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1 INTRODUCTION

The goal of this article is to study some phenomena in the Cs-equivariant stable
homotopy groups. Let R™* be the n-dimensional real representation of Cy in
which the nonidentity element of Cy acts as —1 on the last k& coordinates (and
trivially on the first n—k&), and let S™F be its one-point compactification. Then

71'52,c is the set of 2-completed Cs-equivariant stable homotopy classes of maps

Sk — §90. In this article, we are primarily concerned with the groups 7 2.
We alert the reader to the fact that another notational convention is sometimes
used for Cs-equivariant stable homotopy groups. Writing o for the real sign
representation of Cy, the representation R™* corresponds to (n — k) + ko in
RO(C3). Thus the group which appears here as WS, %, is also denoted wgi ftho 11
the literature. Our choice of notation works well in comparison to motivic ho-

motopy theory, and furthermore it was the notation employed by Bredon [Br].
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The classical Hopf map 7 : % — S? can be modeled as the defining quotient
map C? — {0} — CP! for complex projective space. When we remember the
action of C5 via complex conjugation, this represents a Cy-equivariant stable
map 7 in 71'1021 Classically, 7] is nilpotent in the stable homotopy ring, as is
every element in positive stems [N]. However, the equivariant Hopf map 7 is
not nilpotent because 7 induces the non-nilpotent element —2 on geometric
fixed points. (The distinction between 2 and —2 depends on choices of orienta-
tions and is inconsequential to the argument.) We will concern ourselves with
phenomena associated to the non-zero elements 1* in F,??C

Because the fixed points of the representation sphere S** consist of two points,
the geometric fixed point homomorphism takes the form ¢ : F,??C — o 2 7.
Bredon [Br] and Landweber [L] proved that the image of ¢ is not in general
generated by ¢(n*). For instance, ¢(1°) = (—2)° = —32, but ¢(r52) = 16Z. In
fact, the higher powers of 1 are increasingly divisible by 2 in the Cs-equivariant
stable homotopy groups (Corollary 1.3).

Let p: S99 — Sb! be the inclusion of fixed points. This class is sometimes
called a, in the literature. Our main result describes to what extent the powers
of n are divisible by p, from which we will deduce several other results.

THEOREM 1.1. Let k =4j+¢e > 1, where 0 < e < 3. Ife =0, then the Cs-
equivariant stable homotopy class n* is divisible by p*~1 and no higher power
of p. Otherwise, the Co-equivariant stable homotopy class n* is divisible by p*I
and no higher power of p.

Our primary tool for studying Cs-equivariant stable homotopy groups is the
equivariant Adams spectral sequence [G] [HK]. The BREDON-LANDWEBER
REGION refers to the subgroups of ﬁgi that are detected in Adams filtration

greater than %k — 1. This region is displayed in the top part of Figure 2. We
will show that the Bredon-Landweber region is additively generated by the
elements p'n®, together with elements « such that p’a = n* for some i.

We recover the following theorem of Landweber [L, Theorem 2.2], which was
originally conjectured by Bredon [Br].

COROLLARY 1.2. Let k = 8j+¢ > 1, with 0 < & < 7. The image of the

geometric fized points homomorphism 771?7@ 2, mo 1S generated by

2UFL 4f e =0.

24ite jf 1<e<A4.

2 f 5<e<T.
Similarly, we have:

COROLLARY 1.3. Let k =8j+¢ > 5, with 0 < e < 7. The Cy-equivariant
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stable homotopy class 0¥ is divisible by

24j—1 if €=0,
247 if 1<e<4,
2Ute—4 4f 5<e<T,

and no higher power of 2.

The proofs of Theorem 1.1, Corollary 1.2, and Corollary 1.3 appear in Sec-
tion 6. First, we must carry out some Ch-equivariant Adams spectral sequence
calculations.

Our calculations can also be used to compute the classical Mahowald invariants
of 2% for all k > 0 (see Theorem 7.2). We directly apply the Bruner-Greenlees
formulation [BG] of the Mahowald invariant that uses Cy-equivariant homotopy
groups. These invariants were previously established by Mahowald and Ravenel
[MR] using entirely different methods.

The charts were created using Hood Chatham’s spectralsequences package.
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2 NOTATION

We continue with notation from [DI] and [GHIR] as follows.

1. M§ = Fy[r, p] is the motivic cohomology of R with Fy coefficients, where
7 and p have bidegrees (0,1) and (1, 1), respectively.

2. M§2 is the bigraded Cs-equivariant Bredon cohomology of a point with
coeflicients in the constant Mackey functor F,.

3. A% is the Cy-equivariant mod 2 Steenrod algebra, using coefficients F.,
and A2 (1) is the MS2-subalgebra of A% generated by Sq' and Sq?.

4. Exte, Extc, Extr, and Extc, are the cohomologies of the classical, C-
motivic, R-motivic, and Cs-equivariant mod 2 Steenrod algebras respec-
tively. These objects are the Fs-pages of Adams spectral sequences.

5. ﬂ'gi and 7, are the stable homotopy rings of the 2-completed Cb-

equivariant sphere spectrum and the 2-completed classical sphere spec-
trum respectively.

We will use some specific familiar elements of the Adams Fs-page. These ele-
ments lie near the “Adams edge” at the top of the Adams chart along a line
of slope 1/2. Our notation for these elements is standard. They include P*hy,
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PFh2, PER3, Pkcy, P¥hicy, P¥hy, and P*hghsy. In addition, we will consider
the elements P*hohs, P*h3hs, and P*h3hs. These slightly non-standard (but
technically correct) names conveniently refer to a well-understood, regular fam-
ily of elements in the Adams Fs-page. They are the top three elements in a
tower of ho-multiplications in stems congruent to 7 modulo 8. For more details,
we refer the reader to any Adams chart, such as [12] or [R, Figure A3.1].

We follow [I] in grading Ext groups according to (s, f,w), where:

1. f is the Adams filtration, i.e., the homological degree.

2. s+ f is the internal degree, i.e., corresponds to the first coordinate in the
bidegree of the Steenrod algebra.

3. s is the stem, i.e., the internal degree minus the Adams filtration.
4. w is the weight.

Following this grading convention, the elements 7 and p, as elements of Extg,
have degrees (0,0, —1) and (—1,0, —1) respectively. Similarly,

ho € Ext]%’l’o, h; € EX’GHQQ:_I’LQF1 for j >0, c¢g€ Ext%’3’5,
and the operator P increases degree by (8,4,4).
We will also often refer to the COWEIGHT, which is defined to be ¢ = s — w.
Since both 1 and p have coweight 0, the Bredon-Landweber region consists
entirely of elements of coweight 0. The coweight is also called the Milnor-Witt
degree in the motivic context ([DI],[GI]).

3 THE p-BOCKSTEIN SPECTRAL SEQUENCE

As an M5-module, the equivariant cofficient ring MQC 2 gplits as MQC > ME @
NC, where NC'is the “negative cone”. The images of the R-motivic classes p
and 7 in M§2 are sometimes called a, and u,, respectively, in the equivariant
literature. The negative cone has [F-basis {#}, where j, k > 0 and 2 lives
in degree (0,0,2). See [GHIR, Section 2.1] for more details. This splitting of
M2 induces a splitting

Exte, = Extr @ Extye,

where Extye = Extg(NC,ME). The splitting of M$? also yields a splitting
for the Bockstein spectral sequence, and we follow [GHIR, Proposition 3.1] in
writing E; for the summand of the Bockstein F;-term which converges to Extg
and E; for the summand which converges to Extnc.

The R-motivic p-Bockstein spectral sequence ([H, DI]) takes the form

Ef = Extclp] = Extg.

The groups Extg are computed for low coweights in [DI]. In coweight 0, F}" is
Fa[ho, h1, p]/(hoh1), and the only relevant Bockstein differential is dq (7) = phy,
giving
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LEMMA 3.1 ([DI]). Extgr in coweight 0 is Fa[ho, h1, p]/(hoh1, pho).

The calculation of Exty¢ in coweight 0 is much more complicated. We have a
short exact sequence [GHIR, Prop 3.1]

Falr - Falr
@ fo[o] {%} QF, [ Extc = By — @TOI"]FZ[T] < fo[o] {%} ,EX‘L@),

5>0 5>0
(3.2)

which we abbreviate as
yE — E] — QE7.

As explained in [GHIR, Remark 3.5], for each class x in Ext¢ such that 72 = 0,
we get a class Qz in QE; , and this element is infinitely divisible by p. The
T-torsion elements of Extc in coweight 0 are h¥ for k > 4, so these give rise to
infinitely p-divisible classes Qh%. This describes QE; in coweight 0.

We now describe yE| in coweight 0. First note that 2 has coweight —i — 1.
Now let x be a class in Extc that is 7-free and not divisible by 7, and let ¢ > 0
be the coweight of z. If ¢ > 2, then Tllx is an element of yE; in coweight 0
that is infinitely divisible by p. When ¢ < 1, there is no corresponding element
of yE| in coweight 0.

This description of £ is incomplete in the sense that it depends on the 7-free
part of Extc, which is only known in a range. The 7-free part of Extc corre-
sponds precisely to classical Ext [I, Proposition 2.10]. In a range, information
about Exte can be obtained from an Ext chart, such as [12] or [R, Figure A.3.1].
In order to rule out certain Bockstein differentials later, we need some structural
results for the Bockstein spectral sequence.

PROPOSITION 3.3. Let x be an element of E. such that d.(z) is non-zero.
Then x and d,.(x) are both infinitely divisible by p in E,.

Proof. Let E,[k] be the part of E,~ in Bockstein filtration k. Note that E [k]
is zero if k > 0, and that p : E [k] — E; [k + 1] is an isomorphism if k < 0.
The d, differential takes the form E[k] — E [k + r].

By induction, diagram chases show that p : E"[k] — E [k + 1] is injective if
0 > k > —r, and it is an isomorphism if —r > k. In particular, if —r > k, then
every element of E,[k] is infinitely divisible by p.

Now let = be an element of E [k] such that d,(zr) is non-zero. This implies
that E [k+7r] is non-zero, so —r > k, and x is infinitely divisible by p. Finally,
the multiplicative structure implies that d,(z) must also be infinitely divisible
by p. O

REMARK 3.4. Proposition 3.3 is dual to [DI, Lemma 3.4], which shows that if
d,() is non-zero in E;f, then p¥z and p¥d,(z) are non-zero in E;f for all k > 0.

In fact, the proof of Proposition 3.3 dualizes line by line.
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ProprosITION 3.5. The Cy-equivariant Bockstein FEi-page is zero in degrees
(s, f,w) such that the coweight s — w 1is negative, the stem s is positive, and
f>3s+3.

Proof. The summand Efr vanishes when s —w < 0, i.e., in negative coweights.
Similarly, QE; vanishes in negative coweights.

It only remains to consider yE; . Consider a non-zero element of yE; in degree
(s, f,w) with s > 0. This element has the form pj—"’Tk:c, where z is 7-free in Extc.
Moreover, the degree of x is (s — j, f,w —j — k — 1).

Using a vanishing result for Extc [GI2, Theorem 1.1], we know that

1 3
< =(s—k)+ =.
f<gs=k)+3
Since k is non-negative, it follows that f < %s + % O

LEMMA 3.6. In coweight 1, the localization E1[hi'] of the Bockstein Fy-page
vanishes.

Proof. We know that Extc[h]'] vanishes in coweight 1 [GI, Theorem 1.1].
Therefore E [h'] and QE; [hy!] both vanish. Finally, yE; [h'] also van-
ishes because there are no 7-free classes in Extc[h; ). O

4 SOME BOCKSTEIN DIFFERENTIALS

The goal of this section is to compute some explicit Bockstein differentials that
we will need for our analysis of the Bredon-Landweber region.

LEMMA 4.1. For k>0,

v v
dy (p72k+1) ~ 2kt2 ho.

Y Y
dy <p27.4k+2> T r4k+3 ha.

i —
ds (p37-4k+4) = 0.

Proof. These formulas follow from the Leibniz rule and the R-motivic Bockstein
differentials dy (72**1) = pr2khg, do(T4+2) = p27%+1h and dz(74FT4) = 0
[DI, Proposition 3.2].
More specifically, start with the relation 72++1 . pTz’LH = 0. Apply the d;
differential to obtain

_ 2k gl 2k+1 v _ 2k+1
0=pr ho'p72k+1+7' -dl(—pT2k+1>—;hQ+T dl(

_
p7-2k+1 :

Therefore, dq (pﬂ%) must equal —55ho.

The second and third formulas follow from a similar argument, starting with
the relations 7412 . pQTZHQ =0 and 7%+1. pzTZk+4 =0. O
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LEMMA 4.2. For k > 0, the elements TP*hy, P*hy, and 7P*cqy, are permanent
cycles in the R-motivic p-Bockstein spectral sequence.

Proof. We can express the classes 7P*hy recursively as matric Massey products

[Q]:
k ho k—1
TP h1: [hg Co], p?’h% ,TP h,l .
The May Convergence Theorem [M, Theorem 4.1] [I, Theorem 2.2.1], applied

to the p-Bockstein spectral sequence, shows that 7P*h; is a permanent cycle.
Similarly, we have recursive matric Massey products

h4
P¥hy = { [h3 o], 0},Pk1h>
2 <[ 3 o) [p3h% 2
k. _ h% k—1
TP%co = ( [h3 o], | 572|,7P" co ). O
p°hi

LEMMA 4.3. For k>0,
d3(T* PP hihs) = p*r P hy.
d3 (TSthlc()) = pBPkJrth.

Proof. By [DI, Theorem 4.1], the only classes in Extg[p~!] that survive the p-
inverted Bockstein spectral sequence are those satifsying s + f — 2w = 0. Since
7P*hy does not satisfy this equation, either it supports a Bockstein differential,
or p"TP¥h; is hit by a Bockstein differential for some 7. But Lemma 4.2 shows
that 7P*h; does not support a differential. Therefore, p"7P*h; must be hit by
some differential. By inspection, there is only one possibility. This establishes
the first formula.

The same argument applies to establish the second formula. o

LEMMA 4.4. For k> 1,

Q v k-1p3
d4k_1 (Whl == 7-4k71P h0h3.
Q ; art T pk
Proof. The class p;%h‘llk restricts to a class of the same name in Ext over A(1)¢2.

There, we have
Q T ok
d4k (Whl = 7_4kb

by [GHIR, Proposition 7.9]. The second formula follows immediately from this,
since P¥h; restricts to hqb®.
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On the other hand, the Bockstein class b is not in the image of the restric-
tion from the p-Bockstein spectral sequence over A2, so p%h‘fk must support

a shorter Bockstein differential over A®2. The claimed differential is the only
possibility. n

Table 1 summarizes the key differential calculations that we will need later.

Table 1: Key Bockstein differentials

¢ (s, element r d,

—2k—2 (1, 0 2k+3) e 1 —t=ho
—4k—3  (2,0,4k +5) P 2 —sh
4k+6  (8k+7,4k+4,4k+1) T3PFh3hs 3 p3T PR +1p,
4k+6  (8k+9,4k+4,4k+3) T3PFhicy 3 p3 PR H1p,

0 (8k, 4k — 1, 8k) pﬁ —rhit 4k —1 = PFhihs
0 (8k + 2,4k, 8k + 2) b 4k 5 PRhy

5 Extc, IN COWEIGHT 0

Proposition 5.1 explicitly describes a large part of Extc, in coweight 0. This
result is more easily understood in the Ext chart in Figure 1, where we are
considering only elements above the shaded region.

PROPOSITION 5.1. In degrees (s, f,w) satisfying s —w = 0 and f > %s -1,
Exte, consists of the following classes:

1. hE for k>0.
2. pP'hk for 5 >0 and k > 0.
3. %h;““*s, with k >1,0<¢e <3 and:

(a) 7 <4k —2 when e = 0.
(b) j <4k —1 when1 <e <3.

Proof. Lemma 3.1 explains how the classes hf and p/h} arise in Extg. It
remains to study Extyc.

The desired elements of the form arise from the differentials in
Lemma 4.4. Proposition 3.3 implies that these elements cannot be involved
in any further differentials.

There are several additional Adams periodic families of elements in the Bock-
stein F)-page that lie above the line f = 1s — 1 in coweight 0. All of these

2
elements are the targets of Bockstein differentials, as shown in Table 2, so they

Q 1 dk+e
<hy
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do not appear in Extc,. Each differential in Table 2 follows from the Leibniz
rule and the differentials in Table 1.

However, the last three calculations are not entirely obvious. In these cases,
write

Y k., _ B k
p2T4k+1P Co = 2 4kt2 TP co
L PR3y = -7 PF 3N
3T+ 0% = 3 rak+a 073

k 3 pk
7[} T4k+1P h1c0 7p37'4k+4 - T P hlco,

and then apply the Leibniz rule to these products.

Table 2: Some Bockstein differentials in coweight 1

c (s, element r d,

1 (8k+3 4k + 1,8k + 2) pmk ———— 2 =P}

1 (8k+4,4k + 1,8k + 3) MM —— PFhy 1 2 PFhohy

1 (8k+4,4k + 2,8k + 3) et PPhohs 1 = P*hi

1 (8k+8,4k+2,8k+7) melP hohs 1 == P¥h3hs
1 (8k+8,4k+ 3,8k +7) e PPhghs 1 ﬁthghg
1 (8k+10,4k +3,8k+9) e Ple 2 TMHP hico
1 (8k+ 10,4k + 4,8k +9) #thgm 3 Pt
1 (8k+12,4k +4,8k +11) e P'hico 3 —4;3gP k+lp,

O

Figure 1 also shows some classes that are not part of the Bredon-Landweber
region. These classes arise in the shaded part of the chart. The structure there
is quite complicated, and it will be analyzed in a range in future work.

6 THE ADAMS SPECTRAL SEQUENCE

We show in Proposition 6.1 that the entire Bredon-Landweber region described
in Proposition 5.1 survives the Cy-equivariant Adams spectral sequence.

PROPOSITION 6.1. No element listed in Proposition 5.1 is either the target or
the source of an Adams differential.

Proof. Except for the elements Y, all of the classes in the Bredon-Landweber
region are hi-periodic. Therefore, any class supporting an Adams differential
into the Bredon-Landweber region would be hi-periodic and of coweight 1.
Lemma 3.6 shows that there are no such classes.
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On the other hand, the elements h§ are hg-periodic. By inspection in low
dimensions, there are no hg-periodic elements that could support differentials
whose values are h’g.

Adams differentials on the classes in the Bredon-Landweber region lie in the
vanishing region of Proposition 3.5. Therefore, these classes must be permanent
cycles. O

Figure 2 shows the Bredon-Landweber region in the Adams FE.-page. Similarly
to the Adams FEs-page in Figure 1, there are additional classes in the shaded
part of the chart that we will consider in future work.

We now analyze hidden p extensions in the Bredon-Landweber region. The key
tool is Proposition 6.2.

PropPOSITION 6.2. The kernel of U : ﬁgzk — Ty, the underlying homomor-

. . . e, c
phism, is the image of p : Ty pe1 — T ke

Proof. This follows immediately from the cofiber sequence
(Ca)y — S™0 25 81,

using the free-forgetful adjunction between equivariant homotopy classes
(Cy)+ — X and classical homotopy classes from S° to the underlying spec-
trum of X. O

LEMMA 6.3. For k > 4, there is a hidden p extension from Qh¥ to h¥.

Proof. The classical Hopf map 7] in 71 is the underlying map of the equivariant
Hopf map 7 in 71'16:21 Let k > 4. Since (ncl)k = 0 in 7, Proposition 6.2 implies
that n* must be a multiple of p. The only possibility is that there is a hidden
p extension from Qh¥ to h¥. O

The hidden extensions of Lemma 6.3 appear in Figure 2 as dashed lines of
negative slope.

In principle, it would be possible for there to be additional hidden p extensions
whose sources lie in the shaded part of Figure 2 and whose targets lie in the
Bredon-Landweber region. Lemma 6.4 eliminates this possibility.

LEMMA 6.4. There are no hidden p-extensions whose targets lie in the Bredon-
Landweber region.

Proof. We use the unit map S%° — koc, for the Cy-equivariant connective
real K-theory spectrum, as studied in [GHIR]. The entire Bredon-Landweber
region is detected by the Adams FE.-page for koc,. Therefore, a hidden p
extension into the Bredon-Landweber region would be detected by a p extension
in the homotopy of koc,.

There are in fact some elements in the homotopy of koc, that support p ex-
tensions into the image of the Bredon-Landweber pattern. These elements are

DOCUMENTA MATHEMATICA 25 (2020) 1865-1880



C5-EQUIVARIANT STABLE HOMOTOPY GROUPS 1875

detected by p@%h%k_l and /w;%h‘fk in the Adams F-page for koc,. We
must show that they do not lie in the image of the unit map.

These elements support infinite towers of hg-multiplications in the Adams F.-
page for koc,. Therefore, they cannot lie in the image of the unit map, since
the Adams E-page in Figure 2 does not include elements that support infinite
towers of hg-multiplications in the relevant degrees. O

We have now collected enough results to prove Theorem 1.1, Corollary 1.2, and
Corollary 1.3.

Proof of Theorem 1.1. The Cy-equivariant element n* is detected by h¥ in the
Adams F.-page. Lemma 6.3 and Proposition 5.1 give a lower bound on the
power of p that divides n*, and Lemma 6.4 gives an upper bound on this power
of p. O

Proof of Corollary 1.2. The geometric fixed points homomorphism ¢ takes the
values ¢(p) = 1 and ¢(n) = —2. (The minus sign in ¢(n) depends on choices
of orientations and is inconsequential to the proof.) Consequently, ¢(«) = 0 if
« is not p-periodic, i.e., if « is detected below the Bredon-Landweber region.

The corollary now follows from Theorem 1.1. O

Proof of Corollary 1.3. Recall [DI, Section 8] that hg detects 2+ pn. Therefore,
for homotopy classes detected by hg-torsion classes, multiplication by 2 coin-
cides with multiplication by —pn. Thus 7* is divisible by 2™ if and only if n*~™
is divisible by p™. This latter condition can be determined by Theorem 1.1. O

7 THE MAHOWALD INVARIANT OF 2F

The goal of this section is compute the Mahowald invariant of 2* for all k > 0.
We begin by determining the values of the underlying homomorphism U :
wgg — 7, on classes in the Bredon-Landweber region. Proposition 6.2 implies
that U(«) is necessarily zero when « is divisible by p. On the other hand, U(«)

is always non-zero when « is not divisible by p.

THEOREM 7.1. The underlying homomorphism U : wgg — s takes values as

described in Table 3.

Proof. The underlying homomorphism U induces a map of Adams spectral
sequences Extc, — Exte. This map of spectral sequences detects the first
four values in Table 3.

The summand Extyc lies in the kernel of this map of spectral sequences.
Therefore, if « in ﬂi % 1s detected by an element of Extyc, then U(a) must be
detected in strictly higher Adams filtration. For each of the last four entries in
Table 3, there is only one possible element in higher Adams filtration. o
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Table 3: Some values of the underlying homomorphism

s a detected by  U(«) detected by
0 1 1

1 ha hi

2 h? h?

3 h3 h3

8k—1 —ihik PE1h3hsg

8k+1  rhi™™! P¥hy
8k+2 Zipikt2 pkp?
8k+3 —hit? PFR3

The underlying homomorphism U plays a central role in the Mahowald root
invariant [MR]. The Bruner-Greenlees formulation of the Mahowald invariant
of a homotopy class is given as follows [BG]. First, recall that the geometric
fixed points homomorphism ¢ : WSZIC — Tp—k gives rise to an isomorphism
[AI, Proposition 7.0]

Ca

ﬂ-*,* [pil] = T [p:tl]'

Then the Mahowald invariant is defined via the diagram

Mo — 7T*C:2* ]

T

Here the dashed arrow picks out an element from the largest possible stem.
More precisely, given a classical stable homotopy class « in 7, one first chooses
an equivariant stable homotopy class 3 in WS, 2 _ such that ¢(f) = o and such
that n is as large as possible. In particular, 3 is not divisible by p, for otherwise
n would not be maximal. Then M (a) contains the element U(8). Beware
that there can be more than one choice for 3, so the Mahowald invariant has
indeterminacy in general.

Our Cs-equivariant calculations allow us to easily recover the Mahowald invari-
ants of 2¥ ([MR, Theorem 2.17]).

THEOREM 7.2. Letk =4j+4+¢ > 4 with 0 < e < 3. The Mahowald invariant of
2k contains an element that is detected by
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Pi=1p3hs  ife=0.

Pjhl Zf€:1
PIh3 if e =2.
P]h? ife =3.

Proof. Theorem 1.1 determines the value of 8 in the Bruner-Greenlees formula-
tion of the Mahowald invariant. Then Theorem 7.1 gives the value of U(3). O

REMARK 7.3. The indeterminacy in M (2¥) is determined by the values of the
underlying map on classes that are detected in the shaded region of Figure 2.
It does not seem possible to predict the indeterminacy of M (2¥) in general.
However, inspection in low dimensions shows that the indeterminacy of M (25)
is generated by elements detected by h2hs and hico, while M (2¥) has no inde-
terminacy for all other values of k¥ < 8. This indeterminacy calculation depends
on a detailed analysis of the shaded region of Figure 2 and will be justified in
future work.

8 CHARTS

Here is a key for reading the charts of Figure 1, Figure 2, and Figure 3:

1. Blue dots indicate copies of Fy from Extg (or Ext over the R-motivic
version of A(1) in the case of Figure 3).

2. Gray dots indicate copies of Fy from Extyc (or from the negative cone
part of Ext over A2 (1) in the case of Figure 3).

3. Horizontal lines indicate multiplications by p.

4. Dashed lines of negative slope indicate p extensions that are hidden in
the Adams spectral sequence.

5. Vertical lines indicate multiplications by hg.
6. Vertical arrows indicate infinite sequences of multiplications by hyg.

7. Lines of slope 1 indicate multiplications by h;.
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