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Abstract
We describe the slices of positive integral suspensions of the equivariant Eilenberg—MacLane
spectrum HIF; for the constant Mackey functor over the Klein four-group C; x C5.
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1 Introduction

The slice filtration is a filtration of equivariant spectra developed by Hill, Hopkins, and
Ravenel, as a generalization of Dugger’s filtration [1], in their solution to the Kervaire
invariant-one problem [4]. It is an equivariant analogue of the Postnikov tower and was
modeled on the motivic filtration of Voevodsky [10].

Since its inception, there have been a few reformulations and new understandings of the
structure of the slice filtration. Some properties and useful results in this setting are summa-
rized in Sect. 2.5. In this paper, we use the regular slice filtration (cf. [6,9]) on equivariant
spectra and note that this filtration differs from the original filtration from [4] by a shift by
one.

Let G be a finite group and let Sp® be the category of genuine G-spectra.

Definition 1.1 Let szn C Sp be the localizing subcategory generated by G-spectra of the

form Ego G/HiN Sken where H C G, pH is the regular representation of H and k- |H| > n.
We write X > n to mean that X € ‘L'ZGn.

We use P"~!(—) to denote the localization functor associated to rgn. There are natural
transformations P"(—) —> P"~!(—) that give the slice tower of X

i prtly s prx s prlx
and the fiber at each level
P'X — P"X — P"lX

is known as the n-slice of X.

While in the nonequivariant setting the relationship between the Postnikov tower of a
spectrum and the spectrum’s homotopy groups is clear, there is a much more complicated
story for homotopy groups and the slice tower when working equivariantly. Furthermore,
such homotopy groups enjoy a richer structure. For a G-spectrum X, the homotopy groups
7, (XH), as H varies over the subgroups of G, define a G-Mackey functor. An underline
will denote a Mackey functor, and we will display such functors M according to their Lewis
diagrams. The general form of such diagrams for G = C> and G = C, x C; are displayed
below, where we write M (L) for what would be typically written as M ((Cy x C2)/L).

w o AN
- NP

Here L, D, and R are the left, diagonal, and right cyclic subgroups of C> x C; of order
two. We have not drawn in the Weyl group actions on the intermediate groups or the G-action
on M (e). The maps pointing down are called restriction, and the maps pointing up are called
transfers.

Associated to every G-Mackey functor M, there is an Eilenberg—MacLane G-spectrum
Hg M, which we will usually write simply as H M. While HM is always a 0-slice, and thus
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has a trivial slice tower, suspensions of Eilenberg—MacLane spectra produce interesting slices
and corresponding towers. For instance, when G = C),» the slices of X" HZ and > H 7,
where Z is the constant Mackey functor at Z and A is an irreducible C»-representation, were
presented in [12] and [5], respectively.

We will primarily work with the constant functor I, for the Klein four-group C, x C;
(which we will often denote by K). This Mackey functor takes on the value F, at each
subgroup. The restriction maps are all the identity, and the transfers are all zero. In this paper
we present the slices of X" HIF, for the Klein four-group £ = C2 x C; and n > 0. A
summary of our main results is as follows:

Main result: For K = Cy x Cy and n > 0, all nontrivial (regular) slices of %" HicIF, are
given by:

P/(3"HxFp) = £V Hc M,

where dim'V = i and i is either equal to n or congruent to either 0 (mod 4) in the case
i is in the range [n,4n — 12] or to 2 (mod 4) if i is in the range [n, 2n — 4]. The precise
representations V and Mackey functors M are completely described in Proposition 5.5,
Theorem 5.6, and Proposition 5.12.

The paper is organized as follows. We begin with some background material in Sect. 2. In
Sect. 3, we review results from [4] for the case of H¢,[F>. We present the relevant KC-Mackey
functors in Sect. 4. Our main results, which describe all of the slices of 2" H, kI, are given in
Sect. 5. In Sect. 6, we present the first few slice towers (up to n = 8). The homotopy Mackey
functors of the slices are computed in Sect. 7. Finally, in Sect. 8, we display a few examples
of the slice spectral sequence for X" HiIF,. For convenience, we also list the important
K-Mackey functors in the “Appendix: Ma%y functors”.

We are grateful to John Greenlees, Mike Hill, Doug Ravenel, Nicolas Ricka, and Dylan
Wilson for some helpful conversations. Comments from an anonymous referee also helped to
improve the exposition. We would like to thank the Isaac Newton Institute for Mathematical
Sciences, Cambridge, for support and hospitality during the programme “Equivariant and
motivic homotopy theory”, where work on this paper was completed. Figures 2, 3, 4, and 5
were created using Hood Chatham’s spectralsequences package.

2 Background

2.1 (C; x C)-Representations

Recall that the real representation ring for the group L = C2 x C2 is
RO(K) = Z{1, a0, 1,1, 20,1},

where 1 is the trivial one-dimensional representation and the other representations are defined
by

7)2 x 2)2 2 72 < Gl (R)
(k,n) — ik + jn.

Thus a1 o is the projection onto the left factor. To avoid cluttering notation, we prefer to write
a=ua1,0,8 =ap,1,y = or,1. We denote by p or px the regular representation, and we have
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p=l+a+B+y

in RO (K). The left, diagonal, and right cyclic subgroups of K will be denoted by L, D, and
R, respectively. We have

L = ker 8, D = kery, R =kera.
It will often be important to consider restriction to the cyclic subgroups. Given that
RO(Cy) = Z{1, o}, the restrictions of representations are given by
RO(K) — RO(Cy),
a=01%). D=0 &=0(01")
In particular, we have (*(px) = 2pc, in RO(C»).

Since the subgroups H = L, D, R < K are all normal, we get an induced action of
C, = K/ H onthe H-fixed points of any /C-representation. These fixed point homomorphisms
are given by

-
RO(K) — RO(Cy),

OF= (188D P = (380 O =(989)

In particular, for any of these index two subgroups H < K, we have (px)? = pc,.

2.2 Mackey functors

For G-spectra W and X, the collection of abelian groups [G/Hy A W, X6, as H varies,
defines a G-Mackey functor. In the case W = S V for a (virtual) G -representation V, this is
the Mackey functor 7, (X). We give examples of G-Mackey functors for G = C; in Sect. 3.1
and for G = Cy x C; in Sect. 4.

Notation 2.1 We will typically denote Mackey functor restriction maps by
rlg: M(K) — M(H)

and transfers by
TN M(H) — M(K).

Mackey functors are required to satisfy the so-called double coset formula. Since our
group G = C, x C; is abelian, this means that for any two (distinct) H; and H, of the
nontrivial cyclic subgroups, the restriction maps commute with the transfer maps, in the
sense that

riG ot =tttor (2.2)

Definition 2.3 Given a surjection ¢y : G —> G /N of groups with kernel N < G, there is
a pullback for Mackey functors

¢y : Mack(G/N) — Mack(G)
defined by

M(H/N) N<H

oy M)(H) = {0 N £ H.
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In the Mackey functor literature, this pullback is known as inflation along the quotient
G — G/N.

Example 2.4 Let

M(C) ,

[ )

M(e)

be a C2-Mackey functor, where we assume trivial Weyl group action for simplicity. Then,
under the quotient map X — /R = C», this pulls back to the I-Mackey functor

M(R)
0 0 M(e)
0.

Notation 2.5 We will often encounter Mackey functors which are direct sums of inflations
along the projections to different subgroups, and it will be convenient to use the notation

¢ZDM = ¢zM ® ¢EM, (szRM = ¢ZM @ Qﬁ)M S3) ¢’;§M
There is a related construction in the world of spectra. Given a surjection ¢ : G —
G/N, there is a geometric pullback functor ¢}, : Sp¢/N — SpY ([8, Theorem 11.9.5], [3,
Proposition 4.3]). For our purposes, the important property is its behavior on suspensions of
Eilenberg—MacLane spectra. This is given by
* VN ~ oV *
dn(S" ANHgNM)~S" NHgpyM (2.6)

for V. € RO(G) and M € Mack(G/N) ([3, Proposition 4.2, Corollary 4.6]).

2.3 Relationship between twisted (de)suspensions, transfers, and restrictions

Consider the KC-cofiber sequence /R —> S° — §%. Forany K-spectrum X, this induces
a cofiber sequence

2K

(C/Re A X)E = xR I xK _ (pax)k, 2.7)

where the map 7 is the transfer. We similarly get that (£ ~* X)X is the fiber of the restriction:
K K VR WR

)t — X~ —= X~ (2.8)

We have similar fiber sequences relating the L transfer and restriction to (de)suspension
by B, and the D transfer and restriction to (de)suspension by y .
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2.4 Anderson duality

In this section, G can be any finite group. By Brown Representability in the category of
HTF;-modules, the functor

X > Homp, (78 X, Fy)

on the category of HIF-modules is represented by some HIF»-module, which we write

F
IF;{ =2 Asin [2, Lemma 3.1], plugging in the HF>-modules G/H, A HIF; shows that in fact

F
IE‘;I =2 ~ HF,*. The following more general result, whose proof was explained to us by John

Greenlees, will be quite useful.
Proposition 2.9 Let M be an Fa-module. Then
Ty (HM") = (z_yHM)".
Proof By Brown Representability in the category of HF-modules, the functor
X > Homg, (m{ (X App, HM), F2)

on the category of HIF;-modules is represented by some HFa-module, which we write IF;I ¥

By plugging in X = G/H, A HIF,, we see that IF?M ~ HM?*. In other words,
(X, HM*)"T27md = Homp, (r.8 (X Apr, HM), F2).

Plugging in X = SV A HF, gives the result.

2.5 The slice filtration

We have already defined X > n for a G-spectrum X, and we have a notion of “less than” as
well.

Definition 2.10 We say that X < n if
[skertr X" =0
for all » > 0 and all subgroups H < G such that k| H| > n.

In other words, X < n if and only if the restriction X Lg is less than n for all proper
subgroups H < G and

[s¥e7 X19 =0

forallr > 0 and k > %‘ More generally, restriction to subgroups is compatible with the

slice dimension, in the following sense.

Proposition 2.11 ([3, Cor. 2.6]) Suppose that X € Sp© satisfies k < X < nand H < G.
Then k < X ¢g§ n as an H-spectrum.

The following characterization of the subcategory rgn in terms of connectivity of fixed
points is useful.
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Theorem 2.12 ([6, Corollary 2.9, Theorem 2.10]) Let n > 0. Then X > n if and only if

n
mXH =0 for k< —.
k f ]

An immediate corollary is

Corollary 2.13 Ifn > Oand X is n-connective, in the sense that ry (X ") = 0 for all subgroups
and all k < n, then X > n.

For a few values of n, the category of n-slices is well-understood.

Proposition 2.14 (1) [4, Proposition 4.50] X is a 0-slice if and only if X >~ HM for M an
arbitrary Mackey functor.

(2) [4, Proposition 4.50] X is a 1-slice if and only if X ~ SYHM for M a Mackey functor
with injective restrictions.

(3) [9, Theorem 6-4] X is a (—1)-slice if and only if X ~ S 'HM forMa Mackey functor
with surjective transfers.

Though these characterizations are not enough to determine all slices in every case as
the slice tower does not commute with taking ordinary suspensions, it does commute with
suspensions by the regular representation of G.

Proposition 2.15 ([4, Corollary 4.25]) For any k € Z,
k+|G| ~ k
PG (X)) > TP PI(X).

Additionally, we understand the relationship between the slice filtration and taking pull-
backs.

Proposition 2.16 ([9, Corollary 4-5]) Let N < G be normal of index k and let X be a G/ N -
spectrum. Then

N (PIX) =~ P (9% X).
In particular, the pullback of an n-slice is a kn-slice.
Proposition 2.17 Let d € Z and let

x-Ly_—z

be a fiber sequence of G-spectra such that Pj(Z) i Pj(E_lZ). Then f induces an
equivalence on n-slices.

Proof This follows from [11, Proposition 2.32].

2.6 Review of Holler-Kriz

In [7], the authors compute the homotopy of (X H &)G for any elementary abelian group
G. Their answer is given as the Poincaré series of the graded IF,-vector space.

Theorem 2.18 ([7, Section 6]) Let £,n > 0 and i, j > 1. The Poincaré series for
m (B HE)N) is
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)y v=0: 1

2 V=na: l+x+---+x"

B) V=—ja: x4 4x34x2

4) V =na+L8: (1+-~-+x”)-(1+;--+x‘3)

G) V=na—jp: (I+-4x") -7+ +x7?)
6) V=—ia—jB: x4+ 4xDH. x4+ +x72

If either i or j is equal to 1, then the above series should be interpreted as zero. The answer
is more complicated when all three nontrivial irreducible representations are involved, so we
state those cases separately.

Theorem 2.19 ([7, Section 6]) Let £,m,n > 1. The Poincaré series for m,((xtetmptny
HF)X) is

(T4 FxHA+ 2™ +xA+ XA+

Expanded out, this polynomial can be described as follows, assuming £ < m < n: The
constant coefficient is 1. Then the coefficients increase by 2 until xt. Thereafter, they increase
by 1 until x™. They then stay constant until x”, and finally decrease (by 1) to 1, which is the
coefficient of xt+m+n,

Theorem 2.20 ([7, Section 6]) Let ¢{,m > 1. If k > 2, then the Poincaré series for
n*((22a+mﬂfky

HF»)X) is
1 1 k—2 k l—k m—k
x7+"‘+; A4+x+-+x")+x"A+---+2xHA+---+x"77)
In the case k = 1, the series is

x(I4 -4+ xHA 4+ 4 xmh.

Theorem 2.21 ([7, Section 6]) Let j, k, £ > 1. Then the Poincaré series for 7, ((Tte—iB—ky
HF»)N) is
()

1

x£+1(1+...+x5)(1+...+x5*1)

1 .
W(l B A ) 16 S +xk*l*2) +

ifj,k>£+1or
@)

%(1 +o A+ xR xik(l o xhA 4 xR
if € > k.
Swapping the role of j and k gives the case £ > j in Theorem 2.21.
Theorem 2.22 ([7, Section 6]) Leti, j, k > 1. Then the Poincaré series for m, (1%~ IF=ky

HF»)X) is

[(A+x 4+ A+ ™) A+ DA+ )

xititk

@ Springer



The Klein four slices of Z"HF,

Corollary 2.23 Let k > 1. The Poincaré series for m, (¥ ¢ H&)’C) is

1
Sl P ) AT T

3 Reviewof G = (5

A Mackey functor for the group C»> may be depicted by the Lewis diagram
M(G)
M (e),

where we have omitted the C,-action on M (e).

3.1 The main players

Example 3.1 The constant Mackey functor is
F,
- 1 0
.
Example 3.2 The geometric Mackey functor is
F
g = ¢¢,(F2) =< >

0.

Since g(e) = 0, it follows that (H g)" ~ x. Smashing the cofiber sequence
(C))y —> S — 57
with H g implies that
S Hg~Hg and T'Hg~3¥'Hg.
Thus, using either Proposition 2.16 or Proposition 2.15, it follows that =X H g is a 2k-slice.

Example 3.3 The free Mackey functor is

0
Fs.
This is relevant because
! TOHF, ~ Hf. (3.4)
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Note that these Mackey functors sit in an exact sequence
f — & — g.

The resulting cofiber sequence
Hf — HF, — Hg 3.5

can be used to compute the homotopy of T¥? H Fs.

Proposition 3.6 For k > 0, the nontrivial homotopy Mackey functors of T*? Hc, T, are

F | =2k
(S He ) = {22
- g i €lk,2k—1]

Proof This follows by induction from repeated use of the cofiber sequence
2D HF, ~ SIPHf — SIPHF, — R/PHg ~ S/ Hg,
where j > 1. O

Example 3.7 The opposite to the constant Mackey functor is

1)
F* = < > .
- 0 1
I
We again have a twisting
2OH f ~ HF,*. (3.8)

We also have the exact sequence of Mackey functors

g~ f.

The resulting cofiber sequence
Hg — HF)* — Hf (3.9)

can be used to compute the homotopy of £ %7 H [F»* (which also follows from Proposition 3.6
by Proposition 2.9).

Proposition 3.10 For k > 0, the nontrivial homotopy Mackey functors of ¥ k¢ Hc,Fy* are

Fy* | = 2k
T (E"“’HCZIFZ*) ~12 !
- g i €lk,2k—1]

Together, Propositions 3.6 and 3.10 combine to give the RO(C»)-graded homotopy
Mackey functors of HF,, which we display in Fig. 1.
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S
5| B | 9|9 |4
4 Fy* g 9
3 Fy" 9
2 Fy*
1 f
0 Fy
¢ >
-1 g | F
-2 g g Iy
-3 9 g 9 Fy
b

Fig.1 7,40 Ho,F2

3.2 Thesslice tower for 2"H, IF>
Example 3.12 The spectrum HIF; is a 0-slice by Proposition 2.14.
Example 3.13 The spectrum X! H I, is a I-slice by Proposition 2.14.
Example 3.14 The spectrum EZH@ is a 2-slice, since
2?HF, ~ 37 (S'"7HF,) ~ SHS.

Example 3.15 The spectrum E3H& is a 3-slice, since

S HF, ~ $° (S 7HF,) ~ =*S'Hf.
Since ElHi is a 1-slice, the claim follows.

Example 3.16 The spectrum Z4H@ is a 4-slice, since
SYHF, ~ 2° (B3 OHF,) ~ P22 H f ~ 231" H f ~ % HF,*.
Since H&* is a O-slice, the claim follows.
Example 3.17 The spectrum X3 H IF2 has both a 5-slice and a 6-slice, since
Y HF, ~ 2F (SVOHF,) ~ P2 Hf ~ 22 H f ~ 2> 2 HF,*.
Now the slice tower for =! H@* is the suspension of (3.9):

»'Hg — X'HF,* — S'HY.
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The left spectrum is a 2-slice, while the right one is a 1-slice. Thus the slice tower for %5 H IFy
is

P¢ =¥Hg — S°HF, — =M Hf =P,
More generally, we have

Theorem 3.18 The slice tower of " HIFy, for n > 4, is

n even n odd
PZZ;ZZ:: _ En—ZHg . yn HF, Pzzf:f — 2"72H§ — -~ S"HF,
Pzz’;l:g = E"*3H§ L y(m=Dio HF, PZZ:—_: — Zn—EHg . 2(n—])+(rH&
2 5 n ntl
- W IS U Loy CUY

| i

P! = 2(%_2)’”'41'1& ~ E%pH&* Pl = E%WJH]FZ ~ E%/Hle

Proof The 2p-suspension of Hg —> HFy* — H f is
»?Hg — T*HF, — /P2 HE,.
The theorem is obtained by repeated application of suspensions of this cofiber sequence. O

Corollary 3.19 The C»-spectrum Z”Hi is an n-slice forn = 0,1,2. If n > 3, then n <
SUHf <2n—2and Py) }(S"H f) ~ ¥""'Hg.

Proof This follows from the fiber sequence
»"'Hg — Y"Hf — S"HF,

and Theorem 3.18. Indeed, the slice tower is given by augmenting the slice tower for X" HIFp
with the above fiber sequence. i

4 Mackey functors for IC = C; x C;

A Lewis diagram for a Mackey functor over the Klein-four group takes the shape

M (K)

AN

M(L) M (D) M(R)

N

M (e)
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We have not drawn in the C»-actions on the intermediate groups or the C-action on M (e)
(these actions are trivial in all of our examples). In the examples below, we only draw
restriction or transfer maps that are nonzero.

Example 4.1 We have the constant Mackey functor
)

- N

Iy F> I,
N A
1 1
)

as well as its dual

Proposition4.2 £ P HF, ~ £ ~*HF,*.
Proof Restricting to L, say, we have
G(EPHKFy) = 2727 He Fy >~ £749272 He, Fy ~ S He, Fy*.

The same argument applies to the restriction to D and R. Theorem 2.22 gives that
(TP HF)X ~ S~*HF,.

The transfer map from R to K fits into a fiber sequence

(Z7¥ HRF)R ~ (K/Ry A 2P HcF)X — (7P HeF)N — (2% P HFp)X.
By Theorem 2.18 this becomes a fiber sequence

Y HF, — TTHTF, — x,

so that the transfer map is an equivalence. By symmetry, we find that the other transfer maps
are equivalences as well.
Similarly, the restriction from K to R fits into a fiber sequence

(S HcF)* — (S HeF)® — (K/Ry A =7 HiFp)® = (572 HgFy)R.

By Theorem 2.22, the spectrum (X °~¢ H;C&)’C has m_4 = Fy = w_s. It follows from the
long exact sequence in homotopy that the restriction map must be zero. |
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Example 4.3 The geometric Mackey functor is

P}

g = ¢p(Fy) =
0

0

We will later write g" to denote gEB” = ¢x- (p IF), the direct sum of n copies of 8-
n

Example 4.4 The free Mackey functor is

I

Unlike the case for G = C», the K-spectrum Hc f is not equivalent to X v HicIF for any
V.

Example 4.5

and
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Example 4.6

and

Example 4.7

F, F, F,.

and

Proposition 4.8 There are equivalences
(1) E°PHm ~ ©~*Hmg*
(2) S’ Hm* ~ *Hmg

Proof We prove the second statement. The first follows in a similar way, or by citing Propo-
sition 2.9. Consider the (nonsplit) short exact sequence

1 F2" > m* — ¢ppf.
This gives a nonsplit cofiber sequence

S HOY f~ SPHY Fr* —> SPHm* —> SPHQY o f ~ S2H¢?, .
LJ L™ 2 DRJ_ DR= 2
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It follows that ©* Hm* ~ %2 H E, for some nonsplit extension E of ¢prF2 by ¢7 f. But we
can similarly express E as an extension of ¢7 2 by ¢7, f. The only possibility is £ = mg.

O
Example 4.9
F,®F, @ F
i ) i3
1
W= ’
F, i) 2
1 1
F»
and
F, @, @,
P1 P3
W e i)
I ) 2
\ T | /
1 1
)

5 The slices of Z"Hyc [F>

Proposition 5.1 For n > 0 and K = Ca x Ca, the K-spectrum X" HIFy satisfies n <
X"HF) < 4(n —3).

Proof The lower bound follows by Corollary 2.13. For the upper bound, note that after
restricting to the trivial subgroup, the spectrum is an n-slice. By Theorem 3.18, the restriction
to a cyclic subgroup is bounded above by 2n — 4 if n > 4 (it is an n-slice if n = 0, ..., 3).
It therefore remains to check that

Mo+ (2" HEp) = [S5F, 5" HF,)* = 0

for » > 0 and 4k > 4(n — 3). In other words, the homotopy groups n,’C(E”_k"’C H&) must
vanish if » > 0 and k > n — 3. This follows from Corollary 2.23. O

Moreover, we know a priori in which dimensions the slices appear.

Proposition 5.2 Forn > 0 and K = C x C3, all slices of the KC-spectrum X" HF, above
level n are even slices. Furthermore, if n > 4, then all slices above level 2n — 4 occur only
in dimensions that are multiples of 4.

Proof Since the restriction to any cyclic subgroup is bounded above by 2n — 4 by Theo-
rem 3.18, it follows that all slices of X" HIF; above dimension 2n — 4 must be geometric.
Thus, we know further that the only nontrivial slices of X" HF, above dimension 2n — 4 are
4k-slices.
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Similarly, by Theorem 3.18, the restriction of X" HIF; to any cyclic subgroup has only even
slices, except for possibly the n-slice. Thus any odd slices above level n must be geometric.
But geometric C-spectra only have slices in dimension a multiple of |IC| = 4. It follow that
all odd slices above level n must be trivial. i

5.1 The n-slice

We will use the following recursion to establish the bottom slices of X" HIF;.

Proposition 5.3 Letn > 7. Then
PE(S"HTF) ~ 2 P (E"*HIF,)
fork € [n,2n —1T].
Proof By Proposition 2.15, we have
PE(S"HTF) ~ £ PN (E"PHFy) ~ TP P (S HEY).

Thus it suffices to compare the (k — 4)-slices of 4 H F>* and E”“‘H@.
The short exact sequences of Mackey functors

0—m"— " — f—0
and
00— f—F-—>m—0
give the following diagram of fiber sequences

S/Hm* —— S/ HFy* ——= S/H f

| |

fib(A) ——> =/ HF,* —* > S/ HF,

T

Si-'Hm * >/Hm

Then fib(A) is j — 1-connective, and the underlying spectrum of fib(1) is contractible. By
Theorem 2.12, it follows that fib(A) > 2j —2 as long as j > 1. Similarly, ¥ fib(1) > 2j. By
[5, Corollary 4.17], it follows that A induces an equivalences of slices below 2j — 2. Taking
Jj = n — 4 gives the result. i

Note that the above argument, using only the fiber sequence
/Hm* — S/HF* — S/Hf,
gives the following result that will be employed below.
Proposition 5.4 Letn > 7. Then
PE(E"HF,) ~ =P PN E"H f)
fork € [n,2n —5].
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Proposition 5.5 Forn > 0 and K = Cy x C, the bottom slice of ©" HIF, is

S"HF, n e 0, 4]
SW¥HF* n=0 (mod4),n >4
P/(S"HFy) = {S"**Hf n=1 (mod4),n >4
STPRHF p=2 (mod4),n >4
TP HF, n=3 (mod4),n > 4

Proof By Proposition 5.3, it suffices to establish the base cases, in which n < 7. These are
given in Sect. 6 below. O

5.2 The 4k-slices

Theorem 5.6 Foralln > 4,

xkHgHn=k=S 4k € 2n —3,4n — 12]

szH(qs;DR (Fy*) & g‘k*”*z) 4k € [n +2,2n — 4]
P (Z"HF2) = | 50 Hmg* 4k =n+1

kP HE,* 4k =

* otherwise

Proof The above formula agrees with Theorem 3.18 upon restriction to the cyclic subgroups.
To determine the [C-fixed points, we use that

P (E"HTFy) ~ S Hp 2" HIF,

by repeated application of Proposition 2.15. The fixed points are then given by Lemma 5.7.
It remains to consider the restriction and transfer maps if 4k € [n, 2n —4]. The restriction
maps to the subgroup R, for instance, fit into fiber sequences

(2R o) — (2R HE,) S IS (5 HE) R

Fixing k > 1, we argue by induction on n that Lemma 5.8 implies that the long exact sequence
in homotopy splits into a series of short exact sequences of [F2-vector spaces

R K K
0— lkp—n-H H& - lk,0+a—n H& - lkp—nH& -0,

linked together by the null restriction map. Since 4k € [n, 2n — 4], it follows that 2k + 2 <
n < 4k.

The base case for our induction argument is the case n = 2k + 2, so that 4k is 2n — 4.
In this base case, the left term ,fpfzkfl HTF, vanishes, and the other two terms are both of
dimension 2k — 1. This establishes the base case.

For the induction step, we suppose that llfp—n+1H& — g,’(cl)+a_,l HTF, is injective. It
follows that we have an exact sequence

0 IFz N ]ng—n+2 — ng_n+1,

which shows that the map on the right must be surjective.
A similar argument shows that the transfer map from the subgroup R, say, up to K is
injective. We argue by (downward) induction on n that Lemma 5.9 implies that the long
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exact sequence in homotopy for the fiber sequence
(En—ka&)R _try (En—ka&)’C N (Enfk,lH*o{H&)K
splits into a series of short exact sequences
0> xf HFy < mp, HFy - 7, HF; — 0.

The base case is n = 2k + 1, so that 4k = 2n — 2. In this case, Q,fp_Zk_l HTF; = 0, and the

other two terms are both of the same dimension (using Lemma 5.9).
. .Fo‘r the induction step, we suppose that the transfer map ,pr_n HF; — l,’fp_ LHE is
injective. It follows that we have an exact sequence

0 —> Fy e FF o pf

which shows that the map on the right must be surjective.

It remains to show that the transfer maps are linearly independent if 4k > n + 2 and have
distinct images if 4k = n+ 1. In the case 4k = n + 1, consider the exact sequence of Mackey
functors

EO(K/R-F A 24/(—]—ka&) N 20(241(—]—/(,0[_1&) — 10(241(—1—1(/7-5-0[[_1&)

The left Mackey functor vanishes at L and D, and the R-transfer map in the middle Mackey
functor is in the image of the left Mackey functor. Thus to see that the L or D transfers in the
middle Mackey functor have image distinct from that of the R transfer, it suffices to show
that the L or D transfer in the right Mackey functor is nontrivial. But a similar argument to
that for the transfer maps above shows that the Mackey functor on the right is F2*, so we
are done. By symmetry, we similarly conclude that the images of the L and D transfers are
distinct.

Finally, if 4k > n+-2, to show additionally that the three transfers are linearly independent,
we consider the exact sequence

T[()(IC/D+ A En—kﬁ-’ra-’rﬁH&) N no(zn—k,ﬂ‘f‘a"rﬂH&) N no(zn—kp-’r(l‘f‘ﬁ"r}’H&)
This is an exact sequence of the form
IFZ N ng—n—l N ]ng—n—z’

so that the first map cannot be zero. We conclude that the D transfer map is nonzero after
factoring out the L and R transfers, so that the three transfer maps are independent if 4k >
n+2. O

The following lemmas are direct consequences of Theorem 2.22.
Lemma5.7 Forn > 4, we have

F"07 4k e2n—3,4n - 12]
wo(Z" 0 HF) = LRS-+ 4 e [n, 20 — 4]

0 else

Proof The dimension of the fixed points is given by the coefficient of x*~" in the Poincaré

series of Corollary 2.23. Equivalently, the dimension is given by the coefficient of x*~" in
the polynomial

p(x)=(1—|—x+.,,+x2k—2)(1+...+xk—2)+xk_1(1+“.+xk_1)2
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This polynomial can be described as follows: The constant coefficient is 1. Then the coef-
ficients increase by 1 until (2k — 1)x?¥=2 and then decrease by 2 until 1 - x>*~3. In other
words, the coefficient of x! is

i+1 0<i<2k-2
6k —2i =5 2k—1<i<3k—-3
0 else.
Plugging in i = 4k — n gives the result. i

Lemma5.8 Forn > 4, we have

P07 4k e [2n — 4,40 — 12]
wo(Z" T HF)N = P2 dken—1,20— 6]
0 else

Proof The dimension of the fixed points here is given by the coefficient of x¥~" in the

Poincaré series of Theorem 2.22. Equivalently, the dimension is given by the coefficient of
x**=1+1in the polynomial

p(x)=(1+x+"'+x2k_2)(1+"'+Xk_l)+xk_1(1+...+xk—1)2

The polynomial is nearly the same as that from Lemma 5.7 and can be described as follows:
The constant coefficient is 1. Then the coefficients increase by 1 until (2k — Dx%*~2, remain
constant for the term (2k — 1)x2k —1 and then decrease by 2 until 1 - x%*=2 1n other words,
the coefficient of x' is

i+1 0<i<2k-2
6k —2i —3 2k—1<i<3k-2
0 else.
Plugging ini = 4k — n + 1 gives the result. |

Lemma5.9 Forn > 4, we have

F3" 07 4k e [2n -2, 4n — 12]
wo(S" R HE) N = I FER T sk en+ 1,21 4]
0 else
Proof Since n > 4, k > 1 so the dimension of the fixed points in this case is still given by

the coefficient of x*~" in the Poincaré series of Theorem 2.22. Equivalently, the dimension
is given by the coefficient of x*~"~1 in the polynomial

px)=0+x+--- +x2k_2)(1 + . +xk—3) +xk‘2(1 4o +xk‘1)2

The polynomial is similar to those in Lemmas 5.7 and 5.8 and can be described as follows:
The constant coefficient is 1. Then the coefficients increase by 1 until (2k — 2)x%=3 decrease
by 1 for the single term (2k — 3)x?*~2, and then decrease by 2 until 1 x3*~*. In other words,
the coefficient of x? is

i+1 0<i<2k-3
6k —2i —7 2k—2<i<3k—4
0 else.
Plugging in i = 4k —n — 1 gives the result. O
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5.3 The (4k + 2)-slices

In this section, we obtain the 4k + 2-slices. We begin with the top such slices.

Proposition 5.10 Let n > 8 be even. Then

P oS HEy) ~ S Hey L f

Proof. By Proposition 5.4, we have
P HEy = 2 PR )
The short exact sequence

00— f—Fh—m—0

gives rise to the fiber sequence
2" Hm — " *Hf — ¥"HF,.
By Proposition 5.2, we have
P IN(E"SHE) =« = PP (E"TH,).

It then follows from Proposition 2.17 that £"~>Hm — £"~*H f induces an isomorphism
on (2n — 10)-slices.
The short exact sequence

0—>ﬂ_>¢iDR@—’§2_>O
gives a fiber sequence
S CHg? — " Hm — " He} prFa.
If n > 8 is even, then by Theorem 3.18, we get that
P ig (S Hm) = 80 HL  f. :

Proposition 5.11 Let n > 5 be odd. Then

P2 S HEy) = 25 D0 g L f
Proof For n = 5, this is given in Example 6.6 below. We have
P2 A" HTFy) ~ PN (ST 4 HF,) ~ P P28 (2" HF,").

The short exact sequence

gives a fiber sequence
Zn_4H§ _ Zn_4H&* _ En_4HQ*.

Itfollows that,ifn > 5, then ©"~*HF,* — £"~*Hw* induces an equivalence on (21 —8)-
slices.
Next, the short exact sequence

0—>Q*—>E*—>§3—>O
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yields a fiber sequence
2'175H§3 N 2”741‘1&* N En74HE*.

Itfollows that, if n > 7,then &" *Hw* — " *H W* induces an equivalence on (2n —8)-
slices.
Finally, consider the short exact sequence

0—>¢)ZDR&—>E*—>i—>O.
This gives a fiber sequence
2" HGS ppFr — ST HWS — UH

The restriction of "4 H i toeither L, D, or R has no slices above level 2n— 12, and similarly

for "3 H f. Thus the (2n — 8)-slice of £""*H f (and X" > H f) must be geometric.
Since 21 — 8 is not a multiple of 4, we conclude that the (2n — 8)-slices are trivial. By
Proposition 2.17, we conclude that =" ~*H @] pplF2 —> ¥"~* HW* induces an equivalence
on (2n — 8)-slices. We are now done by Theorem 3.18. ]

Proposition 5.12 Let 4k +2 € (n,2n — 4). Then
Py (S"HFy) ~ S He i f .

Proof If 4k + 2 < 2n — 7, this follows from Proposition 5.3 and the base cases discussed in
Sect. 6. This leaves only the cases of 4k +2 =2n — 6if niseven,or 4k +2 =2n —4ifn
is odd. These cases are handled in the two preceding propositions. |

6 The slice towers of 2"Hc[F,

We determine the slice towers of X" HF; for0 <n < 8.

Example 6.1 HT; is a zero-slice.
Example 6.2 %! HTF; is a 1-slice since the restriction maps are injective.

Example 6.3 ~*H IF, is a 2-slice. Since this is true upon restriction to each of the proper
subgroups, it suffices to show that

[$"T, S2HF,] =0
forn > 0 and r > 0. This follows from Theorem 2.22.

Example 6.4 E3H& is a 3-slice. Since this is true upon restriction to each of the proper
subgroups, it suffices to show that

[Snp—‘rr’ E3H&] =0

for n, r > 0. This follows from Theorem 2.22. Alternatively, ¥~* E3H& ~ E*IH@* is
a (—1)-slice according to Proposition 2.14 since the transfer maps are surjective. It follows
that Z3H& is a 3-slice.

Example 6.5 By Proposition 4.2, Z4H@ >~ %P HF,*. It follows that E4H& is a 4-slice.
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Example 6.6 Consider the short exact sequences of Mackey functors
0—g— F' — w* — 0
and
0—>¢2DRi—>w*—>i—>0,

where w* is defined in Example 4.6. The resulting cofiber sequences produce the slice tower
for 2 HF, >~ P T HF,*:

P} =3%?Hg ——— /T HF,* ~ $°HF,
8 g 2 2

|

P66 = 2”+1H¢Z0Ri - 2/ Hw*

|

P =%"Hf,

Example 6.7 Suspending the slice tower for > H IF, gives the tower for TOH Fs:

P2 =3%3Hg ——— 2,2 HF,* ~ 5°HF,

|

P = BIVHG] pf o SO

|

PS=%rT2Hf.

Lemma 6.8 EzHi is a 2-slice.

Proof The short exact sequence of Mackey functors
00— f—F—m—0,
where m is defined in Example 4.5, gives a cofiber sequence
»'Hm — ?Hf — T*HF,.
The spectrum >2H IF; is a 2-slice, and the cofiber sequence
2 He; pf — T'Hm — S Ho}F,

shows that ! Hm is also a 2-slice. m]
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Example 6.9 For X7 HF, ~ X 23 HF,*, we have fiber sequences as in
Pl =3*Hg — = PP HF,* ~ £THF,
Py =%'Hg? ————= S/ Huw*

Pl =2rBHe: o Fy —————= NP HW*

P =%r?Hm ——— = P =5r3HS

P] = 2rH3HF,,

where W* is defined in Example 4.9. Note that >2Hm is a 4-slice, as Z2Hm ~ £ Hmg*
according to Proposition 4.8.

Example 6.10 For >8H Fp >~ %7 S4H &*, we have fiber sequences as in

P =% Hg ——— = 2P HF,* ~ 38 HF,

Plé=x*Hg TP Hw*

Py = 23"H(¢ime Fy* @gz) — 2w

POS¥HF,
The twelve slice is given by Theorem 5.6.

Proposition 6.11 The slice section P10%8 HT; is equivalent to $PT3C, where C is the cofiber
of HFy — Hoj pg Fa.

Proof The cofiber C has homotopy Mackey functors | (C) = Jand ((C) = g~. Thus the
p-suspension of the Postnikov sequence is a fiber sequence

P2 HGr — v wAHC
On the other hand, the short exact sequence ¢7 j, Fo < W* — [ gives a fiber sequence

S H} prFo* = DY HGS ppFy — TP HWY — 2P H
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Since the 12-slice is the sum of the left terms in these two sequences and L°H*HW* is
P2s8H IF2, the octahedral axiom gives a cofiber sequence

P}(28HF;) — P*3¥HF, — xrHC.
But 8 < =T3C < 10, so we are done. O
Remark 6.12 The K-spectrum £3C is the first example of a K-spectrum that is not an
RO(K)-graded suspension of an Eilenberg—MacLane spectrum and yet which occurs as a
slice or slice section in the tower for X" HIFy. Indeed, the restriction of C to each cyclic

subgroup is T H Jf.Butif ¥ V H M restricts to ©' HM for each cyclic subgroup, it must be
that V = 1. As C has a nontrivial 7, it cannot be of the form >VHM.

Thus the slice tower is given by

PR =% Hg ———— S HF* ~ $8HF,

Pl =x*Hg? TP Hw*

et gw*

12 _ 3 2
Py =X pH(¢:DR&*®§)

Pll()o — EP+3H¢>ZDR& N EP+3C

P§ = 2P HF,,

For the higher suspensions, we do not know the slice tower explicitly. We give a diagram
of fibrations which is close to the slice tower in the next two examples.
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Example 6.13 For X°HF, ~ X5 HIF,*, we have fiber sequences as in

Pyl =x%Hg TP HF* ~ 27HF,

Py =¥ Hg? LA Hw*
[A] B HE = D HG By = T HW

14 _ $3p+1
P14 =zt H¢zDRf

2,0+3H§2 E’H'SHi

(€] 294 67y ———— P

[b] 22 245 s

Pll(()) — 22p+1H¢zDRf 5 22p+1Hﬂ*

P99 — EZP-HHi’

This is not quite the slice tower. According to Theorem 5.6, the 16-slice is the sum | A |V .
Similarly, the 12-slice is the sum [C | v[D].
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Example 6.14 For ©'°HF, ~ £°S0HF,*, we have fiber sequences as in

P =x"Hg TPHOHF* ~ R10HT,

Pyl =3x°Hg? PO Hw*

PHg —————= 2OH Ty = BTOH W

|

S3F2HGE o f

EP+4H§2 EKH—GHi
@ 23p+1H§3 = ZP+SH¢20R& > 3¢

Pllf = E3P+IH¢ZDRJC

R EPHOHE,

P1122 — 22p+2H¢zDRf 5 22p+2Hw*

Pl = s H

According to Theorem 5.6, the 20-slice is the sum \% and the 16-slice is the sum

v[D]v[E]
7 Homotopy Mackey functor computations

Here we collect some computations of homotopy Mackey functors of various twisted
Eilenberg—MacLane spectra.
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Theorem 7.1 For all k > 1, the nontrivial homotopy Mackey functors of P HIFy" are

Fp* i =4k
—k mg* i=4k—1
l—i(z pH&*) = EDR]Fé* D g4k—2—i i €2k, 4k — 2]
g2i=h+1 i€k, 2k —1].

Proof By repeated application of Proposition 2.15, Theorem 5.6 is equivalent to the statement
that the only nontrivial homotopy Mackey functors of X ~%° H IF, are

&* n =4k
Tk HTF,) = me” APV
7_y( ) = ¢F prlF2* @ g% 727" n e [2k + 2,4k — 2]
g2(n—k)—5 nelk+3,2k+1].

We know that
7 ((EVHEY) =14 HE).
The result follows by setting n = i + 4 and replacing k by k + 1. O

Proposition 2.9 then gives the following result, which gives the homotopy Mackey functors
of the bottom slice in the case n = 0,3 (mod 4).

Corollary 7.2 For all k > 1, the nontrivial homotopy Mackey functors of TP HIF; are

Fy i = 4k
kp _mg A i =4k —1
li(z H&) = ¢ZDR&®§4IC7271 i €2k, 4k — 2]
g bt i €k, 2k—1].
For the homotopy of the bottom slice in the remaining two cases, namely n = 1,2

(mod 4), we need some auxiliary computations.

Proposition 7.3 Let k > 1. The nontrivial homotopy Mackey functors of % Hm are

(1) 7 (S Hm) = ¢ o Fa
() m;(ZFHm) = g3 fori e [k+ 1,2k — 1]

() 7 (S Hm) =g
Proof The short exact sequence
diprf > m—~>g
gives a cofiber sequence
nhber2 gy Fo > S HeY o f — S Hm — 2 Hg ~ 5 Hyg.

The result now follows from Proposition 3.6. i

@ Springer



The Klein four slices of Z"HF,

The same argument, using instead the short exact sequence @7 j, f < m —» 52, applies
to show

Proposition 7.4 Let k > 1. The nontrivial homotopy Mackey functors of £*° H mg are

() my (Z Hmg) = ¢} 2
() 7, (S Hmg) = g3 fori € [k + 1,2k — 1]
(3) 7 (S Hmg) = g?

The homotopy of the bottom slice whenn = 1,2 (mod 4) is now given by the following
result.

Corollary 7.5 For all k > 1, the nontrivial homotopy Mackey functors of TP H f are

Fa i = 4k
L skp | mg 'i:4k—1
LR = g B @ g% e 2k + 1,4k — 2]
2D i €[k +2,2k].

Proof We have the cofiber sequence
S Hf — S HF, — S Hm

arising from the short exact sequence of Mackey functors. From the long exact sequence in
homotopy we get the desired homotopy for i € [2k + 1, 4k] because 7; (Z** Hm) = 0 for
i > 2k by Proposition 7.3. B

When i = 2k, in the long exact sequence we have

Tk (S H f) < ¢} prlF2 @ g% — ¢} g Fa.

On subgroups of size 2, the map on the right is an isomorphism and thus maps ¢7 , .2

isomorphically to the target forcing 7oy (ZkeH = 52/‘_2.

Fori € [k + 2,2k — 1] we have
E(Zkﬂl_]i) _)51-5-2([—/6) _)§3

and thus ; (ZX H f) = g/, where j > 2(i —k — 1).
To show that j < 2(i — k — 1), we use the cofiber sequence

s*=DrH R, ~ SR HE — SR H s SRt Em o~ 56 DA S e
Fori € [k 4 3, 2k — 1] we have the following in the long exact sequence in homotopy:

and thus, E(Z"/’Hf) = gj where j < 2(i — k — 1). When i = k + 2, we have
7 (T*PH ) = g2 as desired since 7; (S*~DPT4HF,) = 0 and 7; (S*~DP3 Hmg) = g2
g/ Proposition 7.4. For i < k + 2 we can see from either Bng exact sequence that
7 (P H f) = 0. O

The homotopy of the slices in dimension congruent to 2 modulo 4 is much simpler.
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Proposition 7.6 The nontrivial homotopy Mackey functors of L*PT1H @7 prS are

7, (BT HYY R f) = {ggDRi i €[k +2,2k]

Proof This follows directly from Proposition 3.6, given that % Hc, f =~ ZZHCQ&. O

8 The slice spectral sequence

The Mackey functor-valued slice spectral sequence for X" HIF; must recover that the only
nontrivial homotopy Mackey functor is 7, (X" HF,) = F,. This Mackey functor already
occurs in the bottom slice, and all higher slices geT wiped;ut by the spectral sequence. To
a large extent, the answer forces many of the differentials. Furthermore, the slice spectral
sequence must restrict to recover the slice spectral sequence on each cyclic subgroup, which
further allows us to deduce many differentials. In practice, only a few differentials require
further argument. We discuss this in several examples.

We remind the reader of the indexing convention for the slice spectral sequence chosen
in [4, Section 4.4.2]: the Mackey functor 7, P! (X) appears as Etz_"” and the charts are
displayed using the Adams convention, so that z, P/ (X) appears in position (n,¢ — n) in
our charts. The differential d, : ES' —s ES*"'*"~1 therefore points left one and up r, as
is customary in Adams spectral sequence charts.

Example 8.1 The first example which has a nontrivial slice tower is £ H IF>. The slices are
P{(2°HFy) = 2P Hf, PSS HF,) ~ X Hej ppFa.  P{(Z°HF,) = X7 Hg.

Thus the 6 and 8-slices are Eilenberg—MacLane. The homotopy Mackey functors of the
5-slice are given in Corollary 7.5
In the slice spectral sequence, the only possibility is that we have differentials

dy i m4(P)) = mg — 73(PE) = ¢} p Fa.
and
d3 i w3 (PO)/dy —> 7, (P§) = g.

The slice spectral sequence for £ H IF, is just the suspension of that for > H F,. Those
for ' H Fyand SH > are not much more complicated. There is only one possible pattern
of differentials, which is displayed in Fig. 2.

Example 8.2 In the slice spectral sequence for ©°H >, displayed in Fig. 3, almost all dif-
ferentials are forced by the fact that only 719(P9929H F2) = I, can survive the spectral
sequence. The sole exception is that the summand g of

n6(PYEHE) = ¢F prFa @ g

can support either a d to 75 (P}3 X HF,) = g® oradg to w5 (P} O HF,) = g°.
To see that it must in fact support the shorter d4, we use that the map

»?HF, ~ BPPHF* — 2P f
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10 10
8 8
6 6
4 4
2 \ 2
0 L] 0 ]

0 2 4 6 8 10 0 2 4 6 8 10

16
14 14
12 12
10 10
®

8 8
6 ® 6
NERERY 4
2 \ 2
0 * 0 *

0 2 4 6 8 10 0 2 4 6 8 10

Fig.2 The slice spectral sequence over Cy and C» x Ca,n =7,8

(see Example 6.13) induces an equivalence on 9, 10, and 12-slices. Since »A+> H f only has
nontrivial 74 and g by Corollary 7.5, there must be a d in the slice spectral sequence for
s H f in order to wipe out the ¢ and 7 5.

Example 8.3 Most differentials in the slice spectral sequence for ¥ 19 H [F,, which is displayed
in Fig. 3, are forced by the fact that only = 10(P11(§) =0 IF2) survives.
To see that d3 : 1, 6(P11(§) ) — 15( P1122) is injective, we use that the map

EIOH& ~ 2p+6H&* N 22,04»21_1&*
(see Example 6.14) induces an equivalence on 10 and 12 slices. The cofiber sequence
2P HF, — ¥ Hw* — St Hg

shows that 7. 6(22/’+2 Hw*) = 0, which forces the claimed d3-differential.
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10 10
. :
6 6
4 4
2 2
0 0 =
0o 2 4 8 10 0 2 4 6 8 10
22
2 Key
20 o= g
@: gn
18 18 ® =T,
-
16 16 = ¢, ppFs
14 14
12 12
10 10
8 8
6 6
4 4
2 2
0 0 *
0 2 4 8 10 60 2 4 6 8 10 12

Fig.3 The slice spectral sequence over C and C3 x Co,n =9, 10

Similarly, the g summand of l7(Pll(§)) supports a ds to the 14-slice. This can be seen by

using the map to £ C, which induces an equivalence of slices up to level 14. The cofiber

sequence

EP+4Hi N 2p+3c N 2p+3§

shows that 75(2°3C) = 0 and 74 (2P3C) = 52. This forces the claimed ds-differential.
Similar arguments produce the spectral sequences displayed in Figs. 4 and 5.
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28 Key
g e =g
26 @ — gﬂ/
S12HiFy ®_T,
24 24 a =my
T HcE, ® = ¢rprl>
22 22
®
20 20
18 18
16 16
14 14
12 12
10 10
8 8
6 6
4 4
2 2
0 0 *
6 10 12 6 10 12

Fig.4 The slice spectral sequence over C3 x Cp,n = 11,12
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52
50
48 ®
46
44
42
40
38
36
34

32 — g

30 =T,

a =g

28 o= ¢ prlFay
26

24
22

20

18
16
14
12

~ o

0 *

0 2 4 6 8 10 12 14 16 18 20

Fig.5 The slice spectral sequence over Cp x Cp, n =20

@ Springer



The Klein four slices of Z"HF,

Appendix: Mackey functors

name

Mackey functor description reference

&
I
*

NS
I
°

¢rorf

PrppF2 =@

Iy

Fy Fy Fo, HFy* ~ $4"PHF; Proposition 4.2

0 0 0, g = ok (F2)

Iy

Fo Fo F, Notation 2.5

0

Fo @ Fy @ Fo

EORY

Fo Fy F, Notation 2.5
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name Mackey functor description reference
IFy

m F, Fy Fs. COker(i—) Fg)

mg=MA T, F, F,. Hmg ~¥~2Hm* Proposition 4.8

ker (F2 — )

[S
=
N
=
N
=
0

Fo
Fo @ Fo @ Fo
L2
w Fy F, Fy
\ l 1 /
1 1
Iy
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