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In this paper, we prove a tight minimum degree condition in general graphs for the
existence of paths between two given endpoints whose lengths form a long arithmetic
progression with common difference one or two. This allows us to obtain a number
of exact and optimal results on cycle lengths in graphs of given minimum degree,
connectivity or chromatic number.

More precisely, we prove the following statements by a unified approach: 1.
Every graph G with minimum degree at least k + 1 contains cycles of all even lengths
modulo k; in addition, if G is 2-connected and non-bipartite, then it contains cycles of
all lengths modulo k. 2. For all k > 3, every k-connected graph contains a cycle of length
zero modulo k. 3. Every 3-connected non-bipartite graph with minimum degree at least
k+ 1 contains k cycles of consecutive lengths. 4. Every graph with chromatic number at
least k + 2 contains k cycles of consecutive lengths. The 1st statement is a conjecture of
Thomassen, the 2nd is a conjecture of Dean, the 3rd is a tight answer to a question of
Bondy and Vince, and the 4th is a conjecture of Sudakov and Verstraéte. All of the above

results are best possible.
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2 J. Gao et al.
1 Introduction

The distribution of cycle lengths has been extensively studied in the literature and
remains one of the most active and fundamental research areas in graph theory. In
this paper, along the line of the previous work [15] of two of the authors, we investigate
various relations between cycle lengths and basic graph parameters such as minimum
degree. The core of the results in [15] is an optimal bound on the longest sequence
of consecutive even cycle lengths in bipartite graphs of given minimum degree. In the
current paper, we extend this result from bipartite graphs to general graphs and use
it as a primary tool to derive a number of tight results on cycle lengths in relation to
minimum degree, connectivity, and chromatic number. This resolves several conjectures
and open problems on cycles of consecutive lengths, cycle lengths modulo a fixed
integer, and some other related topics. For a thoughtful introduction on the background,
we direct interested readers to [15, 26].

Throughout this section, let k be a fixed but arbitrary positive integer, unless
otherwise specified. For a path or a cycle P, the length of P, denoted by |P|, is the number
of edges in P.

1.1 Paths and cycles of consecutive lengths

The study of cycles of consecutive lengths can be dated back to a conjecture of Erdods
(see [2]) stating that every graph with minimum degree at least three contains two
cycles of lengths differing by one or two. This was solved by Bondy and Vince [2] in the
following stronger form: if all but at most two vertices of a graph G have degree at least
three, then G contains two cycles whose lengths differ by one or two. Since then, this
result has inspired extensive research on its generalization to k cycles of consecutive
(even or odd) lengths, including results of Haggkvist and Scott [12], Verstraéte [25], Fan
[10], Sudakov and Verstraéte [19], Ma [17], and Liu and Ma [15].

We say that k paths or k cycles P|,P,,..., P, are admissible if |P;| > 2 and
[P, |Pyl,...,|P;| form an arithmetic progression of length k with common difference
one or two. The following generalization of Erdo6s’ conjecture was posted in [15], which

was in attempt to attack some related problems.

Conjecture 1.1 (Liu and Ma [15]). Every graph with minimum degree at least k + 1

contains k admissible cycles.

By considering the complete graph K, or the complete bipartite graph K ,

for any n > k, we see that the condition for the minimum degree in Conjecture 1.1
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A Unified Proof of Conjectures on Cycles Lengths 3

is best possible. Being an evidence, Conjecture 1.1 was proved for all bipartite graphs
in [15].
One of our main results is the following theorem on admissible paths with two

given endpoints, from which Conjecture 1.1 can be inferred as a corollary.

Theorem 1.2, Let G be a 2-connected graph and let x, y be distinct vertices of G. If
every vertex of G other than x and y has degree at least k+1, then there exist k admissible

paths from x to y in G.

The case k = 1 of Theorem 1.2 is trivial, and the case k = 2 follows from a result
of Fan in [10]. We remark that Theorem 1.2 is the main force that will be applied to prove
all other results in this paper.

We now show that Conjecture 1.1 is an easy corollary of Theorem 1.2. (For

possibly ambiguous notations, we refer readers to Section 2.)

Theorem 1.3. Every graph G with minimum degree at least k+1 contains k admissible

cycles.

Proof. If G is 2-connected, let B = G and choose xy to be an arbitrary edge in G;
otherwise, let B be an end-block of G with cut-vertex x and choose y € N;(x) N V(B — x).
Clearly, B is 2-connected and every vertex of B other than x has degree at least k + 1.
By Theorem 1.2, B contains k admissible paths Py, ..., P, from x to y. Since each |P;| > 2,
P; Uxy for all i € [k] form k admissible cycles in G. u

Theorem 1.3 improves many previous results such as the results in [10, 12, 15,
25]. As the write-up of a version of this paper was close to complete, we noticed that
very recently, Chiba and Yamashita [4] independently proved Theorem 1.3 under an extra
condition that G is 2-connected, by using a different approach from this paper.

One can ask another natural question: what are necessary or sufficient
conditions for the existence of k cycles of consecutive lengths? It is clear that such
conditions should include non-bipartiteness. This was addressed by Bondy and Vince in
[2], where they proved that any non-bipartite 3-connected graph contains two cycles of
consecutive lengths. On the other hand, Bondy and Vince showed that the 3-connectivity
is necessary by constructing infinitely many non-bipartite 2-connected graphs with
arbitrarily large minimum degree, yet not containing two cycles of consecutive

lengths.
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4 J. Gaoetal.

More generally, Bondy and Vince [2] asked if there exists a (least) function f
such that every non-bipartite 3-connected graph with minimum degree at least f(k)
contains k cycles of consecutive lengths. The existence of f(k) was confirmed by Fan
[10], where he proved f(k) < 3[k/2]. On the other hand, the complete graph K;_; shows
fk) > k+1.

Our next result determines f(k) = k + 1 and hence provides the optimal answer

to the above question of Bondy and Vince.

Theorem 1.4. Every non-bipartite 3-connected graph with minimum degree at least

k + 1 contains k cycles of consecutive lengths.

1.2 Cycle lengths modulo a fixed integer

Burr and Erdods initiated the study of cycle lengths modulo an integer k; they
conjectured (see [8]) that for odd k there exists a constant c;, such that every graph with
average degree at least c; contains cycles of all lengths modulo k. This was proved by
Bollobas [1] and then the value ¢, was improved to be O(k?) by Thomassen in [21, 22].

Thomassen also proposed two conjectures in [21] as follows.

Conjecture 1.5 (Thomassen [21]). Every graph with minimum degree at least k + 1

contains cycles of all even lengths modulo k.

Conjecture 1.6 (Thomassen [21]). Every 2-connected non-bipartite graph with mini-

mum degree at least k + 1 contains cycles of all lengths modulo k.

We remark that 2-connectivity and non-bipartiteness are necessary for even
k in Conjecture 1.6; see [15] for explanations. The minimum degree condition in
Conjectures 1.5 and 1.6 are tight, since K;,, has no cycle of length 2 modulo k, and
K} », has no cycle of length 2 modulo k for n > k and odd k.

Results of Verstraéte [25], Fan [10], Diwan [7], and Ma [17] indicate that the
minimum degree at least O(k) suffices for both conjectures. For fixed m > 3 and large
k, Sudakov and Verstraéte [20] determined the optimal minimum degree condition for
cycles of length m modulo k up to a constant factor.

In [15], Liu and Ma confirmed both Conjectures 1.5 and 1.6 for even k. They also
proved that minimum degree k + 4 suffices for odd k, and observed that an affirmative
of Conjecture 1.1 would imply both Conjectures 1.5 and 1.6 for odd k. Therefore, as an

immediate corollary of Theorem 1.3, we obtain the following.
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A Unified Proof of Conjectures on Cycles Lengths 5

Theorem 1.7. Conjectures 1.5 and 1.6 hold for any positive integer k.

We would like to address that very recently, Chiba and Yamashita [4] indepen-
dently proved Conjecture 1.6. Also very recently, Lyngsie and Merker [16] proved that
for odd k, every 3-connected cubic graph of large order contains cycles of all lengths
modulo k.

The case of cycles of length zero modulo k has received considerable attention.
Thomassen [22] gave a polynomial-time algorithm for finding a cycle of length zero
modulo k in any graph or a certificate that no such cycle exists. In 1988, Dean [5]

proposed the following conjecture.

Conjecture 1.8 (Dean [5]). For any positive integer k > 3, every k-connected graph

contains a cycle of length zero modulo k.

We point out that Conjecture 1.8 is tight, as for all odd k and n > k — 1, the
complete bipartite graph K;_, ,, is (k — 1)-connected but has no cycles of length zero
modulo k. The case k = 3 in Conjecture 1.8 was proved by Chen and Saito [3], and the
case k = 4 was solved by Dean et al. [6]. To the best of our knowledge, this conjecture
remained open for any k > 5 prior to this paper.

Taking advantage of Theorem 1.2, we are able to resolve Conjecture 1.8 com-

pletely.
Theorem 1.9. Conjecture 1.8 holds for any positive integer k > 3.

It turns out that the case k = 5 is the most difficult case for our approach.
We would like to point out that for k > 6, in many cases in fact we are able to find
k admissible cycles. In particular, our proofs show that when k > 6, any k-connected
graph contains cycles of all even lengths modulo k, except for the residue class 2 modulo
k (see Theorem 5.16 for the precise statement). To see the tightness, note that both of
Ky, (for even and odd k) and K ,, (for odd k and n > k) are k-connected and contain
cycles of all lengths 2t modulo k, except for cycles of lengths in the residue class 2

modulo k.

1.3 Consecutive cycle lengths and chromatic number

There has been extensive research on the relation between the chromatic number and

cycle lengths. For a graph G, let L,(G) and L,(G) be the set of even and odd cycle lengths
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6 J. Gaoetal

in G, respectively. Bollobas and Erdods conjectured and Gyarfas [11] proved that x(G) <
2|L,(G)| + 2 for any graph G. Mihok and Schiermeyer [18] proved an analog for even
cycles that x(G) < 2|L,(G)| + 3 for any graph G. A strengthening of the above result
was obtained in [15], where the number of even cycle lengths |L,(G)| was replaced by
the longest sequence of consecutive even cycle lengths in G. Confirming a conjecture of
Erdods [9], Kostochka et al. [13] proved that every triangle-free graph G with x(G) = k
contains at least Q(k?logk) cycles of consecutive lengths.

For k > 2, let x;, be the largest chromatic number of a graph which does not
contain k cycles of consecutive lengths. The complete graph K} ,; shows that x;, > k+ 1.
In [20], Sudakov and Verstraéte conjectured that the chromatic number of a graph can

be bounded by the longest sequence of consecutive cycle lengths from above.

Conjecture 1.10 (Sudakov and Verstraéte [20]). For every integer k > 2, x, = k+ 1.
Using Theorem 1.2, we are able to prove Conjecture 1.10.

Theorem 1.11. Conjecture 1.10 holds for every integer k > 2.

The rest of the paper is organized as follows. In Section 2, we define the
notations and include some preliminaries. In Section 3, we prove Theorem 1.2. In
Section 4, we prove Theorems 1.4 and 1.11 by a unified approach via Theorem 1.2. In

Section 5, we prove Theorem 1.9 by extensively applying Theorem 1.2 as well.

2 Preliminaries

All graphs in this paper are finite, undirected, and simple. Let H be a subgraph of a
graph G. We say that H and a vertex v € V(G) — V(H) are adjacent in G if v is adjacent
in G to some vertex in V(H). Let Ng(H) := Uyepar Ne(v) — V(H) and Ng[H] := Ng(H) U
V(H). For a subset S of V(G), GI[S] denotes the subgraph induced by S in G, and G — S
denotes the subgraph G[V(G) — SI; we say that a vertex v and S are adjacent in G if v is
adjacent in G to some vertex in S. For two distinct vertices x,y of G, we define G + xy
to be the graph with V(G + xy) = V(G) and E(G + xy) = E(G) U {xy}. A clique in G is
a subset of V(G) whose vertices are pairwise adjacent in G. A vertex is a leaf in G if
it has degree one in G. We say that a path P is internally disjoint from H if no vertex
of P other than its endpoints is in V(H). For a positive integer k, we write [k] for the
set {1,2,..., k}.
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A Unified Proof of Conjectures on Cycles Lengths 7

For a graph G and a subset S of V(G), we say that a graph G’ is obtained from G
by contracting S into a vertex s, if V(G) = (V(G) —S)U{s} and E(G') = E(G—S)U{vs:v €
V(G) — S is adjacent to S in G}.

A vertex v of a graph G is a cut-vertex of G if G — v contains more components
than G. A block B in G is a maximal connected subgraph of G such that there exists
no cut-vertex of B. So a block is an isolated vertex, an edge or a 2-connected graph. An
end-block in G is a block in G containing at most one cut-vertex of G. If D is an end-
block of G and a vertex x is the only cut-vertex of G with x € V(D), then we say that
D is an end-block with cut-vertex x. Let B(G) be the set of blocks in G and C(G) be the
set of cut-vertices of G. The block structure of G is the bipartite graph with bipartition
(B(G),C(G)), where x € C(G) is adjacent to B € B(G) if and only if x € V(B). Note that
the block structure of any graph G is a forest, and it is connected if and only if G is
connected. For notations not defined here, we refer readers to [15].

The next result can be derived from a special case of [10, Theorem 2.5].

Theorem 2.1. Let G be a 2-connected graph and let x, y be distinct vertices of G. If
every vertex in G other than x and y has degree at least 3, then there are two admissible

paths from x to y in G.

3 Admissible Paths

In this section, we prove Theorem 1.2. We say that (G, x,y) is a rooted graph if G is a
graph and x,y are two distinct vertices of G. The minimum degree of a rooted graph
(G,x,y) is min{d;(v) : v € V(G) — {x,y}}. We also say that a rooted graph (G, x,y) is
2-connected if G + xy is 2-connected. Theorem 1.2 is an immediate corollary of the

following theorem.

Theorem 3.1. Let k be a positive integer. If (G, x, y) is a 2-connected rooted graph with

minimum degree at least k + 1, then there exist k admissible paths from x to y in G.

The rest of this section is devoted to a proof of Theorem 3.1. We need the

following lemma.

Lemma 3.2. Let (H,u,v) be a rooted graph and W be a subset of V(H). Let s be a
positive integer. Assume that there exist s admissible paths P;, ..., P;, where P; is from
u to some w; € W for each i € [s]. Assume that for each i € [s], H — V(P; — w;) contains

t paths R, th from w; to v such that their lengths form an arithmetic progression
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8 J. Gaoetal

with common difference one or two. Here, we allow that some path Rji. has length one.
If |R}| == |RJS.| for every j € [t], then there exist s + t — 1 admissible paths in H from

utov.

Proof. If each of A and B is an arithmetic progression with common difference one
or two, then A+ B ={a+b:a € A,b € B} also forms an arithmetic progression with
common difference one or two of size at least |A|+|B|—1. So the set {PiUR]i. t1elsljeltl)

contains s + t — 1 admissible paths between u and v in H. |

Throughout the rest of this section, let (G,x,y) be a counterexample of
Theorem 3.1 with minimum |V(G)| 4+ |E(G)|. That is, for any 2-connected rooted graph
(H,u,v) with |V(H)| 4+ |[E(H)| < |V(G)| + |E(G)], if the minimum degree of (H,u,v) is at
least ¢ + 1, then there exist ¢ admissible paths from u to v in H.

We now prove a sequence of lemmas and then, according to the order of some
specified component (this will be clear after Lemma 3.7), the remaining proof will be

divided into two subsections which we handle separately.
Lemma 3.3. G is 2-connected, x and y are not adjacent in G, and k > 3.

Proof. Theorem 3.1 is obvious when k = 1, and it follows from Theorem 2.1 when
k = 2.So k > 3. Note that |V(G)| > 4, for otherwise, |V(G)| = 3 and (G, x, y) has minimum
degree two and thus k = 1, a contradiction.

Since G + xy is 2-connected, G is connected. Suppose that G is not 2-connected.
Then there exists a cut-vertex b and two connected subgraphs G,, G, of G on at least two
vertices such that G = G, UG, and V(G,)NV(G,) = {b}. We may assume that x € V(G,;)—b,
y € V(G,) — b and by symmetry, |V(G;)| > 3. Then it is straightforward to see that
(G,,x,b) is 2-connected and has minimum degree at least k + 1. By the minimality of G,
there exist k admissible paths in G; from x to b. By concatenating each of these paths
with a fixed path in G, from b to y, we obtain k admissible paths in G from x to y, a
contradiction. Therefore G is 2-connected.

Suppose that x is adjacent to y in G. Let G’ = G — xy. Since G is 2-connected,
clearly (G, x, y) is 2-connected and has minimum degree at least k+ 1. By the minimality

of G, G’ (and thus G) contains k admissible paths from x to y, a contradiction. |

Lemma 3.4. There is no clique in G — y of size at least three containing x, and there is

no clique in G — x of size at least three containing y.
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A Unified Proof of Conjectures on Cycles Lengths 9

Proof. Suppose to the contrary that there is a clique K in G — y of size at least three
containing x. We choose K such that |K| is maximum. Let t = |K|. So t > 3. Since x
and y are non-adjacent by Lemma 3.3, y ¢ K. So there exists a component C of G — K
containing y.

Suppose V(C) = {y}. Then N;(y) € K — x. Let Y = N;(y) N K, and let m = |Y|.
Since G is 2-connected, we have m > 2. For each vertex v € K, let 7, denote the family
of components D # C of G — K such that v e N;(D). Let Z = Upex Zvr 72" = Uypey %y
and 2" = 9 — Z'. If there is a vertex v € K — x such that Z, = § or there exists some
D € 2, with |[V(D)| =1, then t > k+ 1, from which one can easily find k paths of lengths
2,3,...,k+1from x to y in GIKU{y}l, a contradiction. So for every v € K —x, &, # ¥ and
|V(D)| > 2 for every D € Z,,.

Suppose that there exists some D € 2'\%,. Let v be a vertex in N;(D) N Y such
that D € 9,. Since G is 2-connected, N;(D) — {v} # #. Let G; be the graph obtained
from GI[N;[D]] by contracting N (D) — {v} into a new vertex u,. Since D ¢ %,, we see
IN;(D) — {v}| <t — 2. So (G, uy,Vv) is 2-connected and has minimum degree at least
k — t + 4. By the minimality of G, G, contains k — t + 3 admissible paths from u, to v.
Hence, GI[V(D)UK] contains k—t+3 admissible paths P; from a vertex p; € N;(D)—{v} tov
internally disjoint from K for i € [k —t+ 3]. Since K is a clique, K — v contains ¢t — 2 paths
from x to p; with lengths 1,2,...,t — 2, respectively. By Lemma 3.2, by concatenating
each of these paths with P; U {vy}, we obtain k admissible paths from x to y in G, a
contradiction.

Hence 2' € 9,. Let G, be the graph obtained from G — y by contracting Y into
a new vertex u,. Let K’ = G,[(K — Y) U {u,}]. Then K’ is a complete graph of order
t—m+1>2in G,. Any component D # C of G—K in G is also a component of G, — V(K')
in G,. If D € 7', then D is adjacent in G, to both x and u, (since 2’ € Z,); otherwise
D € 2" and D is adjacent to at least two vertices of K’ — u, in G, since G is 2-connected.
Since N;(y) is a clique in G, we have that G — y is 2-connected. Since 2’ C Z,, (G5, X, U,)
is 2-connected and has minimum degree at least k — m + 2. By the minimality of G, G,
contains k — m + 1 admissible paths from x to u,. Hence, G — y contains k — m + 1
admissible paths P; from x to a vertex p; € Y for i € [k — m + 1] internally disjoint from
Y. Since GIY U {y}] is complete, G[Y U {y}] contains m paths from p; to y with lengths
1,2,...,m, respectively. By Lemma 3.2, we obtain k admissible paths from x to y in G, a
contradiction.

Hence |V(C)| > 2. If C is 2-connected, then let B = C and b = y; otherwise let B
be an end-block of C with cut-vertex b such that y ¢ V(B) — {b}. Suppose B is an edge

vb. Then v has at least k neighbours in K. Since K is a clique, we can find k consecutive
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10 J. Gao et al.

paths from x to v in G[K U {v}]. Concatenating each of these paths with a fixed path in C
from v to y, we find k admissible paths from x to y, a contradiction.

Hence B is 2-connected. Let P be a path in C — V(B — b) from b to y. Since G is
2-connected, we have N;(B —b) N K # 0.

Suppose that N;(B—b)N(K —{x}) # ?. Let G5 be the graph obtained from G[V(B)U
(Ng(B—b)N(K—{x}))] by contracting N;(B—b)N(K—{x}) into a vertex u,. By the maximality
of K, every vertex in V(B—Db) is adjacent to at most t—1 vertices in K. Then (G5, ug, b) is 2-
connected and has minimum degree at least k—t+3. By the minimality of G, G5 contains
k —t+ 2 admissible paths from u4 to b. Hence, GI[V(B) U (N;(B — b) N (K — {x}))] contains
k — t + 2 admissible paths P; from some vertex p; € N(B — b) N (K — {x}) to b internally
disjoint from K for i € [k — t + 2]. Note that for each i, G[K] contains t — 1 paths from x
to p; with lengths 1,2,...,t — 1, respectively. By Lemma 3.2, by concatenating each of
these paths with P; U P, we obtain k admissible paths from x to y in G, a contradiction.

Therefore N;(B — b) N K = {x}. Then the rooted graph (G[V(B) U {x}],x,b) is 2-
connected and has minimum degree at least k + 1. By the minimality of G, GIV(B) U {x}]
contains k admissible paths from x to b. By concatenating each of these paths with P,
we obtain k admissible paths from x to y, a contradiction.

This proves that there is no clique in G — y of size at least three containing x.
Similarly, there is no clique in G — x of size at least three containing y, completing the

proof of Lemma 3.4. |

In the rest of this section, by symmetry between x and y, we may assume that
dg(x) < dg(y).

Lemma 3.5. G — y has a cycle of length four containing x.

Proof. Suppose that x is not contained in any cycle of length four in G — y. Then

IN;(v) NNg(x)| < 1 for every v e V(G) — {x,y}. (1)

Let G, be the graph obtained from G by contracting N;[x] into a new vertex x;. By (1),
G, is connected and the minimum degree of (G;,x;,y) is at least k 4+ 1. If G, is not 2-
connected, then x; is the unique cut-vertex of G, and we let B be the end-block of G,
containing x; and y; otherwise G, is 2-connected and let B = G;.

Suppose that B is not an edge. Then (B, x;,¥y) is 2-connected and has minimum

degree at least k + 1. By the minimality of G, B contains k admissible paths from x, to

1202 YoJBN £Z UO Jasn AlsIsAlun INRY Sexal AQ | 6/£909/pZEBeuUI/UIWI/SE0 L 0L /I0p/3|o1e-00uBAPE/UIWI /WO dno olwapeae//:sdiy Wol) papeojumod]



A Unified Proof of Conjectures on Cycles Lengths 11

y. Then G — x contains k admissible paths P; from a vertex p; € N;(x) to y for all i € [k].
By concatenating each of these paths with xp;, we obtain k admissible paths from x to
y in G, a contradiction.

Therefore B is an edge. Since d;(x) < d;(y), we conclude that N (x) = N;(y).
By Lemma 3.4 and k > 3, we see V(G) # Ng[x] U {y}. So there exists a component D of
G—N;(x) not containing x and y. Since G is 2-connected, we have |[N;(D)| > 2. Fix a vertex
u in N;(D). Let G, be the graph obtained from G[N;[D]] by contracting N;(D) — {u} into
a new vertex v. Then by (1), (G5, u,v) is 2-connected and has minimum degree at least
k + 1. By the minimality of G, G, contains k admissible paths from u to v. So G — {x, y}
contains k admissible paths P; from u to some vertex p; € N;(x) — {u} for i € [k]. By
concatenating each of these paths with xu and p;y, we obtain k admissible paths from

x to y in G, a contradiction. [ |

Lemma 3.6. Let C = xx,ax,x be a cycle of length four in G — y. Then every vertex in
V(G) — (V(C) U {y}) is not adjacent in G to all of x;,x,, a.

Proof. Suppose to the contrary that there exists a vertex v € V(G)—(V(C)U{y}) adjacent
in G to all of x;, x,, a. Let K be a maximal clique in G — {x,y, x;,x,} such that @ € K and
every vertex in K is adjacent to both of x; and x,. Let ¢ = |K|. So t > 2. We have the

following two facts:

(a) for any u € K, GIV(C) U K] contains t + 1 admissible paths from x to u of
lengths 2,3, ..., t + 2, respectively;
(b) foranyi € [2], GIV(C) UK] contains t admissible paths from x to x; of lengths
3,4,...,t+ 2, respectively.
Let F be the component of G — (V(C) U K) containing y.
Suppose V(F) = {y}. Then N,(y) € V(K) U {x;,x,}. Since G is 2-connected, we
have |[N;(y)| > 2. If N;(y) # {x;,X,}, then there exists a triangle containing y in G — x,
contradicting Lemma 3.4. Therefore N;(y) = {x;,X,}. Since d (x) < dg(y), Ng(x) =
N;(y) = {x;,x,}. Let G = G — {x,y}. It is clear that (G, x;,x,) is 2-connected and has
minimum degree at least k + 1. By the minimality of G, G’ contains k admissible paths
from x; to x,. By concatenating each of these paths with xx; and x,y, G contains k
admissible paths from x to y, a contradiction.
So |V(F)| = 2. If F is 2-connected, let B = F and b = y; otherwise let B be an
end-block of F with cut-vertex b such that y ¢ V(B) — b.
Suppose that B is an edge vb. If v is adjacent to x, then by Lemma 3.4, Ng(v) N
{x;,x,} = ¥ and thus ¢t > [N;(v) NK| > k — 1. If v is not adjacent to x, then by the
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12 J. Gao et al.

maximality of K, it holds that t4+1 > [N (v) N (KU {x;,x,})| > k > 3. So in both cases, we
have ¢t > k — 1 and there exists some u € N;(v) N K. By (a), there exist k admissible paths
from x to y in G, a contradiction.

Therefore B is 2-connected. Let P be a path in F — V(B — b) from b to y.

Suppose that N (B — b) N K # (. Let G; be the graph obtained from G[V(B) U
(Ng(B — b) N K)] by contracting N;(B — b) N K into a new vertex u,. Let us consider the
degree of any v € V(B — b) in G,. If v is adjacent to both x;, x,, then by Lemma 3.4 and
the maximality of K, v is not adjacent to x and is adjacent to at most ¢t — 1 vertices in
K, implying that dG1 (v) = k+1 —t; if v is adjacent to exactly one of x;, x,, then v is not
adjacent to x and thus dG1 (v) > k+1—t; if vis adjacent to none of x;, x,, then v may be
adjacent to x and all vertices in K, which also shows that dG1 (v) >k+1—t.S0 (G, uy,b)
is 2-connected and has minimum degree at least k — ¢ + 1. By the minimality of G, G,
contains k — t admissible paths from u; to b. Hence, G contains k — ¢t admissible paths
P; from a vertex p; € N;(B—b)NK to b for i € [k — t] internally disjoint from V(C) UK. By
(a), GIV(C) UK] contains t + 1 paths from x to p; with lengths 2,3,...,t + 2, respectively.
By Lemma 3.2, concatenating each of these path with P; U P leads to k admissible paths
from x to y, a contradiction.

Therefore, N;(B—b) C {x,x;,X,,b}. Since G is 2-connected, No(B—b)N{x,x;, X5} #
0. If x; € Ng(B — b), then (GIB U {x,}],x;,b) is 2-connected and has minimum degree at
least k by Lemma 3.4. By the minimality of G, GIBU {x,}] contains k — 1 admissible paths
from x, to b. By (b), there are t admissible paths from x to x; in GICUK]. By concatenating
each of the above paths with P, we obtain k — 1+t — 1 > k admissible paths from x to y
in G, a contradiction. By symmetry between x; and x,, this shows that x;,x, ¢ Ng(B—Db).
So N;(B — b) = {x,b}. Then (GIBU {x}], x, b) is a 2-connected rooted graph with minimum
degree at least k + 1, from which one can obtain k admissible paths from x to y by the

minimality of G, a contradiction. This completes the proof of Lemma 3.6. |

Lemma 3.7. There exists a positive integer s and an induced complete bipartite
subgraph Q with bipartition (Q,, Q,) in G satisfying that
1. x€Q,,y¢V(Q),|Q| >0, =s+1>2,and
2. foreveryv e V(G) — (V(Q) U {y}),
(@) INg(v)NQ|<s+1,|Ng(v)NQ;| <s+1,|N;(v)NQ,| <s,and
(b) if vis adjacent to both of Q, and Q,, then |[N;(v) N Q| =1.

Proof. By Lemma 3.5 there exists a 4-cycle in G — y containing x. Thus there exists a

complete bipartite subgraph Q of G — y with bipartition (Q;, Q,) such that x € Q,,y ¢
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A Unified Proof of Conjectures on Cycles Lengths 13

V(Q) and |Q,| = |Q,| = 2. We choose Q so that |Q,| is maximum and subject to this, |Q,|
is maximum. Let s be a positive integer such that |Q,| = s+ 1.

We claim that such Q and s satisfy the conclusion of this lemma. Statement 2(b)
holds by Lemmas 3.4 and 3.6. By the choice of Q, for every v € V(G) — (V(Q) U {y}),
IN;(v) N Q| < s+ 1 and |[N;(v) N Q,| < s. This together with Statement 2(b), we know
Statement 2(a) holds. By Lemmas 3.4 and 3.6, Q is an induced subgraph in G. The proof

of Lemma 3.7 is completed. |

Throughout the remaining of the section, Q and s denote the induced complete
bipartite subgraph and the positive integer s promised by Lemma 3.7, and let C be the
component of G — V(Q) containing y.

There are two possibilities for the size of C: |V(C)| = 1 or |V(C)| > 2. We now split
the rest of the proof into two subsections based on these two cases. We shall derive a
contradiction in each subsection and hence show that G is a not a counterexample to

complete the proof of Theorem 3.1.

3.1 V() =1

In this case we have V(C) = {y}. By Lemma 3.3, xy ¢ E(G). So by Lemma 3.4, y is adjacent
to exactly one of Q; and Q,. Since d;(y) > d;(x), we derive that N;(x) = N (y) = Q,
and so G[V(Q) U {y}] is complete bipartite. If s > k — 1, then G[V(Q) U {y}] contains k
admissible paths from x to y of lengths 2,4, ..., 2k, respectively, a contradiction.

So s < k — 2. This shows that V(G) # V(Q) U {y}, for otherwise every vertex in Q,
has degree s+ 2 < k in G. Hence there exists a component in G — (V(Q) U {y}).

Let D be an arbitrary component of G — (V(Q) U {y}). If there exists a vertex
v of D of degree at most one in D, then by Lemma 3.7, s+ 1 > |[N;(v) N V(Q)| > k, a
contradicting that s < k — 2. So |V(D)| > 2 and every end-block of D is 2-connected. In
addition, N;(x) = Q;, so x ¢ N;(D).

We claim that N;(D) N Q; # #. Suppose to the contrary that N;(D) N Q; = 0.
Since G is 2-connected and x ¢ Nj(D), we have |[N;(D) N (Q, — {x})] > 2. Let u; be a
vertex in N;(D) N (Q, — {x}). Let G, be the graph obtained from G[N.[D]] by contracting
N;(D) N (Q, — {x,u,}) into a new vertex v,. Therefore (G, u;,v;) is 2-connected and has
minimum degree at least k—s+3. By the minimality of G, G| contains k—s+2 admissible
paths from u,; to v;. Hence, G — {x, y} contains k — s + 2 admissible paths P; from u, to
some vertex p; € Q, — {x, u;} internally disjoint from V(Q) fori € [k — s+ 2]. Let w be a

vertex in Q,. Since Q is complete bipartite, Q — {u,, w} contains s — 1 paths from x to p;
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14 J. Gao et al.

of lengths 2,4, ...,2s — 2, respectively. By Lemma 3.2, concatenating each of these paths
with P; and u,wy leads to k admissible paths from x to y, a contradiction.

We claim that N;(D) N (Q, — {x}) # @. Suppose to the contrary that N,(D) N (Q, —
{x}) = @. Since G is 2-connected and x ¢ N;(D), [No(D) N Q,| > 2. Let u, be a vertex in
N;(D)NQ,. Let G, be the graph obtained from GIN;[D]] by contracting N,(D)N(Q; —{u,})
into a new vertex v,. If |Q;| > s+ 2, then let ¢ = 0; if |Q;| = s+ 1, then let ¢ = 1. So
(G, U4, V,) is 2-connected and has minimum degree at least k—s+1+e¢. By the minimality
of G, G, contains k—s+¢ admissible paths from u, to v,. Hence, G—{x, y} contains k—s-+e¢
admissible paths P; from u, to some vertex p; € Q; — u, internally disjoint from V(Q)
for all i € [k — s + €]. Since Q is complete bipartite, Q — u, contains s + 1 — € paths from
x to p; of lengths 1,3,...,2(s — €) + 1, respectively. By Lemma 3.2, concatenating each
of these paths with P; and u,y leads to k admissible paths from x to y, a contradiction.
This proves the claim.

Now we claim that there is a matching of size two in G between V(D) and Q;.
Suppose that there is no matching of size two in G between V(D) and Q,. Then either
IN;(D) N Q| =1 or |[N;(Q;) N V(D)| = 1. In the former case, let u; = wj be the unique
vertex in N;(D)NQ,; in the latter case, let u; be the unique vertex in N;(Q;)NV(D) and let
w4 be a vertex in Q, adjacent in G to us. Recall that N;(D) N (Q, — {x}) # ¥. Let G4 be the
graph obtained from GIDU{u3}UIN;(D)N(Q,—{x}))] by contracting N,(D)N(Q,—{x}) into a
new vertex vy. Then (G5, us, v3) is 2-connected and has minimum degree at least k—s+2.
By the minimality of G, G5 contains k—s+1 admissible paths from u, to v5. Hence, G—y
contains k — s + 1 admissible paths P; from u4 to some vertex p; € Q, — {x} internally
disjoint from V(Q) for i € [k — s + 1]. Since Q is complete bipartite, Q — w4 contains s
paths from x to p; of lengths 2,4, ..., 2s, respectively. By Lemma 3.2, concatenating each
of these paths with P; and usw;y, we obtain k admissible paths from x to y in G. This
contradiction completes the proof of the claim.

Suppose that D is not 2-connected and there exists an end-block B of D with
cut-vertex b such that N;(B — b) N V(Q) € Q, — {x}. Recall that every end-block of D is
2-connected. So B is 2-connected. Let G, be the graph obtained from G[V(B)U (N;(B—b)N
(Q, — {x}))] by contracting N,(B—b) N (Q, — {x}) into a new vertex v,. Then (G,, b, v,) is 2-
connected and has minimum degree at least k—s+2. By the minimality of G, G, contains
k — s + 1 admissible paths from b to v,. Hence, G contains k — s + 1 admissible paths
P; from b to some vertex p; € Q, — {x} internally disjoint from V(Q) fori € [k — s + 1].
Since N;(D) N Q, # @, there exists a path R in G[(D — V(B — b)) U Q,] from b to some
vertex a € Q, internally disjoint from V(B) U V(Q). Since Q is complete bipartite, Q — a

contains s paths from x to p; with fixed lengths 2,4, ..., 2s, respectively. By Lemma 3.2,
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A Unified Proof of Conjectures on Cycles Lengths 15

concatenating each of these paths with P, UR U ay leads to k admissible paths from x to
y in G, a contradiction.

Therefore, either D is 2-connected, or every end-block B of D with cut-vertex b
satisfies that N;(B—b) N Q; # 0.

We claim |Q,;| = s + 1. Suppose to the contrary that |Q;| > s + 2. Recall that
there exists a matching M of size two in G between V(D) and Q,. So there exists a vertex
ug € Ne(D) N Q, incident with an edge in M such that N;(D) N (Q; — {us}) # 9. Let Gy
be the graph obtained from G[V(D) U (N;(D) N Q;)] by contracting N;(D) N (Q; — {us})
into a new vertex v;. Since M is a matching of size two in G between V(D) and Q,, if
D is 2-connected, then (Gs, U5, v5) is 2-connected; if D is not 2-connected, then every
end-block of D has a non-cut vertex adjacent in Gg to one of ug, vs, so (Gg, Us, V) is
2-connected. Moreover, by Lemma 3.7, G5 has minimum degree at least kK — s + 1. By
the minimality of G, G5 contains k — s admissible paths from ug to vg. Hence, G — y
contains k — s admissible paths P; from ug to p; € V(Q; — ug) internally disjoint from
V(Q) for i € [k — sl. Since |Q;| > s+ 2, O — ug contains s + 1 paths from x to p; of lengths
1,3,...,25 + 1, respectively. By Lemma 3.2, concatenating each of these paths with P; U
usy, we obtain k admissible paths from x to y in G, a contradiction. This proves that
Q| =s+1.

Suppose that s = 1. Denote Q; by {u, v}. As N;(x) = N;(y) = Q,, it is clear that
(G—{x,y},u,Vv) is 2-connected and has minimum degree at least k+ 1. By the minimality
of G, there are k admissible paths from u to v in G — {x, y}, which can be easily extended
to k admissible paths from x to y in G, a contradiction.

Therefore we have s > 2. Let w be a vertex in Q, —x. Since s < k—2, w is adjacent
in G to least two vertices in V(G) — (V(Q) U {y}). So there exists a non-empty set Z of all
components in G — (V(Q) U {y}) adjacent to w. Since every member of Z is a component
of G— (V(Q)U{y}), for every D' € 2, either D’ is 2-connected or every end-block of D" has
a non-cut-vertex adjacent to Q,.

Let H = Jp .y V(D). Since every member D’ of Z is a component of G — (V(Q) U
{y}), there exists a matching My, of size two in G between V(D’) and Q;, so we have
IN;(H) N Q;| > 2. Let ug be a vertex in N (H) N Q, incident with an edge in Mp, for
some D, € Z. Let Gg be the graph obtained from GI[N;[H]] by deleting Q, — {x, w} and
contracting Q; — ug into a new vertex vg.

We claim that (Gg, ug, vg) is 2-connected. Let G' = Gg + ugvg. We shall prove
that G’ is 2-connected. It suffices to show that for every D' € 2, G'[V(D’) U {ug, vg, w}l
is 2-connected. Suppose to the contrary that there exists D' € 2 such that G'[V(D') U

{ug, vg, W}l is not 2-connected. Note that G'[{ug, Vg, w}l is isomorphic to K3 and every
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end-block of D' is adjacent to {ug, vg}. So G’ is connected, and there exists a cut-vertex of
c of G'[V(D") U {ug, vg, w}l such that either c € {ug, vg, w} or c is a cut-vertex of D'. Since
V(D') is adjacent to w and {ug, vg}, if ¢ € {ug, v, w}, then the component of G'[V(D") U
{ug, vg, W}l — ¢ containing V(D') also contains {ug, v, w}, so this component contains
equals G'[V(D') U {ug, vg, W}l — ¢, a contradiction. So ¢ is a cut-vertex of D'. But every
component of D' —c contains a non-cut-vertex of D’ in an end-block of D', so it is adjacent
to {ug, vg}, and hence there exists a component of G'[V(D') U{ug, v, w}l—c contains every
component of D'—c and {ug, v, w}. This shows that G'[V(D")U{ug, vg, w}l—c is connected,
a contradiction. So (Gg, ug, vg) is 2-connected.

Now we show the minimum degree of (Gg, ug, vg) is at least k — s+ 2. Let v €
V(Gg) — {ug, vg, w}. Then either N;(v) N Q € Q,, N;(v) N Q € Q, — x or v is adjacent to
both of Q; and Q, —x. By Lemma 3.7, in either case we can derive that dg (v) > k—s+2.
In addition, since |Q;| =s+1, dGG(w) > k — s+ 2. Hence, indeed the minimum degree of
(Gg, ug,vg) is at least k — s+ 2.

By the minimality of G, G4 contains k — s + 1 admissible paths from ug to vg.
Hence, GIN;[H]] contains k—s+1 admissible paths P; from ug to some vertex p; € Q; —ug
internally disjoint from V(Q) — w for i € [k — s + 1]. Note that P; possibly contains
w. Since Q is complete bipartite, Q — {ug, w} contains s paths from x to p; of lengths
1,3,...,25s — 1, respectively. By Lemma 3.2, by concatenating each of these paths with
P; U ugy, we obtain k admissible paths from x to y in G, a contradiction. This finishes

the proof of Subsection 3.1.

3.2 V()| >2

We first show that no vertex in C — y has degree one in C. Suppose to the contrary that
there exists v € V(C — y) with degree one in C. By Lemma 3.7, s+ 1 > |[Ng(v) N V(Q)| > k.
If No(v) N Q, # 9, then there are k paths from x to v in G[Q U {v}] of lengths 2,4, ..., 2k,
respectively. If N;(v) N Q; = @, then N;(v) N V(Q) € Q,, so s > |[Ng(v) N V(Q)| = k by
Lemma 3.7, and hence there are k paths from x to vin G[QU{v}] of lengths 3,5, ...,2k+1,
respectively. In both cases, by concatenating each of these path with a path from v to y
in C, we obtain k admissible paths from x to y in G, a contradiction. So no vertex in C—y
has degree one in C. In particular, every end-block of C is 2-connected, except possibly
an end-block consisting of y and its unique neighbor in C.

We say a block of C is a feasible block if it is an end-block of C such that either it
equals C, or y is not a non-cut-vertex of this block. Note that feasible blocks exist, since

either C has no cut-vertex, or C contains at least two end-blocks.
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A Unified Proof of Conjectures on Cycles Lengths 17

Let B be an arbitrary feasible block. If C is 2-connected, then let b = y; otherwise
let b be the cut-vertex of C contained in B.

We claim that N;(B—b) € Q,U{b}. Suppose to the contrary that N,(B—b)NQ; # @.
Let G, be the graph obtained from G[V(B) U (N;(B — b) N Q;)] by contracting N,(B — b) N
Q, into a new vertex x;. So (G;,x;,b) is 2-connected and has minimum degree at least
k—s+1 by Lemma 3.7. By the minimality of G, G, has k — s admissible paths from x; to
b. Therefore there are k — s admissible paths P; from some vertex p; € N;(B—b) N Q, to
b internally disjoint from V(Q) for i € [k — s]. Also Q contains s + 1 paths from x to p; of
fixed lengths 1,3,...,2s+ 1, respectively. By Lemma 3.2, by concatenating each of these
paths with P; and a fixed path in C — V(B — b) from b to y, we obtain k admissible paths
from x to y in G, a contradiction. This proves N;(B — b) € Q, U {b}.

Next we show that s =1 and N;(B—b)NV(Q) = Q,. Let R be a pathin C—V(B—b)
from b to y. If No(B — b) N Q, = {x}, then (W;I[B], x,b) is 2-connected and has minimum
degree at least k+ 1, so by the minimality of G, GI[V(B) U {x}] contains k admissible paths
from x to b, and hence concatenating each of them with R leads to k admissible paths
from x to y in G, a contradiction. So N;(B — b) N (Q, — {x}) # ¥. Let G, be the graph
obtained from G[V(B) U (N;(B — b) N (Q, — {x}))] by contracting N,(B — b) N (Q, — {x})
into a new vertex x,. If s > 2 or N;(B — b) N V(Q) € Q, — {x}, using the facts that
Ng;(B —b) € Q, U {b} and [N;(v) N Q,| < s for any v € V(B — b) (the latter one is from
Lemma 3.7 2(a)), one can verify that (G,, x,,b) is 2-connected and has minimum degree
at least k — s + 2. By the minimality of G, G, has k — s+ 1 admissible paths from x, to b.
So there are k — s+ 1 paths P; from some vertex p; € N;(B—b) N (Q, — {x}) to b internally
disjoint from V(Q) for i € [k — s + 1]. Also Q contains s admissible paths from x to p;
of lengths 2,4, ...,2s, respectively. By Lemma 3.2, by concatenating each of these paths
with P; and R, we obtain k admissible paths from x to y, a contradiction. This shows
thats=1and N;(B—-b)NV(Q) = Q,.

We denote Q, by {x,a}. So N;(B—b)NV(Q) = Q, = {x,a}.

Case 1. No(C—-y)NQ; =4.

Since N;(B — b) N V(Q) = Q, = {a,x}, we have that (GIV(B) U {a}l,a,b) is 2-
connected and has minimum degree at least k. By the minimality of G, GIV(B) U {a}]
contains k — 1 admissible paths P;,...,P,_; from a to b. Let Y be a path from b to y in
C—V(@B-b).

For any v € Q;, if N;(v) € Q, U {y}, then the degree of v in G is three, so k < 2,
contradicting Lemma 3.3. Therefore, there exists a component D of G— V(QUC) adjacent
tov. Since N;(C—y)NQ, =¥, No(Q;)NV(C) < {y}. So (G —V(C),x,a) is 2-connected and

has minimum degree at least k. By the minimality of G, there are k — 1 admissible paths
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R;,...R;_; from x to a in G — V(C). Then by Lemma 3.2, R; UP]- UY foralli,jelk—1]
give at least 2k — 3 > k admissible paths from x to y, a contradiction. This completes
the proof of Case 1.

Case 2. No(C—y)NQ; #4.

If C is 2-connected, then C = B and y = b, contradicting N;(B — b) N V(Q) =
{x,a}. So C is not 2-connected. Let B, B,, ..., B, be all end-blocks of C with cut-vertices
b, b,, ..., b;, respectively. Note that ¢t > 2.

Suppose that y ¢ Ule(V(Bi) — {b;}). So for every i € [t], B; is a feasible block,
and hence N;(B; — b;) N V(Q) = {x,a} which is disjoint from Q,. Since N;(C —y) N Q; #
¢, there is a vertex w in V(C) — (UL, (V(B;) — {b;}) U {y}) such that N (w) N Q; # ¥.
Let ¢ be a vertex in N;(w) N Q;. Using the block structure of C, there exist two end-
blocks B,,,B, for 1 < m < n < t, such that there are two disjoint paths L,,L, from
b,, to w and from b,, to y internally disjoint from V(B,) U V(B,,), respectively. Since
B,, and B,, are feasible, N;(B,, — b,,) N V(Q) = {x,a} = N;(B, — b,) N V(Q). So both
of (GIV(B,,) U {x}],x,b,,) and (GIV(B,)) U {a}l,a,b,) are 2-connected and have minimum
degree at least k. By the minimality of G, there are k — 1 admissible paths P;,...,P,_;
from x to b,, in G[V(B,,) U {x}]; and there are k — 1 admissible paths R;,...,R;_; from a
to b, in GIV(B,)U{a}]l. By Lemma 3.3, k > 3. So the set {P;UL, UwcaUR;UL, : i,j elk—11}
contains at least 2k — 3 > k admissible paths from x to y in G, a contradiction.

So there exists an end-block, say B,, of C such that y € V(B,) — {b,}. We say that
a block H of C other than B, is a hub if H is 2-connected and contains at most two cut-
vertices of C, and every path in C from B, to B, contains all cut-vertices of C contained
in V(H).

Suppose there exists a hub B* of C. So there exists a cut-vertex x* of C contained
in B* such that every path in C from b, to V(B*) contains x*. If B* = B,, then let y* = y;
otherwise, let y* be the cut-vertex of C contained in B* such that every path in C from b,
to V(B*) contains y*. Let Z, be a path in C — (V(B; — b;) U V(B* — x*)) from b, to x*, and
let Z; be a path in C from y* to y. Since (GI[B; U {x}], x, b;) is 2-connected with minimum
degree at least k, by the minimality of G, GIB, U {x}] contains k — 1 admissible paths
P,,...,P_; from x to b,. If every vertex in V(B*) — {x*, y*} has at most one neighbor in
Q, then (B*, x*,y*) is 2-connected with minimum degree at least k. By the minimality of
G, B* contains k — 1 admissible paths R}, ...,R;_; from x* to y*. By Lemmas 3.2 and 3.3,
the set {P; UZy UR;UZ, : i,j € [k — 1]} contains least 2k — 3 > k admissible paths
from x to y in G, a contradiction. Therefore some vertex w € V(B*) — {x*, y*} satisfies
IN;(w) N V(Q)| > 2. Since s = 1, we have [Nz(w) N V(Q)| = 2 by Lemma 3.7. Let u, v
be the vertices in N;(w) N V(Q). By Lemma 3.7, either {u, v} € Q;, or by symmetry say
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u € Q; and v € Q,. In the former case, there are two admissible paths L, = xua and
L, = xuwva from x to a; in the latter case, since there is no triangle containing x in G—y
by Lemma 3.4, we must have v = a, which also gives two admissible paths L, = xua and
L, = xuwa from x to a. Since (G[B, U {a}l, a, b,) is 2-connected with minimum degree at
least k, by the minimality of G, there exist k — 1 admissible paths Ny, ...,N;_; from a to
b, in GIB; U{a}l. Since B* is 2-connected, there exists a path L' from x* to y* in B— w. By
Lemma 3.2, the set {L; UNJ- Uz, UL'UZ; :ie€(2],jelk— 1]} contains k admissible paths
from x to y in G, a contradiction.

So there exists no hub. In particular, B, is not 2-connected, for otherwise B, is a
hub. Therefore B, = yb, is an edge. So B, ...,B,_; are the all feasible blocks in C. Recall
that N(B; — b;) N V(Q) = {a,x} for all i € [t — 1], which implies d,(x) > |Q;| +t — 1.
Since there is no triangle containing y in G — x by Lemma 3.4, we have d;(y) < |Q,| + 1.
Hence |Q;| +t -1 < d;(x) < dg(y) <10,/ + 1. Thatis, t < 2. As t > 2, this forces
t =2,dg(x) =ds;y) =10,| + 1. In other words, there is exactly one end-block B, of C
other than B, = yb,, N;(y) = Q, U {b,} and N;(x) € Q; U V(B; — b,). Note that the block
structure of C is a path. Since there exists no hub, every block of C other than B, is an
edge. If V(C) = V(B UB,), then since N;(C —y) N Q; # ¥ and N;(B, —b;)NQ, =¥, b,
must have a neighbor in Q,. If V(C) # V(B; U B,), then |[N;(b,) N V(C)| = 2, and since
dg(by) > k+1 > 4, we have |N;(b,) N V(Q)| > 2. Recall that N;(x) € Q, UV(B; — b,), so
xb, ¢ E(G). So in either case, b, must have a neighbor w* in Q,. But Gl{y,b,, w*}] is a
triangle, contradicting Lemma 3.4.

This completes the proof of Theorem 3.1 (and of Theorem 1.2). |

4 Consecutive Cycles

In this section, we prove Theorems 1.4 and 1.11. This will be achieved in a unified
approach, namely, by finding optimal number of cycles of consecutive lengths in 2-
connected non-bipartite graphs (see Theorem 4.4).

We begin by introducing a concept on cycles, which is crucial in our approach.
We say that a cycle C in a connected graph G is non-separating if G — V(C) is connected.
The study of non-separating cycles appears in the work of Tutte [24] and is furthered
explored by Thomassen and Toft [23]. The proof of the following lemma can be found in

[2] (though it was not formally stated).

Lemma 4.1 (Bondy and Vince [2]). Every non-bipartite 3-connected graph contains a

non-separating induced odd cycle.
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We also need the following lemma on non-separating odd cycles from [15], which

is a slight modification of a result of Fan [10].

Lemma 4.2 (Liu and Ma [15]). Let G be a graph with minimum degree at least four. If G
contains a non-separating induced odd cycle, then G contains a non-separating induced

odd cycle C, denoted by vyv;...vy, v, such that either

C is a triangle, or
2. for every non-cut-vertex v of G — V(C), |[N;(v) N V(C)| < 2, and the equality
holds if and only if N;(v) N V(C) = {v;, v;,,} for some i, where the indices are

taken under the additive group Z,g, .

The next lemma can be viewed as a corollary of Theorem 3.1, which will be used

for finding paths in a 2-connected graph with three special vertices.

Lemma 4.3. Let k > 2 be a positive integer. Let G be a 2-connected graph and x, y, z be
three distinct vertices in G. If every vertex of G other than z has degree at least k + 1,

then G contains k — 1 admissible paths from x to y.

Proof. Since every two vertices are contained in a cycle in a 2-connected graph,
there is nothing to prove when k = 2. So we may assume that k > 3. Note that
G — z is connected and has minimum degree at least k. If G — z is 2-connected,
then this lemma follows from Theorem 3.1. Hence we may assume that G — z is not
2-connected.

Let B be an end-block of G—z with cut-vertex b. Since every vertex in V(B—b) has
degree at least k > 3 in G, we see that B is 2-connected. Suppose that [V(B—b)N{x,y}| = 1.
Without loss of generality, we may assume that x € V(B — b). By Theorem 3.1, B has
k — 1 admissible paths from x to b. Concatenating each of these paths with a path in
(G—2)— V(B —Db) from b to y gives k — 1 admissible paths in G from x to y. Therefore,
there exists an end-block B’ with cut-vertex b’ of G —z such that V(B'—b')N{x,y} = 0. It
follows that N (B' — b’) = {b, z}. Since G is 2-connected, G has two disjoint paths P, P,
internally disjoint from V(B’) from x to b’ and from y to z, respectively. Let u be a vertex
in B'— b adjacent to z in G. By Theorem 3.1, B’ has k — 1 admissible paths R;,R,, ..., R;_;
from b’ to u. Then the set {P; UR, Uuz UP, : i € [k — 1]} contains k — 1 admissible paths
in G from x to y. This completes the proof. |

We are ready to prove the main result of this section.
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Theorem 4.4. Let k be a positive integer and G be a 2-connected graph containing a
non-separating induced odd cycle. If the minimum degree of G is at least k + 1, then G

contains k cycles of consecutive lengths.

Proof. The theorem is obvious when k = 1. For the case k = 2, let C, be an induced
non-separating odd cycle in G and x, y € V(C,) such that x, y divide C, into two subpaths
say P;, P, of lengths differing by one. Since G has minimum degree at least three, each
of x,y has at least one neighbor in G — V(C,) and thus there exists a path L from x
to y in GI(V(G) — V(Cy)) U {x,y}]. Then L U P, and L U P, are two cycles of consecutive
lengths in G.

So we may assume that k > 3. By Lemma 4.2, there exists a non-separating
induced odd cycle C = vyv;...vy,Vy in G satisfying the conclusions of Lemma 4.2.
In particular, the minimum degree of G — V(C) is at least k — 1. Throughout the
rest of the proof of this theorem, the subscripts will be taken under the additive
group Zyg, ;.

Suppose that C is a triangle vyv,v,v,. Consider the graph G’ obtained from G
by contracting v; and v, into a vertex u. Then G’ is 2-connected with minimum degree
at least k. By Theorem 3.1, there are kK — 1 admissible paths in G’ from u to v. By the
definition of admissible paths, each of these paths has length at least two, so it does not
contain the edge uv,, and each of those paths corresponds to a path in G — V(C) from v,
to some v; € {vy, v,}. Concatenating with vyv; and vyv;_;v;, these paths lead to cycles of
at least k consecutive lengths in G.

Therefore we may assume that C is not a triangle and hence s > 2. For any two
vertices v;, v; in C, denote C;.J. and CZJ. to be the shorter and longer paths in C from v; to
v;, respectively.

Suppose that G—V(C) is 2-connected. We first assume that for every v € V(G—C),
IN;(v) N V(C)| < 1. Then the minimum degree of G — V(C) > k. Since G has minimum
degree at least k + 1 > 4, there exist distinct vertices x,y € V(G — C) such that xvy, yv, €
E(G). By Theorem 3.1, G — V(C) contains k — 1 admissible paths Py, ..., P;,_; from x to y.
Note that Cf),s and C(’)’lS are two paths from v, to v, of lengths s and s + 1, respectively.
Concatenating each of Cj; and Cj; with vox U P; U yv for all i € [k — 1] leads to k
cycles of consecutive lengths in G. Hence we may assume that there exists some u €
V(G — C) adjacent in G to two vertices of C. By Lemma 4.2, without loss of generality,
let Ng(u) N V(C) = {v;,Vy}. Since C is an induced cycle and d(vy) > §(G) > k+1 > 4,
there exists a vertex w € V(G — C) — {u} such that wv, € E(G). Since G — V(C) has

minimum degree at least k— 1, by Theorem 3.1, G— V(C) contains k— 2 admissible paths
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Ry, ... Ry_, from u to w. Observe that uv, UC] ;, uv, U C; 5o, uvy  UCY

/!
25 and uv; UCY ; are

four paths from u to v, of lengths s,s + 1,s + 2 and s + 3, respectively. By concatenating
each of these paths with v;w U R; for i € [k — 2], we obtain cycles of k + 1 consecutive
lengths in G.

Therefore G — V(C) is not 2-connected. Let B be an end-block of G — V(C) with
cut-vertex b. Since every vertex in B—b has degree at least k—1 > 2 in B, B is 2-connected.

Suppose that [N (v) N V(C)| < 1 for every vertex v € V(B — b). Then every vertex
in B other than b has degree at least k in B. We first assume that there exist x € V(B — b)
and y € V(G — C) — V(B — b) such that VX, Vi, Y € E(G) for some j, then by Theorem 3.1,
B contains k — 1 admissible paths Py, ...,P;_; from x to b. Let P be a path in G — (V(C) U
V(B — b)) from b to y. Note that C},].Jrs, C}fj+s
Then, by concatenating each of these paths with P; and P, we find k cycles in G with

are two paths of lengths s, s+ 1, respectively.

consecutive lengths. Hence, we may assume that for every integer j with 0 <j < 2s, if v;
is adjacent to V(B — b), then Ng(vi )NV(G—C) S V(B-— b). Since G is 2-connected, there
is some vertex v;« of C adjacent in G to V(B — D). Since k + 1 > 4, every vertex in V(C)
is adjacent in G to some vertex in V(G — C). So ¥ # N;(v; o) — V(C) € V(B — b). Hence
we can inductively show that N (v, ) — V(C) € V(B — b) for every positive integer r.
Since s is a generator of Zy,, ;, N;(C) € V(B — b). This implies that b is a cut-vertex of G,
contradicting the 2-connectivity of G.

Therefore there exists a vertex x € V(B — b) with at least two neighbors in V(C).
By Lemma 4.2, without loss of generality, we may assume that N;(x) N V(C) = {vy, V).
Assume there exists some y € V(G—C)— V(B—Db) such that v,y € E(G). Since every vertex
in B—b has degree at least k— 1 in B, by Theorem 3.1, B contains k — 2 admissible paths
Q,,...,Q;_, from x to b. Let Q be a fixed path in G — (V(C) U V(B — b)) from b to y. Note

that xv, UC] , xv,  UC. , ., XV,  UCY

72
Ls’ s, 257 s 25 and xvy UCY ; are four paths from x to v, of lengths

s,s+1,5+2 and s+3, respectively. By concatenating each of these paths with Q;,uQUyv,,
we find k+1 cycles of consecutive lengths in G. Hence we have N (v,)NV(G—C) C V(B-b).
Since |[Ng(v,) N V(G —C)| = k— 1 > 2, there exists z € N;(v,) N V(B) — {x,b}. If k < 4, then
using the above four paths from x to v, together with v,z and a path in B from z to x,
we obtain cycles of four consecutive lengths in G. So we may assume k > 5. Note that
every vertex of B other than b has degree at least k — 1 > 4 in B. By Lemma 4.3, B has
k — 3 admissible paths Ry, ..., R;_5 from x to z. Again, concatenating each of these paths
with zv, and the four paths from x to v,, one can find cycles of k consecutive lengths in

G. This completes the proof of Theorem 4.4. |

Using Theorem 4.4, we can derive Theorems 1.4 and 1.11 easily.
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Theorem 1.4. Every non-bipartite 3-connected graph with minimum degree at least

k + 1 contains k cycles of consecutive lengths.
Proof. This theorem immediately follows from Lemma 4.1 and Theorem 4.4. |

We say that a graph G is k-critical, if it has chromatic number k but every proper
subgraph of G has chromatic number less than k.

We now prove Theorem 1.11, which we restate as the following.

Theorem 4.5. For every positive integer k, every graph with chromatic number at least

k + 2 contains k cycles of consecutive lengths.

Proof. Let G be any graph with chromatic number at least k + 2. We may assume
that k¥ > 2, for otherwise the theorem is obvious. Then there exists a (k + 2)-
critical subgraph G’ of G. It is easy to see that G’ is 2-connected and has minimum
degree at least k + 1. It is known that for any integer t > 4, every t-critical graph
contains a non-separating induced odd cycle (the case t = 4 was explicitly stated
and proved by Krusenstjerna-Hafstrem and Toft [14, Theorem 4], but their proof
works for every t > 4 as well). Therefore G’ contains a non-separating induced odd
cycle. By Theorem 4.4, we see that G’ (and thus G) contains k cycles of consecutive
lengths. |

5 Dean’s Conjecture

In this section we prove Conjecture 1.8, which will be divided into several lemmas. For
a brief overview of the coming proof, we would suggest readers to have a sketch on the
proof of Theorem 5.15, which is a restatement of Theorem 1.9.

Define K, to be the graph obtained from K, by deleting one edge. A chord of
a cycle C in a graph G is an edge e € E(G) — E(C) such that the both ends of e belong
to V(C). For a positive integer t > 4, we define K; to be the graph obtained from K, by
deleting v, v, and V;Vj foreveryie{1,2}andj € {5,6,...,t}, where V(K,) = {vy : 1 <k < t}.
Note that K} contains a Hamilton cycle. Also, for every positive integer d, let Kiaq be the

graph obtained from K, ; by deleting an edge.

Lemma 5.1. Let d and t be integers with d + 1 > t > 5. Let G be a graph containing a
K, subgraph but not containing a K; subgraph. If G is (¢t —1)-connected, then G contains

d cycles of consecutive lengths.
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Proof. Let {x,y,a,b} be a set of four vertices of G inducing a K; subgraph, where x is
of degree two in this K, subgraph and y is a neighbor of x. So there exists a clique in
G—{x,y} containing a, b. Let K be a maximal clique in G—{x, y} containing a, b. Note that
IK| < t—3, for otherwise Gl{x, y}UK] contains a K; subgraph. Hence G—K is 2-connected
since G is (t — 1)-connected.

By the maximality of K, every vertex in G — (KU {x, y}) is adjacent in G to at most
K| — 1 vertices in K. So ((G — K) — xy, x,y) is a 2-connected rooted graph of minimum
degree at least d — |K| + 1. By Theorem 3.1, there exist d — |K| admissible x-y paths
Py, Py, ....,Py_g in (G — K) — xy. Note that there exist |[K| + 1 x-y paths Q;,Qy, ..., Qg4
in G[K U {x,y}] with consecutive lengths. For every integers i,j with 1 < i < d — |K|
and 1 <j < |K| + 1, let C;; be the cycle obtained by concatenating P; and Q;. Let C =
{Ci’j 1 <i=<d-I|K|,1 <£j<IKl+1}.If Py, Py, ... Py_g have consecutive lengths,
then C contains d cycles of consecutive lengths. If the lengths of P, P,, '“'PdflKl form
an arithmatic progression of length two, then C contains 2d — |K| — 2 > d cycles of

consecutive lengths. |

Lemma 5.2. Letd > 3 be an integer. Let G be a 3-connected graph of minimum degree
at least d. If G contains a K; subgraph but does not contain a K, subgraph, then G

contains d cycles of consecutive lengths.

Proof. Let {a,b,c} be a set of three vertices of G that induces a K5 subgraph. Let G’ be
the graph obtained from G by contracting the edge bc into a new vertex a* and deleting
resulting loops and parallel edges. Since G is 3-connected, G’ is 2-connected, so (G’ —
aa*,a,a*) is a 2-connected rooted graph. Since G does not contain a K, subgraph, (G’ —
aa*,a,a*) has minimum degree at least d. By Theorem 3.1, there exist d — 1 admissible
a-a* paths P,,P,,...,.P;_, in G' — aa*. So there exist paths P, P, ...,P;Fl in G such that
their lengths form an arithmetic progression of common difference one or two, and for
everyiwithl <i<d-1, Pg is either an a-b path disjoint from ¢ or an a-c path disjoint
from b. For every integer i with 1 <i < d-1,letC;; = P;+ab, C; , = P;+ac, C; 3 = P;Uabc,
and let Cig= P; U acb. Then the set {CiJ :1<i<d-1,1<j <4} contains d cycles of

consecutive lengths. |

Lemma 5.3. Let £ be a positive integer. Let A be a subset of integers such that ¢
elements of A form an arithmetic progression of common difference r, where r € {1, 2}.

1. If r = 1 and ¢ > 3, then for every integer x, the set {a + x,a+x+3 :a €

A} contains ¢ + 3 elements that form an arithmetic progression of common

difference one.
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2. If r = 2 and ¢ > 2, then for every integer x, the set {a + x,a +x+ 3 : a € A}
contains 2¢ — 2 elements that form an arithmetic progression of common

difference one.

Proof. Let a,,a,,..,a, be ¢ elements of A forming an arithmetic progression of
common difference r, where r € {1,2}. We may assume that for every i with 1 <i < ¢,
a;=a; + (i —1)r. Let x be any integer, and let S={a; + x,a;, + x+3:1 <i < {}.
Ifr=1and¢>3,thenS={i:q, +x<i<ag;, +¢—-1+x+3}.Ifr=2and? > 2,
then Scontains {i:a; +2+x <i<a; +2( — 1) +x+ 1}. This proves the lemma. [ |

Lemma 5.4. Let d be an integer with d > 6. If G is a 3-connected non-bipartite graph

with minimum degree at least d that does not contain a K5 subgraph, then either

1. G contains d cycles of consecutive lengths, or
2. d € {6,7} and there exists an induced cycle C in G, denoted by vyv,v,...vy,v,

of length at least five such that

(a) G — V(C) is connected but not 2-connected,

(b) every end-block of G — V(C) is 2-connected, and

(c) for every non-cut vertex v of G — V(C), [Ng(v) N V(C)| < 2, and if |[N;(v) N
V(C)| =2, then N;(v)NV(C) = {v;, v;,,} for some i € Z,, ; and the indices

are computed in Z, ;.

Proof. We may assume that G does not contain d cycles of consecutive lengths, for
otherwise we are done.

By Lemmas 4.1 and 4.2, since G does not contain a K; subgraph, there exists
an induced odd cycle C of length at least five, denoted by v,v,...v,.v,, such that for
every non-cut vertex v of G — V(C), |Ngy(v) N V(C)| < 2, and if |[Ng(v) N V(CO)| = 2,
then Ng(v) N V(C) = {v;v;,,} for some i € Z,, ; and the indices are computed
in Zyg, .

In particular, no vertex of G — V(C) is of degree at most one in G — V(C), since
d > 4. So every end-block of G — V(C) is 2-connected. Note that for every end-block B of
G — V(0), there exists at most one cut-vertex of G — V(C) contained in V(B), and if such
vertex exists, we denote it by bg.

So to prove this lemma, it suffices to prove that d € {6,7} and G — V(C) is not
2-connected.

We first suppose to the contrary that G — V(C) is 2-connected.
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Suppose that there exists a vertex x € V(G) — V(C) adjacent in G to at least two
vertices in V(C). By symmetry, we may assume that x is adjacent to v, and v,. Since
G is 3-connected and C is an induced cycle in G, vy, is adjacent in G to a vertex y in
V(G) — V(C). Since |V(C)| = 5, vg, & {vy, Vy}, SO X # y. Since G — V(C) is 2-connected,
every vertex in G — V(C) has degree at least d — 2, so by Theorem 3.1, there exist d — 3
admissible paths P, P,,...,P;_5 in G — V(C) from x to y. Let Q,, Q, be the subpaths of
C with ends v, and v, of length s + 1 and s, respectively. Let Q3,Q, be the subpaths
of C with ends v, and vy, of length s — 1 and s + 2, respectively. Let C = {(P; U Q) +
XVg+ yVe, 1, (P;UQy) +xvy +yve ;11 <i1<d-3,1<j<2,3<k<4}. ThenC contains
(d —3)+4—1=d cycles of consecutive lengths, a contradiction.

So every vertex x € V(G) — V(C) is adjacent in G to at most one vertex in V(C).
Since G is connected, there exists a vertex x’ in V(G) — V(C) adjacent in G to a vertex
in V(C). By symmetry, we may assume that x’ is adjacent to v,. Since G is 3-connected
and C is an induced cycle in G, v,_, is adjacent in G to a vertex y’ in V(G) — V(C). Since
[V(C)| > 5, vy # v,_;, 50 X # y. Since every vertex in G — V(C) has degree at least d — 1,
by Theorem 3.1, there exist d — 2 admissible paths P}, Py,...,P; , in G — V(C) from x’
to y'. Let Q}, Q) be the subpaths of C with ends v, and v,_; of length s — 1 and s + 2,
respectively. Let C' = {(P{ U QJ’-) +xvy+yve :1<i<d-21<j<2}.Sinced—2>3,(C
contains min{d — 2 + 3,2(d — 2) — 2} > d cycles of consecutive lengths by Lemma 5.3, a
contradiction.

Hence G — V(C) is not 2-connected. It suffices to prove d € {6,7}. Suppose to the
contrary that d > 8.

Suppose that there exists an end-block B of G — V(C) and a vertex x € V(B) — {bg}
adjacent in G to v; in V(C) for some 0 < i, < 2s, such that v; , ; is adjacent in G
to a vertex y € V(G) — (V(C) U (V(B) — {bg})), where the indices are computed in Z,¢, .
Since (B, x, bg) is a 2-connected rooted graph of minimum degree at least d — 2, Theorem
3.1 implies that there exist d — 3 admissible paths in B from x to by, and hence by
concatenating each of them with a fixed path in G — (V(C) U (V(B) — {bg})) from by to y,
there exist d — 3 admissible paths P, P, ...,P&_g in G — V(C) from x to y. Let Qf, Q} be
the subpaths of C with ends v; and v; , ; of length s — 1 and s + 2, respectively. Let
"= {(P”yl-uOJ’/)+.3(Vix+yvix+s_l :1<i<d-3,1<j<2}. Sinced—3 > 3,byLemma 5.3,
C” contains min{(d — 3) + 3,2(d — 3) — 2} = min{d, 2d — 8} cycles of consecutive lengths.
Since G does not contain d cycles of consecutive lengths, 2d — 8 < d. Hence d € {6,7}, a
contradiction.

Hence for every end-block B of G — V(C) and every vertex x € V(B) — {bg} adjacent

in G to v; forsomeO < i, <2s, Ns(v; ,¢ ;) € V(B)—{b}, where the indices are computed
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in Zys, ;. Similarly, for every end-block B of G — V(C) and every vertex x € V(B) — {bp}
adjacent in G to v; for some 0 <i, < 2s, N5(v; 1)) € V(B) — (b}, where the indices are
computed in Zyg ;.

For every end-block B of G — V(C), let Sy ={i: 0 <i < 2s,v; € N;(B — bp)}. Note
that for every end-block Band i € Zy, ;,if i € Sp, then {i+ (s —1),i — (s — 1)} C S — Sy
for every end-block B’ of G — V(C) other than B. So if s — 1 is relatively prime to 2s + 1,
then Sz = {i: 0 < i < 2s} for every end-block B, but there are at least two end-blocks of
G — V(C), a contradiction.

Hence s —1 is not relatively prime to 2s+ 1. So there exists a prime p that divides
s—1and 2s+1. Hence p divides (2s+1)—2(s—1) = 3. That is, p = 3, and 3 is the greatest
common divisor of 2s + 1 and s — 1. So for every end-block B and i € Z, if i € Sy, then
since Sp contains i + t(s — 1) for every integer ¢, where the computation is in Z,¢,, Sp
contains i + 3t' for every integer t'. Hence for every i € {0, 1, 2}, either Sy D {i + 3t : t € Z}
or SpN{i+3t:te Z} =0, where the computation is in Z,,, . Since there are at least
two end-blocks in G — V(C), there exists an end-block B* such that there uniquely exists
i* € {0,1, 2} such that Sg. N {i* + 3t : t € Z} # (. This implies that every vertex in B* — bp.
is adjacent in G to at most one vertex in V(C).

By symmetry, we may assume that i* = 0, and there exist x*,y* € V(B*) — {bg:}
such that x*v, € E(G) and y*v,_; € E(G). Since G is 3-connected, x* and y* can be chosen
to be distinct vertices. Hence x*, y*, bg. are distinct vertices. Since B is 2-connected and
every vertex in B* other than bg. is of degree at least d — 1 in B*, by Lemma 4.3 there
exist d—3 admissible paths P}, Py, ...,P;;_3 in B* from x* to y*. Let Q}, Q; be the subpaths
of C with ends v, and vy, of length s — 1 and s + 2, respectively. Let C* = {(P; U Q}) +
Vox* + v, 711 <i<d-3,1<j<2} Sinced —3 > 3, by Lemma 5.3, C* contains
min{d — 3 + 3,2(d — 3) — 2} cycles of consecutive lengths. Since G does not contain d
cycles of consecutive lengths, 2d — 8 < d. Hence d € {6, 7}, a contradiction. This proves

the lemma. |

Lemma 5.5. Let d be an integer with d > 6. If G is a 3-connected non-bipartite
graph with minimum degree at least d that does not contain a K5 subgraph, then
G contains d admissible cycles. Furthermore, if d > 8, then G contains d cycles
of consecutive lengths; and if d € {6,7}, then G contains cycles of all lengths

modulo d.

Proof. We may assume that G does not contain d cycles of consecutive lengths, for

otherwise we are done. By Lemma 5.4, d € {6,7} and there exists an induced cycle C in

1202 YoJBN £Z UO Jasn AlsIsAlun INRY Sexal AQ | 6/£909/pZEBeuUI/UIWI/SE0 L 0L /I0p/3|o1e-00uBAPE/UIWI /WO dno olwapeae//:sdiy Wol) papeojumod]



28 J. Gao et al.

G, denoted by vyv,v,...v,.v, of length at least five such that

e G — V(C) is connected but not 2-connected,

e every end-block of G — V(C) is 2-connected, and

e for every non-cut vertex v of G — V(C), [N;(v) N V(C)| < 2, and if |[N;(v) N
V(O)| =2, then N;(v) N V(C) = {v;,v;,,} for some i € Z,,, , and the indices are

computed in Z,g, .

Since d € {6, 7}, to prove this lemma, it suffices to prove that G contains d admissible
cycles, and prove that G contains cycles of all lengths modulo d. Note that if d = 7 and
G contains d admissible cycles, then G contains cycles of all lengths modulo d.

Suppose to the contrary that either G does not contain d admissible cycles, or
d = 6 and G does not contain cycles of all lengths modulo d.

Since G—V(C) is not 2-connected and every end-block of G— V(C) is 2-connected,
for every end-block B of G— V(C), there exists exactly one vertex by in B such that by is a
cut-vertex of G—V(C). For every end-block B of G—V(C), let ugz be a vertex in B—{bz} such
that [N;(ug) N V(C)| is as large as possible. Note that for every end-block B of G — V(C),
(B, ug, bp) is a 2-connected rooted graph of minimum degree at least d — [N (ug) N V(C)|,
so there exist d — |[Ng(up) N V(C)| — 1 admissible paths Pg 1, Pp 5, ..., Pg g \ng(up)nv(c)—1 1
B from ug to bg. In addition, for every end-block B of G — V(C), 1 < [N;(ug) N V(C)| < 2
since ug € V(B) — {bg}.

Suppose that there exists an end-block B, of G—V(C) such that |[N;(up, )NV (C)| =
1. Let B, be an end-block of G — V(C) other than B,. Let x € Ng(ug) N V(). Since G is
3-connected, upg, can be chosen such that Ng(up,) NV(C) — {x} # V. Let y € Ng(ug,) N
V(C) — {x}. Let Q be a path in C from x to y. Let R be a path in G — V(C) from bB1 to
bp,. Let C = {(Pg,; UR UPp,;UQ) +xug +yug, : 1 = i1 <d—|Ngug)NVOI-1,1<
j < d—INg(ug,) N V(O)| - 1}. So C contains (d — [Ng(ug,) N V(C)| — 1) + (d — INg(ug,) N
V()| —1) —1=2d -4 —|Ng(ug,) NV(C)| > 2d — 6 > d admissible cycles. Hence d = 6
and G does not contain d cycles of consecutive lengths. So the lengths of the cycles
in C form an arithmetic progression of common difference two. It follows that the set
{Pp, iURUPg, ;11 < i <d—|Ng(ug)NV(C)|—-1,1<j=<d-|Ng(ug,)NV(C)|—1} contains
2d — 6 paths whose of lengths form an arithmetic progression of common difference
two from up to up, in G — V(C). Let Q, be the odd path from x to y in C and Q, be
the even path from x to y in C. By concatenating each of Q, and Q, with Pp ; UR U
Pp, jUxug Uyug,, we could obtain 2d — 6 cycles of consecutive odd lengths and 2d — 6
cycles of consecutive even lengths. Since d = 6 is even, G contains cycles of all lengths

modulo d.
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Hence for every end-block B of G — V(C), |[Ng(ug) N V(C)| = 2. Let By, B, be two
distinct end-blocks of G — V(C). By symmetry, we may assume that Ng(ug,) NV(C) =
{vo, v,}. Since G does not contain a K3 subgraph, [Ng(up,) N V(C) N {vy, v;}| < 1, so there
exists z € N (ug,) NV (C) —{vy, v;}. Let Q, be the path in C from v, to z containing vyv, v,,
and let Q, be the subpath of Q, from v, to z. Note that |E(Q,)| = |E(Q,)| + 2. Let R' be a
path in G — V(C) from by, to bg,. Let C’' = {(Pp, ;UR'UPg, ;UQ,) +ug,vy+ug,z, (Pg, ;UR'U
Pp,;UQy) +upg,vyt+ugz: 1< i<d-— INg(ug,)NV(CO)|—-1,1 <J=<d—I|Ng(ug,)NV(C)|-1}
Since |E(Q,)| = |E(Q,)| + 2, C’' contains (d — INg(ug,) NV(C)| — 1) +(d — INg(ug,) N V(C)| —
1)-1+2—-1=2d—6 > d admissible cycles. So d = 6 and G does not contain d cycles of
consecutive lengths. Hence the lengths of these cycles form an arithmetic progression of
common difference two. It follows that PBg,iUR/UPBz;,j foralll <i<d- INg(up,)NV(C)|-1
and1 <j <d- INg(ug,) NV(C)| — 1 contains 2d — 7 paths whose of lengths form an
arithmetic progression of common difference two between up, to up, in G- V(C). Let Q,
and Q, be the odd path and even path in C from z to v, respectively. By concatenating
each of Q;, and Q, with Py, ;UR'UPp, ;Uup v Uug, z, we obtain 2d—7 cycles of consecutive
odd lengths and 2d —7 cycles of consecutive even lengths. Since d = 6 is even, G contains

cycles of all lengths modulo d, a contradiction. This proves the lemma. |

Recall that for every positive integer d, K ; is the graph obtained from K; 4 by
deleting an edge.

Lemma 5.6. Let d > 3 be an integer. Let G be a max{d, 5}-connected graph of girth
exactly four and of minimum degree at least d that does not contain a cycle of length

five. If G does not contain a K ; subgraph, then G contains d admissible cycles.

Proof. Suppose to the contrary that G does not contain d admissible cycles.

Since the girth of G equals four, G contains a K, , subgraph. So there exists a
complete bipartite subgraph Q of G with bipartition (Q,, Q,) such that

i) 2=<10;1 =104,

(ii) subject to (i), |Q,| is maximum, and

(iii) subject to (i) and (ii), |Q,| is maximum.

Let s = |Q;|. Note that 2 < s < d — 1 since G does not contain a K; ; subgraph. Since G
does not contain a K5 subgraph, Q is an induced subgraph of G, and for every vertex v
of G — V(Q), either N;(v)NQ; =¥ or Ng(v) N Q, = 9.

For any v € V(G) — V(Q), |[Ng(v) N Q| < s — 1 by (iii), and [N;(v) N Q,| < s by

(ii). If there exists a vertex z € V(G) — V(Q) such that z is adjacent in G to at least s
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vertices in V(Q), then let Z = {z}; otherwise, let Z be the empty set. Note that if Z # ¢,
then N;(z) N V(Q) € Q, and |Q,| > s+ 1, since G is of girth four and by (i)-(iii).

Suppose there exists t € {1, 2} such that there exists a component M of G—(Q,UZ)
disjoint from Q4_,. Since G is d-connected, |Q,|+ |Z| > d. If |Q,| = s, then sinced > s+ 1,
Z#@Pand |Q,/=s=d—1,sot=1and|Q; ;| > s+1=d, and hence G[V(Q) UZ] contains
akK,y subgraph, a contradiction. Hence |Q;| > s+ 1. In particular, ¢t = 2. Note that when
s = 2, Q| > s+ 2, for otherwise |Q;| + |Z] < (s + 1) + 1 = 4, contradicting that G is
5-connected. Since G — Z is 4-connected, we have that [N (M) N Q| > 4. If s = 2, let A be
a subset of N;(M) N Q, — N;(z) with size two; if s > 3, let A be a subset of N;(M) N Q,
with size two. Note that No(M) N Q;, — A # 9. If |Q,] = s+ 1 and Z # ¢, then let e = 1;
for otherwise, let € = 0. Let Gy, be the graph obtained from G[V(M) U Q,] by identifying
all vertices in A into a vertex u,,, identifying all vertices in Q, — A into a vertex v,;, and
deleting all resulting loops and parallel edges. Since |Q,| > s+1 and ¢t = 2, and since G is
of girth four and does not contain a 5-cycle, no vertex of M is adjacent in G to both Z and
Q,, so the minimum degree of (G, uy;, vy,) is at least d — (s —2) —|Z| +-€ by the definition
of Z. So (Gy;, uy;, vyy) is a rooted graph of minimum degree at least d — (s — 2) — |Z] + €.
Since G — Z is 3-connected and M is a component of G — (Q; U Z), we know (G, Uy, Vi)
is a 2-connected rooted graph of minimum degree at least d — s+ 2 — |Z| 4+ ¢. By Theorem
3.1, there exist d — s + 1 — |Z| 4 € admissible paths in G;; from u,; to vy;. So there exist
d —s+1—|Z| + € admissible paths Py 1, Py o, s Papg_si1- |7+ I GIV(M) U Q,] from A to
Q, — A internally disjoint from V(Q)UZ. Foreachiwith1 <i<d—-s+1—1|Z|+¢, let o; be
the ends of P, ; in A and let g; be the end of Py, ; in Q,—A. Since |Q;| > s+1 and t = 2 and
Q is a complete bipartite graph, there exist s+|Z| —e admissible paths Qp 1, ..., Qpy 547/
in G[V(Q) U Z] from «; to B;. Then the set {PyjUQpup 1= j<d—-s+1—|Z+¢1 <
k <s+|Z] — €} contains (d —s+1—|Z|+¢€)+ (s+ |Z]| —€) — 1 = d admissible cycles, a
contradiction.

So forevery t € {1, 2}, every component of G—(Q,UZ) intersects Q;_,. Let G’ be the
graph obtained from G — Z by identifying all vertices in Q; into a vertex u/, identifying
all vertices in Q, into a vertex v/, and deleting resulting loops and parallel edges. Since
G is of girth four and does not contain a 5-cycle, no vertex of G — (V(Q) U Z) is adjacent
in G to either both Z and Q, or both Q; and Q,, so the minimum degree of (¢, v/, V') is at
least d—(s—2)—|Z| by the definition of Z. Since G is 3-connected, G—Z is 2-connected, so
every cut-vertex of G’ is u’ or v'. Since for every ¢ € {1, 2}, every component of G—(Q,UZ)
intersects Q5_,, we know G’ is 2-connected. So (G, v/, V') is a 2-connected rooted graph of
minimum degree at least d—s—|Z|+2. By Theorem 3.1, there exist d—s—|Z|+1 admissible

paths in G’ from v’ to v'. So there exist d —s—|Z|+1 admissible paths Ry, Ry, ..., Rg_s_|z41
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in G—Z from Q, to Q, internally disjoint from V(Q). For every i with1 <i <d-s—|Z|+1,
let x;,y; be the ends of R; in Q,, Q,, respectively. Since Q is a complete bipartite graph,
foreachiwith1l <i <d-s—|Z] + 1, GIV(Q) U Z] contains s + |Z| admissible paths
R’I,R’Z,...,R’SHZ‘ from x; to y;. So the set {R; URj:1<j<d-s—|Z+1,1 <k<s+|Z]}

contains d admissible cycles, a contradiction. This proves the lemma. |

Lemma 5.7. Let G be a 3-connected bipartite graph. If G does not contain a cycle of
length four, then G contains a non-separating induced cycle C such that for every non-
cut-vertex v of G — V(C), INg(v) N V(C)| < 1.

Proof. Let C be a cycle of G such that

(i) the largest component of G — V(C) is as large as possible, and

(ii) subject to (i), |V(C)| is as small as possible.

Let M be a component of G — V(C) with |V(M)| maximum.

If there exists a chord e of C, then one of P, + e and Q, + e is a cycle shorter
than C such that M is a component of the graph obtained from G by deleting this cycle,
a contradiction, where P,, Q, are the two subpaths of C with ends the same as e. Hence
C is an induced cycle.

Suppose there exists a component M’ of G — V(C) other than M. Let A = No(M) N
V(C) and B = Ny(M') N V(C). Since G is 3-connected, min{|A|, |B|} > 3. Since |A| > 3 and
|B| > 2, there exists a subpath Q of C whose ends belong to B such that some internal
vertex of Q belongs to A. Since M’ is connected, there exists a path Q' from one end
of Q to another end of Q such that all internal vertices belong to V(M’). Let Q" be the
subpath of C with the same ends as Q but internally disjoint from Q. Then Q' U Q" is a
cycle in G such that some component of G — V(Q' U Q") contains M and a vertex in 4,
contradicting (i).

Hence C is a non-separating cycle in G. Suppose that there exists a non-cut-
vertex v of G—V(C) such that [N;(v)NV(C)| > 2. Let x, y be distinct vertices in N;(v)NV(C)
such that no internal vertex of R; belongs to N;(v) N V(C), where R, R, are the two
subpaths of C with ends x and y. If |[E(R;)| < 2, then R; + vx + vy is a cycle of length
at most four, contradicting that G is a bipartite graph with no 4-cycle. So |E(R;)| > 3.
Hence R,+vx+vy is a cycle shorter than C. Since |[E(R;)| > 3, there exist distinct internal
vertices x’, ¥’ of R;. Since C is an induced cycle and every vertex of G has degree at least
three, N;(x')—V(C) # ¥ # N;(y')—V(C). Since C is a non-separating cycle, N;(x')NV(M) =
N;(x')—V(C) #0 # N;(y') — V(C) = Ng(y') N V(M). Since x, y’ are internal vertices of Ry,
{x,¥}NNg(v) =@. So No(x') N V(M) — {v} # ¥ and N;(y") N V(M) — {v} # . Since v is not
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a cut-vertex of G — V(C), M — v is connected. So some component of G — V(R, + vx + vy)

contains (V(M) — {v}) U {x, ¥}, contradicting (i). This proves the lemma. ]

Lemma 5.8. Let d > 5 be an integer. Let G be a 3-connected bipartite graph of
minimum degree at least d. If G does not contain cycles of length four, then G contains

d admissible cycles.

Proof. Suppose to the contrary that G does not contain d admissible cycles. By
Lemma 5.7, there exists a positive integer s and an induced non-separating cycle
C = vyVy...Vy_1Vg in G such that for every non-cut-vertex of G — V(C), it is adjacent
in G to at most one vertex in V(C). Since G is a bipartite graph with no 4-cycle, s > 3. For
anyany0 <i<j<2s—1,let ai,j and Q;lj be the two subpaths of C with ends v;, v;.

Suppose G— V(C) is 2-connected. Since C is an induced non-separating cycle and
G is of minimum degree at least d > 4, there exist distinct vertices x,y in V(G) — V(C)
such that {xvy, yv,_,} € E(G). Since (G — V(C),x,y) is a 2-connected rooted graph of
minimum degree at least d—1, there exist d—2 admissible paths P, P,, ..., P;_, in G—V(C)
from x to y by Theorem 3.1. Note that ||E(Qqs_5)| — |E(06,372)|| =4.Sinced — 2 > 2 and
G is bipartite, the set {(P;UQqs_5) + XV +¥Vs_ 5, (P;UQq o) +XVo+yvs 511 <i<d-2}
contains d admissible cycles, a contradiction.

So G — V(C) is not 2-connected. In particular, there exist two distinct end-blocks
B,,B, of G — V(C). Since G is 3-connected, each B;,B, is 2-connected. For i € {1, 2}, let
b; be the cut-vertex of G — V(C) contained in V(B;). Since G is 2-connected, for each
i € {1,2}, there exists an integer r; with 0 < r; < 2s — 1 and a vertex u; in V(B;) — {b;}
such that w;v, € E(G). Since G is 3-connected, r; and r, can be chosen to be distinct.
For i € {1,2}, since (B;, u;, b;) is a 2-connected rooted graph of minimum degree at least
d — 1, there exist d — 2 admissible paths P;,P;,,...,P; 4, in B; from u; to b;. Let Q
be a path in G — V(C) from b, to b, internally disjoint from V(B;) U V(B,). Then the
set {(P;; UQUP,;UQ, ) tuv, +uyv, : 1 <i<d-21<j=<d- 2} contains

2(d —2) —1=2d — 5 > d admissible cycles, a contradiction. This proves the lemma. B

For every graph H, a 1-subdivision of H is a graph that is obtained from H by

subdividing each edge exactly once.

Lemma 5.9. Let G be a graph of girth at least five. Let H be a subgraph of G that is a
1-subdivision of K,. If there exists a vertex in V(G) — V(H) adjacent in G to two vertices

in V(H), then G contains a cycle of length five or ten.
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Proof. We may assume G is of girth at least six, for otherwise we are done. Let v be a
vertex in V(G)— V(H) adjacent in G to two vertices x, y in V(H). Let S be the set of vertices
of H of degree three. Since G has girth at least five, at least one of x,y does not belong
to S. Then since G has girth at least six, both x, y do not belong to S. So there exist edges
e, € of K, such that x and y are obtained by subdividing e and ¢/, respectively. Since G
has girth at least five, e and €’ form a matching in K,. Let z be a vertex of H obtained by
subdividing an edge other than e, ¢’. Then (H — {z}) + vx + vy has a Hamiltonian cycle of

length ten. This proves the lemma. |

We say a graph is a theta graph is a subdivision of K, . The branch vertices of
a theta graph are the vertices of degree at least three. A subgraph H of a graph G is
spanning if V(H) = V(G).

Lemma 5.10. Let G be a graph of girth at least six that does not contain a cycle of
length ten. Let H be a subgraph of G isomorphic to a theta graph such that |V(H)| is

minimum. Then the following hold.

1. H is an induced subgraph of G.

2. There exists at most one vertex of G — V(H) adjacent in G to at least two
vertices in V(H).

3. If there exists a vertex v of G — V(H) adjacent in G to at least two vertices in
V(H), then GIV(H) U {v}] is isomorphic to a 1-subdivision of K.

Proof. Suppose that H is not induced. Then there exists e € E(G) — E(H) with both
ends in V(H). Since the girth of G is at least six, there exists a subgraph H' of G with
V(H') C V(H) such that H’ is a theta graph, contradicting the minimality of |V (H)|.

So H is an induced subgraph. We may assume there exists a vertex v of G — V(H)
adjacent in G to at least two vertices in V(H), for otherwise we are done. Let x, y be the
branch vertices of H. Let P;, P,, P; be the three internally disjoint paths in H from x to y.

By the minimality of |V(H)| and the girth condition of G, v is not adjacent to
any branch vertices of H. Similarly, for each i € {1,2,3}, v is adjacent to at most one
vertex in V(P;). So there exist distinct i,j such that v is adjacent to exactly one vertex a
in V(P;) — {x,y} and exactly one vertex b in V(P)) — {x,y}. By symmetry, we may assume
i=1andj=2.Since (H— (V(P;) —{x,y}))+av+bv is a theta graph, by the minimality of
|V(H)|, |V(P3)| < 3. Let L, be the subpath of P; from x to a. Since the graph obtained from
H + av + bv by deleting all internal vertices of L, is a theta graph, L, contains at most

one internal vertex by the minimality of |V(H)|. Similarly, the subpath L, of P, from x
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to b contains at most one internal vertex. Since L; U L, U avb is a cycle in G and G has
girth at least six, both L;,L, contain exactly one internal vertex. Similarly, each of the
subpath of P, from a to y and the subpath of P, from b to y contains exactly one vertex.
Since P; U P, is a cycle in G, P4 contains exactly one internal vertex. Hence GV (H) U {v}]
contains a 1-subdivision of K, as a spanning subgraph. Since G is of girth at least six,
GlV(H) U {v}] is isomorphic to a 1-subdivision of K.

If there exists a vertex v’ of V(G) — V(H) other than v adjacent in G to at least
two vertices in V(H), then v’ is adjacent in G to at least two vertices in V(H) U {v} which
induces a subgraph isomorphic to a 1-subdivision of K,, so G contains a cycle of length
ten by Lemma 5.9, a contradiction. So v is the only vertex that is adjacent in G to at least

two vertices in V(H). This proves the lemma. |

Lemma 5.11. Let d > 5 be an integer. Let G be a 5-connected graph of girth at least
six and of minimum degree at least d that does not contain a cycle of length ten. Let H
be an induced subgraph of G isomorphic to a 1-subdivision of K,. Then G contains d

admissible cycles.

Proof. Suppose to the contrary that G does not contain d admissible cycles. Note that
every vertex of G — V(H) is adjacent in G to at most one vertex in V(H) by Lemma
5.9. We say a pair of two distinct vertices x,y of H are useful if there exist paths
H,,H, Hy in H from x to y of lengths h,, h,, h4, respectively, such that (hy, h,, hy) €
{(1,5,7),(2,4,6),(3,5,7)}.

Let M be a component of G — V(H). Since G is 5-connected, there exists a useful
pair of vertices x,y such that x is adjacent in G to some vertex x’ in V(M) and y is
adjacent in G to some vertex y’ in V(M). Note that x’ # y’, for otherwise some vertex of
M is adjacent in G to two vertices in V(H).

Suppose M is 2-connected. Then (M,x’,y’) is a 2-connected rooted graph of
minimum degree at least d — 1. By Theorem 3.1, there exist d — 2 admissible paths
P,,..,P;_,in G’ from x' to y’. Since d > 5, the set {(P; UH)) +xx' +yy:1<i<d-2,1<
j < 3} contains d admissible cycles, a contradiction.

So M is not 2-connected. Let B;, B, be two distinct end-blocks of M. Let b,, b, be
the cut-vertex of G— V(H) contained in V(B,), V(B,), respectively. Since G is 3-connected,
some vertex x; in V(B,) —{b,} is adjacent in G to some vertex u, in V(H), and some vertex
x, in V(B,) — {b,} is adjacent in G to some vertex u, in V(H). For each i € {1,2}, since
(B;,x;,b;) is a 2-connected rooted graph of minimum degree at least d — 1, there exist

d — 2 admissible paths Q;,,...,Q; ;_, in B; from x; to b;. Let Q be a path in M from b,
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to b, internally disjoint from V(B,) U V(B,), and let Q" be a path in H from u,; to u,.
Then the set {(Q;;,UQUQ,;U Q) + xu; + XUy : 1 <i<d-2,1<j<d- 2} contains

2(d —2) — 1 =2d — 5 > d admissible cycles, a contradiction. This proves the lemma. W

Lemma 5.12. Let H be a theta graph. Then there exist two distinct vertices x,y and
three paths in H from x to y such that the lengths of these three paths modulo 5 are

pairwise distinct.

Proof. Let P;,P,, P; be the three internally disjoint paths in H between the branch
vertices of H. For each i € {1, 2,3}, we denote P; by v;yv; ...V |gp,), Where v; o = vy =
V3o Foreach i € {1,2,3} and each j € {1,..., |[E(P)|}, let L;; = v;ov;,..v;j and let R; ; =
VijVij+1--Vi|E®))|-

Suppose to the contrary that there do not exist two distinct vertices x,y and
three paths from x to y with pairwise distinct lengths modulo 5. So the lengths of
P,,P,,P; modulo 5 are not pairwise distinct. Hence, by symmetry, there exists t €
{0,1,2, 3,4} such that |E(P;)| and |[E(P,)| equal ¢ modulo 5.

Suppose that |E(P;)| = t modulo 5. By symmetry, we may assume that |[E(P3)| <
|E(P;)| for every i € {1,2}. So min{|E(P,)|, |[E(P,)|} > 2. Note that the paths R, ; UR, ,,L; ;U
P3UR, 5, Ry UP3 UL, , are three paths from v, ; to v, , with lengths 2¢ — 3,2t — 1,2t +1
modulo 5, respectively, a contradiction.

Hence there exists s € {0,1,2,3,4} — {t} such that |[E(P;)|] = s modulo 5. By
symmetry, we may assume that |[E(P;)| > 1. For every r € {1,2}, the paths R, ,L; , U
P,,L; , U Py are three paths from v, , to vy gp,) of lengths ¢ —r, ¢ +r,s + r modulo 5,
respectively, so t —r = s + r modulo 5. Thatis,t—1=s+ 1 modulo5andt—2=s+2

modulo 5, a contradiction. This proves the lemma. [ |

Lemma 5.13. Let a and d be integers such that d € {1,2}. Let B be a subset of
{0,1,2,3,4} of size three. Then the set {a +id +b :0 <i < 2,b € B} contains a multiple
of 5.

Proof. LetX ={a+id+b:0<1i<2,be B}. If there exists an integer s such that the
three elements of B are either s,s + 1,s + 2 modulo 5 or s,s + 2,s + 4 modulo 5, then X
contains a multiple of 5. So by shifting, we may without loss of generality assume that
B=1{0,1,3}.Ifd=1,then X D> {a,a+1,a+2,a+ 3,a + 4}, so X contains a multiple of 5.
Ifd=2,thenX 2> {a,a+1,a+2,a+ 3,a+ 4}, so X contains a multiple of 5. This proves

the lemma. [ |
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Lemma 5.14. If Gis a 5-connected graph of girth at least five, then G contains a cycle
of length 0 modulo 5.

Proof. Suppose to the contrary that G does not contain a cycle of length 0 modulo 5.
In particular, G does not contain a 5-cycle and a 10-cycle, and G does not contain five
admissible cycles. So the girth of G is at least six, and G does not contain a cycle of
length ten.

Let H be a subgraph of G isomorphic to a theta graph with |V(H)| minimum. By

Lemma 5.10, H satisfies the following.

e H is an induced subgraph of G.

e There exists at most one vertex of G — V(H) adjacent in G to at least two
vertices in V(H).

e If there exists a vertex v of G — V(H) adjacent in G to at least two vertices in
V(H), then GIV(H) U {v}] is isomorphic to a 1-subdivision of K.

If there exists a vertex of G — V(H) adjacent in G to at least two vertices of V(H),
then there exists an induced subgraph H' isomorphic to an induced 1-subdivision of K,
so by Lemma 5.11, G contains five admissible cycles, a contradiction.

So every vertex of G — V(H) is adjacent in G to at most one vertex in V(H). Let
G =G-V(H). Letd =5.

Suppose that there exists a component M of G’ such that M is not 2-connected.
Let B,, B, be distinct end-blocks of M. Since G is 3-connected and every vertex in V(M) is
adjacent in G to at most one vertex in V(H), B; and B, are 2-connected. For each i € {1, 2},
let b; be the cut-vertex of M contained in V(B;). Since G is 3-connected, for eachi € {1, 2},
there exists x; € V(B;) — {b;} such that x; is adjacent in G to some vertex y; in V(H). For
each i € {1, 2}, since (B;, x;, b;) is a 2-connected rooted graph of minimum degree at least
d — 1, there exist d — 2 admissible paths P; ;, ..., P; 5_, in B; from x; to b; by Theorem 3.1.
Let Q be a path in M from b, to b, internally disjoint from V(B;) UV (B,). Let Q' be a path
in H from y; to y,. Then the set {(PlyiUOUszJ-UO’)+X1y1 +x,7,:1<i<d-2,1<j<d-2}
contains 2(d — 2) — 1 > d = 5 admissible paths, a contradiction.

So every component of G’ is 2-connected. Suppose that G’ is not connected. Let
M;, M, be two distinct components of G'. For each i € {1,2}, since G is 4-connected,
there exist distinct vertices x;, and x;, in V(M;) such that x;, is adjacent in G to a
vertex y;; in V(H) and x; , is adjacent in G to a vertex y;, in V(H). For each i € {1,2},
since (M;, %;1,%; 2) is a 2-connected rooted graph of minimum degree at least d — 1, there

exist d — 2 admissible paths R;,,...,R; 4_, in M; from x;  to x;, by Theorem 3.1. Since
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H is 2-connected, there exist two disjoint paths Q,, Q, in H from {y; ;,y; o} to {y5 1, V2 2}
Then the set {(R; ;UQ; UR, ;UQy) +X; 1V1,1 +X1 2V1,2FX21V21 HXp 02211 S1<d—2,1<
j <d — 2} contains 2(d — 2) — 1 > 5 admissible cycles, a contradiction.

So G’ is 2-connected. By Lemma 5.12, there exist two distinct vertices x,y in
H such that there exist three paths A,,A,,A; in H from x to y with pairwise distinct
lengths modulo 5. Since G is 5-connected and H is an induced subgraph, there exist
distinct vertices x’, y’ in V(G’) such that {xx’, yy’} € E(G). Since (G’,x’, y’) is a 2-connected
rooted graph of minimum degree at least d — 1 = 4, by Theorem 3.1, there exist three
admissible paths Z;, Z,, Z; in G’ from x to y’. By Lemma 5.13, the set {(Z;UA;) +xx'+yy’:
1 <i<3,1<j< 3} contains a cycle of length 0 modulo 5, a contradiction. This proves

the lemma. u

Now we are ready to prove Theorem 1.9. The following is a restatement of
Theorem 1.9.

Theorem 5.15. For d > 3, every d-connected graph contains a cycle of length zero

modulo d.

Proof. By [3, Theorem 1] and [6, Theorem 1.2], the theorem is true for d € {3,4}. So
we may assume that d > 5. Suppose to the contrary that G does not contain a cycle of
length 0 modulo d. So G does not contain a K); subgraph and does not contain a Kia
subgraph. In addition, G does not contain d cycles of consecutive length, and when d is
odd or G is bipartite, G does not contain d admissible cycles.

Since G is (d — 1)-connected and does not contain a K; subgraph, G does not
contain a K, subgraph by Lemma 5.1. Since G does not contain a K, subgraph, by
Lemma 5.2, G does not contain a K5 subgraph. Since G does not contain a K5 subgraph,
by Lemma 5.5, either d = 5 or G is bipartite. Since G does not contain a K5 subgraph
and a Kia subgraph, by Lemma 5.6, either G does not contain a 4-cycle, or G contains a
cycle of length four and a cycle of length five, or d is even.

Suppose that G does not contain a 4-cycle. Then G is not bipartite by Lemma
5.8. So d = 5. Since G does not contain a K; subgraph and a 4-cycle, G is of girth
at least five. So G contains a cycle of length 0 modulo 5 = d by Lemma 5.14, a
contradiction.

So either G contains a 4-cycle and a 5-cycle, or d is even. Note that either case
implies d # 5. So G is bipartite, contradicting that G contains a 5-cycle. This proves the

theorem. n
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When d > 6, we can strengthen the conclusion of Theorem 5.15.

Theorem 5.16. For integers d > 6 and t satisfying 2t # 2 modulo d, every d-connected
graph contains a cycle of length 2¢ modulo d.

Proof. Suppose to the contrary that there exist integers d > 6 and t with 2t # 2 modulo
d such that there exists a d-connected graph G that does not contain a cycle of length
2t modulo d. In particular, G does not contain a Kéi+1 subgraph and does not contain a
Kiaq subgraph. In addition, G does not contain d cycles of consecutive length, and when
d is odd or G is bipartite, G does not contain d admissible cycles.

By Lemma 5.1, G does not contain a K, subgraph. By Lemma 5.2, G does not
contain a K, subgraph. By Lemma 5.5, G is bipartite. Since G is bipartite, by Lemma 5.6,
G does not contain a 4-cycle. By Lemma 5.8, G contains d admissible cycles. But G is

bipartite, a contradiction. | |
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