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In this paper, we prove a tight minimum degree condition in general graphs for the

existence of paths between two given endpoints whose lengths form a long arithmetic

progression with common difference one or two. This allows us to obtain a number

of exact and optimal results on cycle lengths in graphs of given minimum degree,

connectivity or chromatic number.

More precisely, we prove the following statements by a unified approach: 1.

Every graph G with minimum degree at least k + 1 contains cycles of all even lengths

modulo k; in addition, if G is 2-connected and non-bipartite, then it contains cycles of

all lengths modulo k. 2. For all k ≥ 3, every k-connected graph contains a cycle of length

zero modulo k. 3. Every 3-connected non-bipartite graph with minimum degree at least

k + 1 contains k cycles of consecutive lengths. 4. Every graph with chromatic number at

least k + 2 contains k cycles of consecutive lengths. The 1st statement is a conjecture of

Thomassen, the 2nd is a conjecture of Dean, the 3rd is a tight answer to a question of

Bondy and Vince, and the 4th is a conjecture of Sudakov and Verstraëte. All of the above

results are best possible.
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2 J. Gao et al.

1 Introduction

The distribution of cycle lengths has been extensively studied in the literature and

remains one of the most active and fundamental research areas in graph theory. In

this paper, along the line of the previous work [15] of two of the authors, we investigate

various relations between cycle lengths and basic graph parameters such as minimum

degree. The core of the results in [15] is an optimal bound on the longest sequence

of consecutive even cycle lengths in bipartite graphs of given minimum degree. In the

current paper, we extend this result from bipartite graphs to general graphs and use

it as a primary tool to derive a number of tight results on cycle lengths in relation to

minimum degree, connectivity, and chromatic number. This resolves several conjectures

and open problems on cycles of consecutive lengths, cycle lengths modulo a fixed

integer, and some other related topics. For a thoughtful introduction on the background,

we direct interested readers to [15, 26].

Throughout this section, let k be a fixed but arbitrary positive integer, unless

otherwise specified. For a path or a cycle P, the length of P, denoted by |P|, is the number

of edges in P.

1.1 Paths and cycles of consecutive lengths

The study of cycles of consecutive lengths can be dated back to a conjecture of Erdoős

(see [2]) stating that every graph with minimum degree at least three contains two

cycles of lengths differing by one or two. This was solved by Bondy and Vince [2] in the

following stronger form: if all but at most two vertices of a graph G have degree at least

three, then G contains two cycles whose lengths differ by one or two. Since then, this

result has inspired extensive research on its generalization to k cycles of consecutive

(even or odd) lengths, including results of Häggkvist and Scott [12], Verstraëte [25], Fan

[10], Sudakov and Verstraëte [19], Ma [17], and Liu and Ma [15].

We say that k paths or k cycles P1, P2, . . . , Pk are admissible if |P1| ≥ 2 and

|P1|, |P2|, . . . , |Pk| form an arithmetic progression of length k with common difference

one or two. The following generalization of Erdoős’ conjecture was posted in [15], which

was in attempt to attack some related problems.

Conjecture 1.1 (Liu and Ma [15]). Every graph with minimum degree at least k + 1

contains k admissible cycles.

By considering the complete graph Kk+1 or the complete bipartite graph Kk,n

for any n ≥ k, we see that the condition for the minimum degree in Conjecture 1.1
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A Unified Proof of Conjectures on Cycles Lengths 3

is best possible. Being an evidence, Conjecture 1.1 was proved for all bipartite graphs

in [15].

One of our main results is the following theorem on admissible paths with two

given endpoints, from which Conjecture 1.1 can be inferred as a corollary.

Theorem 1.2. Let G be a 2-connected graph and let x, y be distinct vertices of G. If

every vertex of G other than x and y has degree at least k+1, then there exist k admissible

paths from x to y in G.

The case k = 1 of Theorem 1.2 is trivial, and the case k = 2 follows from a result

of Fan in [10]. We remark that Theorem 1.2 is the main force that will be applied to prove

all other results in this paper.

We now show that Conjecture 1.1 is an easy corollary of Theorem 1.2. (For

possibly ambiguous notations, we refer readers to Section 2.)

Theorem 1.3. Every graph G with minimum degree at least k+1 contains k admissible

cycles.

Proof. If G is 2-connected, let B = G and choose xy to be an arbitrary edge in G;

otherwise, let B be an end-block of G with cut-vertex x and choose y ∈ NG(x) ∩ V(B − x).

Clearly, B is 2-connected and every vertex of B other than x has degree at least k + 1.

By Theorem 1.2, B contains k admissible paths P1, ..., Pk from x to y. Since each |Pi| ≥ 2,

Pi ∪ xy for all i ∈ [k] form k admissible cycles in G. �

Theorem 1.3 improves many previous results such as the results in [10, 12, 15,

25]. As the write-up of a version of this paper was close to complete, we noticed that

very recently, Chiba and Yamashita [4] independently proved Theorem 1.3 under an extra

condition that G is 2-connected, by using a different approach from this paper.

One can ask another natural question: what are necessary or sufficient

conditions for the existence of k cycles of consecutive lengths? It is clear that such

conditions should include non-bipartiteness. This was addressed by Bondy and Vince in

[2], where they proved that any non-bipartite 3-connected graph contains two cycles of

consecutive lengths. On the other hand, Bondy and Vince showed that the 3-connectivity

is necessary by constructing infinitely many non-bipartite 2-connected graphs with

arbitrarily large minimum degree, yet not containing two cycles of consecutive

lengths.
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4 J. Gao et al.

More generally, Bondy and Vince [2] asked if there exists a (least) function f

such that every non-bipartite 3-connected graph with minimum degree at least f (k)

contains k cycles of consecutive lengths. The existence of f (k) was confirmed by Fan

[10], where he proved f (k) ≤ 3�k/2	. On the other hand, the complete graph Kk+1 shows

f (k) ≥ k + 1.

Our next result determines f (k) = k + 1 and hence provides the optimal answer

to the above question of Bondy and Vince.

Theorem 1.4. Every non-bipartite 3-connected graph with minimum degree at least

k + 1 contains k cycles of consecutive lengths.

1.2 Cycle lengths modulo a fixed integer

Burr and Erdoős initiated the study of cycle lengths modulo an integer k; they

conjectured (see [8]) that for odd k there exists a constant ck such that every graph with

average degree at least ck contains cycles of all lengths modulo k. This was proved by

Bollobás [1] and then the value ck was improved to be O(k2) by Thomassen in [21, 22].

Thomassen also proposed two conjectures in [21] as follows.

Conjecture 1.5 (Thomassen [21]). Every graph with minimum degree at least k + 1

contains cycles of all even lengths modulo k.

Conjecture 1.6 (Thomassen [21]). Every 2-connected non-bipartite graph with mini-

mum degree at least k + 1 contains cycles of all lengths modulo k.

We remark that 2-connectivity and non-bipartiteness are necessary for even

k in Conjecture 1.6; see [15] for explanations. The minimum degree condition in

Conjectures 1.5 and 1.6 are tight, since Kk+1 has no cycle of length 2 modulo k, and

Kk,n has no cycle of length 2 modulo k for n ≥ k and odd k.

Results of Verstraëte [25], Fan [10], Diwan [7], and Ma [17] indicate that the

minimum degree at least O(k) suffices for both conjectures. For fixed m ≥ 3 and large

k, Sudakov and Verstraëte [20] determined the optimal minimum degree condition for

cycles of length m modulo k up to a constant factor.

In [15], Liu and Ma confirmed both Conjectures 1.5 and 1.6 for even k. They also

proved that minimum degree k + 4 suffices for odd k, and observed that an affirmative

of Conjecture 1.1 would imply both Conjectures 1.5 and 1.6 for odd k. Therefore, as an

immediate corollary of Theorem 1.3, we obtain the following.
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A Unified Proof of Conjectures on Cycles Lengths 5

Theorem 1.7. Conjectures 1.5 and 1.6 hold for any positive integer k.

We would like to address that very recently, Chiba and Yamashita [4] indepen-

dently proved Conjecture 1.6. Also very recently, Lyngsie and Merker [16] proved that

for odd k, every 3-connected cubic graph of large order contains cycles of all lengths

modulo k.

The case of cycles of length zero modulo k has received considerable attention.

Thomassen [22] gave a polynomial-time algorithm for finding a cycle of length zero

modulo k in any graph or a certificate that no such cycle exists. In 1988, Dean [5]

proposed the following conjecture.

Conjecture 1.8 (Dean [5]). For any positive integer k ≥ 3, every k-connected graph

contains a cycle of length zero modulo k.

We point out that Conjecture 1.8 is tight, as for all odd k and n ≥ k − 1, the

complete bipartite graph Kk−1,n is (k − 1)-connected but has no cycles of length zero

modulo k. The case k = 3 in Conjecture 1.8 was proved by Chen and Saito [3], and the

case k = 4 was solved by Dean et al. [6]. To the best of our knowledge, this conjecture

remained open for any k ≥ 5 prior to this paper.

Taking advantage of Theorem 1.2, we are able to resolve Conjecture 1.8 com-

pletely.

Theorem 1.9. Conjecture 1.8 holds for any positive integer k ≥ 3.

It turns out that the case k = 5 is the most difficult case for our approach.

We would like to point out that for k ≥ 6, in many cases in fact we are able to find

k admissible cycles. In particular, our proofs show that when k ≥ 6, any k-connected

graph contains cycles of all even lengths modulo k, except for the residue class 2 modulo

k (see Theorem 5.16 for the precise statement). To see the tightness, note that both of

Kk+1 (for even and odd k) and Kk,n (for odd k and n ≥ k) are k-connected and contain

cycles of all lengths 2t modulo k, except for cycles of lengths in the residue class 2

modulo k.

1.3 Consecutive cycle lengths and chromatic number

There has been extensive research on the relation between the chromatic number and

cycle lengths. For a graph G, let Le(G) and Lo(G) be the set of even and odd cycle lengths
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6 J. Gao et al.

in G, respectively. Bollobás and Erdoős conjectured and Gyarfás [11] proved that χ(G) ≤
2|Lo(G)| + 2 for any graph G. Mihok and Schiermeyer [18] proved an analog for even

cycles that χ(G) ≤ 2|Le(G)| + 3 for any graph G. A strengthening of the above result

was obtained in [15], where the number of even cycle lengths |Le(G)| was replaced by

the longest sequence of consecutive even cycle lengths in G. Confirming a conjecture of

Erdoős [9], Kostochka et al. [13] proved that every triangle-free graph G with χ(G) = k

contains at least �(k2 log k) cycles of consecutive lengths.

For k ≥ 2, let χk be the largest chromatic number of a graph which does not

contain k cycles of consecutive lengths. The complete graph Kk+1 shows that χk ≥ k + 1.

In [20], Sudakov and Verstraëte conjectured that the chromatic number of a graph can

be bounded by the longest sequence of consecutive cycle lengths from above.

Conjecture 1.10 (Sudakov and Verstraëte [20]). For every integer k ≥ 2, χk = k + 1.

Using Theorem 1.2, we are able to prove Conjecture 1.10.

Theorem 1.11. Conjecture 1.10 holds for every integer k ≥ 2.

The rest of the paper is organized as follows. In Section 2, we define the

notations and include some preliminaries. In Section 3, we prove Theorem 1.2. In

Section 4, we prove Theorems 1.4 and 1.11 by a unified approach via Theorem 1.2. In

Section 5, we prove Theorem 1.9 by extensively applying Theorem 1.2 as well.

2 Preliminaries

All graphs in this paper are finite, undirected, and simple. Let H be a subgraph of a

graph G. We say that H and a vertex v ∈ V(G) − V(H) are adjacent in G if v is adjacent

in G to some vertex in V(H). Let NG(H) := ⋃
v∈V(H) NG(v) − V(H) and NG[H] := NG(H) ∪

V(H). For a subset S of V(G), G[S] denotes the subgraph induced by S in G, and G − S

denotes the subgraph G[V(G) − S]; we say that a vertex v and S are adjacent in G if v is

adjacent in G to some vertex in S. For two distinct vertices x, y of G, we define G + xy

to be the graph with V(G + xy) = V(G) and E(G + xy) = E(G) ∪ {xy}. A clique in G is

a subset of V(G) whose vertices are pairwise adjacent in G. A vertex is a leaf in G if

it has degree one in G. We say that a path P is internally disjoint from H if no vertex

of P other than its endpoints is in V(H). For a positive integer k, we write [k] for the

set {1, 2, ..., k}.
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A Unified Proof of Conjectures on Cycles Lengths 7

For a graph G and a subset S of V(G), we say that a graph G′ is obtained from G

by contracting S into a vertex s, if V(G′) = (V(G)− S)∪ {s} and E(G′) = E(G − S)∪ {vs : v ∈
V(G) − S is adjacent to S in G}.

A vertex v of a graph G is a cut-vertex of G if G − v contains more components

than G. A block B in G is a maximal connected subgraph of G such that there exists

no cut-vertex of B. So a block is an isolated vertex, an edge or a 2-connected graph. An

end-block in G is a block in G containing at most one cut-vertex of G. If D is an end-

block of G and a vertex x is the only cut-vertex of G with x ∈ V(D), then we say that

D is an end-block with cut-vertex x. Let B(G) be the set of blocks in G and C(G) be the

set of cut-vertices of G. The block structure of G is the bipartite graph with bipartition

(B(G), C(G)), where x ∈ C(G) is adjacent to B ∈ B(G) if and only if x ∈ V(B). Note that

the block structure of any graph G is a forest, and it is connected if and only if G is

connected. For notations not defined here, we refer readers to [15].

The next result can be derived from a special case of [10, Theorem 2.5].

Theorem 2.1. Let G be a 2-connected graph and let x, y be distinct vertices of G. If

every vertex in G other than x and y has degree at least 3, then there are two admissible

paths from x to y in G.

3 Admissible Paths

In this section, we prove Theorem 1.2. We say that (G, x, y) is a rooted graph if G is a

graph and x, y are two distinct vertices of G. The minimum degree of a rooted graph

(G, x, y) is min{dG(v) : v ∈ V(G) − {x, y}}. We also say that a rooted graph (G, x, y) is

2-connected if G + xy is 2-connected. Theorem 1.2 is an immediate corollary of the

following theorem.

Theorem 3.1. Let k be a positive integer. If (G, x, y) is a 2-connected rooted graph with

minimum degree at least k + 1, then there exist k admissible paths from x to y in G.

The rest of this section is devoted to a proof of Theorem 3.1. We need the

following lemma.

Lemma 3.2. Let (H, u, v) be a rooted graph and W be a subset of V(H). Let s be a

positive integer. Assume that there exist s admissible paths P1, ..., Ps, where Pi is from

u to some wi ∈ W for each i ∈ [s]. Assume that for each i ∈ [s], H − V(Pi − wi) contains

t paths Ri
1, ..., Ri

t from wi to v such that their lengths form an arithmetic progression
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8 J. Gao et al.

with common difference one or two. Here, we allow that some path Ri
j has length one.

If |R1
j | = · · · = |Rs

j | for every j ∈ [t], then there exist s + t − 1 admissible paths in H from

u to v.

Proof. If each of A and B is an arithmetic progression with common difference one

or two, then A + B = {a + b : a ∈ A, b ∈ B} also forms an arithmetic progression with

common difference one or two of size at least |A|+|B|−1. So the set {Pi ∪Ri
j : i ∈ [s], j ∈ [t]}

contains s + t − 1 admissible paths between u and v in H. �

Throughout the rest of this section, let (G, x, y) be a counterexample of

Theorem 3.1 with minimum |V(G)| + |E(G)|. That is, for any 2-connected rooted graph

(H, u, v) with |V(H)| + |E(H)| < |V(G)| + |E(G)|, if the minimum degree of (H, u, v) is at

least � + 1, then there exist � admissible paths from u to v in H.

We now prove a sequence of lemmas and then, according to the order of some

specified component (this will be clear after Lemma 3.7), the remaining proof will be

divided into two subsections which we handle separately.

Lemma 3.3. G is 2-connected, x and y are not adjacent in G, and k ≥ 3.

Proof. Theorem 3.1 is obvious when k = 1, and it follows from Theorem 2.1 when

k = 2. So k ≥ 3. Note that |V(G)| ≥ 4, for otherwise, |V(G)| = 3 and (G, x, y) has minimum

degree two and thus k = 1, a contradiction.

Since G + xy is 2-connected, G is connected. Suppose that G is not 2-connected.

Then there exists a cut-vertex b and two connected subgraphs G1, G2 of G on at least two

vertices such that G = G1∪G2 and V(G1)∩V(G2) = {b}. We may assume that x ∈ V(G1)−b,

y ∈ V(G2) − b and by symmetry, |V(G1)| ≥ 3. Then it is straightforward to see that

(G1, x, b) is 2-connected and has minimum degree at least k + 1. By the minimality of G,

there exist k admissible paths in G1 from x to b. By concatenating each of these paths

with a fixed path in G2 from b to y, we obtain k admissible paths in G from x to y, a

contradiction. Therefore G is 2-connected.

Suppose that x is adjacent to y in G. Let G′ = G − xy. Since G is 2-connected,

clearly (G′, x, y) is 2-connected and has minimum degree at least k+1. By the minimality

of G, G′ (and thus G) contains k admissible paths from x to y, a contradiction. �

Lemma 3.4. There is no clique in G − y of size at least three containing x, and there is

no clique in G − x of size at least three containing y.
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A Unified Proof of Conjectures on Cycles Lengths 9

Proof. Suppose to the contrary that there is a clique K in G − y of size at least three

containing x. We choose K such that |K| is maximum. Let t = |K|. So t ≥ 3. Since x

and y are non-adjacent by Lemma 3.3, y �∈ K. So there exists a component C of G − K

containing y.

Suppose V(C) = {y}. Then NG(y) ⊆ K − x. Let Y = NG(y) ∩ K, and let m = |Y|.
Since G is 2-connected, we have m ≥ 2. For each vertex v ∈ K, let Dv denote the family

of components D �= C of G − K such that v ∈ NG(D). Let D = ⋃
v∈K Dv, D ′ = ⋃

v∈Y Dv

and D ′′ = D − D ′. If there is a vertex v ∈ K − x such that Dv = ∅ or there exists some

D ∈ Dv with |V(D)| = 1, then t ≥ k + 1, from which one can easily find k paths of lengths

2, 3, . . . , k + 1 from x to y in G[K ∪{y}], a contradiction. So for every v ∈ K − x, Dv �= ∅ and

|V(D)| ≥ 2 for every D ∈ Dv.

Suppose that there exists some D ∈ D ′\Dx. Let v be a vertex in NG(D) ∩ Y such

that D ∈ Dv. Since G is 2-connected, NG(D) − {v} �= ∅. Let G1 be the graph obtained

from G[NG[D]] by contracting NG(D) − {v} into a new vertex u1. Since D �∈ Dx, we see

|NG(D) − {v}| ≤ t − 2. So (G1, u1, v) is 2-connected and has minimum degree at least

k − t + 4. By the minimality of G, G1 contains k − t + 3 admissible paths from u1 to v.

Hence, G[V(D)∪K] contains k−t+3 admissible paths Pi from a vertex pi ∈ NG(D)−{v} to v

internally disjoint from K for i ∈ [k− t+3]. Since K is a clique, K −v contains t−2 paths

from x to pi with lengths 1, 2, . . . , t − 2, respectively. By Lemma 3.2, by concatenating

each of these paths with Pi ∪ {vy}, we obtain k admissible paths from x to y in G, a

contradiction.

Hence D ′ ⊆ Dx. Let G2 be the graph obtained from G − y by contracting Y into

a new vertex u2. Let K′ = G2[(K − Y) ∪ {u2}]. Then K′ is a complete graph of order

t−m+1 ≥ 2 in G2. Any component D �= C of G−K in G is also a component of G2 −V(K′)
in G2. If D ∈ D ′, then D is adjacent in G2 to both x and u2 (since D ′ ⊆ Dx); otherwise

D ∈ D ′′ and D is adjacent to at least two vertices of K′ − u2 in G2 since G is 2-connected.

Since NG(y) is a clique in G, we have that G − y is 2-connected. Since D ′ ⊆ Dx, (G2, x, u2)

is 2-connected and has minimum degree at least k − m + 2. By the minimality of G, G2

contains k − m + 1 admissible paths from x to u2. Hence, G − y contains k − m + 1

admissible paths Pi from x to a vertex pi ∈ Y for i ∈ [k − m + 1] internally disjoint from

Y. Since G[Y ∪ {y}] is complete, G[Y ∪ {y}] contains m paths from pi to y with lengths

1, 2, . . . , m, respectively. By Lemma 3.2, we obtain k admissible paths from x to y in G, a

contradiction.

Hence |V(C)| ≥ 2. If C is 2-connected, then let B = C and b = y; otherwise let B

be an end-block of C with cut-vertex b such that y /∈ V(B) − {b}. Suppose B is an edge

vb. Then v has at least k neighbours in K. Since K is a clique, we can find k consecutive
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10 J. Gao et al.

paths from x to v in G[K ∪ {v}]. Concatenating each of these paths with a fixed path in C

from v to y, we find k admissible paths from x to y, a contradiction.

Hence B is 2-connected. Let P be a path in C − V(B − b) from b to y. Since G is

2-connected, we have NG(B − b) ∩ K �= ∅.

Suppose that NG(B−b)∩(K−{x}) �= ∅. Let G3 be the graph obtained from G[V(B)∪
(NG(B−b)∩(K−{x}))] by contracting NG(B−b)∩(K−{x}) into a vertex u3. By the maximality

of K, every vertex in V(B−b) is adjacent to at most t−1 vertices in K. Then (G3, u3, b) is 2-

connected and has minimum degree at least k−t+3. By the minimality of G, G3 contains

k − t + 2 admissible paths from u3 to b. Hence, G[V(B) ∪ (NG(B − b) ∩ (K − {x}))] contains

k − t + 2 admissible paths Pi from some vertex pi ∈ NG(B − b) ∩ (K − {x}) to b internally

disjoint from K for i ∈ [k − t + 2]. Note that for each i, G[K] contains t − 1 paths from x

to pi with lengths 1, 2, . . . , t − 1, respectively. By Lemma 3.2, by concatenating each of

these paths with Pi ∪ P, we obtain k admissible paths from x to y in G, a contradiction.

Therefore NG(B − b) ∩ K = {x}. Then the rooted graph (G[V(B) ∪ {x}], x, b) is 2-

connected and has minimum degree at least k + 1. By the minimality of G, G[V(B) ∪ {x}]
contains k admissible paths from x to b. By concatenating each of these paths with P,

we obtain k admissible paths from x to y, a contradiction.

This proves that there is no clique in G − y of size at least three containing x.

Similarly, there is no clique in G − x of size at least three containing y, completing the

proof of Lemma 3.4. �

In the rest of this section, by symmetry between x and y, we may assume that

dG(x) ≤ dG(y).

Lemma 3.5. G − y has a cycle of length four containing x.

Proof. Suppose that x is not contained in any cycle of length four in G − y. Then

|NG(v) ∩ NG(x)| ≤ 1 for every v ∈ V(G) − {x, y}. (1)

Let G1 be the graph obtained from G by contracting NG[x] into a new vertex x1. By (1),

G1 is connected and the minimum degree of (G1, x1, y) is at least k + 1. If G1 is not 2-

connected, then x1 is the unique cut-vertex of G1 and we let B be the end-block of G1

containing x1 and y; otherwise G1 is 2-connected and let B = G1.

Suppose that B is not an edge. Then (B, x1, y) is 2-connected and has minimum

degree at least k + 1. By the minimality of G, B contains k admissible paths from x1 to
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A Unified Proof of Conjectures on Cycles Lengths 11

y. Then G − x contains k admissible paths Pi from a vertex pi ∈ NG(x) to y for all i ∈ [k].

By concatenating each of these paths with xpi, we obtain k admissible paths from x to

y in G, a contradiction.

Therefore B is an edge. Since dG(x) ≤ dG(y), we conclude that NG(x) = NG(y).

By Lemma 3.4 and k ≥ 3, we see V(G) �= NG[x] ∪ {y}. So there exists a component D of

G−NG(x) not containing x and y. Since G is 2-connected, we have |NG(D)| ≥ 2. Fix a vertex

u in NG(D). Let G2 be the graph obtained from G[NG[D]] by contracting NG(D) − {u} into

a new vertex v. Then by (1), (G2, u, v) is 2-connected and has minimum degree at least

k + 1. By the minimality of G, G2 contains k admissible paths from u to v. So G − {x, y}
contains k admissible paths Pi from u to some vertex pi ∈ NG(x) − {u} for i ∈ [k]. By

concatenating each of these paths with xu and piy, we obtain k admissible paths from

x to y in G, a contradiction. �

Lemma 3.6. Let C = xx1ax2x be a cycle of length four in G − y. Then every vertex in

V(G) − (V(C) ∪ {y}) is not adjacent in G to all of x1, x2, a.

Proof. Suppose to the contrary that there exists a vertex v ∈ V(G)−(V(C)∪{y}) adjacent

in G to all of x1, x2, a. Let K be a maximal clique in G − {x, y, x1, x2} such that a ∈ K and

every vertex in K is adjacent to both of x1 and x2. Let t = |K|. So t ≥ 2. We have the

following two facts:

(a) for any u ∈ K, G[V(C) ∪ K] contains t + 1 admissible paths from x to u of

lengths 2, 3, ..., t + 2, respectively;

(b) for any i ∈ [2], G[V(C)∪K] contains t admissible paths from x to xi of lengths

3, 4, ..., t + 2, respectively.

Let F be the component of G − (V(C) ∪ K) containing y.

Suppose V(F) = {y}. Then NG(y) ⊆ V(K) ∪ {x1, x2}. Since G is 2-connected, we

have |NG(y)| ≥ 2. If NG(y) �= {x1, x2}, then there exists a triangle containing y in G − x,

contradicting Lemma 3.4. Therefore NG(y) = {x1, x2}. Since dG(x) ≤ dG(y), NG(x) =
NG(y) = {x1, x2}. Let G′ = G − {x, y}. It is clear that (G′, x1, x2) is 2-connected and has

minimum degree at least k + 1. By the minimality of G, G′ contains k admissible paths

from x1 to x2. By concatenating each of these paths with xx1 and x2y, G contains k

admissible paths from x to y, a contradiction.

So |V(F)| ≥ 2. If F is 2-connected, let B = F and b = y; otherwise let B be an

end-block of F with cut-vertex b such that y /∈ V(B) − b.

Suppose that B is an edge vb. If v is adjacent to x, then by Lemma 3.4, NG(v) ∩
{x1, x2} = ∅ and thus t ≥ |NG(v) ∩ K| ≥ k − 1. If v is not adjacent to x, then by the
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12 J. Gao et al.

maximality of K, it holds that t + 1 ≥ |NG(v)∩ (K ∪ {x1, x2})| ≥ k ≥ 3. So in both cases, we

have t ≥ k − 1 and there exists some u ∈ NG(v) ∩ K. By (a), there exist k admissible paths

from x to y in G, a contradiction.

Therefore B is 2-connected. Let P be a path in F − V(B − b) from b to y.

Suppose that NG(B − b) ∩ K �= ∅. Let G1 be the graph obtained from G[V(B) ∪
(NG(B − b) ∩ K)] by contracting NG(B − b) ∩ K into a new vertex u1. Let us consider the

degree of any v ∈ V(B − b) in G1. If v is adjacent to both x1, x2, then by Lemma 3.4 and

the maximality of K, v is not adjacent to x and is adjacent to at most t − 1 vertices in

K, implying that dG1
(v) ≥ k + 1 − t; if v is adjacent to exactly one of x1, x2, then v is not

adjacent to x and thus dG1
(v) ≥ k + 1 − t; if v is adjacent to none of x1, x2, then v may be

adjacent to x and all vertices in K, which also shows that dG1
(v) ≥ k+1− t. So (G1, u1, b)

is 2-connected and has minimum degree at least k − t + 1. By the minimality of G, G1

contains k − t admissible paths from u1 to b. Hence, G contains k − t admissible paths

Pi from a vertex pi ∈ NG(B − b) ∩ K to b for i ∈ [k − t] internally disjoint from V(C) ∪ K. By

(a), G[V(C) ∪ K] contains t + 1 paths from x to pi with lengths 2, 3, . . . , t + 2, respectively.

By Lemma 3.2, concatenating each of these path with Pi ∪ P leads to k admissible paths

from x to y, a contradiction.

Therefore, NG(B−b) ⊆ {x, x1, x2, b}. Since G is 2-connected, NG(B−b)∩{x, x1, x2} �=
∅. If x1 ∈ NG(B − b), then (G[B ∪ {x1}], x1, b) is 2-connected and has minimum degree at

least k by Lemma 3.4. By the minimality of G, G[B∪{x1}] contains k −1 admissible paths

from x1 to b. By (b), there are t admissible paths from x to x1 in G[C∪K]. By concatenating

each of the above paths with P, we obtain k − 1 + t − 1 ≥ k admissible paths from x to y

in G, a contradiction. By symmetry between x1 and x2, this shows that x1, x2 /∈ NG(B−b).

So NG(B − b) = {x, b}. Then (G[B ∪ {x}], x, b) is a 2-connected rooted graph with minimum

degree at least k + 1, from which one can obtain k admissible paths from x to y by the

minimality of G, a contradiction. This completes the proof of Lemma 3.6. �

Lemma 3.7. There exists a positive integer s and an induced complete bipartite

subgraph Q with bipartition (Q1, Q2) in G satisfying that

1. x ∈ Q2, y /∈ V(Q), |Q1| ≥ |Q2| = s + 1 ≥ 2, and

2. for every v ∈ V(G) − (V(Q) ∪ {y}),
(a) |NG(v) ∩ Q| ≤ s + 1, |NG(v) ∩ Q1| ≤ s + 1, |NG(v) ∩ Q2| ≤ s, and

(b) if v is adjacent to both of Q1 and Q2, then |NG(v) ∩ Q1| = 1.

Proof. By Lemma 3.5 there exists a 4-cycle in G − y containing x. Thus there exists a

complete bipartite subgraph Q of G − y with bipartition (Q1, Q2) such that x ∈ Q2, y /∈
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A Unified Proof of Conjectures on Cycles Lengths 13

V(Q) and |Q1| ≥ |Q2| ≥ 2. We choose Q so that |Q2| is maximum and subject to this, |Q1|
is maximum. Let s be a positive integer such that |Q2| = s + 1.

We claim that such Q and s satisfy the conclusion of this lemma. Statement 2(b)

holds by Lemmas 3.4 and 3.6. By the choice of Q, for every v ∈ V(G) − (V(Q) ∪ {y}),
|NG(v) ∩ Q1| ≤ s + 1 and |NG(v) ∩ Q2| ≤ s. This together with Statement 2(b), we know

Statement 2(a) holds. By Lemmas 3.4 and 3.6, Q is an induced subgraph in G. The proof

of Lemma 3.7 is completed. �

Throughout the remaining of the section, Q and s denote the induced complete

bipartite subgraph and the positive integer s promised by Lemma 3.7, and let C be the

component of G − V(Q) containing y.

There are two possibilities for the size of C: |V(C)| = 1 or |V(C)| ≥ 2. We now split

the rest of the proof into two subsections based on these two cases. We shall derive a

contradiction in each subsection and hence show that G is a not a counterexample to

complete the proof of Theorem 3.1.

3.1 |V(C)| = 1

In this case we have V(C) = {y}. By Lemma 3.3, xy �∈ E(G). So by Lemma 3.4, y is adjacent

to exactly one of Q1 and Q2. Since dG(y) ≥ dG(x), we derive that NG(x) = NG(y) = Q1

and so G[V(Q) ∪ {y}] is complete bipartite. If s ≥ k − 1, then G[V(Q) ∪ {y}] contains k

admissible paths from x to y of lengths 2, 4, . . . , 2k, respectively, a contradiction.

So s ≤ k − 2. This shows that V(G) �= V(Q) ∪ {y}, for otherwise every vertex in Q1

has degree s + 2 ≤ k in G. Hence there exists a component in G − (V(Q) ∪ {y}).
Let D be an arbitrary component of G − (V(Q) ∪ {y}). If there exists a vertex

v of D of degree at most one in D, then by Lemma 3.7, s + 1 ≥ |NG(v) ∩ V(Q)| ≥ k, a

contradicting that s ≤ k − 2. So |V(D)| ≥ 2 and every end-block of D is 2-connected. In

addition, NG(x) = Q1, so x /∈ NG(D).

We claim that NG(D) ∩ Q1 �= ∅. Suppose to the contrary that NG(D) ∩ Q1 = ∅.

Since G is 2-connected and x /∈ NG(D), we have |NG(D) ∩ (Q2 − {x})| ≥ 2. Let u1 be a

vertex in NG(D) ∩ (Q2 − {x}). Let G1 be the graph obtained from G[NG[D]] by contracting

NG(D) ∩ (Q2 − {x, u1}) into a new vertex v1. Therefore (G1, u1, v1) is 2-connected and has

minimum degree at least k−s+3. By the minimality of G, G1 contains k−s+2 admissible

paths from u1 to v1. Hence, G − {x, y} contains k − s + 2 admissible paths Pi from u1 to

some vertex pi ∈ Q2 − {x, u1} internally disjoint from V(Q) for i ∈ [k − s + 2]. Let w be a

vertex in Q1. Since Q is complete bipartite, Q − {u1, w} contains s − 1 paths from x to pi
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14 J. Gao et al.

of lengths 2, 4, . . . , 2s − 2, respectively. By Lemma 3.2, concatenating each of these paths

with Pi and u1wy leads to k admissible paths from x to y, a contradiction.

We claim that NG(D) ∩ (Q2 − {x}) �= ∅. Suppose to the contrary that NG(D) ∩ (Q2 −
{x}) = ∅. Since G is 2-connected and x �∈ NG(D), |NG(D) ∩ Q1| ≥ 2. Let u2 be a vertex in

NG(D)∩Q1. Let G2 be the graph obtained from G[NG[D]] by contracting NG(D)∩(Q1 −{u2})
into a new vertex v2. If |Q1| ≥ s + 2, then let ε = 0; if |Q1| = s + 1, then let ε = 1. So

(G2, u2, v2) is 2-connected and has minimum degree at least k−s+1+ε. By the minimality

of G, G2 contains k−s+ε admissible paths from u2 to v2. Hence, G−{x, y} contains k−s+ε

admissible paths Pi from u2 to some vertex pi ∈ Q1 − u2 internally disjoint from V(Q)

for all i ∈ [k − s + ε]. Since Q is complete bipartite, Q − u2 contains s + 1 − ε paths from

x to pi of lengths 1, 3, . . . , 2(s − ε) + 1, respectively. By Lemma 3.2, concatenating each

of these paths with Pi and u2y leads to k admissible paths from x to y, a contradiction.

This proves the claim.

Now we claim that there is a matching of size two in G between V(D) and Q1.

Suppose that there is no matching of size two in G between V(D) and Q1. Then either

|NG(D) ∩ Q1| = 1 or |NG(Q1) ∩ V(D)| = 1. In the former case, let u3 = w3 be the unique

vertex in NG(D)∩Q1; in the latter case, let u3 be the unique vertex in NG(Q1)∩V(D) and let

w3 be a vertex in Q1 adjacent in G to u3. Recall that NG(D) ∩ (Q2 − {x}) �= ∅. Let G3 be the

graph obtained from G[D∪{u3}∪(NG(D)∩(Q2−{x}))] by contracting NG(D)∩(Q2−{x}) into a

new vertex v3. Then (G3, u3, v3) is 2-connected and has minimum degree at least k−s+2.

By the minimality of G, G3 contains k−s+1 admissible paths from u3 to v3. Hence, G−y

contains k − s + 1 admissible paths Pi from u3 to some vertex pi ∈ Q2 − {x} internally

disjoint from V(Q) for i ∈ [k − s + 1]. Since Q is complete bipartite, Q − w3 contains s

paths from x to pi of lengths 2, 4, . . . , 2s, respectively. By Lemma 3.2, concatenating each

of these paths with Pi and u3w3y, we obtain k admissible paths from x to y in G. This

contradiction completes the proof of the claim.

Suppose that D is not 2-connected and there exists an end-block B of D with

cut-vertex b such that NG(B − b) ∩ V(Q) ⊆ Q2 − {x}. Recall that every end-block of D is

2-connected. So B is 2-connected. Let G4 be the graph obtained from G[V(B)∪(NG(B−b)∩
(Q2 −{x}))] by contracting NG(B−b)∩ (Q2 −{x}) into a new vertex v4. Then (G4, b, v4) is 2-

connected and has minimum degree at least k−s+2. By the minimality of G, G4 contains

k − s + 1 admissible paths from b to v4. Hence, G contains k − s + 1 admissible paths

Pi from b to some vertex pi ∈ Q2 − {x} internally disjoint from V(Q) for i ∈ [k − s + 1].

Since NG(D) ∩ Q1 �= ∅, there exists a path R in G[(D − V(B − b)) ∪ Q1] from b to some

vertex a ∈ Q1 internally disjoint from V(B) ∪ V(Q). Since Q is complete bipartite, Q − a

contains s paths from x to pi with fixed lengths 2, 4, . . . , 2s, respectively. By Lemma 3.2,
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A Unified Proof of Conjectures on Cycles Lengths 15

concatenating each of these paths with Pi ∪ R ∪ ay leads to k admissible paths from x to

y in G, a contradiction.

Therefore, either D is 2-connected, or every end-block B of D with cut-vertex b

satisfies that NG(B − b) ∩ Q1 �= ∅.

We claim |Q1| = s + 1. Suppose to the contrary that |Q1| ≥ s + 2. Recall that

there exists a matching M of size two in G between V(D) and Q1. So there exists a vertex

u5 ∈ NG(D) ∩ Q1 incident with an edge in M such that NG(D) ∩ (Q1 − {u5}) �= ∅. Let G5

be the graph obtained from G[V(D) ∪ (NG(D) ∩ Q1)] by contracting NG(D) ∩ (Q1 − {u5})
into a new vertex v5. Since M is a matching of size two in G between V(D) and Q1, if

D is 2-connected, then (G5, u5, v5) is 2-connected; if D is not 2-connected, then every

end-block of D has a non-cut vertex adjacent in G5 to one of u5, v5, so (G5, u5, v5) is

2-connected. Moreover, by Lemma 3.7, G5 has minimum degree at least k − s + 1. By

the minimality of G, G5 contains k − s admissible paths from u5 to v5. Hence, G − y

contains k − s admissible paths Pi from u5 to pi ∈ V(Q1 − u5) internally disjoint from

V(Q) for i ∈ [k − s]. Since |Q1| ≥ s + 2, Q − u5 contains s + 1 paths from x to pi of lengths

1, 3, . . . , 2s + 1, respectively. By Lemma 3.2, concatenating each of these paths with Pi ∪
u5y, we obtain k admissible paths from x to y in G, a contradiction. This proves that

|Q1| = s + 1.

Suppose that s = 1. Denote Q1 by {u, v}. As NG(x) = NG(y) = Q1, it is clear that

(G−{x, y}, u, v) is 2-connected and has minimum degree at least k+1. By the minimality

of G, there are k admissible paths from u to v in G −{x, y}, which can be easily extended

to k admissible paths from x to y in G, a contradiction.

Therefore we have s ≥ 2. Let w be a vertex in Q2 −x. Since s ≤ k−2, w is adjacent

in G to least two vertices in V(G) − (V(Q) ∪ {y}). So there exists a non-empty set D of all

components in G − (V(Q) ∪ {y}) adjacent to w. Since every member of D is a component

of G − (V(Q)∪{y}), for every D′ ∈ D , either D′ is 2-connected or every end-block of D′ has

a non-cut-vertex adjacent to Q1.

Let H = ⋃
D′∈D V(D′). Since every member D′ of D is a component of G − (V(Q) ∪

{y}), there exists a matching MD′ of size two in G between V(D′) and Q1, so we have

|NG(H) ∩ Q1| ≥ 2. Let u6 be a vertex in NG(H) ∩ Q1 incident with an edge in MD0
for

some D0 ∈ D . Let G6 be the graph obtained from G[NG[H]] by deleting Q2 − {x, w} and

contracting Q1 − u6 into a new vertex v6.

We claim that (G6, u6, v6) is 2-connected. Let G′ = G6 + u6v6. We shall prove

that G′ is 2-connected. It suffices to show that for every D′ ∈ D , G′[V(D′) ∪ {u6, v6, w}]
is 2-connected. Suppose to the contrary that there exists D′ ∈ D such that G′[V(D′) ∪
{u6, v6, w}] is not 2-connected. Note that G′[{u6, v6, w}] is isomorphic to K3 and every
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16 J. Gao et al.

end-block of D′ is adjacent to {u6, v6}. So G′ is connected, and there exists a cut-vertex of

c of G′[V(D′) ∪ {u6, v6, w}] such that either c ∈ {u6, v6, w} or c is a cut-vertex of D′. Since

V(D′) is adjacent to w and {u6, v6}, if c ∈ {u6, v6, w}, then the component of G′[V(D′) ∪
{u6, v6, w}] − c containing V(D′) also contains {u6, v6, w}, so this component contains

equals G′[V(D′) ∪ {u6, v6, w}] − c, a contradiction. So c is a cut-vertex of D′. But every

component of D′−c contains a non-cut-vertex of D′ in an end-block of D′, so it is adjacent

to {u6, v6}, and hence there exists a component of G′[V(D′)∪{u6, v6, w}]−c contains every

component of D′−c and {u6, v6, w}. This shows that G′[V(D′)∪{u6, v6, w}]−c is connected,

a contradiction. So (G6, u6, v6) is 2-connected.

Now we show the minimum degree of (G6, u6, v6) is at least k − s + 2. Let v ∈
V(G6) − {u6, v6, w}. Then either NG(v) ∩ Q ⊆ Q1, NG(v) ∩ Q ⊆ Q2 − x or v is adjacent to

both of Q1 and Q2 −x. By Lemma 3.7, in either case we can derive that dG6
(v) ≥ k−s+2.

In addition, since |Q1| = s + 1, dG6
(w) ≥ k − s + 2. Hence, indeed the minimum degree of

(G6, u6, v6) is at least k − s + 2.

By the minimality of G, G6 contains k − s + 1 admissible paths from u6 to v6.

Hence, G[NG[H]] contains k−s+1 admissible paths Pi from u6 to some vertex pi ∈ Q1−u6

internally disjoint from V(Q) − w for i ∈ [k − s + 1]. Note that Pi possibly contains

w. Since Q is complete bipartite, Q − {u6, w} contains s paths from x to pi of lengths

1, 3, . . . , 2s − 1, respectively. By Lemma 3.2, by concatenating each of these paths with

Pi ∪ u6y, we obtain k admissible paths from x to y in G, a contradiction. This finishes

the proof of Subsection 3.1.

3.2 |V(C)| ≥ 2

We first show that no vertex in C − y has degree one in C. Suppose to the contrary that

there exists v ∈ V(C − y) with degree one in C. By Lemma 3.7, s + 1 ≥ |NG(v) ∩ V(Q)| ≥ k.

If NG(v) ∩ Q1 �= ∅, then there are k paths from x to v in G[Q ∪ {v}] of lengths 2, 4, . . . , 2k,

respectively. If NG(v) ∩ Q1 = ∅, then NG(v) ∩ V(Q) ⊆ Q2, so s ≥ |NG(v) ∩ V(Q)| ≥ k by

Lemma 3.7, and hence there are k paths from x to v in G[Q∪{v}] of lengths 3, 5, . . . , 2k+1,

respectively. In both cases, by concatenating each of these path with a path from v to y

in C, we obtain k admissible paths from x to y in G, a contradiction. So no vertex in C−y

has degree one in C. In particular, every end-block of C is 2-connected, except possibly

an end-block consisting of y and its unique neighbor in C.

We say a block of C is a feasible block if it is an end-block of C such that either it

equals C, or y is not a non-cut-vertex of this block. Note that feasible blocks exist, since

either C has no cut-vertex, or C contains at least two end-blocks.
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A Unified Proof of Conjectures on Cycles Lengths 17

Let B be an arbitrary feasible block. If C is 2-connected, then let b = y; otherwise

let b be the cut-vertex of C contained in B.

We claim that NG(B−b) ⊆ Q2∪{b}. Suppose to the contrary that NG(B−b)∩Q1 �= ∅.

Let G1 be the graph obtained from G[V(B) ∪ (NG(B − b) ∩ Q1)] by contracting NG(B − b) ∩
Q1 into a new vertex x1. So (G1, x1, b) is 2-connected and has minimum degree at least

k − s + 1 by Lemma 3.7. By the minimality of G, G1 has k − s admissible paths from x1 to

b. Therefore there are k − s admissible paths Pi from some vertex pi ∈ NG(B − b) ∩ Q1 to

b internally disjoint from V(Q) for i ∈ [k − s]. Also Q contains s + 1 paths from x to pi of

fixed lengths 1, 3, . . . , 2s + 1, respectively. By Lemma 3.2, by concatenating each of these

paths with Pi and a fixed path in C − V(B − b) from b to y, we obtain k admissible paths

from x to y in G, a contradiction. This proves NG(B − b) ⊆ Q2 ∪ {b}.
Next we show that s = 1 and NG(B−b)∩V(Q) = Q2. Let R be a path in C−V(B−b)

from b to y. If NG(B − b) ∩ Q2 = {x}, then (NG[B], x, b) is 2-connected and has minimum

degree at least k+1, so by the minimality of G, G[V(B)∪{x}] contains k admissible paths

from x to b, and hence concatenating each of them with R leads to k admissible paths

from x to y in G, a contradiction. So NG(B − b) ∩ (Q2 − {x}) �= ∅. Let G2 be the graph

obtained from G[V(B) ∪ (NG(B − b) ∩ (Q2 − {x}))] by contracting NG(B − b) ∩ (Q2 − {x})
into a new vertex x2. If s ≥ 2 or NG(B − b) ∩ V(Q) ⊆ Q2 − {x}, using the facts that

NG(B − b) ⊆ Q2 ∪ {b} and |NG(v) ∩ Q2| ≤ s for any v ∈ V(B − b) (the latter one is from

Lemma 3.7 2(a)), one can verify that (G2, x2, b) is 2-connected and has minimum degree

at least k − s + 2. By the minimality of G, G2 has k − s + 1 admissible paths from x2 to b.

So there are k − s + 1 paths Pi from some vertex pi ∈ NG(B − b) ∩ (Q2 − {x}) to b internally

disjoint from V(Q) for i ∈ [k − s + 1]. Also Q contains s admissible paths from x to pi

of lengths 2, 4, . . . , 2s, respectively. By Lemma 3.2, by concatenating each of these paths

with Pi and R, we obtain k admissible paths from x to y, a contradiction. This shows

that s = 1 and NG(B − b) ∩ V(Q) = Q2.

We denote Q2 by {x, a}. So NG(B − b) ∩ V(Q) = Q2 = {x, a}.
Case 1. NG(C − y) ∩ Q1 = ∅.

Since NG(B − b) ∩ V(Q) = Q2 = {a, x}, we have that (G[V(B) ∪ {a}], a, b) is 2-

connected and has minimum degree at least k. By the minimality of G, G[V(B) ∪ {a}]
contains k − 1 admissible paths P1, . . . , Pk−1 from a to b. Let Y be a path from b to y in

C − V(B − b).

For any v ∈ Q1, if NG(v) ⊆ Q2 ∪ {y}, then the degree of v in G is three, so k ≤ 2,

contradicting Lemma 3.3. Therefore, there exists a component D of G−V(Q∪C) adjacent

to v. Since NG(C − y) ∩ Q1 = ∅, NG(Q1) ∩ V(C) ⊆ {y}. So (G − V(C), x, a) is 2-connected and

has minimum degree at least k. By the minimality of G, there are k − 1 admissible paths
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18 J. Gao et al.

R1, ..., Rk−1 from x to a in G − V(C). Then by Lemma 3.2, Ri ∪ Pj ∪ Y for all i, j ∈ [k − 1]

give at least 2k − 3 ≥ k admissible paths from x to y, a contradiction. This completes

the proof of Case 1.

Case 2. NG(C − y) ∩ Q1 �= ∅.

If C is 2-connected, then C = B and y = b, contradicting NG(B − b) ∩ V(Q) =
{x, a}. So C is not 2-connected. Let B1, B2, . . . , Bt be all end-blocks of C with cut-vertices

b1, b2, . . . , bt, respectively. Note that t ≥ 2.

Suppose that y /∈ ⋃t
i=1(V(Bi) − {bi}). So for every i ∈ [t], Bi is a feasible block,

and hence NG(Bi − bi) ∩ V(Q) = {x, a} which is disjoint from Q1. Since NG(C − y) ∩ Q1 �=
∅, there is a vertex w in V(C) − (

⋃t
i=1(V(Bi) − {bi}) ∪ {y}) such that NG(w) ∩ Q1 �= ∅.

Let c be a vertex in NG(w) ∩ Q1. Using the block structure of C, there exist two end-

blocks Bm, Bn for 1 ≤ m < n ≤ t, such that there are two disjoint paths L1, L2 from

bm to w and from bn to y internally disjoint from V(Bn) ∪ V(Bm), respectively. Since

Bm and Bn are feasible, NG(Bm − bm) ∩ V(Q) = {x, a} = NG(Bn − bn) ∩ V(Q). So both

of (G[V(Bm) ∪ {x}], x, bm) and (G[V(Bn) ∪ {a}], a, bn) are 2-connected and have minimum

degree at least k. By the minimality of G, there are k − 1 admissible paths P1, . . . , Pk−1

from x to bm in G[V(Bm) ∪ {x}]; and there are k − 1 admissible paths R1, . . . , Rk−1 from a

to bn in G[V(Bn)∪{a}]. By Lemma 3.3, k ≥ 3. So the set {Pi ∪L1 ∪wca∪Rj ∪L2 : i, j ∈ [k−1]}
contains at least 2k − 3 ≥ k admissible paths from x to y in G, a contradiction.

So there exists an end-block, say Bt, of C such that y ∈ V(Bt) − {bt}. We say that

a block H of C other than B1 is a hub if H is 2-connected and contains at most two cut-

vertices of C, and every path in C from B1 to Bt contains all cut-vertices of C contained

in V(H).

Suppose there exists a hub B∗ of C. So there exists a cut-vertex x∗ of C contained

in B∗ such that every path in C from b1 to V(B∗) contains x∗. If B∗ = Bt, then let y∗ = y;

otherwise, let y∗ be the cut-vertex of C contained in B∗ such that every path in C from bt

to V(B∗) contains y∗. Let Z0 be a path in C − (V(B1 − b1) ∪ V(B∗ − x∗)) from b1 to x∗, and

let Z1 be a path in C from y∗ to y. Since (G[B1 ∪ {x}], x, b1) is 2-connected with minimum

degree at least k, by the minimality of G, G[B1 ∪ {x}] contains k − 1 admissible paths

P1, . . . , Pk−1 from x to b1. If every vertex in V(B∗) − {x∗, y∗} has at most one neighbor in

Q, then (B∗, x∗, y∗) is 2-connected with minimum degree at least k. By the minimality of

G, B∗ contains k − 1 admissible paths R1, . . . , Rk−1 from x∗ to y∗. By Lemmas 3.2 and 3.3,

the set {Pi ∪ Z0 ∪ Rj ∪ Z1 : i, j ∈ [k − 1]} contains least 2k − 3 ≥ k admissible paths

from x to y in G, a contradiction. Therefore some vertex w ∈ V(B∗) − {x∗, y∗} satisfies

|NG(w) ∩ V(Q)| ≥ 2. Since s = 1, we have |NG(w) ∩ V(Q)| = 2 by Lemma 3.7. Let u, v

be the vertices in NG(w) ∩ V(Q). By Lemma 3.7, either {u, v} ⊆ Q1, or by symmetry say
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A Unified Proof of Conjectures on Cycles Lengths 19

u ∈ Q1 and v ∈ Q2. In the former case, there are two admissible paths L1 = xua and

L2 = xuwva from x to a; in the latter case, since there is no triangle containing x in G−y

by Lemma 3.4, we must have v = a, which also gives two admissible paths L1 = xua and

L2 = xuwa from x to a. Since (G[B1 ∪ {a}], a, b1) is 2-connected with minimum degree at

least k, by the minimality of G, there exist k − 1 admissible paths N1, . . . , Nk−1 from a to

b1 in G[B1 ∪ {a}]. Since B∗ is 2-connected, there exists a path L′ from x∗ to y∗ in B − w. By

Lemma 3.2, the set {Li ∪ Nj ∪ Z0 ∪ L′ ∪ Z1 : i ∈ [2], j ∈ [k − 1]} contains k admissible paths

from x to y in G, a contradiction.

So there exists no hub. In particular, Bt is not 2-connected, for otherwise Bt is a

hub. Therefore Bt = ybt is an edge. So B1, ..., Bt−1 are the all feasible blocks in C. Recall

that NG(Bi − bi) ∩ V(Q) = {a, x} for all i ∈ [t − 1], which implies dG(x) ≥ |Q1| + t − 1.

Since there is no triangle containing y in G − x by Lemma 3.4, we have dG(y) ≤ |Q1| + 1.

Hence |Q1| + t − 1 ≤ dG(x) ≤ dG(y) ≤ |Q1| + 1. That is, t ≤ 2. As t ≥ 2, this forces

t = 2, dG(x) = dG(y) = |Q1| + 1. In other words, there is exactly one end-block B1 of C

other than B2 = yb2, NG(y) = Q1 ∪ {b2} and NG(x) ⊆ Q1 ∪ V(B1 − b1). Note that the block

structure of C is a path. Since there exists no hub, every block of C other than B1 is an

edge. If V(C) = V(B1 ∪ B2), then since NG(C − y) ∩ Q1 �= ∅ and NG(B1 − b1) ∩ Q1 = ∅, b2

must have a neighbor in Q1. If V(C) �= V(B1 ∪ B2), then |NG(b2) ∩ V(C)| = 2, and since

dG(b2) ≥ k + 1 ≥ 4, we have |NG(b2) ∩ V(Q)| ≥ 2. Recall that NG(x) ⊆ Q1 ∪ V(B1 − b1), so

xb2 /∈ E(G). So in either case, b2 must have a neighbor w∗ in Q1. But G[{y, b2, w∗}] is a

triangle, contradicting Lemma 3.4.

This completes the proof of Theorem 3.1 (and of Theorem 1.2). �

4 Consecutive Cycles

In this section, we prove Theorems 1.4 and 1.11. This will be achieved in a unified

approach, namely, by finding optimal number of cycles of consecutive lengths in 2-

connected non-bipartite graphs (see Theorem 4.4).

We begin by introducing a concept on cycles, which is crucial in our approach.

We say that a cycle C in a connected graph G is non-separating if G − V(C) is connected.

The study of non-separating cycles appears in the work of Tutte [24] and is furthered

explored by Thomassen and Toft [23]. The proof of the following lemma can be found in

[2] (though it was not formally stated).

Lemma 4.1 (Bondy and Vince [2]). Every non-bipartite 3-connected graph contains a

non-separating induced odd cycle.
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20 J. Gao et al.

We also need the following lemma on non-separating odd cycles from [15], which

is a slight modification of a result of Fan [10].

Lemma 4.2 (Liu and Ma [15]). Let G be a graph with minimum degree at least four. If G

contains a non-separating induced odd cycle, then G contains a non-separating induced

odd cycle C, denoted by v0v1...v2sv0, such that either

1. C is a triangle, or

2. for every non-cut-vertex v of G − V(C), |NG(v) ∩ V(C)| ≤ 2, and the equality

holds if and only if NG(v) ∩ V(C) = {vi, vi+2} for some i, where the indices are

taken under the additive group Z2s+1.

The next lemma can be viewed as a corollary of Theorem 3.1, which will be used

for finding paths in a 2-connected graph with three special vertices.

Lemma 4.3. Let k ≥ 2 be a positive integer. Let G be a 2-connected graph and x, y, z be

three distinct vertices in G. If every vertex of G other than z has degree at least k + 1,

then G contains k − 1 admissible paths from x to y.

Proof. Since every two vertices are contained in a cycle in a 2-connected graph,

there is nothing to prove when k = 2. So we may assume that k ≥ 3. Note that

G − z is connected and has minimum degree at least k. If G − z is 2-connected,

then this lemma follows from Theorem 3.1. Hence we may assume that G − z is not

2-connected.

Let B be an end-block of G−z with cut-vertex b. Since every vertex in V(B−b) has

degree at least k ≥ 3 in G, we see that B is 2-connected. Suppose that |V(B−b)∩{x, y}| = 1.

Without loss of generality, we may assume that x ∈ V(B − b). By Theorem 3.1, B has

k − 1 admissible paths from x to b. Concatenating each of these paths with a path in

(G − z) − V(B − b) from b to y gives k − 1 admissible paths in G from x to y. Therefore,

there exists an end-block B′ with cut-vertex b′ of G − z such that V(B′ − b′) ∩ {x, y} = ∅. It

follows that NG(B′ − b′) = {b′, z}. Since G is 2-connected, G has two disjoint paths P1, P2

internally disjoint from V(B′) from x to b′ and from y to z, respectively. Let u be a vertex

in B′ −b′ adjacent to z in G. By Theorem 3.1, B′ has k−1 admissible paths R1, R2, ..., Rk−1

from b′ to u. Then the set {P1 ∪ Ri ∪ uz ∪ P2 : i ∈ [k − 1]} contains k − 1 admissible paths

in G from x to y. This completes the proof. �

We are ready to prove the main result of this section.
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A Unified Proof of Conjectures on Cycles Lengths 21

Theorem 4.4. Let k be a positive integer and G be a 2-connected graph containing a

non-separating induced odd cycle. If the minimum degree of G is at least k + 1, then G

contains k cycles of consecutive lengths.

Proof. The theorem is obvious when k = 1. For the case k = 2, let C0 be an induced

non-separating odd cycle in G and x, y ∈ V(C0) such that x, y divide C0 into two subpaths

say P1, P2 of lengths differing by one. Since G has minimum degree at least three, each

of x, y has at least one neighbor in G − V(C0) and thus there exists a path L from x

to y in G[(V(G) − V(C0)) ∪ {x, y}]. Then L ∪ P1 and L ∪ P2 are two cycles of consecutive

lengths in G.

So we may assume that k ≥ 3. By Lemma 4.2, there exists a non-separating

induced odd cycle C = v0v1...v2sv0 in G satisfying the conclusions of Lemma 4.2.

In particular, the minimum degree of G − V(C) is at least k − 1. Throughout the

rest of the proof of this theorem, the subscripts will be taken under the additive

group Z2s+1.

Suppose that C is a triangle v0v1v2v0. Consider the graph G′ obtained from G

by contracting v1 and v2 into a vertex u. Then G′ is 2-connected with minimum degree

at least k. By Theorem 3.1, there are k − 1 admissible paths in G′ from u to v0. By the

definition of admissible paths, each of these paths has length at least two, so it does not

contain the edge uv0, and each of those paths corresponds to a path in G − V(C) from v0

to some vi ∈ {v1, v2}. Concatenating with v0vi and v0v3−ivi, these paths lead to cycles of

at least k consecutive lengths in G.

Therefore we may assume that C is not a triangle and hence s ≥ 2. For any two

vertices vi, vj in C, denote C′
i,j and C′′

i,j to be the shorter and longer paths in C from vi to

vj, respectively.

Suppose that G−V(C) is 2-connected. We first assume that for every v ∈ V(G−C),

|NG(v) ∩ V(C)| ≤ 1. Then the minimum degree of G − V(C) ≥ k. Since G has minimum

degree at least k + 1 ≥ 4, there exist distinct vertices x, y ∈ V(G − C) such that xv0, yvs ∈
E(G). By Theorem 3.1, G − V(C) contains k − 1 admissible paths P1, ..., Pk−1 from x to y.

Note that C′
0,s and C′′

0,s are two paths from v0 to vs of lengths s and s + 1, respectively.

Concatenating each of C′
0,s and C′′

0,s with v0x ∪ Pi ∪ yvs for all i ∈ [k − 1] leads to k

cycles of consecutive lengths in G. Hence we may assume that there exists some u ∈
V(G − C) adjacent in G to two vertices of C. By Lemma 4.2, without loss of generality,

let NG(u) ∩ V(C) = {v1, v2s}. Since C is an induced cycle and d(vs) ≥ δ(G) ≥ k + 1 ≥ 4,

there exists a vertex w ∈ V(G − C) − {u} such that wvs ∈ E(G). Since G − V(C) has

minimum degree at least k−1, by Theorem 3.1, G−V(C) contains k−2 admissible paths
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22 J. Gao et al.

R1, ..., Rk−2 from u to w. Observe that uv1 ∪C′
1,s, uv2s ∪C′

s,2s, uv2s ∪C′′
s,2s and uv1 ∪C′′

1,s are

four paths from u to vs of lengths s, s + 1, s + 2 and s + 3, respectively. By concatenating

each of these paths with vsw ∪ Ri for i ∈ [k − 2], we obtain cycles of k + 1 consecutive

lengths in G.

Therefore G − V(C) is not 2-connected. Let B be an end-block of G − V(C) with

cut-vertex b. Since every vertex in B−b has degree at least k−1 ≥ 2 in B, B is 2-connected.

Suppose that |NG(v) ∩ V(C)| ≤ 1 for every vertex v ∈ V(B − b). Then every vertex

in B other than b has degree at least k in B. We first assume that there exist x ∈ V(B − b)

and y ∈ V(G − C) − V(B − b) such that vjx, vj+sy ∈ E(G) for some j, then by Theorem 3.1,

B contains k − 1 admissible paths P1, ..., Pk−1 from x to b. Let P be a path in G − (V(C) ∪
V(B − b)) from b to y. Note that C′

j,j+s, C′′
j,j+s are two paths of lengths s, s + 1, respectively.

Then, by concatenating each of these paths with Pi and P, we find k cycles in G with

consecutive lengths. Hence, we may assume that for every integer j with 0 ≤ j ≤ 2s, if vj

is adjacent to V(B − b), then NG(vj+s)∩ V(G − C) ⊆ V(B − b). Since G is 2-connected, there

is some vertex vi∗ of C adjacent in G to V(B − b). Since k + 1 ≥ 4, every vertex in V(C)

is adjacent in G to some vertex in V(G − C). So ∅ �= NG(vi∗+s) − V(C) ⊆ V(B − b). Hence

we can inductively show that NG(vi∗+rs) − V(C) ⊆ V(B − b) for every positive integer r.

Since s is a generator of Z2s+1, NG(C) ⊆ V(B − b). This implies that b is a cut-vertex of G,

contradicting the 2-connectivity of G.

Therefore there exists a vertex x ∈ V(B − b) with at least two neighbors in V(C).

By Lemma 4.2, without loss of generality, we may assume that NG(x) ∩ V(C) = {v1, v2s}.
Assume there exists some y ∈ V(G−C)−V(B−b) such that vsy ∈ E(G). Since every vertex

in B − b has degree at least k − 1 in B, by Theorem 3.1, B contains k − 2 admissible paths

Q1, ..., Qk−2 from x to b. Let Q be a fixed path in G − (V(C) ∪ V(B − b)) from b to y. Note

that xv1 ∪ C′
1,s, xv2s ∪ C′

s,2s, xv2s ∪ C′′
s,2s and xv1 ∪ C′′

1,s are four paths from x to vs of lengths

s, s+1, s+2 and s+3, respectively. By concatenating each of these paths with Qi∪Q∪yvs,

we find k+1 cycles of consecutive lengths in G. Hence we have NG(vs)∩V(G−C) ⊆ V(B−b).

Since |NG(vs) ∩ V(G − C)| ≥ k − 1 ≥ 2, there exists z ∈ NG(vs) ∩ V(B) − {x, b}. If k ≤ 4, then

using the above four paths from x to vs, together with vsz and a path in B from z to x,

we obtain cycles of four consecutive lengths in G. So we may assume k ≥ 5. Note that

every vertex of B other than b has degree at least k − 1 ≥ 4 in B. By Lemma 4.3, B has

k − 3 admissible paths R1, ..., Rk−3 from x to z. Again, concatenating each of these paths

with zvs and the four paths from x to vs, one can find cycles of k consecutive lengths in

G. This completes the proof of Theorem 4.4. �

Using Theorem 4.4, we can derive Theorems 1.4 and 1.11 easily.
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A Unified Proof of Conjectures on Cycles Lengths 23

Theorem 1.4. Every non-bipartite 3-connected graph with minimum degree at least

k + 1 contains k cycles of consecutive lengths.

Proof. This theorem immediately follows from Lemma 4.1 and Theorem 4.4. �

We say that a graph G is k-critical, if it has chromatic number k but every proper

subgraph of G has chromatic number less than k.

We now prove Theorem 1.11, which we restate as the following.

Theorem 4.5. For every positive integer k, every graph with chromatic number at least

k + 2 contains k cycles of consecutive lengths.

Proof. Let G be any graph with chromatic number at least k + 2. We may assume

that k ≥ 2, for otherwise the theorem is obvious. Then there exists a (k + 2)-

critical subgraph G′ of G. It is easy to see that G′ is 2-connected and has minimum

degree at least k + 1. It is known that for any integer t ≥ 4, every t-critical graph

contains a non-separating induced odd cycle (the case t = 4 was explicitly stated

and proved by Krusenstjerna-Hafstrøm and Toft [14, Theorem 4], but their proof

works for every t ≥ 4 as well). Therefore G′ contains a non-separating induced odd

cycle. By Theorem 4.4, we see that G′ (and thus G) contains k cycles of consecutive

lengths. �

5 Dean’s Conjecture

In this section we prove Conjecture 1.8, which will be divided into several lemmas. For

a brief overview of the coming proof, we would suggest readers to have a sketch on the

proof of Theorem 5.15, which is a restatement of Theorem 1.9.

Define K−
4 to be the graph obtained from K4 by deleting one edge. A chord of

a cycle C in a graph G is an edge e ∈ E(G) − E(C) such that the both ends of e belong

to V(C). For a positive integer t ≥ 4, we define K′
t to be the graph obtained from Kt by

deleting v1v4 and vivj for every i ∈ {1, 2} and j ∈ {5, 6, ..., t}, where V(Kt) = {vk : 1 ≤ k ≤ t}.
Note that K′

t contains a Hamilton cycle. Also, for every positive integer d, let K−
d,d be the

graph obtained from Kd,d by deleting an edge.

Lemma 5.1. Let d and t be integers with d + 1 ≥ t ≥ 5. Let G be a graph containing a

K−
4 subgraph but not containing a K′

t subgraph. If G is (t−1)-connected, then G contains

d cycles of consecutive lengths.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa324/6063791 by Texas A&M

 U
niversity user on 27 M

arch 2021



24 J. Gao et al.

Proof. Let {x, y, a, b} be a set of four vertices of G inducing a K−
4 subgraph, where x is

of degree two in this K−
4 subgraph and y is a neighbor of x. So there exists a clique in

G−{x, y} containing a, b. Let K be a maximal clique in G−{x, y} containing a, b. Note that

|K| ≤ t−3, for otherwise G[{x, y}∪K] contains a K′
t subgraph. Hence G−K is 2-connected

since G is (t − 1)-connected.

By the maximality of K, every vertex in G− (K ∪{x, y}) is adjacent in G to at most

|K| − 1 vertices in K. So ((G − K) − xy, x, y) is a 2-connected rooted graph of minimum

degree at least d − |K| + 1. By Theorem 3.1, there exist d − |K| admissible x-y paths

P1, P2, ..., Pd−|K| in (G − K) − xy. Note that there exist |K| + 1 x-y paths Q1, Q2, ..., Q|K|+1

in G[K ∪ {x, y}] with consecutive lengths. For every integers i, j with 1 ≤ i ≤ d − |K|
and 1 ≤ j ≤ |K| + 1, let Ci,j be the cycle obtained by concatenating Pi and Qj. Let C =
{Ci,j : 1 ≤ i ≤ d − |K|, 1 ≤ j ≤ |K| + 1}. If P1, P2, ..., Pd−|K| have consecutive lengths,

then C contains d cycles of consecutive lengths. If the lengths of P1, P2, ..., Pd−|K| form

an arithmatic progression of length two, then C contains 2d − |K| − 2 ≥ d cycles of

consecutive lengths. �

Lemma 5.2. Let d ≥ 3 be an integer. Let G be a 3-connected graph of minimum degree

at least d. If G contains a K3 subgraph but does not contain a K−
4 subgraph, then G

contains d cycles of consecutive lengths.

Proof. Let {a, b, c} be a set of three vertices of G that induces a K3 subgraph. Let G′ be

the graph obtained from G by contracting the edge bc into a new vertex a∗ and deleting

resulting loops and parallel edges. Since G is 3-connected, G′ is 2-connected, so (G′ −
aa∗, a, a∗) is a 2-connected rooted graph. Since G does not contain a K−

4 subgraph, (G′ −
aa∗, a, a∗) has minimum degree at least d. By Theorem 3.1, there exist d − 1 admissible

a-a∗ paths P1, P2, ..., Pd−1 in G′ − aa∗. So there exist paths P′
1, P′

2, ..., P′
d−1 in G such that

their lengths form an arithmetic progression of common difference one or two, and for

every i with 1 ≤ i ≤ d − 1, P′
i is either an a-b path disjoint from c or an a-c path disjoint

from b. For every integer i with 1 ≤ i ≤ d−1, let Ci,1 = P′
i+ab, Ci,2 = P′

i+ac, Ci,3 = P′
i∪abc,

and let Ci,4 = P′
i ∪ acb. Then the set {Ci,j : 1 ≤ i ≤ d − 1, 1 ≤ j ≤ 4} contains d cycles of

consecutive lengths. �

Lemma 5.3. Let � be a positive integer. Let A be a subset of integers such that �

elements of A form an arithmetic progression of common difference r, where r ∈ {1, 2}.
1. If r = 1 and � ≥ 3, then for every integer x, the set {a + x, a + x + 3 : a ∈

A} contains � + 3 elements that form an arithmetic progression of common

difference one.
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A Unified Proof of Conjectures on Cycles Lengths 25

2. If r = 2 and � ≥ 2, then for every integer x, the set {a + x, a + x + 3 : a ∈ A}
contains 2� − 2 elements that form an arithmetic progression of common

difference one.

Proof. Let a1, a2, ..., a� be � elements of A forming an arithmetic progression of

common difference r, where r ∈ {1, 2}. We may assume that for every i with 1 ≤ i ≤ �,

ai = a1 + (i − 1)r. Let x be any integer, and let S = {ai + x, ai + x + 3 : 1 ≤ i ≤ �}.
If r = 1 and � ≥ 3, then S = {i : a1 + x ≤ i ≤ a1 + � − 1 + x + 3}. If r = 2 and � ≥ 2,

then S contains {i : a1 + 2 + x ≤ i ≤ a1 + 2(� − 1) + x + 1}. This proves the lemma. �

Lemma 5.4. Let d be an integer with d ≥ 6. If G is a 3-connected non-bipartite graph

with minimum degree at least d that does not contain a K3 subgraph, then either

1. G contains d cycles of consecutive lengths, or

2. d ∈ {6, 7} and there exists an induced cycle C in G, denoted by v0v1v2...v2sv0,

of length at least five such that

(a) G − V(C) is connected but not 2-connected,

(b) every end-block of G − V(C) is 2-connected, and

(c) for every non-cut vertex v of G − V(C), |NG(v) ∩ V(C)| ≤ 2, and if |NG(v) ∩
V(C)| = 2, then NG(v)∩V(C) = {vi, vi+2} for some i ∈ Z2s+1 and the indices

are computed in Z2s+1.

Proof. We may assume that G does not contain d cycles of consecutive lengths, for

otherwise we are done.

By Lemmas 4.1 and 4.2, since G does not contain a K3 subgraph, there exists

an induced odd cycle C of length at least five, denoted by v0v1...v2sv0, such that for

every non-cut vertex v of G − V(C), |NG(v) ∩ V(C)| ≤ 2, and if |NG(v) ∩ V(C)| = 2,

then NG(v) ∩ V(C) = {vi, vi+2} for some i ∈ Z2s+1 and the indices are computed

in Z2s+1.

In particular, no vertex of G − V(C) is of degree at most one in G − V(C), since

d ≥ 4. So every end-block of G − V(C) is 2-connected. Note that for every end-block B of

G − V(C), there exists at most one cut-vertex of G − V(C) contained in V(B), and if such

vertex exists, we denote it by bB.

So to prove this lemma, it suffices to prove that d ∈ {6, 7} and G − V(C) is not

2-connected.

We first suppose to the contrary that G − V(C) is 2-connected.
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26 J. Gao et al.

Suppose that there exists a vertex x ∈ V(G) − V(C) adjacent in G to at least two

vertices in V(C). By symmetry, we may assume that x is adjacent to v0 and v2. Since

G is 3-connected and C is an induced cycle in G, vs+1 is adjacent in G to a vertex y in

V(G) − V(C). Since |V(C)| ≥ 5, vs+1 �∈ {v0, v2}, so x �= y. Since G − V(C) is 2-connected,

every vertex in G − V(C) has degree at least d − 2, so by Theorem 3.1, there exist d − 3

admissible paths P1, P2, ..., Pd−3 in G − V(C) from x to y. Let Q1, Q2 be the subpaths of

C with ends v0 and vs+1 of length s + 1 and s, respectively. Let Q3, Q4 be the subpaths

of C with ends v2 and vs+1 of length s − 1 and s + 2, respectively. Let C = {(Pi ∪ Qj) +
xv0 + yvs+1, (Pi ∪ Qk) + xv2 + yvs+1 : 1 ≤ i ≤ d − 3, 1 ≤ j ≤ 2, 3 ≤ k ≤ 4}. Then C contains

(d − 3) + 4 − 1 = d cycles of consecutive lengths, a contradiction.

So every vertex x ∈ V(G) − V(C) is adjacent in G to at most one vertex in V(C).

Since G is connected, there exists a vertex x′ in V(G) − V(C) adjacent in G to a vertex

in V(C). By symmetry, we may assume that x′ is adjacent to v0. Since G is 3-connected

and C is an induced cycle in G, vs−1 is adjacent in G to a vertex y′ in V(G) − V(C). Since

|V(C)| ≥ 5, v0 �= vs−1, so x �= y. Since every vertex in G − V(C) has degree at least d − 1,

by Theorem 3.1, there exist d − 2 admissible paths P′
1, P′

2, ..., P′
d−2 in G − V(C) from x′

to y′. Let Q′
1, Q′

2 be the subpaths of C with ends v0 and vs−1 of length s − 1 and s + 2,

respectively. Let C′ = {(P′
i ∪ Q′

j) + xv0 + yvs−1 : 1 ≤ i ≤ d − 2, 1 ≤ j ≤ 2}. Since d − 2 ≥ 3, C′

contains min{d − 2 + 3, 2(d − 2) − 2} ≥ d cycles of consecutive lengths by Lemma 5.3, a

contradiction.

Hence G − V(C) is not 2-connected. It suffices to prove d ∈ {6, 7}. Suppose to the

contrary that d ≥ 8.

Suppose that there exists an end-block B of G − V(C) and a vertex x ∈ V(B) − {bB}
adjacent in G to vix in V(C) for some 0 ≤ ix ≤ 2s, such that vix+s−1 is adjacent in G

to a vertex y ∈ V(G) − (V(C) ∪ (V(B) − {bB})), where the indices are computed in Z2s+1.

Since (B, x, bB) is a 2-connected rooted graph of minimum degree at least d − 2, Theorem

3.1 implies that there exist d − 3 admissible paths in B from x to bB, and hence by

concatenating each of them with a fixed path in G − (V(C) ∪ (V(B) − {bB})) from bB to y,

there exist d − 3 admissible paths P′′
1, P′′

2, ..., P′′
d−3 in G − V(C) from x to y. Let Q′′

1, Q′′
2 be

the subpaths of C with ends vix and vix+s−1 of length s − 1 and s + 2, respectively. Let

C′′ = {(P′′yi ∪Q′′
j )+xvix +yvix+s−1 : 1 ≤ i ≤ d−3, 1 ≤ j ≤ 2}. Since d−3 ≥ 3, by Lemma 5.3,

C′′ contains min{(d − 3) + 3, 2(d − 3) − 2} = min{d, 2d − 8} cycles of consecutive lengths.

Since G does not contain d cycles of consecutive lengths, 2d − 8 < d. Hence d ∈ {6, 7}, a

contradiction.

Hence for every end-block B of G−V(C) and every vertex x ∈ V(B)−{bB} adjacent

in G to vix for some 0 ≤ ix ≤ 2s, NG(vix+s−1) ⊆ V(B)−{b}, where the indices are computed
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A Unified Proof of Conjectures on Cycles Lengths 27

in Z2s+1. Similarly, for every end-block B of G − V(C) and every vertex x ∈ V(B) − {bB}
adjacent in G to vix for some 0 ≤ ix ≤ 2s, NG(vix−(s−1)) ⊆ V(B)−{b}, where the indices are

computed in Z2s+1.

For every end-block B of G − V(C), let SB = {i : 0 ≤ i ≤ 2s, vi ∈ NG(B − bB)}. Note

that for every end-block B and i ∈ Z2s+1, if i ∈ SB, then {i + (s − 1), i − (s − 1)} ⊆ SB − SB′

for every end-block B′ of G − V(C) other than B. So if s − 1 is relatively prime to 2s + 1,

then SB = {i : 0 ≤ i ≤ 2s} for every end-block B, but there are at least two end-blocks of

G − V(C), a contradiction.

Hence s−1 is not relatively prime to 2s+1. So there exists a prime p that divides

s−1 and 2s+1. Hence p divides (2s+1)−2(s−1) = 3. That is, p = 3, and 3 is the greatest

common divisor of 2s + 1 and s − 1. So for every end-block B and i ∈ Z, if i ∈ SB, then

since SB contains i + t(s − 1) for every integer t, where the computation is in Z2s+1, SB

contains i + 3t′ for every integer t′. Hence for every i ∈ {0, 1, 2}, either SB ⊇ {i + 3t : t ∈ Z}
or SB ∩ {i + 3t : t ∈ Z} = ∅, where the computation is in Z2s+1. Since there are at least

two end-blocks in G − V(C), there exists an end-block B∗ such that there uniquely exists

i∗ ∈ {0, 1, 2} such that SB∗ ∩ {i∗ + 3t : t ∈ Z} �= ∅. This implies that every vertex in B∗ − bB∗

is adjacent in G to at most one vertex in V(C).

By symmetry, we may assume that i∗ = 0, and there exist x∗, y∗ ∈ V(B∗) − {bB∗}
such that x∗v0 ∈ E(G) and y∗vs−1 ∈ E(G). Since G is 3-connected, x∗ and y∗ can be chosen

to be distinct vertices. Hence x∗, y∗, bB∗ are distinct vertices. Since B is 2-connected and

every vertex in B∗ other than bB∗ is of degree at least d − 1 in B∗, by Lemma 4.3 there

exist d−3 admissible paths P∗
1, P∗

2, ..., P∗
d−3 in B∗ from x∗ to y∗. Let Q∗

1, Q∗
2 be the subpaths

of C with ends v0 and vs−1 of length s − 1 and s + 2, respectively. Let C∗ = {(P∗
i ∪ Q∗

j ) +
v0x∗ + vs−1y∗ : 1 ≤ i ≤ d − 3, 1 ≤ j ≤ 2}. Since d − 3 ≥ 3, by Lemma 5.3, C∗ contains

min{d − 3 + 3, 2(d − 3) − 2} cycles of consecutive lengths. Since G does not contain d

cycles of consecutive lengths, 2d − 8 < d. Hence d ∈ {6, 7}, a contradiction. This proves

the lemma. �

Lemma 5.5. Let d be an integer with d ≥ 6. If G is a 3-connected non-bipartite

graph with minimum degree at least d that does not contain a K3 subgraph, then

G contains d admissible cycles. Furthermore, if d ≥ 8, then G contains d cycles

of consecutive lengths; and if d ∈ {6, 7}, then G contains cycles of all lengths

modulo d.

Proof. We may assume that G does not contain d cycles of consecutive lengths, for

otherwise we are done. By Lemma 5.4, d ∈ {6, 7} and there exists an induced cycle C in
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G, denoted by v0v1v2...v2sv0, of length at least five such that

• G − V(C) is connected but not 2-connected,

• every end-block of G − V(C) is 2-connected, and

• for every non-cut vertex v of G − V(C), |NG(v) ∩ V(C)| ≤ 2, and if |NG(v) ∩
V(C)| = 2, then NG(v)∩ V(C) = {vi, vi+2} for some i ∈ Z2s+1 and the indices are

computed in Z2s+1.

Since d ∈ {6, 7}, to prove this lemma, it suffices to prove that G contains d admissible

cycles, and prove that G contains cycles of all lengths modulo d. Note that if d = 7 and

G contains d admissible cycles, then G contains cycles of all lengths modulo d.

Suppose to the contrary that either G does not contain d admissible cycles, or

d = 6 and G does not contain cycles of all lengths modulo d.

Since G−V(C) is not 2-connected and every end-block of G−V(C) is 2-connected,

for every end-block B of G−V(C), there exists exactly one vertex bB in B such that bB is a

cut-vertex of G−V(C). For every end-block B of G−V(C), let uB be a vertex in B−{bB} such

that |NG(uB) ∩ V(C)| is as large as possible. Note that for every end-block B of G − V(C),

(B, uB, bB) is a 2-connected rooted graph of minimum degree at least d − |NG(uB) ∩ V(C)|,
so there exist d − |NG(uB) ∩ V(C)| − 1 admissible paths PB,1, PB,2, ..., PB,d−|NG(uB)∩V(C)|−1 in

B from uB to bB. In addition, for every end-block B of G − V(C), 1 ≤ |NG(uB) ∩ V(C)| ≤ 2

since uB ∈ V(B) − {bB}.
Suppose that there exists an end-block B1 of G−V(C) such that |NG(uB1

)∩V(C)| =
1. Let B2 be an end-block of G − V(C) other than B1. Let x ∈ NG(uB1

) ∩ V(C). Since G is

3-connected, uB2
can be chosen such that NG(uB2

) ∩ V(C) − {x} �= ∅. Let y ∈ NG(uB2
) ∩

V(C) − {x}. Let Q be a path in C from x to y. Let R be a path in G − V(C) from bB1
to

bB2
. Let C = {(PB1,i ∪ R ∪ PB2,j ∪ Q) + xuB1

+ yuB2
: 1 ≤ i ≤ d − |NG(uB1

) ∩ V(C)| − 1, 1 ≤
j ≤ d − |NG(uB2

) ∩ V(C)| − 1}. So C contains (d − |NG(uB1
) ∩ V(C)| − 1) + (d − |NG(uB2

) ∩
V(C)| − 1) − 1 = 2d − 4 − |NG(uB2

) ∩ V(C)| ≥ 2d − 6 ≥ d admissible cycles. Hence d = 6

and G does not contain d cycles of consecutive lengths. So the lengths of the cycles

in C form an arithmetic progression of common difference two. It follows that the set

{PB1,i ∪R∪PB2,j : 1 ≤ i ≤ d−|NG(uB1
)∩V(C)|−1, 1 ≤ j ≤ d−|NG(uB2

)∩V(C)|−1} contains

2d − 6 paths whose of lengths form an arithmetic progression of common difference

two from uB1
to uB2

in G − V(C). Let Qo be the odd path from x to y in C and Qe be

the even path from x to y in C. By concatenating each of Qo and Qe with PB1,i ∪ R ∪
PB2,j ∪ xuB1

∪ yuB2
, we could obtain 2d − 6 cycles of consecutive odd lengths and 2d − 6

cycles of consecutive even lengths. Since d = 6 is even, G contains cycles of all lengths

modulo d.
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A Unified Proof of Conjectures on Cycles Lengths 29

Hence for every end-block B of G − V(C), |NG(uB) ∩ V(C)| = 2. Let B3, B4 be two

distinct end-blocks of G − V(C). By symmetry, we may assume that NG(uB3
) ∩ V(C) =

{v0, v2}. Since G does not contain a K3 subgraph, |NG(uB4
) ∩ V(C) ∩ {v0, v1}| ≤ 1, so there

exists z ∈ NG(uB4
)∩V(C)−{v0, v1}. Let Q1 be the path in C from v0 to z containing v0v1v2,

and let Q2 be the subpath of Q1 from v2 to z. Note that |E(Q1)| = |E(Q2)| + 2. Let R′ be a

path in G−V(C) from bB3
to bB4

. Let C′ = {(PB3,i ∪R′ ∪PB4,j ∪Q1)+uB3
v0 +uB4

z, (PB3,i ∪R′ ∪
PB4,j ∪Q2)+uB3

v2 +uB4
z : 1 ≤ i ≤ d−|NG(uB3

)∩V(C)|−1, 1 ≤ j ≤ d−|NG(uB4
)∩V(C)|−1}.

Since |E(Q1)| = |E(Q2)| + 2, C′ contains (d − |NG(uB3
)∩ V(C)| − 1)+ (d − |NG(uB4

)∩ V(C)| −
1)−1+2−1 = 2d−6 ≥ d admissible cycles. So d = 6 and G does not contain d cycles of

consecutive lengths. Hence the lengths of these cycles form an arithmetic progression of

common difference two. It follows that PB3,i∪R′∪PB4,j for all 1 ≤ i ≤ d−|NG(uB3
)∩V(C)|−1

and 1 ≤ j ≤ d − |NG(uB4
) ∩ V(C)| − 1 contains 2d − 7 paths whose of lengths form an

arithmetic progression of common difference two between uB3
to uB4

in G−V(C). Let Q′
o

and Q′
e be the odd path and even path in C from z to v0, respectively. By concatenating

each of Q′
o and Q′

e with PB3,i∪R′∪PB4,j∪uB3
v0∪uB4

z, we obtain 2d−7 cycles of consecutive

odd lengths and 2d−7 cycles of consecutive even lengths. Since d = 6 is even, G contains

cycles of all lengths modulo d, a contradiction. This proves the lemma. �

Recall that for every positive integer d, K−
d,d is the graph obtained from Kd,d by

deleting an edge.

Lemma 5.6. Let d ≥ 3 be an integer. Let G be a max{d, 5}-connected graph of girth

exactly four and of minimum degree at least d that does not contain a cycle of length

five. If G does not contain a K−
d,d subgraph, then G contains d admissible cycles.

Proof. Suppose to the contrary that G does not contain d admissible cycles.

Since the girth of G equals four, G contains a K2,2 subgraph. So there exists a

complete bipartite subgraph Q of G with bipartition (Q1, Q2) such that

(i) 2 ≤ |Q1| ≤ |Q2|,
(ii) subject to (i), |Q1| is maximum, and

(iii) subject to (i) and (ii), |Q2| is maximum.

Let s = |Q1|. Note that 2 ≤ s ≤ d − 1 since G does not contain a Kd,d subgraph. Since G

does not contain a K3 subgraph, Q is an induced subgraph of G, and for every vertex v

of G − V(Q), either NG(v) ∩ Q1 = ∅ or NG(v) ∩ Q2 = ∅.

For any v ∈ V(G) − V(Q), |NG(v) ∩ Q1| ≤ s − 1 by (iii), and |NG(v) ∩ Q2| ≤ s by

(ii). If there exists a vertex z ∈ V(G) − V(Q) such that z is adjacent in G to at least s
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vertices in V(Q), then let Z = {z}; otherwise, let Z be the empty set. Note that if Z �= ∅,

then NG(z) ∩ V(Q) ⊆ Q2 and |Q2| ≥ s + 1, since G is of girth four and by (i)-(iii).

Suppose there exists t ∈ {1, 2} such that there exists a component M of G−(Qt∪Z)

disjoint from Q3−t. Since G is d-connected, |Qt| + |Z| ≥ d. If |Qt| = s, then since d ≥ s + 1,

Z �= ∅ and |Qt| = s = d−1, so t = 1 and |Q3−t| ≥ s+1 = d, and hence G[V(Q)∪Z] contains

a K−
d,d subgraph, a contradiction. Hence |Qt| ≥ s + 1. In particular, t = 2. Note that when

s = 2, |Qt| ≥ s + 2, for otherwise |Qt| + |Z| ≤ (s + 1) + 1 = 4, contradicting that G is

5-connected. Since G − Z is 4-connected, we have that |NG(M) ∩ Qt| ≥ 4. If s = 2, let A be

a subset of NG(M) ∩ Qt − NG(z) with size two; if s ≥ 3, let A be a subset of NG(M) ∩ Qt

with size two. Note that NG(M) ∩ Qt − A �= ∅. If |Qt| = s + 1 and Z �= ∅, then let ε = 1;

for otherwise, let ε = 0. Let GM be the graph obtained from G[V(M) ∪ Qt] by identifying

all vertices in A into a vertex uM , identifying all vertices in Qt − A into a vertex vM , and

deleting all resulting loops and parallel edges. Since |Qt| ≥ s+1 and t = 2, and since G is

of girth four and does not contain a 5-cycle, no vertex of M is adjacent in G to both Z and

Q2, so the minimum degree of (GM , uM , vM) is at least d− (s−2)−|Z|+ε by the definition

of Z. So (GM , uM , vM) is a rooted graph of minimum degree at least d − (s − 2) − |Z| + ε.

Since G − Z is 3-connected and M is a component of G − (Qt ∪ Z), we know (GM , uM , vM)

is a 2-connected rooted graph of minimum degree at least d − s + 2 − |Z| + ε. By Theorem

3.1, there exist d − s + 1 − |Z| + ε admissible paths in GM from uM to vM . So there exist

d − s + 1 − |Z| + ε admissible paths PM,1, PM,2, ..., PM,d−s+1−|Z|+ε in G[V(M) ∪ Qt] from A to

Qt −A internally disjoint from V(Q)∪Z. For each i with 1 ≤ i ≤ d− s+1−|Z|+ ε, let αi be

the ends of PM,i in A and let βi be the end of PM,i in Qt −A. Since |Qt| ≥ s+1 and t = 2 and

Q is a complete bipartite graph, there exist s+|Z|−ε admissible paths QM,1, ..., QM,s+|Z|−ε

in G[V(Q) ∪ Z] from αi to βi. Then the set {PM,j ∪ QM,k : 1 ≤ j ≤ d − s + 1 − |Z| + ε, 1 ≤
k ≤ s + |Z| − ε} contains (d − s + 1 − |Z| + ε) + (s + |Z| − ε) − 1 = d admissible cycles, a

contradiction.

So for every t ∈ {1, 2}, every component of G−(Qt∪Z) intersects Q3−t. Let G′ be the

graph obtained from G − Z by identifying all vertices in Q1 into a vertex u′, identifying

all vertices in Q2 into a vertex v′, and deleting resulting loops and parallel edges. Since

G is of girth four and does not contain a 5-cycle, no vertex of G − (V(Q) ∪ Z) is adjacent

in G to either both Z and Q2 or both Q1 and Q2, so the minimum degree of (G′, u′, v′) is at

least d−(s−2)−|Z| by the definition of Z. Since G is 3-connected, G−Z is 2-connected, so

every cut-vertex of G′ is u′ or v′. Since for every t ∈ {1, 2}, every component of G− (Qt ∪Z)

intersects Q3−t, we know G′ is 2-connected. So (G′, u′, v′) is a 2-connected rooted graph of

minimum degree at least d−s−|Z|+2. By Theorem 3.1, there exist d−s−|Z|+1 admissible

paths in G′ from u′ to v′. So there exist d−s−|Z|+1 admissible paths R1, R2, ..., Rd−s−|Z|+1

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa324/6063791 by Texas A&M

 U
niversity user on 27 M

arch 2021



A Unified Proof of Conjectures on Cycles Lengths 31

in G−Z from Q1 to Q2 internally disjoint from V(Q). For every i with 1 ≤ i ≤ d−s−|Z|+1,

let xi, yi be the ends of Ri in Q1, Q2, respectively. Since Q is a complete bipartite graph,

for each i with 1 ≤ i ≤ d − s − |Z| + 1, G[V(Q) ∪ Z] contains s + |Z| admissible paths

R′
1, R′

2, ..., R′
s+|Z| from xi to yi. So the set {Rj ∪ R′

k : 1 ≤ j ≤ d − s − |Z| + 1, 1 ≤ k ≤ s + |Z|}
contains d admissible cycles, a contradiction. This proves the lemma. �

Lemma 5.7. Let G be a 3-connected bipartite graph. If G does not contain a cycle of

length four, then G contains a non-separating induced cycle C such that for every non-

cut-vertex v of G − V(C), |NG(v) ∩ V(C)| ≤ 1.

Proof. Let C be a cycle of G such that

(i) the largest component of G − V(C) is as large as possible, and

(ii) subject to (i), |V(C)| is as small as possible.

Let M be a component of G − V(C) with |V(M)| maximum.

If there exists a chord e of C, then one of Pe + e and Qe + e is a cycle shorter

than C such that M is a component of the graph obtained from G by deleting this cycle,

a contradiction, where Pe, Qe are the two subpaths of C with ends the same as e. Hence

C is an induced cycle.

Suppose there exists a component M ′ of G − V(C) other than M. Let A = NG(M) ∩
V(C) and B = NG(M ′) ∩ V(C). Since G is 3-connected, min{|A|, |B|} ≥ 3. Since |A| ≥ 3 and

|B| ≥ 2, there exists a subpath Q of C whose ends belong to B such that some internal

vertex of Q belongs to A. Since M ′ is connected, there exists a path Q′ from one end

of Q to another end of Q such that all internal vertices belong to V(M ′). Let Q′′ be the

subpath of C with the same ends as Q but internally disjoint from Q. Then Q′ ∪ Q′′ is a

cycle in G such that some component of G − V(Q′ ∪ Q′′) contains M and a vertex in A,

contradicting (i).

Hence C is a non-separating cycle in G. Suppose that there exists a non-cut-

vertex v of G−V(C) such that |NG(v)∩V(C)| ≥ 2. Let x, y be distinct vertices in NG(v)∩V(C)

such that no internal vertex of R1 belongs to NG(v) ∩ V(C), where R1, R2 are the two

subpaths of C with ends x and y. If |E(R1)| ≤ 2, then R1 + vx + vy is a cycle of length

at most four, contradicting that G is a bipartite graph with no 4-cycle. So |E(R1)| ≥ 3.

Hence R2+vx+vy is a cycle shorter than C. Since |E(R1)| ≥ 3, there exist distinct internal

vertices x′, y′ of R1. Since C is an induced cycle and every vertex of G has degree at least

three, NG(x′)−V(C) �= ∅ �= NG(y′)−V(C). Since C is a non-separating cycle, NG(x′)∩V(M) =
NG(x′)−V(C) �= ∅ �= NG(y′)−V(C) = NG(y′)∩V(M). Since x′, y′ are internal vertices of R1,

{x′, y′} ∩ NG(v) = ∅. So NG(x′) ∩ V(M) − {v} �= ∅ and NG(y′) ∩ V(M) − {v} �= ∅. Since v is not
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a cut-vertex of G − V(C), M − v is connected. So some component of G − V(R2 + vx + vy)

contains (V(M) − {v}) ∪ {x′, y′}, contradicting (i). This proves the lemma. �

Lemma 5.8. Let d ≥ 5 be an integer. Let G be a 3-connected bipartite graph of

minimum degree at least d. If G does not contain cycles of length four, then G contains

d admissible cycles.

Proof. Suppose to the contrary that G does not contain d admissible cycles. By

Lemma 5.7, there exists a positive integer s and an induced non-separating cycle

C = v0v1 . . . v2s−1v0 in G such that for every non-cut-vertex of G − V(C), it is adjacent

in G to at most one vertex in V(C). Since G is a bipartite graph with no 4-cycle, s ≥ 3. For

any any 0 ≤ i < j ≤ 2s − 1, let Qi,j and Q′
i,j be the two subpaths of C with ends vi, vj.

Suppose G−V(C) is 2-connected. Since C is an induced non-separating cycle and

G is of minimum degree at least d ≥ 4, there exist distinct vertices x, y in V(G) − V(C)

such that {xv0, yvs−2} ∈ E(G). Since (G − V(C), x, y) is a 2-connected rooted graph of

minimum degree at least d−1, there exist d−2 admissible paths P1, P2, ..., Pd−2 in G−V(C)

from x to y by Theorem 3.1. Note that ||E(Q0,s−2)| − |E(Q′
0,s−2)|| = 4. Since d − 2 > 2 and

G is bipartite, the set {(Pi ∪Q0,s−2)+xv0 +yvs−2, (Pi ∪Q′
0,s−2)+xv0 +yvs−2 : 1 ≤ i ≤ d−2}

contains d admissible cycles, a contradiction.

So G − V(C) is not 2-connected. In particular, there exist two distinct end-blocks

B1, B2 of G − V(C). Since G is 3-connected, each B1, B2 is 2-connected. For i ∈ {1, 2}, let

bi be the cut-vertex of G − V(C) contained in V(Bi). Since G is 2-connected, for each

i ∈ {1, 2}, there exists an integer ri with 0 ≤ ri ≤ 2s − 1 and a vertex ui in V(Bi) − {bi}
such that uivri

∈ E(G). Since G is 3-connected, r1 and r2 can be chosen to be distinct.

For i ∈ {1, 2}, since (Bi, ui, bi) is a 2-connected rooted graph of minimum degree at least

d − 1, there exist d − 2 admissible paths Pi,1, Pi,2, ..., Pi,d−2 in Bi from ui to bi. Let Q

be a path in G − V(C) from b1 to b2 internally disjoint from V(B1) ∪ V(B2). Then the

set {(P1,i ∪ Q ∪ P2,j ∪ Qr1,r2
) + u1vr1

+ u2vr2
: 1 ≤ i ≤ d − 2, 1 ≤ j ≤ d − 2} contains

2(d − 2) − 1 = 2d − 5 ≥ d admissible cycles, a contradiction. This proves the lemma. �

For every graph H, a 1-subdivision of H is a graph that is obtained from H by

subdividing each edge exactly once.

Lemma 5.9. Let G be a graph of girth at least five. Let H be a subgraph of G that is a

1-subdivision of K4. If there exists a vertex in V(G) − V(H) adjacent in G to two vertices

in V(H), then G contains a cycle of length five or ten.
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Proof. We may assume G is of girth at least six, for otherwise we are done. Let v be a

vertex in V(G)−V(H) adjacent in G to two vertices x, y in V(H). Let S be the set of vertices

of H of degree three. Since G has girth at least five, at least one of x, y does not belong

to S. Then since G has girth at least six, both x, y do not belong to S. So there exist edges

e, e′ of K4 such that x and y are obtained by subdividing e and e′, respectively. Since G

has girth at least five, e and e′ form a matching in K4. Let z be a vertex of H obtained by

subdividing an edge other than e, e′. Then (H − {z}) + vx + vy has a Hamiltonian cycle of

length ten. This proves the lemma. �

We say a graph is a theta graph is a subdivision of K−
4 . The branch vertices of

a theta graph are the vertices of degree at least three. A subgraph H of a graph G is

spanning if V(H) = V(G).

Lemma 5.10. Let G be a graph of girth at least six that does not contain a cycle of

length ten. Let H be a subgraph of G isomorphic to a theta graph such that |V(H)| is

minimum. Then the following hold.

1. H is an induced subgraph of G.

2. There exists at most one vertex of G − V(H) adjacent in G to at least two

vertices in V(H).

3. If there exists a vertex v of G − V(H) adjacent in G to at least two vertices in

V(H), then G[V(H) ∪ {v}] is isomorphic to a 1-subdivision of K4.

Proof. Suppose that H is not induced. Then there exists e ∈ E(G) − E(H) with both

ends in V(H). Since the girth of G is at least six, there exists a subgraph H ′ of G with

V(H ′) ⊂ V(H) such that H ′ is a theta graph, contradicting the minimality of |V(H)|.
So H is an induced subgraph. We may assume there exists a vertex v of G − V(H)

adjacent in G to at least two vertices in V(H), for otherwise we are done. Let x, y be the

branch vertices of H. Let P1, P2, P3 be the three internally disjoint paths in H from x to y.

By the minimality of |V(H)| and the girth condition of G, v is not adjacent to

any branch vertices of H. Similarly, for each i ∈ {1, 2, 3}, v is adjacent to at most one

vertex in V(Pi). So there exist distinct i, j such that v is adjacent to exactly one vertex a

in V(Pi) − {x, y} and exactly one vertex b in V(Pj) − {x, y}. By symmetry, we may assume

i = 1 and j = 2. Since (H − (V(P3)−{x, y}))+av +bv is a theta graph, by the minimality of

|V(H)|, |V(P3)| ≤ 3. Let L1 be the subpath of P1 from x to a. Since the graph obtained from

H + av + bv by deleting all internal vertices of L1 is a theta graph, L1 contains at most

one internal vertex by the minimality of |V(H)|. Similarly, the subpath L2 of P2 from x
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to b contains at most one internal vertex. Since L1 ∪ L2 ∪ avb is a cycle in G and G has

girth at least six, both L1, L2 contain exactly one internal vertex. Similarly, each of the

subpath of P1 from a to y and the subpath of P2 from b to y contains exactly one vertex.

Since P1 ∪ P3 is a cycle in G, P3 contains exactly one internal vertex. Hence G[V(H) ∪ {v}]
contains a 1-subdivision of K4 as a spanning subgraph. Since G is of girth at least six,

G[V(H) ∪ {v}] is isomorphic to a 1-subdivision of K4.

If there exists a vertex v′ of V(G) − V(H) other than v adjacent in G to at least

two vertices in V(H), then v′ is adjacent in G to at least two vertices in V(H) ∪ {v} which

induces a subgraph isomorphic to a 1-subdivision of K4, so G contains a cycle of length

ten by Lemma 5.9, a contradiction. So v is the only vertex that is adjacent in G to at least

two vertices in V(H). This proves the lemma. �

Lemma 5.11. Let d ≥ 5 be an integer. Let G be a 5-connected graph of girth at least

six and of minimum degree at least d that does not contain a cycle of length ten. Let H

be an induced subgraph of G isomorphic to a 1-subdivision of K4. Then G contains d

admissible cycles.

Proof. Suppose to the contrary that G does not contain d admissible cycles. Note that

every vertex of G − V(H) is adjacent in G to at most one vertex in V(H) by Lemma

5.9. We say a pair of two distinct vertices x, y of H are useful if there exist paths

H1, H2, H3 in H from x to y of lengths h1, h2, h3, respectively, such that (h1, h2, h3) ∈
{(1, 5, 7), (2, 4, 6), (3, 5, 7)}.

Let M be a component of G − V(H). Since G is 5-connected, there exists a useful

pair of vertices x, y such that x is adjacent in G to some vertex x′ in V(M) and y is

adjacent in G to some vertex y′ in V(M). Note that x′ �= y′, for otherwise some vertex of

M is adjacent in G to two vertices in V(H).

Suppose M is 2-connected. Then (M, x′, y′) is a 2-connected rooted graph of

minimum degree at least d − 1. By Theorem 3.1, there exist d − 2 admissible paths

P1, ..., Pd−2 in G′ from x′ to y′. Since d ≥ 5, the set {(Pi ∪ Hj) + xx′ + yy′ : 1 ≤ i ≤ d − 2, 1 ≤
j ≤ 3} contains d admissible cycles, a contradiction.

So M is not 2-connected. Let B1, B2 be two distinct end-blocks of M. Let b1, b2 be

the cut-vertex of G−V(H) contained in V(B1), V(B2), respectively. Since G is 3-connected,

some vertex x1 in V(B1)−{b1} is adjacent in G to some vertex u1 in V(H), and some vertex

x2 in V(B2) − {b2} is adjacent in G to some vertex u2 in V(H). For each i ∈ {1, 2}, since

(Bi, xi, bi) is a 2-connected rooted graph of minimum degree at least d − 1, there exist

d − 2 admissible paths Qi,1, ..., Qi,d−2 in Bi from xi to bi. Let Q be a path in M from b1
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to b2 internally disjoint from V(B1) ∪ V(B2), and let Q′ be a path in H from u1 to u2.

Then the set {(Q1,i ∪ Q ∪ Q2,j ∪ Q′) + x1u1 + x2u2 : 1 ≤ i ≤ d − 2, 1 ≤ j ≤ d − 2} contains

2(d − 2) − 1 = 2d − 5 ≥ d admissible cycles, a contradiction. This proves the lemma. �

Lemma 5.12. Let H be a theta graph. Then there exist two distinct vertices x, y and

three paths in H from x to y such that the lengths of these three paths modulo 5 are

pairwise distinct.

Proof. Let P1, P2, P3 be the three internally disjoint paths in H between the branch

vertices of H. For each i ∈ {1, 2, 3}, we denote Pi by vi,0vi,1...vi,|E(Pi)|, where v1,0 = v2,0 =
v3,0. For each i ∈ {1, 2, 3} and each j ∈ {1, ..., |E(Pi)|}, let Li,j = vi,0vi,1...vi,j and let Ri,j =
vi,jvi,j+1...vi,|E(Pi)|.

Suppose to the contrary that there do not exist two distinct vertices x, y and

three paths from x to y with pairwise distinct lengths modulo 5. So the lengths of

P1, P2, P3 modulo 5 are not pairwise distinct. Hence, by symmetry, there exists t ∈
{0, 1, 2, 3, 4} such that |E(P1)| and |E(P2)| equal t modulo 5.

Suppose that |E(P3)| = t modulo 5. By symmetry, we may assume that |E(P3)| ≤
|E(Pi)| for every i ∈ {1, 2}. So min{|E(P1)|, |E(P2)|} ≥ 2. Note that the paths R1,1 ∪R2,2, L1,1 ∪
P3 ∪ R2,2, R1,1 ∪ P3 ∪ L2,2 are three paths from v1,1 to v2,2 with lengths 2t − 3, 2t − 1, 2t + 1

modulo 5, respectively, a contradiction.

Hence there exists s ∈ {0, 1, 2, 3, 4} − {t} such that |E(P3)| = s modulo 5. By

symmetry, we may assume that |E(P1)| > 1. For every r ∈ {1, 2}, the paths R1,r, L1,r ∪
P2, L1,r ∪ P3 are three paths from v1,r to v1,|E(P1)| of lengths t − r, t + r, s + r modulo 5,

respectively, so t − r = s + r modulo 5. That is, t − 1 = s + 1 modulo 5 and t − 2 = s + 2

modulo 5, a contradiction. This proves the lemma. �

Lemma 5.13. Let a and d be integers such that d ∈ {1, 2}. Let B be a subset of

{0, 1, 2, 3, 4} of size three. Then the set {a + id + b : 0 ≤ i ≤ 2, b ∈ B} contains a multiple

of 5.

Proof. Let X = {a + id + b : 0 ≤ i ≤ 2, b ∈ B}. If there exists an integer s such that the

three elements of B are either s, s + 1, s + 2 modulo 5 or s, s + 2, s + 4 modulo 5, then X

contains a multiple of 5. So by shifting, we may without loss of generality assume that

B = {0, 1, 3}. If d = 1, then X ⊇ {a, a + 1, a + 2, a + 3, a + 4}, so X contains a multiple of 5.

If d = 2, then X ⊇ {a, a + 1, a + 2, a + 3, a + 4}, so X contains a multiple of 5. This proves

the lemma. �
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Lemma 5.14. If G is a 5-connected graph of girth at least five, then G contains a cycle

of length 0 modulo 5.

Proof. Suppose to the contrary that G does not contain a cycle of length 0 modulo 5.

In particular, G does not contain a 5-cycle and a 10-cycle, and G does not contain five

admissible cycles. So the girth of G is at least six, and G does not contain a cycle of

length ten.

Let H be a subgraph of G isomorphic to a theta graph with |V(H)| minimum. By

Lemma 5.10, H satisfies the following.

• H is an induced subgraph of G.

• There exists at most one vertex of G − V(H) adjacent in G to at least two

vertices in V(H).

• If there exists a vertex v of G − V(H) adjacent in G to at least two vertices in

V(H), then G[V(H) ∪ {v}] is isomorphic to a 1-subdivision of K4.

If there exists a vertex of G − V(H) adjacent in G to at least two vertices of V(H),

then there exists an induced subgraph H ′ isomorphic to an induced 1-subdivision of K4,

so by Lemma 5.11, G contains five admissible cycles, a contradiction.

So every vertex of G − V(H) is adjacent in G to at most one vertex in V(H). Let

G′ = G − V(H). Let d = 5.

Suppose that there exists a component M of G′ such that M is not 2-connected.

Let B1, B2 be distinct end-blocks of M. Since G is 3-connected and every vertex in V(M) is

adjacent in G to at most one vertex in V(H), B1 and B2 are 2-connected. For each i ∈ {1, 2},
let bi be the cut-vertex of M contained in V(Bi). Since G is 3-connected, for each i ∈ {1, 2},
there exists xi ∈ V(Bi) − {bi} such that xi is adjacent in G to some vertex yi in V(H). For

each i ∈ {1, 2}, since (Bi, xi, bi) is a 2-connected rooted graph of minimum degree at least

d − 1, there exist d − 2 admissible paths Pi,1, ..., Pi,d−2 in Bi from xi to bi by Theorem 3.1.

Let Q be a path in M from b1 to b2 internally disjoint from V(B1)∪V(B2). Let Q′ be a path

in H from y1 to y2. Then the set {(P1,i∪Q∪P2,j∪Q′)+x1y1+x2y2 : 1 ≤ i ≤ d−2, 1 ≤ j ≤ d−2}
contains 2(d − 2) − 1 ≥ d = 5 admissible paths, a contradiction.

So every component of G′ is 2-connected. Suppose that G′ is not connected. Let

M1, M2 be two distinct components of G′. For each i ∈ {1, 2}, since G is 4-connected,

there exist distinct vertices xi,1 and xi,2 in V(Mi) such that xi,1 is adjacent in G to a

vertex yi,1 in V(H) and xi,2 is adjacent in G to a vertex yi,2 in V(H). For each i ∈ {1, 2},
since (Mi, xi,1, xi,2) is a 2-connected rooted graph of minimum degree at least d−1, there

exist d − 2 admissible paths Ri,1, ..., Ri,d−2 in Mi from xi,1 to xi,2 by Theorem 3.1. Since
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A Unified Proof of Conjectures on Cycles Lengths 37

H is 2-connected, there exist two disjoint paths Q1, Q2 in H from {y1,1, y1,2} to {y2,1, y2,2}.
Then the set {(R1,i ∪Q1 ∪R2,j ∪Q2)+x1,1y1,1 +x1,2y1,2 +x2,1y2,1 +x2,2y2,2 : 1 ≤ i ≤ d−2, 1 ≤
j ≤ d − 2} contains 2(d − 2) − 1 ≥ 5 admissible cycles, a contradiction.

So G′ is 2-connected. By Lemma 5.12, there exist two distinct vertices x, y in

H such that there exist three paths A1, A2, A3 in H from x to y with pairwise distinct

lengths modulo 5. Since G is 5-connected and H is an induced subgraph, there exist

distinct vertices x′, y′ in V(G′) such that {xx′, yy′} ⊆ E(G). Since (G′, x′, y′) is a 2-connected

rooted graph of minimum degree at least d − 1 = 4, by Theorem 3.1, there exist three

admissible paths Z1, Z2, Z3 in G′ from x′ to y′. By Lemma 5.13, the set {(Zi ∪Aj)+xx′ +yy′ :

1 ≤ i ≤ 3, 1 ≤ j ≤ 3} contains a cycle of length 0 modulo 5, a contradiction. This proves

the lemma. �

Now we are ready to prove Theorem 1.9. The following is a restatement of

Theorem 1.9.

Theorem 5.15. For d ≥ 3, every d-connected graph contains a cycle of length zero

modulo d.

Proof. By [3, Theorem 1] and [6, Theorem 1.2], the theorem is true for d ∈ {3, 4}. So

we may assume that d ≥ 5. Suppose to the contrary that G does not contain a cycle of

length 0 modulo d. So G does not contain a K′
d subgraph and does not contain a K−

d,d

subgraph. In addition, G does not contain d cycles of consecutive length, and when d is

odd or G is bipartite, G does not contain d admissible cycles.

Since G is (d − 1)-connected and does not contain a K′
d subgraph, G does not

contain a K−
4 subgraph by Lemma 5.1. Since G does not contain a K−

4 subgraph, by

Lemma 5.2, G does not contain a K3 subgraph. Since G does not contain a K3 subgraph,

by Lemma 5.5, either d = 5 or G is bipartite. Since G does not contain a K3 subgraph

and a K−
d,d subgraph, by Lemma 5.6, either G does not contain a 4-cycle, or G contains a

cycle of length four and a cycle of length five, or d is even.

Suppose that G does not contain a 4-cycle. Then G is not bipartite by Lemma

5.8. So d = 5. Since G does not contain a K3 subgraph and a 4-cycle, G is of girth

at least five. So G contains a cycle of length 0 modulo 5 = d by Lemma 5.14, a

contradiction.

So either G contains a 4-cycle and a 5-cycle, or d is even. Note that either case

implies d �= 5. So G is bipartite, contradicting that G contains a 5-cycle. This proves the

theorem. �
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When d ≥ 6, we can strengthen the conclusion of Theorem 5.15.

Theorem 5.16. For integers d ≥ 6 and t satisfying 2t �= 2 modulo d, every d-connected

graph contains a cycle of length 2t modulo d.

Proof. Suppose to the contrary that there exist integers d ≥ 6 and t with 2t �= 2 modulo

d such that there exists a d-connected graph G that does not contain a cycle of length

2t modulo d. In particular, G does not contain a K′
d+1 subgraph and does not contain a

K−
d,d subgraph. In addition, G does not contain d cycles of consecutive length, and when

d is odd or G is bipartite, G does not contain d admissible cycles.

By Lemma 5.1, G does not contain a K−
4 subgraph. By Lemma 5.2, G does not

contain a K3 subgraph. By Lemma 5.5, G is bipartite. Since G is bipartite, by Lemma 5.6,

G does not contain a 4-cycle. By Lemma 5.8, G contains d admissible cycles. But G is

bipartite, a contradiction. �

Funding

Partially supported by National Science Foundation under Grant No. DMS-1664593, DMS-1929851

and DMS-1954054. Partially supported by National Natural Science Foundation of China grants

11501539 and 11622110, the project “Analysis and Geometry on Bundles” of Ministry of Science

and Technology of the People’s Republic of China, and Anhui Initiative in Quantum Information

Technologies grant AHY150200.

References

[1] Bollobás, B. “Cycles modulo k.” Bull. London Math. Soc. 9 (1977): 97–8.

[2] Bondy, J. A. and A. Vince. “Cycles in a graph whose lengths differ by one or two.” J. Graph

Theory 27 (1998): 11–5.

[3] Chen, G. and A. Saito. “Graphs with a cycle of length divisible by three.” J. Combin. Theory

Ser. B 60 (1994): 277–92.

[4] Chiba, S. and T. Yamashita. “Minimum degree conditions for the existence of cycles of all

lengths modulo k in graphs.” (2019): arXiv:1904.03818.

[5] Dean, N. “Which graphs are pancyclic modulo k.” In Sixth International Conference on the

Theory of Applications of Graphs, 315–26. Kalamazoo, Michigan, 1988.

[6] Dean, N., L. Lesniak, and A. Saito. “Cycles of length 0 modulo 4 in graphs.” Discrete Math.

121 (1993): 37–49.

[7] Diwan, A. “Cycles of even lengths modulo k.” J. Graph Theory 65 (2010): 246–52.
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