on a unit square is 0.66.

Proof: Prior work [50] defines the probability distribution
function (pdf) of lengths(ℓ) of randomly sampled lines in a
rectangle.

Substituting the values for the dimensions of the rectangle
in the unit square model, the pdf can be simplified as follows.

p(ℓ) = 2πℓ− 8πℓ2 + 2ℓ3, ℓ ∈ [0, 1]

p(ℓ) = 4ℓ sin−1

(
1

ℓ

)
− 4ℓ cos−1

(
1

ℓ

)
+ 8ℓ

√
ℓ2 − 1− 2ℓ3 − 4ℓ,

ℓ ∈ [1,
√
2],

where ℓ is the length measure, and p(ℓ) is the probability
measure over different lengths. Assuming two random sets
of lines, representing transfers in a random split of objects
between two arms, the expected value of the maximum of
these pairwise lengths i.e., E(max(ℓ1, ℓ2)), ℓ1, ℓ2 i.i.d, ℓ1 ∼
p, ℓ2 ∼ p, can be estimated using the pdf obtained.

E(max(ℓ1, ℓ2)) =

∫ √
2

0

∫ √
2

0

max(ℓ1, ℓ2)p(ℓ1)p(ℓ2)dℓ2dℓ1

≈ 0.663

Prior work [42] offered an estimate for the expected length
of a transit path Csg in terms of the expected length of a line
segment, 0.52, in a randomized setting in a unit square. With
the current estimate of 0.66 for the maximum of two such
randomly sampled line segments, it follows that, the expected
makespan or maximum of distances cost will use this estimate.

□
Now all the tools necessary for the proof of Theorem 2 are

available.
The synchronization assumption changes the expected cost

of the solution. The random partitioning of the n objects into
two sets of n

2 object with a random ordering of the objects
yields n

2 pairs of objects transfers, which dominate the total
cost for large n. The cost (Eq. 4) of n

2 synchronized transfers
(ωi) includes n

2 cpd and Csync
sg ≈ (E(max(ℓ1, ℓ2))ct)

n
2 , where

E(max(ℓ1, ℓ2)) is the expected measure of the maximum of
lengths ℓ1,ℓ2 of two randomly paired transfers.

It follows that Csync
dual ≈ (cpd + 0.66ct)

n
2 + 4nπrct. The

synchronized cost ratio is

Csync
dual

Csingle
≈

(cpd + 0.66ct)
n
2 + 4nπrct

(cpd + 0.52ct)n

=
1

2
+

(0.07 + 4πr)ct
cpd + 0.52ct

. (15)

When ct
cpd

is small, even the synchronized 2-arm solution
provides an improvement of 1

2 . For the case when both r and
cpd are small, we observe that the ratio approaches 0.636. □

As a way to validate our asymptotic estimate, randomized
trials were run with different number of randomly sampled
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Fig. 5. Empirical cost ratio
C

sync
dual

Csingle
when cpd = 0, r = 0 in the unit

square model, versus the estimate (red line). As the number of object transfers
increases the measured value converges to the estimate.

object transfer coordinates on an unit square. When cpd = 0

and r = 0, the ratio of Csync
dual

Csingle
evaluates to 0.636. Fig 5 verifies

empirically that the ratio converges to the expected value as the
number of transfers increases. This indicates the asymptotic
speedup of a synchronized dual arm solution for a makespan
or maximum of distances cost metric.
Note on bounds: Even though the proposed simplified model
may not be immediately suitable for general configuration
spaces, experiments indicate that the speedups exist in these
spaces as well.

VIII. EVALUATION

Fig. 6. Picker and Manipulator trials.

This section describes the experiments performed to evalu-
ate the algorithms in two domains shown in Fig 6: a) simple
picker and b) general manipulators. In order to ensure mono-
tonicity, the object starts and goals do not overlap. Uniform
cuboidal objects simplify the grasping problem, though this
is not a limitation of the methods. 50 random experiments
were limited to 300s of computation time. The underlying
dRRT∗ motion planner is restricted to a max of 3s per plan.
A comparison point includes a random split method, which
splits O at random into two subsets and chooses an arbitrary
ordering. Maximum of distances cost is compared to the single
arm solution [1]. Computation times and success rates are
reported. The trends in both experiments show that in the
single-shot versions, exhaustive and MILP tend to time-out for
larger n. Lazy variants scale much better for all the algorithms,
and in some cases increase the success ratio due to retries. TOM
has much better running time than exhaustive and MILP, and
produces better and more solutions than random split. Overall,
the results show that a) our MILP succeeds more within the
time limit than exhaustive, b) TOM scales the best among all
the methods, and c) the cost of solutions from TOM is close
to the optimal baseline, which is around half of the single
arm cost.

Note that we choose to focus on balanced problem instances
where at least half of the objects are reachable to one of

the robots. Unbalanced instances can be dealt with using
NO_ACT object-to-arm assignments that require no dual-arm
coordination, while the proposed method remains unchanged.

A. Simple Picker

This benchmark evaluates two disk robots hovering over
a planar surface scattered with objects. The robots are only
free to move around in a plane parallel to the resting plane of
the objects, and the robots can pick up objects when they are
directly above them. This benchmark is reminiscent of delta-
robots operating over a picking surface. Fig 7(top) all runs
up to 24 objects succeeded for TOM. MILP scales better than
exhaustive. Lazy random split succeeds in all cases (bottom).
In terms of solution costs (middle) exhaustive finds the true
optimal. MILP matches exhaustive and TOM is competitive. In
all experiments, TOM enjoys a success rate of 100% while
having much better computation time that exhaustive and
MILP, as the number of objects increases.

B. General Dexterous Manipulator

The second benchmark sets up two Kuka arms across a
table with objects on it. The objects are placed in the common
reachable part of both arms’ workspace, and only one top-
down grasping configuration is allowed for each object pose.
For the Kuka arms top-down reachability exists in an annular
region between 40-70cm from the base of each robot. The
robots were placed 1.1m apart. Experiments were performed
on the largest rectangle that fitted within the intersection of
the annular reachability regions.

Here (Fig 8) a larger number of motion plans tend to fail,
so the single shot variants show artifacts of the randomness of
dRRT∗in their success rates. Random split performs the worst
since it is unlikely to chance upon valid motion plans. Single
shot exhaustive and MILP scale poorly because of expensive
motion planning. Interestingly, motion planning infeasibility
reduces the size of the exhaustive search tree. The solution
costs (middle) substantiate benefits of the use of two arms.
The computation times (bottom) again show the scalability of
TOM, even compared to random split.

C. Smoothing

The result of the velocity tuning over the solution trajec-
tories for the individual arms as a post-processing step is
shown in Fig 9. The objective is to minimize any waits that
might be a by-product of the synchronization. The small %
improvements indicate that the asynchronous variants of the
solutions discovered from the methods do not yield a big
enough saving in execution time. Most of the improvement as
a percentage of the original solution duration is not too high.
On top of that, the time taken to smooth the solutions for
TOM (overlaid on Fig 9) shows that the trade-off is sometimes
not beneficial. In their largest problem instances the Kuka
spent 0.44s of smoothing time to save 3.23s off the solution
duration, while the picker spent 9.84s to save 0.54s.

This indicates that among the class of synchronized so-
lutions discovered by the proposed algorithms, the asyn-
chronous, smoothed variants do not seem to be drastically
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Fig. 7. Simple Picker results with success(top), solution costs(middle), and computation(bottom) reported for single-shot(left) and lazy(right) versions of the
methods

Fig. 8. Kuka results with success(top), solution costs(middle), and computation(bottom) reported for single-shot(left) and lazy(right) versions of the methods

better. Moreover, smoothing does not improve the maximum of
distances cost measure, but only reduces the solution duration.

D. Reachability Benchmark

In this benchmark, two Kuka arms are placed opposite a
target arrangement table, as shown in Fig 10. The initial poses
of the objects on either side of the arms in a way that the initial
poses are reachable by only one of the arms. The purpose of
this study is to see the effects of general divided workspaces
where both the initial and target poses are not in the region
of common reachability of the arms. It should be noted that a
single arm solution does not exist for this benchmark.

The problem of optimizing the assignment of arms to
objects will be affected by the reachability. Expectedly, the
naive random split tends to erroneously assign unreachable

objects to arms. The data reported for the lazy variants, shows
that our proposed method manages to maintain scalability
and robustness even in such scenarios and moreover, further
highlights the benefits of two-arm rearrangement.

Note on Heuristic Strategies: It is possible that instead of
the random baseline, some other heuristic might be used to
allocate the objects to arms, like the proximity of objects to
arms or some workspace partitioning. Such a deterministic,
decoupled heuristic will make it faster to compute object-arm
assignments than the proposed reasoning, but trade off the
optimality bounds posited in this work. Given the object-to-
arm assignments feasibility of the solution ultimately depends
on coordinated motion planning. It should be noted that
committing to a single choice of object assignments seriously
affects success rates (especially in the Kuka benchmark). The
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Fig. 9. Smoothed solution improvement as a percentage of the original
synchronized solution duration, and the time taken to smooth solutions
obtained from TOM in seconds.

Fig. 10. The reachability benchmark with the initial poses of the objects
lying in disjoint parts of the workspace(tables on the right and left) that are
only reachable by one of the arms. The objective is to transfer the objects to
the middle table.

success is only increased using our proposed lazy approach,
which takes into account such infeasibility and keeps reat-
tempting other alternatives. A deterministic heuristic however
will not offer alternative object-arm assignments and thus
is incompatible with the improvements obtained from lazy
evaluation. As such we leave the learning and incorporation
of appropriate heuristics in this domain as future work and a
motivation for practitioners.

IX. DISCUSSION

The current work demonstrates the underlying structure of
synchronized two-arm rearrangement and proposes an MILP
formulation, as well as a scalable algorithm TOM that pro-
vides fast, high quality solutions. Existing efficient solvers for
reductions of the dual-arm problem made TOM effective.

Work beyond the methods presented in this paper has
explored the k-arm case. The matching sub-problem ceases
to have effective solvers for k > 2, and heuristics might need
to be considered for feasible solutions. Effective approximate
or lazy solutions to the k-arm case can also prove to be power
heuristics to the general multi-arm task planning [51] chal-
lenge. Regrasp reasoning and the use of intermediate locations
can extend this work to non-monotone problem instances. The
incorporation of manipulation and grasp reasoning with real-
world object geometries can also extend such solvers to more
cluttered environments. This work serves as a stepping stone
in building towards these rich problem domains.
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[46] B. Dezső, A. Jüttner, and P. Kovács, “Lemon–an open source c++ graph
template library,” Electronic Notes in Theoretical Computer Science, vol.
264, no. 5, 2011.

[47] D. Kirkpatrick and P. Liu, “Characterizing minimum-length coordinated
motions for two discs,” arXiv preprint arXiv:1607.04005, 2016.

[48] R. Shome and K. E. Bekris, “Improving the scalability of asymptotically
optimal motion planning for humanoid dual-arm manipulators,” in
Humanoids, 2017.

[49] R. Chinta, S. D. Han, and J. Yu, “Coordinating the motion of labeled
discs with optimality guarantees under extreme density,” in WAFR, 2018.

[50] B. Ghosh, “Random distances within a rectangle and between two
rectangles,” Bulletin Calcutta Math Soc., vol. 43, 1951.

[51] R. Shome and K. E. Bekris, “Anytime multi-arm task and motion
planning for pick-and-place of individual objects via handoffs,” in
2nd IEEE International Symposium on Multi-Robot and Multi-Agent
Systems (MRS), New Brunswick, NJ, USA, 08/2019 2019. [Online].
Available: https://arxiv.org/pdf/1905.03179.pdf

Rahul Shome is a Postdoctoral
Research Associate at Kavraki
Lab, Rice University, working
with Prof. Lydia Kavraki. He at-
tained his Ph.D. in Computer
Science from Rutgers Univer-
sity where he worked with Prof.
Kostas Bekris at the PRACSYS

Lab. His research interests include motion planning, manip-
ulation, and task-and-motion planning with a special focus on
practical real-world robotic solutions with strong theoretical
guarantees.

Kiril Solovey is a Postdoctoral
Scholar at the Autonomous Sys-
tems Lab, Department of Aero-
nautics and Astronautics, Stanford
University. He received his Ph.D.
in Computer Science from Tel
Aviv University, Israel. His work
focuses on multi-robot systems
and their applications to smart mo-
bility, with an emphasis on the

design of effective control and decision-making mechanisms.
He is the recipient of the Clore Scholars Award, Fulbright
Postdoctoral Fellowship, and several best paper awards and
nominations.

Jingjin Yu is an Assistant Pro-
fessor in the Department of Com-
puter Science at Rutgers, the State
University of New Jersey. He re-
ceived his B.S. degree from the
University of Science and Tech-
nology of China in 1998. He
holds M.S. degrees in Chemistry
(Univ. Chicago, 2000), Mathe-
matics (Univ. Illinois at Chicago,
2001), and Computer Science

(Univ. Illinois at Urbana-Champaign, 2010). He obtained his
Ph.D. degree in Electrical and Computer Engineering from
the University of Illinois at Urbana-Champaign in 2013,

https://arxiv.org/pdf/1905.03179.pdf


14

where he briefly stayed as a postdoctoral researcher. He was
a postdoctoral researcher at the Massachusetts Institute of
Technology from 2013 to 2015 with a joint appointment at
Boston University from 2013 to 2014. He is broadly interested
in the areas of robotics and control, focusing on issues
related to computational complexity and the design of efficient
algorithms with provable guarantees. He is a Siebel Scholar
and a recipient of the NSF CAREER Award.

Kostas Bekris is an Associate
Professor in the Computer Science
department of Rutgers University.
He received his MS and PhD de-
grees in Computer Science from
Rice University in 2004 and 2008
respectively. He was an Assistant
Professor at the Department of
Computer Science and Engineer-

ing at the University of Nevada, Reno from 2008 to 2012. He
is the recipient of a NASA Early Career Faculty award and
his research has been supported by NSF, NASA, DHS and the
DoD. His research interests include planning and coordination
of robots, especially for systems with many degrees of freedom
and significant dynamics, as well as applications to robot
manipulation, planetary exploration, cyber-physical systems
and physically-realistic virtual agents.

Dan Halperin received his Ph.D.
in Computer Science from Tel
Aviv University. He then spent
three years at the Computer
Science Robotics Laboratory at
Stanford University. In 1996

he joined the School of Computer Science at Tel Aviv
University, where he is currently a full professor. Halperin’s
main field of research is Computational Geometry and
its Applications. A major focus of his work has been in
research and development of robust geometric software,
principally as part of the CGAL project and library. The
application areas he is interested in include robotics,
automated manufacturing, algorithmic motion planning and
3D printing. http://acg.cs.tau.ac.il/danhalperin


	Introduction
	Related Work
	Problem Setup and Notation
	Discussion on Assumptions

	Baseline Approaches and Size of Search Space
	Exhaustive Search
	MILP Formulation

	Efficient Solution via Tour over Matching
	Importance of Transfers
	Foundations
	Algorithm : Tour-Over-Matching

	Integration with Motion Planning
	Bounding Costs under Planar Disc Manipulator Model
	Evaluation
	Simple Picker
	General Dexterous Manipulator
	Smoothing
	Reachability Benchmark

	Discussion
	References

