

THE BREDON-LANDWEBER REGION IN C_2 -EQUIVARIANT
STABLE HOMOTOPY GROUPS

BERTRAND J. GUILLOU AND DANIEL C. ISAKSEN

Received: July 16, 2019

Revised: September 7, 2020

Communicated by Mike Hill

ABSTRACT. We use the C_2 -equivariant Adams spectral sequence to compute part of the C_2 -equivariant stable homotopy groups $\pi_{n,n}^{C_2}$. This allows us to recover results of Bredon and Landweber on the image of the geometric fixed-points map $\pi_{n,n}^{C_2} \rightarrow \pi_0$. We also recover results of Mahowald and Ravenel on the Mahowald root invariants of the elements 2^k .

2020 Mathematics Subject Classification: 55Q91, 55T15; Secondary 14F42, 55Q45

Keywords and Phrases: Equivariant stable homotopy group, Mahowald root invariant, Adams spectral sequence

1 INTRODUCTION

The goal of this article is to study some phenomena in the C_2 -equivariant stable homotopy groups. Let $\mathbb{R}^{n,k}$ be the n -dimensional real representation of C_2 in which the nonidentity element of C_2 acts as -1 on the last k coordinates (and trivially on the first $n-k$), and let $S^{n,k}$ be its one-point compactification. Then $\pi_{n,k}^{C_2}$ is the set of 2-completed C_2 -equivariant stable homotopy classes of maps $S^{n,k} \rightarrow S^{0,0}$. In this article, we are primarily concerned with the groups $\pi_{k,k}^{C_2}$. We alert the reader to the fact that another notational convention is sometimes used for C_2 -equivariant stable homotopy groups. Writing σ for the real sign representation of C_2 , the representation $\mathbb{R}^{n,k}$ corresponds to $(n-k) + k\sigma$ in $RO(C_2)$. Thus the group which appears here as $\pi_{n,k}^{C_2}$ is also denoted $\pi_{n-k+k\sigma}^{C_2}$ in the literature. Our choice of notation works well in comparison to motivic homotopy theory, and furthermore it was the notation employed by Bredon [Br].

The classical Hopf map $\eta_{\text{cl}} : S^3 \rightarrow S^2$ can be modeled as the defining quotient map $\mathbb{C}^2 - \{0\} \rightarrow \mathbb{CP}^1$ for complex projective space. When we remember the action of C_2 via complex conjugation, this represents a C_2 -equivariant stable map η in $\pi_{1,1}^{C_2}$. Classically, η_{cl} is nilpotent in the stable homotopy ring, as is every element in positive stems [N]. However, the equivariant Hopf map η is not nilpotent because η induces the non-nilpotent element -2 on geometric fixed points. (The distinction between 2 and -2 depends on choices of orientations and is inconsequential to the argument.) We will concern ourselves with phenomena associated to the non-zero elements η^k in $\pi_{k,k}^{C_2}$.

Because the fixed points of the representation sphere $S^{k,k}$ consist of two points, the geometric fixed point homomorphism takes the form $\phi : \pi_{k,k}^{C_2} \rightarrow \pi_0 \cong \mathbb{Z}$. Bredon [Br] and Landweber [L] proved that the image of ϕ is not in general generated by $\phi(\eta^k)$. For instance, $\phi(\eta^5) = (-2)^5 = -32$, but $\phi(\pi_{5,5}^{C_2}) = 16\mathbb{Z}$. In fact, the higher powers of η are increasingly divisible by 2 in the C_2 -equivariant stable homotopy groups (Corollary 1.3).

Let $\rho : S^{0,0} \rightarrow S^{1,1}$ be the inclusion of fixed points. This class is sometimes called a_σ in the literature. Our main result describes to what extent the powers of η are divisible by ρ , from which we will deduce several other results.

THEOREM 1.1. *Let $k = 4j + \varepsilon \geq 1$, where $0 \leq \varepsilon \leq 3$. If $\varepsilon = 0$, then the C_2 -equivariant stable homotopy class η^k is divisible by ρ^{k-1} and no higher power of ρ . Otherwise, the C_2 -equivariant stable homotopy class η^k is divisible by ρ^{4j} and no higher power of ρ .*

Our primary tool for studying C_2 -equivariant stable homotopy groups is the equivariant Adams spectral sequence [G] [HK]. The BREDON-LANDWEBER REGION refers to the subgroups of $\pi_{k,k}^{C_2}$ that are detected in Adams filtration greater than $\frac{1}{2}k - 1$. This region is displayed in the top part of Figure 2. We will show that the Bredon-Landweber region is additively generated by the elements $\rho^i \eta^k$, together with elements α such that $\rho^i \alpha = \eta^k$ for some i .

We recover the following theorem of Landweber [L, Theorem 2.2], which was originally conjectured by Bredon [Br].

COROLLARY 1.2. *Let $k = 8j + \varepsilon \geq 1$, with $0 \leq \varepsilon \leq 7$. The image of the geometric fixed points homomorphism $\pi_{k,k}^{C_2} \xrightarrow{\phi} \pi_0$ is generated by*

$$\begin{cases} 2^{4j+1} & \text{if } \varepsilon = 0. \\ 2^{4j+\varepsilon} & \text{if } 1 \leq \varepsilon \leq 4. \\ 2^{4j+4} & \text{if } 5 \leq \varepsilon \leq 7. \end{cases}$$

Similarly, we have:

COROLLARY 1.3. *Let $k = 8j + \varepsilon \geq 5$, with $0 \leq \varepsilon \leq 7$. The C_2 -equivariant*

stable homotopy class η^k is divisible by

$$\begin{cases} 2^{4j-1} & \text{if } \varepsilon = 0, \\ 2^{4j} & \text{if } 1 \leq \varepsilon \leq 4, \\ 2^{4j+\varepsilon-4} & \text{if } 5 \leq \varepsilon \leq 7, \end{cases}$$

and no higher power of 2.

The proofs of [Theorem 1.1](#), [Corollary 1.2](#), and [Corollary 1.3](#) appear in [Section 6](#). First, we must carry out some C_2 -equivariant Adams spectral sequence calculations.

Our calculations can also be used to compute the classical Mahowald invariants of 2^k for all $k \geq 0$ (see [Theorem 7.2](#)). We directly apply the Bruner-Greenlees formulation [[BG](#)] of the Mahowald invariant that uses C_2 -equivariant homotopy groups. These invariants were previously established by Mahowald and Ravenel [[MR](#)] using entirely different methods.

The charts were created using Hood Chatham's `spectralsequences` package.

ACKNOWLEDGEMENT

The first author was supported by NSF grant DMS-1710379. The second author was supported by NSF grant DMS-1202213.

2 NOTATION

We continue with notation from [[DI](#)] and [[GHIR](#)] as follows.

1. $\mathbb{M}_2^{\mathbb{R}} = \mathbb{F}_2[\tau, \rho]$ is the motivic cohomology of \mathbb{R} with \mathbb{F}_2 coefficients, where τ and ρ have bidegrees $(0, 1)$ and $(1, 1)$, respectively.
2. $\mathbb{M}_2^{C_2}$ is the bigraded C_2 -equivariant Bredon cohomology of a point with coefficients in the constant Mackey functor $\underline{\mathbb{F}}_2$.
3. \mathcal{A}^{C_2} is the C_2 -equivariant mod 2 Steenrod algebra, using coefficients $\underline{\mathbb{F}}_2$, and $\mathcal{A}^{C_2}(1)$ is the $\mathbb{M}_2^{C_2}$ -subalgebra of \mathcal{A}^{C_2} generated by Sq^1 and Sq^2 .
4. Ext_{cl} , $\text{Ext}_{\mathbb{C}}$, $\text{Ext}_{\mathbb{R}}$, and Ext_{C_2} are the cohomologies of the classical, \mathbb{C} -motivic, \mathbb{R} -motivic, and C_2 -equivariant mod 2 Steenrod algebras respectively. These objects are the E_2 -pages of Adams spectral sequences.
5. $\pi_{*,*}^{C_2}$ and π_* are the stable homotopy rings of the 2-completed C_2 -equivariant sphere spectrum and the 2-completed classical sphere spectrum respectively.

We will use some specific familiar elements of the Adams E_2 -page. These elements lie near the “Adams edge” at the top of the Adams chart along a line of slope $1/2$. Our notation for these elements is standard. They include $P^k h_1$,

$P^k h_1^2$, $P^k h_1^3$, $P^k c_0$, $P^k h_1 c_0$, $P^k h_2$, and $P^k h_0 h_2$. In addition, we will consider the elements $P^k h_0 h_3$, $P^k h_0^2 h_3$, and $P^k h_0^3 h_3$. These slightly non-standard (but technically correct) names conveniently refer to a well-understood, regular family of elements in the Adams E_2 -page. They are the top three elements in a tower of h_0 -multiplications in stems congruent to 7 modulo 8. For more details, we refer the reader to any Adams chart, such as [12] or [R, Figure A3.1]. We follow [I] in grading Ext groups according to (s, f, w) , where:

1. f is the Adams filtration, i.e., the homological degree.
2. $s + f$ is the internal degree, i.e., corresponds to the first coordinate in the bidegree of the Steenrod algebra.
3. s is the stem, i.e., the internal degree minus the Adams filtration.
4. w is the weight.

Following this grading convention, the elements τ and ρ , as elements of $\text{Ext}_{\mathbb{R}}$, have degrees $(0, 0, -1)$ and $(-1, 0, -1)$ respectively. Similarly,

$$h_0 \in \text{Ext}_{\mathbb{R}}^{0,1,0}, \quad h_j \in \text{Ext}_{\mathbb{R}}^{2^j-1,1,2^{j-1}} \quad \text{for } j > 0, \quad c_0 \in \text{Ext}_{\mathbb{R}}^{8,3,5},$$

and the operator P increases degree by $(8, 4, 4)$.

We will also often refer to the COWEIGHT, which is defined to be $c = s - w$. Since both η and ρ have coweight 0, the Bredon-Landweber region consists entirely of elements of coweight 0. The coweight is also called the Milnor-Witt degree in the motivic context ([DI],[GI]).

3 THE ρ -BOCKSTEIN SPECTRAL SEQUENCE

As an $\mathbb{M}_2^{\mathbb{R}}$ -module, the equivariant coefficient ring $\mathbb{M}_2^{C_2}$ splits as $\mathbb{M}_2^{C_2} \cong \mathbb{M}_2^{\mathbb{R}} \oplus NC$, where NC is the “negative cone”. The images of the \mathbb{R} -motivic classes ρ and τ in $\mathbb{M}_2^{C_2}$ are sometimes called a_{σ} and u_{σ} , respectively, in the equivariant literature. The negative cone has \mathbb{F}_2 -basis $\{\frac{\gamma}{\rho^j \tau^{k+1}}\}$, where $j, k \geq 0$ and $\frac{\gamma}{\tau}$ lives in degree $(0, 0, 2)$. See [GHIR, Section 2.1] for more details. This splitting of $\mathbb{M}_2^{C_2}$ induces a splitting

$$\text{Ext}_{C_2} \cong \text{Ext}_{\mathbb{R}} \oplus \text{Ext}_{NC},$$

where $\text{Ext}_{NC} = \text{Ext}_{\mathbb{R}}(NC, \mathbb{M}_2^{\mathbb{R}})$. The splitting of $\mathbb{M}_2^{C_2}$ also yields a splitting for the Bockstein spectral sequence, and we follow [GHIR, Proposition 3.1] in writing E_1^+ for the summand of the Bockstein E_1 -term which converges to $\text{Ext}_{\mathbb{R}}$ and E_1^- for the summand which converges to Ext_{NC} .

The \mathbb{R} -motivic ρ -Bockstein spectral sequence ([H, DI]) takes the form

$$E_1^+ = \text{Ext}_{\mathbb{C}}[\rho] \Rightarrow \text{Ext}_{\mathbb{R}}.$$

The groups $\text{Ext}_{\mathbb{R}}$ are computed for low coweights in [DI]. In coweight 0, E_1^+ is $\mathbb{F}_2[h_0, h_1, \rho]/(h_0 h_1)$, and the only relevant Bockstein differential is $d_1(\tau) = \rho h_0$, giving

LEMMA 3.1 ([DI]). $\mathrm{Ext}_{\mathbb{R}}$ in coweight 0 is $\mathbb{F}_2[h_0, h_1, \rho]/(h_0h_1, \rho h_0)$.

The calculation of Ext_{NC} in coweight 0 is much more complicated. We have a short exact sequence [GHIR, Prop 3.1]

$$\bigoplus_{s \geq 0} \frac{\mathbb{F}_2[\tau]}{\tau^\infty} \left\{ \frac{\gamma}{\rho^s} \right\} \otimes_{\mathbb{F}_2[\tau]} \mathrm{Ext}_{\mathbb{C}} \rightarrow E_1^- \rightarrow \bigoplus_{s \geq 0} \mathrm{Tor}_{\mathbb{F}_2[\tau]} \left(\frac{\mathbb{F}_2[\tau]}{\tau^\infty} \left\{ \frac{\gamma}{\rho^s} \right\}, \mathrm{Ext}_{\mathbb{C}} \right), \quad (3.2)$$

which we abbreviate as

$$\gamma E_1^- \longrightarrow E_1^- \longrightarrow QE_1^-.$$

As explained in [GHIR, Remark 3.5], for each class x in $\mathrm{Ext}_{\mathbb{C}}$ such that $\tau x = 0$, we get a class Qx in QE_1^- , and this element is infinitely divisible by ρ . The τ -torsion elements of $\mathrm{Ext}_{\mathbb{C}}$ in coweight 0 are h_1^k for $k \geq 4$, so these give rise to infinitely ρ -divisible classes Qh_1^k . This describes QE_1^- in coweight 0.

We now describe γE_1^- in coweight 0. First note that $\frac{\gamma}{\tau^i}$ has coweight $-i - 1$. Now let x be a class in $\mathrm{Ext}_{\mathbb{C}}$ that is τ -free and not divisible by τ , and let $c \geq 0$ be the coweight of x . If $c \geq 2$, then $\frac{\gamma}{\tau^{c-1}}x$ is an element of γE_1^- in coweight 0 that is infinitely divisible by ρ . When $c \leq 1$, there is no corresponding element of γE_1^- in coweight 0.

This description of E_1^- is incomplete in the sense that it depends on the τ -free part of $\mathrm{Ext}_{\mathbb{C}}$, which is only known in a range. The τ -free part of $\mathrm{Ext}_{\mathbb{C}}$ corresponds precisely to classical $\mathrm{Ext}_{\mathrm{cl}}$ [I, Proposition 2.10]. In a range, information about $\mathrm{Ext}_{\mathrm{cl}}$ can be obtained from an Ext chart, such as [I2] or [R, Figure A.3.1]. In order to rule out certain Bockstein differentials later, we need some structural results for the Bockstein spectral sequence.

PROPOSITION 3.3. *Let x be an element of E_r^- such that $d_r(x)$ is non-zero. Then x and $d_r(x)$ are both infinitely divisible by ρ in E_r^- .*

Proof. Let $E_r^-[k]$ be the part of E_r^- in Bockstein filtration k . Note that $E_1^-[k]$ is zero if $k > 0$, and that $\rho : E_1^-[k] \longrightarrow E_1^-[k+1]$ is an isomorphism if $k < 0$. The d_r differential takes the form $E_r^-[k] \longrightarrow E_r^-[k+r]$.

By induction, diagram chases show that $\rho : E_r^-[k] \longrightarrow E_r^-[k+1]$ is injective if $0 > k > -r$, and it is an isomorphism if $-r \geq k$. In particular, if $-r \geq k$, then every element of $E_r^-[k]$ is infinitely divisible by ρ .

Now let x be an element of $E_r^-[k]$ such that $d_r(x)$ is non-zero. This implies that $E_r^-[k+r]$ is non-zero, so $-r \geq k$, and x is infinitely divisible by ρ . Finally, the multiplicative structure implies that $d_r(x)$ must also be infinitely divisible by ρ . \square

REMARK 3.4. Proposition 3.3 is dual to [DI, Lemma 3.4], which shows that if $d_r(x)$ is non-zero in E_r^+ , then $\rho^k x$ and $\rho^k d_r(x)$ are non-zero in E_r^+ for all $k \geq 0$. In fact, the proof of Proposition 3.3 dualizes line by line.

PROPOSITION 3.5. *The C_2 -equivariant Bockstein E_1 -page is zero in degrees (s, f, w) such that the coweight $s - w$ is negative, the stem s is positive, and $f > \frac{1}{2}s + \frac{3}{2}$.*

Proof. The summand E_1^+ vanishes when $s - w < 0$, i.e., in negative coweights. Similarly, QE_1^- vanishes in negative coweights.

It only remains to consider γE_1^- . Consider a non-zero element of γE_1^- in degree (s, f, w) with $s > 0$. This element has the form $\frac{\gamma}{\rho\tau^k}x$, where x is τ -free in $\text{Ext}_{\mathbb{C}}$. Moreover, the degree of x is $(s - j, f, w - j - k - 1)$.

Using a vanishing result for $\text{Ext}_{\mathbb{C}}$ [GI2, Theorem 1.1], we know that

$$f \leq \frac{1}{2}(s - k) + \frac{3}{2}.$$

Since k is non-negative, it follows that $f \leq \frac{1}{2}s + \frac{3}{2}$. \square

LEMMA 3.6. *In coweight 1, the localization $E_1[h_1^{-1}]$ of the Bockstein E_1 -page vanishes.*

Proof. We know that $\text{Ext}_{\mathbb{C}}[h_1^{-1}]$ vanishes in coweight 1 [GI, Theorem 1.1]. Therefore $E_1^+[h_1^{-1}]$ and $QE_1^-[h_1^{-1}]$ both vanish. Finally, $\gamma E_1^-[h_1^{-1}]$ also vanishes because there are no τ -free classes in $\text{Ext}_{\mathbb{C}}[h_1^{-1}]$. \square

4 SOME BOCKSTEIN DIFFERENTIALS

The goal of this section is to compute some explicit Bockstein differentials that we will need for our analysis of the Bredon-Landweber region.

LEMMA 4.1. *For $k \geq 0$,*

$$\begin{aligned} d_1 \left(\frac{\gamma}{\rho\tau^{2k+1}} \right) &= \frac{\gamma}{\tau^{2k+2}} h_0. \\ d_2 \left(\frac{\gamma}{\rho^2\tau^{4k+2}} \right) &= \frac{\gamma}{\tau^{4k+3}} h_1. \\ d_3 \left(\frac{\gamma}{\rho^3\tau^{4k+4}} \right) &= 0. \end{aligned}$$

Proof. These formulas follow from the Leibniz rule and the \mathbb{R} -motivic Bockstein differentials $d_1(\tau^{2k+1}) = \rho\tau^{2k}h_0$, $d_2(\tau^{4k+2}) = \rho^2\tau^{4k+1}h_1$, and $d_3(\tau^{4k+4}) = 0$ [DI, Proposition 3.2].

More specifically, start with the relation $\tau^{2k+1} \cdot \frac{\gamma}{\rho\tau^{2k+1}} = 0$. Apply the d_1 differential to obtain

$$0 = \rho\tau^{2k}h_0 \cdot \frac{\gamma}{\rho\tau^{2k+1}} + \tau^{2k+1} \cdot d_1 \left(\frac{\gamma}{\rho\tau^{2k+1}} \right) = \frac{\gamma}{\tau} h_0 + \tau^{2k+1} \cdot d_1 \left(\frac{\gamma}{\rho\tau^{2k+1}} \right).$$

Therefore, $d_1 \left(\frac{\gamma}{\rho\tau^{2k+1}} \right)$ must equal $\frac{\gamma}{\tau^{2k+2}}h_0$.

The second and third formulas follow from a similar argument, starting with the relations $\tau^{4k+2} \cdot \frac{\gamma}{\rho^2\tau^{4k+2}} = 0$ and $\tau^{4k+4} \cdot \frac{\gamma}{\rho^2\tau^{4k+4}} = 0$. \square

LEMMA 4.2. *For $k \geq 0$, the elements $\tau P^k h_1$, $P^k h_2$, and $\tau P^k c_0$, are permanent cycles in the \mathbb{R} -motivic ρ -Bockstein spectral sequence.*

Proof. We can express the classes $\tau P^k h_1$ recursively as matric Massey products [Q]:

$$\tau P^k h_1 = \left\langle [h_3 \ c_0], \begin{bmatrix} h_0^4 \\ \rho^3 h_1^2 \end{bmatrix}, \tau P^{k-1} h_1 \right\rangle.$$

The May Convergence Theorem [M, Theorem 4.1] [I, Theorem 2.2.1], applied to the ρ -Bockstein spectral sequence, shows that $\tau P^k h_1$ is a permanent cycle. Similarly, we have recursive matric Massey products

$$P^k h_2 = \left\langle [h_3 \ c_0], \begin{bmatrix} h_0^4 \\ \rho^3 h_1^2 \end{bmatrix}, P^{k-1} h_2 \right\rangle$$

$$\tau P^k c_0 = \left\langle [h_3 \ c_0], \begin{bmatrix} h_0^4 \\ \rho^3 h_1^2 \end{bmatrix}, \tau P^{k-1} c_0 \right\rangle. \quad \square$$

LEMMA 4.3. *For $k \geq 0$,*

$$d_3(\tau^3 P^k h_0^3 h_3) = \rho^3 \tau P^{k+1} h_1.$$

$$d_3(\tau^3 P^k h_1 c_0) = \rho^3 P^{k+1} h_2.$$

Proof. By [DI, Theorem 4.1], the only classes in $\text{Ext}_{\mathbb{R}}[\rho^{-1}]$ that survive the ρ -inverted Bockstein spectral sequence are those satisfying $s + f - 2w = 0$. Since $\tau P^k h_1$ does not satisfy this equation, either it supports a Bockstein differential, or $\rho^r \tau P^k h_1$ is hit by a Bockstein differential for some r . But Lemma 4.2 shows that $\tau P^k h_1$ does not support a differential. Therefore, $\rho^r \tau P^k h_1$ must be hit by some differential. By inspection, there is only one possibility. This establishes the first formula.

The same argument applies to establish the second formula. \square

LEMMA 4.4. *For $k \geq 1$,*

$$d_{4k-1} \left(\frac{Q}{\rho^{4k-1}} h_1^{4k} \right) = \frac{\gamma}{\tau^{4k-1}} P^{k-1} h_0^3 h_3.$$

$$d_{4k} \left(\frac{Q}{\rho^{4k}} h_1^{4k+1} \right) = \frac{\gamma}{\tau^{4k}} P^k h_1.$$

Proof. The class $\frac{Q}{\rho^{4k}} h_1^{4k}$ restricts to a class of the same name in Ext over $\mathcal{A}(1)^{C_2}$. There, we have

$$d_{4k} \left(\frac{Q}{\rho^{4k}} h_1^{4k} \right) = \frac{\gamma}{\tau^{4k}} b^k$$

by [GHIR, Proposition 7.9]. The second formula follows immediately from this, since $P^k h_1$ restricts to $h_1 b^k$.

On the other hand, the Bockstein class $\frac{\gamma}{\tau^{4k}}b^k$ is not in the image of the restriction from the ρ -Bockstein spectral sequence over \mathcal{A}^{C_2} , so $\frac{Q}{\rho^{4k}}h_1^{4k}$ must support a shorter Bockstein differential over \mathcal{A}^{C_2} . The claimed differential is the only possibility. \square

Table 1 summarizes the key differential calculations that we will need later.

Table 1: Key Bockstein differentials

c	(s, f, w)	element	r	d_r
$-2k - 2$	$(1, 0, 2k + 3)$	$\frac{\gamma}{\rho\tau^{2k+1}}$	1	$\frac{\gamma}{\tau^{2k+2}}h_0$
$-4k - 3$	$(2, 0, 4k + 5)$	$\frac{\gamma}{\rho^2\tau^{4k+2}}$	2	$\frac{\gamma}{\tau^{4k+3}}h_1$
$4k + 6$	$(8k + 7, 4k + 4, 4k + 1)$	$\tau^3 P^k h_0^3 h_3$	3	$\rho^3 \tau P^{k+1} h_1$
$4k + 6$	$(8k + 9, 4k + 4, 4k + 3)$	$\tau^3 P^k h_1 c_0$	3	$\rho^3 P^{k+1} h_2$
0	$(8k, 4k - 1, 8k)$	$\frac{Q}{\rho^{4k-1}}h_1^{4k}$	$4k - 1$	$\frac{\gamma}{\tau^{4k-1}}P^{k-1}h_0^3 h_3$
0	$(8k + 2, 4k, 8k + 2)$	$\frac{Q}{\rho^{4k+1}}h_1^{4k+1}$	$4k$	$\frac{\gamma}{\tau^{4k}}P^k h_1$

5 Ext_{C_2} IN COWEIGHT 0

Proposition 5.1 explicitly describes a large part of Ext_{C_2} in coweight 0. This result is more easily understood in the Ext chart in [Figure 1](#), where we are considering only elements above the shaded region.

PROPOSITION 5.1. *In degrees (s, f, w) satisfying $s - w = 0$ and $f > \frac{1}{2}s - 1$, Ext_{C_2} consists of the following classes:*

1. h_0^k for $k \geq 0$.
2. $\rho^j h_1^k$ for $j \geq 0$ and $k \geq 0$.
3. $\frac{Q}{\rho^j}h_1^{4k+\varepsilon}$, with $k \geq 1$, $0 \leq \varepsilon \leq 3$ and:
 - (a) $j \leq 4k - 2$ when $\varepsilon = 0$.
 - (b) $j \leq 4k - 1$ when $1 \leq \varepsilon \leq 3$.

Proof. [Lemma 3.1](#) explains how the classes h_0^k and $\rho^j h_1^k$ arise in $\text{Ext}_{\mathbb{R}}$. It remains to study Ext_{NC} .

The desired elements of the form $\frac{Q}{\rho^j}h_1^{4k+\varepsilon}$ arise from the differentials in [Lemma 4.4](#). [Proposition 3.3](#) implies that these elements cannot be involved in any further differentials.

There are several additional Adams periodic families of elements in the Bockstein E_1 -page that lie above the line $f = \frac{1}{2}s - 1$ in coweight 0. All of these elements are the targets of Bockstein differentials, as shown in [Table 2](#), so they

do not appear in Ext_{C_2} . Each differential in [Table 2](#) follows from the Leibniz rule and the differentials in [Table 1](#).

However, the last three calculations are not entirely obvious. In these cases, write

$$\begin{aligned} \frac{\gamma}{\rho^2 \tau^{4k+1}} P^k c_0 &= \frac{\gamma}{\rho^2 \tau^{4k+2}} \cdot \tau P^k c_0 \\ \frac{\gamma}{\rho^3 \tau^{4k+1}} P^k h_0^3 h_3 &= \frac{\gamma}{\rho^3 \tau^{4k+4}} \cdot \tau^3 P^k h_0^3 h_3 \\ \frac{\gamma}{\rho^3 \tau^{4k+1}} P^k h_1 c_0 &= \frac{\gamma}{\rho^3 \tau^{4k+4}} \cdot \tau^3 P^k h_1 c_0, \end{aligned}$$

and then apply the Leibniz rule to these products.

Table 2: Some Bockstein differentials in coweight 1

c	(s, f, w)	element	r	d_r
1	$(8k+3, 4k+1, 8k+2)$	$\frac{\gamma}{\rho^2 \tau^{4k-2}} P^k h_1$	2	$\frac{\gamma}{\tau^{4k-1}} P^k h_1^2$
1	$(8k+4, 4k+1, 8k+3)$	$\frac{\gamma}{\rho \tau^{4k-1}} P^k h_2$	1	$\frac{\gamma}{\tau^{4k}} P^k h_0 h_2$
1	$(8k+4, 4k+2, 8k+3)$	$\frac{\gamma}{\rho \tau^{4k-1}} P^k h_0 h_2$	1	$\frac{\gamma}{\tau^{4k-1}} P^k h_1^3$
1	$(8k+8, 4k+2, 8k+7)$	$\frac{\gamma}{\rho \tau^{4k+1}} P^k h_0 h_3$	1	$\frac{\gamma}{\tau^{4k+2}} P^k h_0^2 h_3$
1	$(8k+8, 4k+3, 8k+7)$	$\frac{\gamma}{\rho \tau^{4k+1}} P^k h_0^2 h_3$	1	$\frac{\gamma}{\tau^{4k+2}} P^k h_0^3 h_3$
1	$(8k+10, 4k+3, 8k+9)$	$\frac{\gamma}{\rho^2 \tau^{4k+1}} P^k c_0$	2	$\frac{\gamma}{\tau^{4k+2}} P^k h_1 c_0$
1	$(8k+10, 4k+4, 8k+9)$	$\frac{\gamma}{\rho^3 \tau^{4k+1}} P^k h_0^3 h_3$	3	$\frac{\gamma}{\tau^{4k+3}} P^{k+1} h_1$
1	$(8k+12, 4k+4, 8k+11)$	$\frac{\gamma}{\rho^3 \tau^{4k+1}} P^k h_1 c_0$	3	$\frac{\gamma}{\tau^{4k+4}} P^{k+1} h_2$

□

[Figure 1](#) also shows some classes that are not part of the Bredon-Landweber region. These classes arise in the shaded part of the chart. The structure there is quite complicated, and it will be analyzed in a range in future work.

6 THE ADAMS SPECTRAL SEQUENCE

We show in [Proposition 6.1](#) that the entire Bredon-Landweber region described in [Proposition 5.1](#) survives the C_2 -equivariant Adams spectral sequence.

PROPOSITION 6.1. *No element listed in [Proposition 5.1](#) is either the target or the source of an Adams differential.*

Proof. Except for the elements h_0^k , all of the classes in the Bredon-Landweber region are h_1 -periodic. Therefore, any class supporting an Adams differential into the Bredon-Landweber region would be h_1 -periodic and of coweight 1. [Lemma 3.6](#) shows that there are no such classes.

On the other hand, the elements h_0^k are h_0 -periodic. By inspection in low dimensions, there are no h_0 -periodic elements that could support differentials whose values are h_0^k .

Adams differentials on the classes in the Bredon-Landweber region lie in the vanishing region of [Proposition 3.5](#). Therefore, these classes must be permanent cycles. \square

[Figure 2](#) shows the Bredon-Landweber region in the Adams E_∞ -page. Similarly to the Adams E_2 -page in [Figure 1](#), there are additional classes in the shaded part of the chart that we will consider in future work.

We now analyze hidden ρ extensions in the Bredon-Landweber region. The key tool is [Proposition 6.2](#).

PROPOSITION 6.2. *The kernel of $U : \pi_{n,k}^{C_2} \rightarrow \pi_n$, the underlying homomorphism, is the image of $\rho : \pi_{n-1,k-1}^{C_2} \rightarrow \pi_{n,k}^{C_2}$.*

Proof. This follows immediately from the cofiber sequence

$$(C_2)_+ \longrightarrow S^{0,0} \xrightarrow{\rho} S^{1,1},$$

using the free-forgetful adjunction between equivariant homotopy classes $(C_2)_+ \rightarrow X$ and classical homotopy classes from S^0 to the underlying spectrum of X . \square

LEMMA 6.3. *For $k \geq 4$, there is a hidden ρ extension from Qh_1^k to h_1^k .*

Proof. The classical Hopf map η_{cl} in π_1 is the underlying map of the equivariant Hopf map η in $\pi_{1,1}^{C_2}$. Let $k \geq 4$. Since $(\eta_{\text{cl}})^k = 0$ in π_k , [Proposition 6.2](#) implies that η^k must be a multiple of ρ . The only possibility is that there is a hidden ρ extension from Qh_1^k to h_1^k . \square

The hidden extensions of [Lemma 6.3](#) appear in [Figure 2](#) as dashed lines of negative slope.

In principle, it would be possible for there to be additional hidden ρ extensions whose sources lie in the shaded part of [Figure 2](#) and whose targets lie in the Bredon-Landweber region. [Lemma 6.4](#) eliminates this possibility.

LEMMA 6.4. *There are no hidden ρ -extensions whose targets lie in the Bredon-Landweber region.*

Proof. We use the unit map $S^{0,0} \rightarrow ko_{C_2}$ for the C_2 -equivariant connective real K -theory spectrum, as studied in [\[GHIR\]](#). The entire Bredon-Landweber region is detected by the Adams E_∞ -page for ko_{C_2} . Therefore, a hidden ρ extension into the Bredon-Landweber region would be detected by a ρ extension in the homotopy of ko_{C_2} .

There are in fact some elements in the homotopy of ko_{C_2} that support ρ extensions into the image of the Bredon-Landweber pattern. These elements are

detected by $\frac{Q}{\rho^{4k-4}}h_1^{4k-1}$ and $\frac{Q}{\rho^{4k-1}}h_1^{4k}$ in the Adams E_∞ -page for ko_{C_2} . We must show that they do not lie in the image of the unit map.

These elements support infinite towers of h_0 -multiplications in the Adams E_∞ -page for ko_{C_2} . Therefore, they cannot lie in the image of the unit map, since the Adams E_∞ -page in [Figure 2](#) does not include elements that support infinite towers of h_0 -multiplications in the relevant degrees. \square

We have now collected enough results to prove [Theorem 1.1](#), [Corollary 1.2](#), and [Corollary 1.3](#).

Proof of Theorem 1.1. The C_2 -equivariant element η^k is detected by h_1^k in the Adams E_∞ -page. [Lemma 6.3](#) and [Proposition 5.1](#) give a lower bound on the power of ρ that divides η^k , and [Lemma 6.4](#) gives an upper bound on this power of ρ . \square

Proof of Corollary 1.2. The geometric fixed points homomorphism ϕ takes the values $\phi(\rho) = 1$ and $\phi(\eta) = -2$. (The minus sign in $\phi(\eta)$ depends on choices of orientations and is inconsequential to the proof.) Consequently, $\phi(\alpha) = 0$ if α is not ρ -periodic, i.e., if α is detected below the Bredon-Landweber region.

The corollary now follows from [Theorem 1.1](#). \square

Proof of Corollary 1.3. Recall [\[DI, Section 8\]](#) that h_0 detects $2 + \rho\eta$. Therefore, for homotopy classes detected by h_0 -torsion classes, multiplication by 2 coincides with multiplication by $-\rho\eta$. Thus η^k is divisible by 2^m if and only if η^{k-m} is divisible by ρ^m . This latter condition can be determined by [Theorem 1.1](#). \square

7 THE MAHOWALD INVARIANT OF 2^k

The goal of this section is compute the Mahowald invariant of 2^k for all $k \geq 0$. We begin by determining the values of the underlying homomorphism $U : \pi_{s,s}^{C_2} \rightarrow \pi_s$ on classes in the Bredon-Landweber region. [Proposition 6.2](#) implies that $U(\alpha)$ is necessarily zero when α is divisible by ρ . On the other hand, $U(\alpha)$ is always non-zero when α is not divisible by ρ .

THEOREM 7.1. *The underlying homomorphism $U : \pi_{s,s}^{C_2} \rightarrow \pi_s$ takes values as described in [Table 3](#).*

Proof. The underlying homomorphism U induces a map of Adams spectral sequences $\text{Ext}_{C_2} \rightarrow \text{Ext}_{\text{cl}}$. This map of spectral sequences detects the first four values in [Table 3](#).

The summand Ext_{NC} lies in the kernel of this map of spectral sequences. Therefore, if α in $\pi_{n,k}^{C_2}$ is detected by an element of Ext_{NC} , then $U(\alpha)$ must be detected in strictly higher Adams filtration. For each of the last four entries in [Table 3](#), there is only one possible element in higher Adams filtration. \square

Table 3: Some values of the underlying homomorphism

s	α detected by	$U(\alpha)$ detected by
0	1	1
1	h_1	h_1
2	h_1^2	h_1^2
3	h_1^3	h_1^3
$8k - 1$	$\frac{Q}{\rho^{4k-2}} h_1^{4k}$	$P^{k-1} h_0^3 h_3$
$8k + 1$	$\frac{Q}{\rho^{4k-1}} h_1^{4k+1}$	$P^k h_1$
$8k + 2$	$\frac{Q}{\rho^{4k-1}} h_1^{4k+2}$	$P^k h_1^2$
$8k + 3$	$\frac{Q}{\rho^{4k-1}} h_1^{4k+3}$	$P^k h_1^3$

The underlying homomorphism U plays a central role in the Mahowald root invariant [MR]. The Bruner-Greenlees formulation of the Mahowald invariant of a homotopy class is given as follows [BG]. First, recall that the geometric fixed points homomorphism $\phi : \pi_{n,k}^{C_2} \longrightarrow \pi_{n-k}$ gives rise to an isomorphism [AI, Proposition 7.0]

$$\pi_{*,*}^{C_2}[\rho^{-1}] \cong \pi_*[\rho^{\pm 1}].$$

Then the Mahowald invariant is defined via the diagram

$$\begin{array}{ccc}
 \pi_* & \longrightarrow & \pi_{*,*}^{C_2}[\rho^{-1}] \\
 & \searrow M(-) & \uparrow \pi_{*,*}^{C_2} \\
 & & \downarrow U \\
 & & \pi_*
 \end{array}$$

Here the dashed arrow picks out an element from the largest possible stem. More precisely, given a classical stable homotopy class α in π_k , one first chooses an equivariant stable homotopy class β in $\pi_{n,n-k}^{C_2}$ such that $\phi(\beta) = \alpha$ and such that n is as large as possible. In particular, β is not divisible by ρ , for otherwise n would not be maximal. Then $M(\alpha)$ contains the element $U(\beta)$. Beware that there can be more than one choice for β , so the Mahowald invariant has indeterminacy in general.

Our C_2 -equivariant calculations allow us to easily recover the Mahowald invariants of 2^k ([MR, Theorem 2.17]).

THEOREM 7.2. *Let $k = 4j + \varepsilon \geq 4$ with $0 \leq \varepsilon \leq 3$. The Mahowald invariant of 2^k contains an element that is detected by*

$$\begin{aligned}
 P^{j-1}h_0^3h_3 &\quad \text{if } \varepsilon = 0. \\
 P^j h_1 &\quad \text{if } \varepsilon = 1. \\
 P^j h_1^2 &\quad \text{if } \varepsilon = 2. \\
 P^j h_1^3 &\quad \text{if } \varepsilon = 3.
 \end{aligned}$$

Proof. Theorem 1.1 determines the value of β in the Bruner-Greenlees formulation of the Mahowald invariant. Then Theorem 7.1 gives the value of $U(\beta)$. \square

REMARK 7.3. The indeterminacy in $M(2^k)$ is determined by the values of the underlying map on classes that are detected in the shaded region of Figure 2. It does not seem possible to predict the indeterminacy of $M(2^k)$ in general. However, inspection in low dimensions shows that the indeterminacy of $M(2^5)$ is generated by elements detected by $h_1^2h_3$ and h_1c_0 , while $M(2^k)$ has no indeterminacy for all other values of $k \leq 8$. This indeterminacy calculation depends on a detailed analysis of the shaded region of Figure 2 and will be justified in future work.

8 CHARTS

Here is a key for reading the charts of Figure 1, Figure 2, and Figure 3:

1. Blue dots indicate copies of \mathbb{F}_2 from $\text{Ext}_{\mathbb{R}}$ (or Ext over the \mathbb{R} -motivic version of $\mathcal{A}(1)$ in the case of Figure 3).
2. Gray dots indicate copies of \mathbb{F}_2 from Ext_{NC} (or from the negative cone part of Ext over $\mathcal{A}^{C_2}(1)$ in the case of Figure 3).
3. Horizontal lines indicate multiplications by ρ .
4. Dashed lines of negative slope indicate ρ extensions that are hidden in the Adams spectral sequence.
5. Vertical lines indicate multiplications by h_0 .
6. Vertical arrows indicate infinite sequences of multiplications by h_0 .
7. Lines of slope 1 indicate multiplications by h_1 .

Figure 1

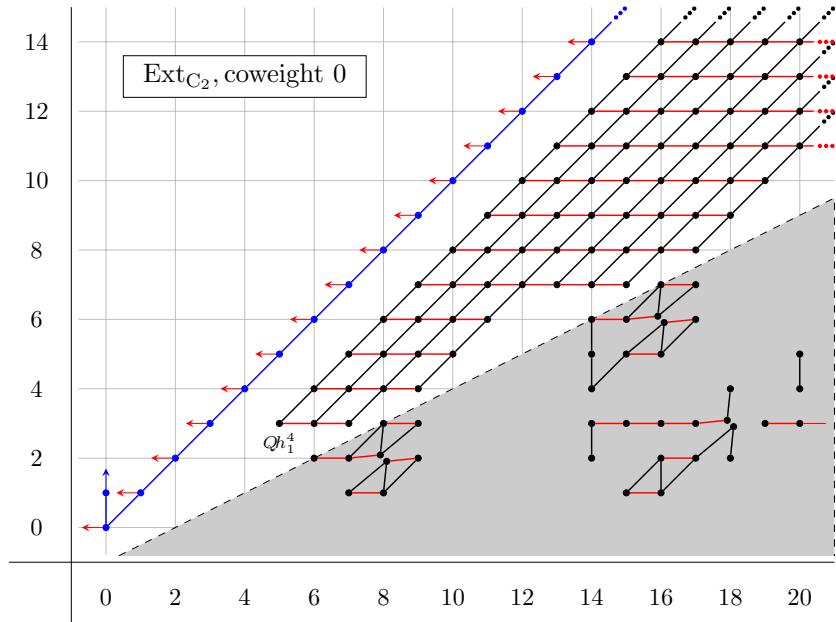


Figure 2

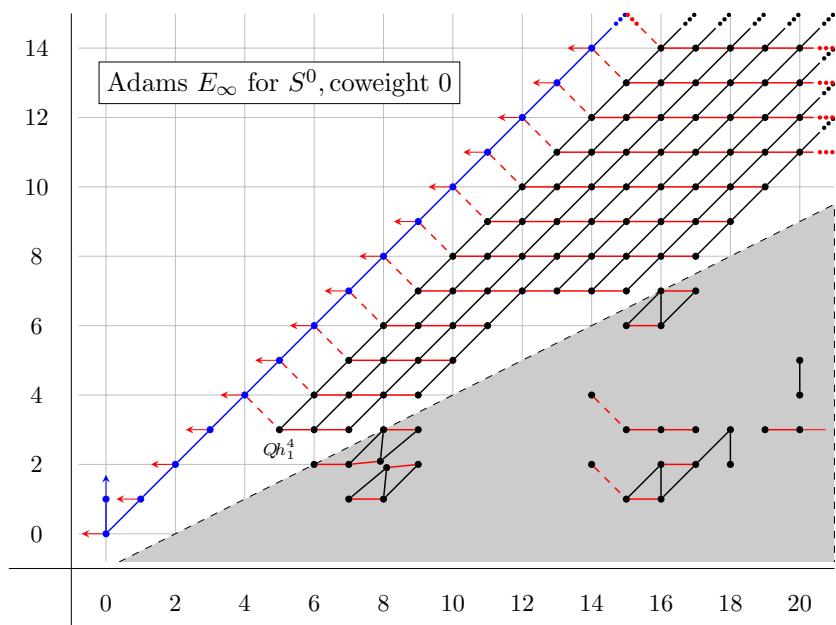
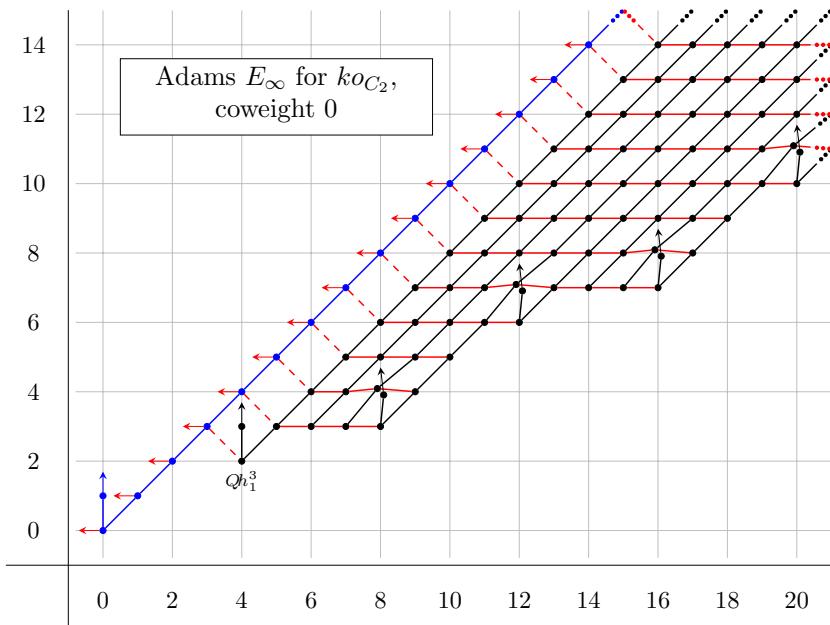


Figure 3



REFERENCES

- [AI] S. Araki and K. Iriye. *Equivariant stable homotopy groups of spheres with involutions. I.* Osaka J. Math. 19 (1982), no. 1, 1–55.
- [Br] G. E. Bredon. *Equivariant stable stems.* Bull. Amer. Math. Soc. 73 (1967) 269–273.
- [BG] B. Bruner and J. Greenlees. *The Bredon-Löffler conjecture.* Experiment. Math. 4 (1995), no. 4, 289–297.
- [DI] D. Dugger and D. C. Isaksen. *Low dimensional Milnor-Witt stems over \mathbb{R} .* Ann. K-Theory 2 (2017), no. 2, 175–210.
- [G] J. P. C. Greenlees. *Adams spectral sequences in equivariant topology.* Ph.D. Thesis, University of Cambridge, 1985.
- [GHIR] B. Guillou, M. A. Hill, D. C. Isaksen, and D. C. Ravenel. *The cohomology of C_2 -equivariant $\mathcal{A}(1)$ and the homotopy of ko_{C_2} .* Tunis. J. Math. 2 (2020), no. 3, 567–632.
- [GI] B. Guillou and D. C. Isaksen. *The η -local motivic sphere.* J. Pure Appl. Algebra 219 (2015) 4728–4756.

- [GI2] B. Guillou and D. C. Isaksen. *The motivic Adams vanishing line of slope $\frac{1}{2}$* . New York J. Math. 21 (2015), 533–545.
- [H] M. A. Hill. *Ext and the motivic Steenrod algebra over \mathbb{R}* . J. Pure Appl. Algebra 215 (2011) 715–727.
- [HK] P. Hu and I. Kriz. *Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence*. Topology 40 (2001), no. 2, 317–399.
- [I] D. C. Isaksen. *Stable stems*. Mem. Amer. Math. Soc. 262 (2019), no. 1269.
- [I2] D. C. Isaksen. *Classical and motivic Adams charts*. Available as arXiv preprint arXiv:1401.4983.
- [L] P. Landweber. *On equivariant maps between spheres with involutions*. Ann. of Math. 89 (1969) 125–137.
- [M] J. P. May. *Matric Massey products*. J. Algebra 12 (1969) 553–568.
- [MR] M. Mahowald and D. Ravenel. *The root invariant in homotopy theory*. Topology 32 (1993), no. 4, 865–898.
- [N] G. Nishida. *The nilpotency of elements of the stable homotopy groups of spheres*. J. Math. Soc. Japan 25 (1973) 707–732.
- [Q] J. D. Quigley. *The motivic Mahowald invariant*. Algebr. Geom. Topol. 19 (2019), no. 5, 2485–2534.
- [R] D. C. Ravenel. *Complex cobordism and stable homotopy groups of spheres*. Pure and Applied Mathematics 121, Academic Press, 1986.

Bertrand J. Guillou
 Department of Mathematics
 University of Kentucky
 Lexington, KY 40506
 USA
 bertguillou@uky.edu

Daniel C. Isaksen
 Department of Mathematics
 Wayne State University
 Detroit, MI 48202
 USA
 isaksen@wayne.edu