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ABSTRACT

We present the SphericRTC system for real-time 360-degree video
communication. 360-degree video allows the viewer to observe the
environment in any direction from the camera location. This more-
immersive streaming experience allows users to more-efficiently
exchange information and can be beneficial in the real-time setting.
Our system applies a novel approach to select representations of
360-degree frames to allow efficient, content-adaptive delivery. The
system performs joint content and bitrate adaptation in real-time
by offloading expensive transformation operations to the GPU via
CUDA. The system demonstrates that the multiple sub-components
ś viewport feedback, representation selection, and joint content
and bitrate adaptation ś can be effectively integrated within a
single framework. Compared to a baseline implementation, views
in SphericRTC have consistently higher visual quality. The median
Viewport-PSNR of such views is 2.25 dB higher than views in the
baseline system.
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1 INTRODUCTION

360-degree videos allow users to navigate recorded scenes in three
degrees of freedom (3-DoF). The 360-degree video medium is not
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only useful for delivering pre-recorded content, but can also allow
users to more-naturally experience real-time events, e.g., telecon-
ferencing, telepresence, and human-controlled robotic navigation.

A core challenge in 360-degree video delivery involves deliver-
ing the frames required for immersive experience in a bandwidth-
efficient way. Current implementations can suffer from both low
quality user-views and high bandwidth consumption. Both draw-
backs can be mitigated by reducing the number of transmitted, but
unviewed, pixels on 360-degree frames.

A wide range of approaches have been proposed to address
wasted bandwidth in the 360-degree video streaming setting. Tiling
approaches, e.g., [23, 38], transmit only a subset of the spatial por-
tions of the omnidirectional frame that will be observed by users.
Oriented projections [6, 8, 50] attempt to transmit representations
with higher pixel densities in regions likely to be viewed by users.
Both tiling and oriented projection approaches require accurate
predictions of the users’ view-orientation to operate effectively. In
the on-demand streaming setting, many such prediction approaches
have been proposed [23, 36, 38, 44, 45].

Bandwidth-efficient operation in the real-time 360-degree video
communication setting is significantly more challenging than in
the on-demand streaming settings. In the real-time setting, much
less time is available to convert collected 360-degree segments
to more efficient tile-based or oriented projection segments. In
addition, given that new content is generated on-the-fly, traces of
view orientations from many users over a single sequence of video
frames cannot be used to predict the current user’s view.

This paper describes a practical end-to-end real-time 360-degree
video communication system, which we call SphericRTC. Spheri-
cRTC applies a combination of computational tools and algorithms
to achieve bandwidth-efficient streaming in the real-time setting.
SphericRTC achieves bandwidth efficiency and improves view qual-
ity by processing raw segments into content-adaptive oriented
projections. To perform this adaptation step in real-time, Spheri-
cRTC offloads these transformations to the GPU. Specifically, this
work makes the following contributions:

• We design an oriented projection approach toward 360-degree
content adaptation suitable for real-time processing. This ap-
proach includes a novel strategy for selecting the best oriented
projection parameters for a given real-time adaptation bitrate.

• We show that, in our system, the simple approach of using the
most-recent reported user orientations is effective for generating
frame representations for high-quality views. This approach is



effective due to the low latency between reporting user’s view
orientation and consumption of the generated frames.

• We implement a CUDA library to create adaptive representa-
tions in real-time and integrate this library into our SphericRTC
framework.

• Our complete system integrates viewport feedback, adaptation
and transformation components. This integration demonstrates
that managing information flow from video receiver to the video
collector and between prediction and adaption components are
possible in a practical system.

• Results from extensive experiments show that SphericRTC con-
sistently outperforms a baseline system: The median Viewport-
PSNR of views rendered in SphericRTC is 2.25 dB higher than
the views rendered in the baseline system.

2 BACKGROUND

2.1 360-Degree Video

360-degree videos present users with omnidirectional content, al-
lowing them to freely explore all orientations emanating from the
camera position. To effectively transmit 360-degree videos, the om-
nidirectional content is first projected onto a 2D plane. While many
projection schemes exist, the equirectangular projection [11] is
the one that is the most simple and widely used. Transmitting 360-
degree video streams typically include full omnidirectional frames.
However, although all pixels in the omnidirectional frame would be
transmitted, only the portion in the field of view (FoV) is rendered
and displayed to the viewer. This results in a large number of wasted
(i.e., unviewed) pixels. 360-degree video viewing devices’ FoVs are
typically between 90° and 120°. To illustrate the amount of wasted
bandwidth, rendering a 100°×100° FoV requires only approximately
15% of pixels on an equirectangular frame. A direct consequence
of wasted bandwidth is bad visual quality of the rendered views.
For example, suppose the available network bandwidth can sup-
port streaming of an equirectangular-projected video of 1080p, the
effective resolution of rendered views is only equivalent to 480p or
even 360p.

To address the bandwidth inefficiency, a number of solutions
have been proposed to reduce the wasted data in the on-demand and
live video streaming settings. These approaches include tiling [21ś
23, 28, 33, 35, 37, 38, 43, 44, 49] and oriented projections [6, 8, 50].
The high-level idea is to prepare representations of the 360-degree
videos such that it is possible to only transmit data within predicted
viewport in high quality.

2.2 Real-Time Video Communication

Real-time video communication is widely used for online video
chatting and video conferencing. Services such as Apple’s FaceTime,
Google Hangouts, and Zoom allow video streams to be transmitted
with hundreds of milliseconds round-trip time [46, 48]. Developers
can also leverage the open-source WebRTC framework [13] to add
real-time video communication capabilities to their applications on
various platforms.

Real-time video communication, however, should be differen-
tiated from the term łlive video streamingž. In łlive streamingž,
broadcaster-to-viewer latency is on the order of tens of seconds [31,

47]. For example, Liu et al. found that the median broadcaster-
to-viewer latency of 360-degree live streaming is 37.1 seconds on
YouTube and 18.7 seconds on Facebook [31]. With less stringent
latency requirements, live video streaming can take advantage of
per-segment encoding (batching a few seconds of video before en-
coding) and reliable TCP-based transmission. On the other hand,
for real-time video communication, captured video frames should
be encoded and transmitted as soon as possible without batching.

A key challenge with real-time video communication is the ultra-
low latency required by interactive video, which helps create the
illusion that the video receiver is located in the same place as the
video collector. To do so, collected video frames are encoded and
then transmitted via the real-time transport protocol (RTP) [39]
typically over the UDP transport layer protocol.

2.3 WebRTC

WebRTC is an open-source framework for real-time video commu-
nication [13]. When transmitting videos over WebRTC, the video
collector encodes frames in RTP packets. The video receiver records
information about every RTP packet it receives and transmits the
information in a real-time transport control protocol (RTCP) mes-
sage (Transport-wide Feedback) back to the video collector. The
bandwidth controller at the video collector calculates metrics
such as inter-packet delay variation, queuing delay, and packet
loss. These metrics are then used to compute the target sending
bitrate for transmitting video content to the video receiver [3, 5].
The frame encoder then uses this target sending bitrate to adjust
the quantization parameter (qp). This qp parameter is further
used by the bandwidth controller. The bandwidth controller adjusts
target resolution of captured frames so that transmitted frames
more-closelymatch the target sending bitrate. To dynamically adapt
the video’s sending bitrate based on the network conditions, the
bandwidth controller adjusts the <estimated bandwidth/target send-

ing bitrate, target resolution> of transmitted video streams based
on network statistics collected from the video receiver. Separate
from the main audio/video stream, WebRTC can also be used to set
up a data channel using the stream control transmission protocol
(SCTP) [4].

Vanilla WebRTC does not provide special support for 360-degree
videos. To provide real-time communication, 360-degree videos
have to be treated the same way as traditional 2D videos. For exam-
ple, consider a 360-degree camera connected to a video collector
computer via a wired connection, the camera outputs video frames
in the equirectangular projection. These equirectangular-projected
frames will be encoded and transmitted by WebRTC via the secure
real-time transport protocol (SRTP) [2]. During transmission, target
sending bitrate of the video collector/sender will be adapted based
on the delay and packet loss feedback from the receiver [17].

A main drawback with this solution, however, is that a large
percentage of pixels on the equirectangular-projected frame is
not viewed, causing wasted bandwidth and low quality of ren-
dered views. In this paper, we propose SphericRTC that achieves
bandwidth efficiency and improves view quality by using content-
adaptive oriented projections. We compare the performance of
SphericRTC with the vanilla WebRTC baseline in evaluation.



3 DESIGN

3.1 Overview of SphericRTC

The core idea in SphericRTC’s design involves transforming the
video content in away that reduces unviewed pixels. In the real-time
setting, this transformation must take place within a tolerable frame
delivery threshold. SphericRTC performs this content adaptation
using i) the most recently reported view-orientation and ii) a bitrate
adaptation decision derived from network statistics.

Figure 1 provides an overview of SphericRTC components. Inter-
nally, SphericRTC is built on top of WebRTC. With vanilla WebRTC,
the video collector transmits video stream to the video receiver,
and the video receiver reports network statistics back to the video
collector to perform bitrate adaptation. To enable content adapta-
tion, in SphericRTC, the video receiver reports back the additional
łViewport Feedbackž, i.e., the user’s view orientations while con-
suming the 360-degree video stream, to the video collector.

In the łRepresentation Selectionž component, content-bitrate
adaptation decisions are made based on collected network statistics
and users’ viewing data. For content adaptation, SphericRTC uses
oriented projections for representing 360-degree video frames.
Oriented projections devote more pixels in the projected frame to
areas on the sphere close to a target pixel-concentration orientation.
Decisions made by the łRepresentation Selectionž component are
forwarded to the łFrame Processingž component, which spatially
transforms the camera-captured frame into representations with
different pixel-concentration areas and frame resolutions.

In the remainder of this section, we first discuss how the łRep-
resentation Selectionž component makes adaptation decisions by
choosing appropriate oriented projection parameters. We then dis-
cuss both how to synchronize selected per-frame projection param-
eters with the video receiver as well as a variety of other design
considerations.

3.2 Analysis of Oriented Projections

An łoriented projectionž uses more pixels on the video frame to
represent a selected target pixel-concentration area than other areas
in the frame [50]. After transformation to an oriented projection,
the frame will appear as if it łmagnifiesž the content near the
pixel-concentration direction. When the user’s view is near this
target orientation, views rendered from oriented frames will be
of higher quality compared to views from a standard projection
of the same resolution. However, views farther away from the
target orientation can be in lower quality compared to views from
a comparable standard projection. We use the offset spherical

projection to create oriented projections in SphericRTC.

3.2.1 Offset Spherical Projection. The offset spherical projection

can be parameterized by a single offset vector ®d , ∥ ®d ∥ ∈ [0, 1). This
offset vector describes the oriented projection’s pixel-concentration
direction. An offset projection can be created starting with pixels
from a 360-degree video frame are mapped to the surface of a
unit sphere. Each pixel can be represented by a unit vector ®p (i.e.,
∥ ®p∥ = 1) from the center of the sphere to the pixel position. All

pixels on the sphere are łoffsetž by ®d by applying the following

transformation: ®p′ =
®p− ®d

∥ ®p− ®d ∥
, creating a new (normalized) vector,

®p′. Figure 2 illustrates how the offset vector ®d is applied to pixels
on a sphere.

As pixels are re-projected to new locations on the sphere, we
obtain a new sphere. We can then project pixels on the new sphere
to a 2D plane, e.g., using the equirectangular projection, for 2D video
encoding. Figure 3(a) shows an original equirectangular-projected
frame with no offset applied. Figures 3(b), 3(c), and 3(d) show the
resulting offset equirectangular projections after applying offset
vectors with different magnitudes.

3.2.2 Magnification Analysis. By applying the offset, content on
the sphere near the offset direction will be magnified. In Figure
2, red-tinted pixels represent magnified areas of the sphere while
content in the blue-tinted pixels indicate areas of the sphere that
were reduced to occupy smaller areas.

If we assume that the angle between a pixel vector ®p on the

sphere and the offset vector ®d is θ , then after applying the offset,

the angle between the new vector ®p′ and the offset vector becomes:

f (θ ) = arctan
sinθ

−∥ ®d ∥ + cosθ
(1)

Consider a small FoV of 2 · ∆, the magnified FoV will become
2 · ∆′

= 2 · (f (θ + ∆) − f (θ )). We can thus calculate the magnifying
value as:

∆
′

∆
=

f (θ + ∆) − f (θ )

f (∆) − f (0)
(2)

Per-pixel magnification can be thus approached by (3), which
can be calculated as the derivative of f (θ ) as (4):

lim
∆→0

f (θ + ∆) − f (θ )

∆
(3)

д(θ ) = f ′(θ ) =

cos θ

−∥ ®d ∥+cos θ
+ ( sin θ

−∥ ®d ∥+cos θ
)2

1 + ( sin θ

−∥ ®d ∥+cos θ
)2

(4)

In this function, the greatest value is at θ = 0, i.e., when the pixel

is in the same direction as the offset vector ®d , and the maximum
magnification can be calculated as:

д(0) =
1

−∥ ®d ∥ + 1
(5)

3.3 Joint Content and Bitrate Adaptation

Using offset projections for content adaptation requires us to de-

termine the best offset vector, ®d , for transforming the 360-degree

content. Furthermore, we can represent ®d as the product of a unit
vector, ®o (the offset direction), pointing from the center of the sphere
to a point on the spherical surface, and a scalar,m ∈ [0, 1) (the offset
magnitude), representing the magnitude of the offset vector. That

is, ®d =m · ®o. The content adaptation task then becomes two tasks:
selection of offset direction and selection of offset magnitude.

3.3.1 Offset Direction Determination. Content magnification is
maximal in the pixel-concentration direction pointed by the offset
vector. Therefore, to maximize the visual quality of views rendered
at the video receiver’s side, the offset direction should be selected to
match the viewer’s future view orientation. Typically, a prediction
algorithm would be used to predict the future orientation. Here,
real-time video communication allows us to take advantage of the





3.5 Other Considerations

Once the łRepresentation Selectionž component has determined
the parameters of the offset projection to encode, the łFrame Pro-
cessingž component will apply the transformation to the frame
captured from the 360-degree camera accordingly. SphericRTC uses
the equirectangular projection as the underlying mapping of spher-
ical pixels to the 2D frame. This design choice is based on the
following reasons:

First, many 360-degree cameras natively output the equirectan-
gular frames. Thus, we can represent the original, camera-supplied
frame as a special case of the offset equirectangular projection, i.e.,
with the offset magnitude being 0. In this way, no frame transforma-
tion is needed if the network bandwidth is sufficient for transmitting
the frame in its camera-supplied resolution.

Second, if we use other spherical projections such as the cubemap
projection, the projected content on the 2D rectangular plane may
no longer be continuous. Content discontinuity may negatively
affect the quality of encoded pixels under a same target encoding
bitrate. For example, the cubemap projection projects pixels on a
sphere onto six faces of a cube. However, even with the łbaseball
layoutž [20], the boundary between top and bottom portions of the
projection is not continuous. Discontinuous content makes it more
difficult for the encoder to find similar blocks within the frame to
copy from, and thus requires more bits to encode to a same quality.

4 IMPLEMENTATION

We implement SphericRTC based on the open-source framework,
WebRTC. Figure 4 shows an overview of modules added or modified
in the SphericRTC implementation. Three new modules are added:
(1) the łView Orientation Transmitterž module at the video receiver
side provides viewport data feedback to the video collector, (2) the
łOffset Direction Determinationž module chooses the best offset
direction based on feedback from the video receiver, and (3) the
łFastTransform360ž library performs fast frame transformation.

In addition, to integrate these three new modules with the We-
bRTC code base, we further modified the source code of a number
of objects in WebRTC. These modified WebRTC objects are drawn
in dashed boxes in Figure 4.

Overall, the view orientation transmitter is written in about 100
lines of code in Javascript, the offset direction determinationmodule
is written in about 200 lines of code in C, the FastTransform360
library is written in about 1,000 lines of CUDA code and 600 lines
of code in C++ as an interface. Moreover, about 600 lines of code in
C++ is added to the WebRTC code base1.

4.1 View Orientation Transmission and Offset
Direction Determination

To select the best offset direction for content adaptation, the video
collector needs to know where the viewer at the video receiver
side is going to look at. To do so, the video receiver sends back
user’s view orientation data to the video collector and let the offset
direction determination module perform the prediction.

1We make SphericRTC source code available at: https://github.com/bingsyslab/Spheri
cRTC

To reliably transmit user’s view orientation data to the video
collector, we use the WebRTC data channel [4] which is imple-
mented using the usrsctp library and transmitted over SCTP. At
the video collector, the offset direction determination module is
implemented as a shared-memory server using the POSIX shared
memory APIs [7]. It receives data sent from the video receiver,
performs view prediction, and writes the latest prediction to the
shared memory space. In this work, we simply predict future views
as the last-received view orientation. However, a more complex
view prediction scheme can be easily incorporated into our shared-
memory server. When SphericRTC needs the offset direction, it
fetches from the piece of memory. With the producer-consumer
modeled shared-memory server, the video collector can always get
the latest predicted offset direction.

4.2 The FastTransform360 Library (FT360)

Facebook has open-sourced a 360-degree video frame processing
library, Transform360 [9], that uses the CPU for its transformation
operations. However, we found that CPU-based frame transforma-
tion cannot satisfy the real-time latency and throughput require-
ments.

To this end, we implement a FastTransform360 (FT360) library
to perform fast frame processing based on joint content and bi-
trate adaptation decisions. FT360 is compiled as a shared library
using CUDA [10] with a C++ interface. It takes frame inputs in
YUVI420 byte array format, computes a mapping table, performs
sampling using the CUDA sampling module, tex2D(), and outputs
the transformed frame in YUVI420 format. The FT360 library can
perform scaling, rotation, offset, and/or re-projection from input
equirectangular-projected frames to desired frames in various base
spherical projections.

4.3 RTP Header Extension

To provide in-band transmission of offset direction information
to the video receiver, we use RTP header extension to include the
information and send it to the video receiver with the frame simul-
taneously. To transmit frames over the network, encoded frames
are split into multiple RTP packets and transmitted via UDP. To
reconstruct the frame at the video receiver side, each RTP packet
includes a header that includes a timestamp as the frame ID. Fur-
thermore, RTP also allows a header extension mechanism that can
carry additional information in the RTP header. We thus take ad-
vantage of this and add 5 bytes of add-on extension. Figure 5 shows
the new RTP header generated by SphericRTC. The add-on exten-
sion is used for encoding the offset direction information into four
bytes (uint8): yaw, pitch, roll, and extra. Both łpitchž and łrollž have
180 unique integer values and can be represented using one uint8,
while łyawž has 360 unique integer values, and we use an extra
uint8 for it. Overall, the total number of offset directions allowed
in our SphericRTC is 360 × 180 × 180 = 11, 664, 000.

5 EVALUATION

We conducted extensive experiments comparing SphericRTC with
the naive implementation of real-time 360-degree video communi-
cation via vanilla WebRTC. We focus our performance evaluation
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