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a b s t r a c t 

We evaluate the impact of three proposed regulations of transportation network compa- 

nies (TNCs) like Uber, Lyft and Didi: (1) A minimum wage for drivers, (2) a cap on the 

number of drivers or vehicles, and (3) a per-trip congestion tax. The impact is assessed us- 

ing a queuing theoretic equilibrium model which incorporates the stochastic dynamics of 

the app-based ride-hailing matching platform, the ride prices and driver wages established 

by the platform, and the incentives of passengers and drivers. We show that a floor placed 

under driver earnings can push the ride-hailing platform to hire more drivers and offer 

more rides, at the same time that passengers enjoy faster rides and lower total cost, while 

platform rents are reduced. Contrary to standard competitive labor market theory, enforc- 

ing a minimum wage for drivers benefits both drivers and passengers, and promotes the 

efficiency of the entire system. This surprising outcome holds for almost all model param- 

eters, and it occurs because the wage floor curbs TNC labor market power. In contrast to a 

wage floor, imposing a cap on the number of vehicles hurts drivers, because the platform 

reaps all the benefits of limiting supply. The congestion tax has the expected impact: fares 

increase, wages and platform revenue decrease. We also construct variants of the model to 

briefly discuss platform subsidy, platform competition, and autonomous vehicles. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

In December 2018, New York became the first US city to adopt a minimum wage for drivers working for app-based

transportation network companies (TNCs) like Uber and Lyft. The New York City Taxi and Limousine Commission (NYTLC)

established a “minimum per-trip payment formula” that gives an estimated gross hourly driver earnings before expenses of

at least $27.86 per hour and a net income of $17.22 per hour after expenses, equivalent to the minimum wage of $15 per

hour because, as “independent contractors,” drivers pay additional payroll taxes and get no paid time off ( NYTLC, 2018 ). The

NYTLC formula for non-wheelchair accessible vehicles is 

Driver pay per trip = 

(
$0 . 631 × Trip Miles 

Company Utilization Rate 

)
+ 

(
$0 . 287 × Trip Minutes 

Company Utilization Rate 

)
+ Shared Ride Bonus (1)

amounting to $23 for a 30-min, 7.5-mile ride. 1 New York City’s $15/hour minimum wage for large employers, which went

into effect on December 31, 2018 doesn’t apply to drivers who work for ride-hailing apps. 
∗ Corresponding author. 

E-mail addresses: lisen1990@berkeley.edu (S. Li), tavaf@berkeley.edu (H. Tavafoghi), poolla@berkeley.edu (K. Poolla), varaiya@berkeley.edu (P. Varaiya). 
1 The utilization rate is calculated as the total amount of time drivers spend transporting passengers on trips dispatched by the base divided by the total 

amount of time drivers are available to accept dispatches from the base ( NYTLC, 2018 ). Wheelchair accessible vehicles receive a higher rate. 
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The Commission imposed this wage floor based on testimony on driver expenses, meetings with stakeholders, and on the

report of labor economists Parrott and Reich (2018) which showed that median driver earnings had declined almost $3.00

per hour from $25.78 in September 2016 to $ 22.90 in October 2017, a decrease of 11.17%. The TNCs imposed the $3.00

per hour wage cut during a period when the number of drivers in the largest four TNCs (Uber, Lyft, Gett/Juno, and Via)

had grown by 80,0 0 0 ( NYTLC, 2018 ). Uber would be the largest for-profit private employer in New York City if its drivers

were classified as employees rather than independent contractors ( Parrott and Reich, 2018 ). The ingenious wage formula

(1) encourages TNCs to increase driver pay through higher utilization, instead of trying to restrict the number of drivers

through regulation. Lyft, however, opposed the regulation saying that because of its larger size, Uber’s higher utilization rate

gave it an unfair advantage ( Hawkins, 2019 ). Lyft’s complaint was overruled ( Hsieh, 2018 ). 

The subminimum wage of drivers working for TNCs also prompted the Seattle City Council in April 2018 to pass a unan-

imous resolution to explore setting a minimum base rate of $2.40 per mile for TNCs compared with the prevailing rate

of $1.35 per mile and the rate of $2.70 per mile charged by taxis ( Hsieh, 2018 ). The resolution also asked TNCs to volun-

tarily hand over anonymous data on hours, trips, fares and compensation. Unlike NYTLC, however, no other US city has

access to TNC data to estimate what their drivers are paid or the TNC impact on traffic. For example, the California Pub-

lic Utilities Commission which regulates TNCs will not share TNC data with San Francisco County Transportation Authority

( Authority, 2017 ). TNC regulation “follows an elite political process dominated by concentrated actors and government deci-

sion makers largely acting ex officio (committee heads, regulators, and judges)” ( Collier et al., 2019 ). 

In December 2018, Uber lost its case at the U.K. Court of Appeal against the October 2016 ruling that its drivers should

be classified as workers entitled to rights such as minimum wage and paid holidays. The Court ruled against Uber’s claim

that its drivers were just self-employed contractors who use its app in exchange for a share of their fares at the level

dictated by Uber ( Butler, 2018 ). The case can be used to challenge the self-employed status of millions of gig-economy

workers who work for companies like Airbnb and Deliveroo on a freelance basis without fixed contracts. New York and

London are the largest Uber markets in the US and EU. The California state assembly recently passed bill AB5 that would

make hundreds of thousands of independent contractors including TNC drivers become employees. The bill now goes to the

senate ( Campbell, 2019 ). Uber and Lyft are aggressively campaigning against AB5. In its SEC filing, Uber states “If, as a result

of legislation or judicial decisions, we are required to classify Drivers as employees . . . we would incur significant additional

expenses [that would] require us to fundamentally change our business model, and consequently have an adverse effect on

our business and financial condition (Uber, 2019, p.28) .”2 

As of January 1, 2019, all trips by for-hire vehicles that cross 96th street in NYC will pay a congestion surcharge of $2.75

per TNC trip, $2.50 per taxi trip, and $0.75 per pool trip. Further, NYC will also charge a toll on every vehicle that enters the

busiest areas, currently defined as south of 61st street. This ‘cordon’ price will raise about $1B per year (assuming a $11.52

toll) for the Metropolitan Transportation Authority. 

Uber’s reaction to these adverse decisions was predictable. Responding to the NYTLC ruling Uber’s director of public af-

fairs stated, “legislation to increase driver earnings will lead to higher than necessary fare increases for riders while missing

an opportunity to deal with congestion in Manhattan’s central business district” ( Snider, 2018 ). 3 Uber challenged the Seattle

resolution: its general manager for Seattle said, “we are generally unclear how nearly doubling per-mile rider rates would

not result in an increased cost for riders”( Hsieh, 2018 ). Uber also declared it would fight the U.K. Appeal Court’s decision in

the Supreme Court ( Butler, 2018 ). Contradicting Uber’s claims, this study shows that raising driver wages will increase the

number of drivers and riders at the same time that passengers enjoy faster rides and lower total cost, while platform rents

are reduced. 

The aforementioned regulations are part of the political response to the public anxiety over the disruption of the urban

transportation system caused by the rapid growth of TNCs. Worldwide, the monthly number of Uber users is forecast to

reach 100 million in 2018, up from 75 million in 2017. In New York, the four largest TNCs Uber, Lyft, Juno and Via combined

dispatched nearly 60 0,0 0 0 rides per day in the first quarter of 2018, increasing their annual trip totals by over 100% in

2016 and by 71% in 2017. About 80,0 0 0 vehicles are affiliated with these four companies ( Parrott and Reich, 2018 ). In San

Francisco, 5700 TNC vehicles operate in peak times. They daily make over 170,0 0 0 vehicle trips, approximately 12 times

the number of taxi trips, and 15% of all intra-San Francisco trips, comprising at least 9% of all San Francisco person trips

( Castiglione et al., 2016 ). This explosive growth of TNCs has raised two public concerns. 

As noted earlier, one concern is with the working conditions of TNC drivers. The TNC business model places much of the

economic risk associated with the app sector on drivers, who are classified as independent contractors. Furthermore, the

model relies on having many idle cars and drivers, resulting in low driver pay per hour and high TNC platform rents. 4 TNCs

need idle drivers to reduce passenger waiting time. Uber’s annual revenue from passenger fares in New York City amounts

to about $2 billion, of which it keeps about $375 million in commissions and fees, for a markup estimated at six times its

variable operating cost or 600% ( Parrott and Reich, 2018 ). One common opinion is that “Uber’s driver-partners are attracted

to the flexible schedules that driving on the Uber platform affords...because the nature of the work, the flexibility, and the
2 For a thoughtful discussion of labor-market trends in the gig-economy see Tirole (2019a) . 
3 Lyft echoed the Uber response stating, “These rules would be a step backward for New Yorkers, and we urge the TLC to reconsider them Snider (2018) .”
4 TNC expenditures comprise a fixed initial cost for setting up the platform and a small variable cost as the company grows. Thus the average cost per 

trip falls and its profit margin increases as the TNC grows. 
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compensation appeals to them compared with other available options ( Hall and Kreuger, 2016 ).” In fact, more than 60% of

New York City drivers work full-time and provide 80% of all rides; their work hours are not flexible ( Parrott and Reich, 2018 ).

The second concern is with the negative impact of TNCs on a city’s traffic congestion and its public transit ridership.

A detailed 2017 report ( Schaller, 2017 ) examined the impact of TNC growth on traffic conditions in Manhattan’s CBD. The

analysis shows that, from 2013 to 2017, TNC trips increased 15%, VMT increased 36%, traffic speed declined 15%, the num-

ber of vehicles increased 59%, and the number of unoccupied vehicles increased 81%. The report suggested reducing the

unoccupied time of TNC vehicles as a means of congestion control. Responding to the increased congestion, the New York

City Council in 2018 passed a regulation freezing the number of TNC vehicles on the road for one year. Supporters of the

cap, including Mayor Bill de Blasio, said the regulation will protect drivers, fairly regulate the industry and reduce conges-

tion ( Shapiro, 2018 ). However, our analysis shows that imposing a cap hurts drivers, because the TNC retains as profit the

benefits of limiting supply. 

Another detailed report ( Castiglione et al., 2016 ) by San Francisco Transportation Authority provides information on the

size, location, and time-of-day characteristics of TNC activities in San Francisco. A follow-up report ( Castiglione et al., 2018 )

identifies the impact of TNC activities on road congestion in San Francisco. It shows that after subtracting the impact of

employment growth, population change and network capacity change, TNCs contributed 51% of the increase in vehicle hours

of delay, 47% of increase in VMT, and 55% of the average speed decline between 2010 and 2016. Moreover, “TNC trips are

concentrated in the densest and most congested parts of San Francisco including the downtown and northeastern core of

the city. At peak periods, TNCs are estimated to comprise 25% of vehicle trips in South of Market.” The report cites studies

showing that “between 43% and 61% of TNC trips substitute for transit, walk, or bike travel or would not have been made

at all.”

This paper evaluates three TNC regulations: A minimum driver wage, a cap on the number of drivers or vehicles, and

a per-trip congestion tax. We analyze the impacts of these regulations on several aspects of the app-based ride-hailing

market, including ride prices and driver wages established by the platform, the incentives of passengers and drivers, vehicle

occupancy, and platform rent or profit. We use a model to determine the arrival of passengers, number of drivers, ride

prices and platform commissions, conditioned on the imposed regulation. The model employs a queuing theoretic model

with dynamic matching of passengers and drivers, an equilibrium model that predicts the long-term average arrivals of

passengers and drivers, and an optimization model of platform decision-making. We summarize the key results. 

• Imposing a minimum wage can motivate TNCs to hire more drivers and offer more rides, and passengers to enjoy faster

rides and lower total cost, while TNC rent or profit shrinks. It indicates that raising the minimum wage will benefit

both drivers and passengers, while platform rent will decline. This counter-intuitive result holds for almost all model

parameters, and it occurs because the wage floor curbs TNC labor market power. 
• Contrary to common belief, a cap on the number of drivers will hurt driver earnings. This is because when fewer drivers

are permitted, the platform will hire cheaper labor by reducing driver pay. Thus, the benefit of limiting the driver supply

is retained by the platform. 
• Imposing a congestion surcharge has a predictable impact: the numbers of passengers and drivers and the platform rev-

enue reduce as the congestion surcharge increases. Our numerical study shows that a congestion surcharge of $2.75/trip

significantly reduces the platform profit in NYC. This suggests that the business model of TNC is vulnerable to the adverse

effect of congestion policies. 

We also present variants of our model to analyze platform subsidy, platform competition and autonomous vehicles. 

Related work : There are several studies of ride-hailing platforms. A recurrent concern is to evaluate decisions that

maximize platform profit, with particular attention to static vs. dynamic pricing. A queuing model is proposed in

Banerjee et al. (2015) to study the profit maximizing prices of ride-hailing platforms. It shows that the throughput and profit

under dynamic pricing strategy can not exceed that under the optimal static pricing strategy that is agnostic to stochastic

dynamics of demands. On the other hand, dynamic pricing is more robust to fluctuations in system parameters compared to

static pricing. Hence, the platform can use dynamic pricing to realize the benefits of optimal static pricing without perfect

knowledge of system parameters. 

A similar question is studied in Cachon et al. (2017) , with a focus on the self-scheduling capacity of for-hire drivers.

It is shown that the additional flexibility of drivers is beneficial to platforms, consumers and drivers. It also suggests that

when some periods have predictably higher demand than others (e.g., a rainy evening), with static pricing it is hard to find

service at peak demand times, so surge pricing is likely to benefit all stakeholders. In the same vein, Bai et al. (2018) sug-

gests dynamic pricing for the platform to maximize the profit across different time periods when the underlying operating

characteristics change significantly. It is shown in Taylor (2018) that platform pricing can be more complicated when there

is uncertainty in passenger’s valuation or driver’s opportunity cost. A general economic equilibrium model is developed in

Ban et al. (2018) to evaluate the impacts of ride-hailing services on deadhead miles and traffic congestion. Ride-hailing plat-

forms are also examined as a special kind of two-sided platforms. See Rysman (2009) and Rochet and Tirole (2006) for a

summary of literature on two-sided platforms, and Weyl (2010) for a general theory of monopoly pricing in multi-sided

platforms. 

The literature on regulation of the app-based ride-hailing marketplace is relatively limited. A ride-hailing platform that

manages a group of self-scheduling drivers to serve time-varying demand is studied in Gurvich et al. (2016) . The study
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Fig. 1. The TNC system includes the city council, platform, passengers and drivers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shows that under a wage floor, the platform starts to limit agent flexibility because it limits the number of agents that can

work in some time intervals. 

The work closest to ours is by Parrott and Reich (2018) . The authors use TNC administrative data collected by the

New York City Taxi and Limousine Commission (NYTLC) to examine the likely impact of the NYTLC’s proposed regulations

( NYTLC, 2018 ). By numerical simulation, they show that the proposed policy will increase driver earnings by 22.5%, while

passengers will only experience moderate increase of trip fare (less than 5%) and waiting times (12–15 s). However, our

analysis shows that both the trip cost and the waiting time will decrease. This is because in our model we assume that the

passengers are sensitive to the pickup time of the ride-hailing services, which is not captured in Parrott and Reich (2018) . 

2. TNC environment 

This section describes the TNC enviroment. Agents of the transportation system are comprised of the city council, the

app-based ride-hailing platform (TNC), a group of passengers and for-hire vehicle drivers (see Fig. 1 ). The city council sets

legislation to regulate TNC operations. Examples of regulations include minimum driver wage, maximum number of vehi-

cles and regional licensing. 5 The regulations are enforced by auditing the operational data of TNCs. (See NYTLC, 2018 for

details of enforcement in New York.) The platform responds to the regulations by setting profit-maximizing ride fares and

driver commissions (or equivalently, wages). These fares and wages are called ‘platform decisions’ in Fig. 1 . The platform

decisions influence the choices of passengers and drivers. For instance, passengers have diverse ride choices including TNC,

public transit, walking, and biking. They select an option based on the cost and convenience of each choice. Drivers also

have alternative job opportunities, such as delivering food, grocery, packages, and mail. They take the job with the highest

expected wage. The choices of passengers and drivers form a market equilibrium, which determines the TNC profit or rent.

The equilibrium is affected by regulations. 

The objective of the paper is to understand how regulations impact the ride-hailing transportation system. We consider

three regulations: (a) A floor under driver wage; (b) a cap on total number of drivers; and (c) a per-trip congestion tax. We

analyze their impact from various perspectives of the ride-hailing system, including ride fares, commission rate, passenger

pickup time, driver earnings, platform rent, number of riders, number of for-hire vehicles, and vehicle occupancy rate. 

The rest of this paper is organized as follows. In Section 3 we introduce the market equilibrium model of the response

of passengers and drivers to a platform decision. In Section 4 we predict TNC decisions in the absence of regulation. In

Section 5 we examine TNC decisions operating with a floor under driver wage rate. In Section 6 we consider TNC decisions

when there is a cap on the number of drivers.In Section 7 we study the impact of congestion surchage. Platform competition

and other model variations are discussed in Section 8 . Conclusions are offered in Section 9 . Several proofs are deferred to

the appendix. 

3. Market equilibrium model 

We now develop the market equilibrium model of the decisions of drivers and passengers in response to the platform

decision. The model is used to predict the average arrival rates of passengers and number of drivers. 

3.1. Matching passengers and drivers: M/G/N queue 

We use a continuous-time queuing process to model the matching of passengers and drivers. Consider N TNC drivers or

vehicles, each modeled as a server. A vehicle is ‘busy’ if there is a passenger on board, or a passenger is assigned and the

vehicle is on its way to picking her up. Otherwise, it is considered ‘idle’. We assume that the arrival process of passengers

is Poisson with rate λ> 0. Newly arrived passengers immediately join the queue and wait until an idle vehicle is dispatched
5 Unlike TNCs, taxicabs are heavily regulated. 
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by the platform. Hence this is an M/G/N queue, and the expected number of idle servers (vehicles) is N I = N − λ/μ, where

μ−1 is the average trip duration. 

Remark 1. To ensure stability of the queue the model requires N I > 0, i.e., N > λ/ μ. This is consistent with the TNC business

model that “relies upon very short wait times for passengers requesting rides, which in turn depends on a large supply of

available but idle drivers and vehicles” ( Parrott and Reich, 2018 ). For instance, New York has an average of 5089 TNC vehicle

( Schaller, 2017 ), 187 passenger per minute, and a trip takes 16.3 min, i.e., μ = 1 / 16 . 3 min 

−1 
. This gives N I = N − λ/u = 2041 .

Cities with limited supply of drivers (as in US suburbs and in cities like Singapore) require a distinct model ( Banerjee et al.,

2015; Zha et al., 2016 ). 

3.2. Passenger and driver incentives 

The passenger arrival rate λ and the number of drivers N are endogenously determined in the market equilibrium. 

Passenger incentives : Passengers choose their rides from available options like app-based TNCs, public transit, walking,

or biking, by comparing their prices and waiting times. We model the cost of the app-based ride-hailing service as 

c = αt w 

+ βp f , (2)

where t w 

is the average waiting time (from sending a request to being picked up), p f is the per trip fare of the ride-hailing

service, 6 and α and β specify the passenger’s trade-off between convenience and money. We refer to c as the total cost of

a TNC trip, including the trip fare plus the money value of the trip time. 

In the ride-hailing service, a ride is initiated when a passenger sends a request to the platform, and is completed when

the passenger is dropped off at the destination. We divide a ride into three periods: (1) From the ride request being received

to a vehicle being assigned; (2) from a vehicle being assigned to passenger pickup; (3) from passenger pickup to passenger

drop-off. Let t m 

, t p and t o be the average duration of these periods. Here t m 

is the average waiting time in the M/G/N queue.

Assuming that the platform matches the passenger to the nearest idle vehicle, t p depends on the distance of the nearest idle

vehicle to the passenger. Typically, t m 

ranges from a couple of seconds to a half minute, and t p is between three to 6 min.

The sum of t m 

and t p is the passenger waiting time, denoted as t w 

= t m 

+ t p . Clearly, the passenger waiting time depends on

the average number of idle vehicles N I . We denote t w 

as a function of N I , i.e., t w 

( N I ), and impose the following assumption 

Assumption 1. The function t w 

: R + → R + is convex, decreasing and twice differentiable. 

This assumption says that passenger waiting time decreases as N I increases, and the marginal benefit of recruiting extra

vehicles to reduce waiting time diminishes as N I increases. It is a standing assumption throughout the paper. 

In some special cases, the waiting time function t w 

( · ) can be derived analytically. Let d ( x ) denote the distance of a

passenger requesting a ride at location x in a city to the nearest idle vehicle. Let N I 0 
be the average number of idle TNC

vehicles before regulatory intervention (more precisely specified later). We have the following proposition. 

Proposition 1. Consider a city with an arbitrary geometry. Assume that (1) the platform matches each arriving passenger to

the nearest idle vehicle available; (2) idle vehicles are uniformly and independently distributed across the city; (3) location of

passengers requesting a ride is uniformly distributed across the city, independently of the position of idle vehicles. Then, 

E x { d(x ) | N I idle vehicles } = 

√ 

N I 0 √ 

N I 

E x { d(x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

, N 

1 
8 

I 0 
N 

− 9 
8 

I 
, N 

−1 
I } 
))

. (3)

The result implies that the average pickup time t p is (approximately) inversely proportional to the square root of the

number of idle vehicles since t p = 

E x { d(x ) | N I idle vehicles } 
v , with v being the average traffic speed. The result recalls the “square

root law” ( Arnott, 1996 ) and can be explained intuitively as follows. Consider a square city of unit size with N I idle vehicles

located in a grid with each idle car equally distant from its four closest neighbors to its left, right, top, or bottom, then the

shortest distance between idle cars is equal to 1 √ 

N I 
. The exact proof of Proposition 1 for a city of general shape and when

the locations of idle vehicles and passengers are random is deferred to Appendix A . 

Remark 2. Proposition 1 has a few limitations. First, the platform may wait to accumulate idle vehicles and waiting pas-

sengers before matching ( Ke et al., 2019 ). This can potentially benefit the passenger/driver as they receive a closer match

after waiting for a few more seconds. We do not capture this in Proposition 1 . Second, we assume that both passengers

and vehicles are uniformly and independently distributed across the city. In practice, passengers/drivers may strategically

choose their locations to wait for the next vehicle/customer. This is also not considered in Proposition 1 . Nevertheless, we

emphasize that our analysis does not require any specific form of function t w 

( · ). The qualitative results of this paper hold

as long as Assumption 1 is satisfied, and the result of Proposition 1 is only used to generate the numerical results. 
6 Most app-based ride-hailing platforms charge passengers based on the formula: total cost = base fare + price/mile × trip miles + price/time × trip time . 

p f represents the sum of these three costs. 
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In (3) we select N I 0 
as a reference so that 

E x { d(x ) | N I 0 idle vehicles } 
v can be computed from available TNC data for a city.

For instance, on average, Manhattan has 5089 TNC vehicles on the road. Every minute there are 187 new TNC trips. Each

trip takes around 16.3 min ( Schaller, 2017 ), and passengers wait 5 min for pickup ( Uber technologies, form s-1 registration

statement, 2019 ). In this case we have N = 5089 , λ = 187 trips/min, μ = 1 / 16 . 3 min 

−1 , and the average pickup time is

� 5 min. Taking N I 0 
= N − λ/μ � 2041 , then 

E x { d(x ) | N I 0 idle vehicles } 
v � 5 min, and the pickup time function (3) becomes: 

E x { d(x ) | N I idle vehicles } = 

226 √ 

N I 

(
1 + O 

(
max { 2041 

−1 , 2 . 59 N 

− 9 
8 

I 
, N 

−1 
I } 
))

, 

The estimate in Proposition 1 has approximation error O(N 

−1 
I 0 

+ (1 + ( 
N I 0 
N I 

) 
1 
8 ) N 

−1 
I 

) for large N I and N I 0 
. Medium to big

sized cities usually have a few thousands of TNC vehicles, 7 so (3) is a good approximation to the average pickup time for

practical parameter values. In summary, we have: 

Corollary 1. Assume that all the conditions in Proposition 1 hold, and the ride confirmation time t m 

is negligible compared to t p ,

i.e., t w 

= t m 

+ t p � t p . Then 

t w 

� t p = 

1 

v 
E x { d (x ) | N I id l e v ehicl es } � 

M √ 

N I 

, (4) 

where M = 

1 
v 
√ 

N I 0 
E x { d (x ) | N 

−1 
I 0 

id l e v ehicl es } and N I = N − λ/μ. 

The ride-hailing platform has a distinctive supply-side network externality . As the number of drivers increases, so do the

number and spatial density of idle drivers which, in turn, reduces pickup time and increases service quality. This enables

larger platforms to offer the same service quality at a lower cost. For instance, consider a small platform and a large platform

with the same vehicle occupancy. Assume the small platform is half the size of the large platform in terms of number of

vehicles and passengers. Based on (4) , the waiting time for the small platform, t s w 

, is 
√ 

2 times that of the large platform, t l w 

.

Let t s w 

= 6 min, then we have t l w 

= 4 . 2 min. The monetary value of this difference is α ∗ (t s w 

− t l w 

) = $5 . 7 (See Section 4.2 for

the value of α). This indicates that the smaller platform has to lower the rider fare by $5.7 to attract the same number of

passengers of the larger platform. 

Remark 3. The ride confirmation time t m 

is orders of magnitude smaller than the pickup time t p in large cities in the US.

For instance, New York city has an average of 5089 TNC vehicles, 187 passengers per minute, and each trip takes 16.3 min

( Schaller, 2017 ). If passenger arrivals are Poisson, then t m 

as the average waiting time in the M/G/N queue is sub-second

(virtually 0). In areas with limited supply of drivers, t m 

could be significant and can not be neglected. We can add t m 

to the

travel cost. We conjecture that in this case if t m 

+ t p satisfies Assumption 1 the qualitative results of the paper still hold. 

Passengers have a reservation cost that summarizes their other travel options: if the TNC travel cost c is greater than the

reservation cost, the passenger abandons the TNC for an alternative transport mode. We assume that the reservation costs

of passengers are heterogeneous, and let F p ( c ) be the cumulative distribution of reservation costs. The passenger arrival rate

then is given by 

λ = λ0 

[ 
1 − F p 

(
αt w 

(N − λ/μ) + βp f 

)] 
rides/min , (5) 

where λ0 is the arrival rates of potential passengers total travel demands in the city. Note that the trip time t o does not

depend on λ or N , so we absorb it into F p as a constant. According to (5) , the passengers that use the app-based ride-hailing

service are all potential passengers except those that leave the platform because its cost is greater than their reservation

cost. 

Driver incentives : Drivers are sensitive to earnings and respond to the offered wage by joining or leaving the platform.

The average hourly wage of TNC drivers is 

w = 

λp d 
N 

, (6) 

wherein p d is the per trip payment the driver receives from the platform. The platform keeps the difference between p f and

p d as its commission or profit. In 2018 Uber collected $41B from passengers of which drivers received 78% corresponding to

a 22% commission rate ( Uber, 2019 ), and Lyft collected $8B from passengers and received 26.8% as commission ( Lyft, 2019 ). 

The average hourly wage (6) is derived as follows. The total platform payment to all drivers sums to λp d $/min. Therefore

the average hourly wage per driver is λp d × 60 $/hr divided by N , where the constant 60 captures the time period of 1 h. 

Each driver has a reservation wage. He joins TNC if the platform wage is greater than his reservation wage. We assume

that the reservation wages of drivers are heterogeneous, and denote F ( c ) is the cumulative distribution of reservation wages
d 

7 San Francisco has around 60 0 0 active TNC vehicles on average ( Castiglione et al., 2016 ), and Manhattan has more than 10,0 0 0 TNC vehicles during 

peak hours ( Schaller, 2017 ). 
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across the population of drivers. Hence 

N = N 0 F d 

(
λp d 

N 

)
. (7)

Here N 0 is the number of potential drivers (all drivers seeking a job). For ease of notation we drop the constant factor 60

from the hourly wage formula and absorb it in the function F d in (7) . According to (7) , the number of TNC drivers is the

number of potential drivers multiplied by the proportion that joins the platform since their reservation wage is smaller than

w . 

Remark 4. In practice, both supply and demand of a ride-hailing system vary within a day. This can be approximated in a

quasi-static analysis by varying λ0 and N 0 for peak and off-peak hours. 

4. TNC decisions in absence of regulation 

The objective of the app-based ride-hailing platform adapts over time. In the initial phase it subsidizes passengers and

drivers to grow the business. Eventually it shifts to maximizing the profit. Here we focus on profit maximization assuming

that the platform is unregulated. Platform subsidy and competition are discussed in Section 8 . 

4.1. Pricing without regulation 

The platform rent or profit is 

� = λ(p f − p d ) . (8)

In a certain period (e.g., each minute), λ trips are completed. Since the platform pockets p f − p d from each trip, the total

rent in this period is (8) . 

In the absence of regulation, the platform maximizes its rent subject to the market equilibrium conditions: 

max 
p f ≥0 ,p d ≥0 

λ(p f − p d ) (9)

⎧ ⎪ ⎨ 

⎪ ⎩ 

λ = λ0 

[ 
1 − F p 

(
αt w 

(N − λ/μ) + βp f 

)] 
(a) 

N = N 0 F d 

(
λp d 

N 

)
(b) 

(10)

We have the following result on the existence of solution to (10) : 

Proposition 2. If F p ( αt w 

( N 0 )) < 1 and N 0 > λ0 / μ, there exist strictly positive λ, N, p f and p d that constitute a market equilibrium

satisfying (10) . 

The proof can be found in Appendix B . The assumption F p ( αt w 

( N 0 )) < 1 means that when the platform recruits all po-

tential drivers N 0 and sets the ride price at 0 ( p f = 0 ), there will be a positive number of passengers. This assumption rules

out the situation in which passenger reservation costs are so low and driver reservation wages are so high that supply and

demand curves do not intersect. 

Since (9) is not a convex problem, it is not straightforward to determine its solution. One approach is via numerical

computation as in Bai et al. (2018) . This is suitable for small problems. Instead, we proceed analytically. We view λ =
λ(p f , p d ) as a function of p f and p d determined implicitly by (10) . The first order necessary conditions of (9) then simplify

to ⎧ ⎪ ⎨ 

⎪ ⎩ 

∂λ

∂ p f 
(p f − p d ) + λ = 0 (a) 

∂λ

∂ p d 
(p f − p d ) − λ = 0 (b) 

(11)

in which (11a) is equivalent to 
∂�

∂ p f 
= 0 and (11b) is 

∂�

∂ p d 
= 0 . For non-convex problems, these conditions are only necessary.

However, they are sufficient in the following case. 

Proposition 3. Assume that (a) the waiting time function t w 

satisfies (4) ; (b) the reservation cost and the reservation wage

are uniformly distributed as F p (c) = min { e p c, 1 } and F d (w ) = min { e d w, 1 } , with e p ∈ R and e d ∈ R ; (c) the profit maximizing

problem (9) has at least one solution at which the objective value is positive. Then the following equations have a unique solution
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( p f , p d , λ, N ) , 8 which is the globally optimal solution to (9) . ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂λ

∂ p f 
(p f − p d ) + λ = 0 (a) 

∂λ

∂ p d 
(p f − p d ) − λ = 0 (b) 

λ = λ0 

[ 

1 − F p 

( 

αM √ 

N − λ/μ
+ βp f 

) ] 

(c) 

N = N 0 F d 

(
λp d 

N 

)
(d) 

(12) 

The proof of Proposition 3 is deferred to Appendix C . It asserts that (9) can be effectively computed by finding the

unique solution to (12) . Note that if the assumptions of Proposition 3 are not satisfied, we can still solve (9) by brute-force

computation. 

4.2. Numerical example 

We present a numerical example and calculate the platform’s profit-maximizing decision (9) . To apply Proposition 3 , we

assume that the waiting time function t w 

satisfies (4) , and that the reservation cost of passengers and the reservation wage

of drivers are both uniformly distributed. Below we specify the model parameters used in the simulation. 

Parameters: We take the TNC data for the Manhattan Central Business District (CBD) in New York city. It records all trips

that started from or ended in Manhattan CBD on a regular weekday. Let L denote the average TNC trip distance. We obtain

the following estimates based on Schaller (2017) : 

N = 5089 , λ = 187 ride / min , L = 2 . 4 mile , t o = 16 . 3 min , p f = $17 / trip , p d = $10 . 2 / trip . (13)

Note that t o denotes the average TNC trip duration. 

Our estimation proceeds as follows. Based on Schaller (2017) , each day TNC vehicles make 202,262 trips over 91,608

vehicle hours and 802,135 miles. On average, the vehicle are occupied 60% of the time ( Schaller, 2017 ). Since there are

virtually no rides between 1 AM − 7 AM , we divide the daily numbers by 18 (hours) to get N = 91 , 608 / 18 = 5089 and λ =
202 , 262 / 18 / 60 = 187 ride/min. The average trip length is 

total mileage 

number of trips 
× occupancy = 

802 , 135 

202 , 262 

∗ 0 . 6 = 2 . 4 mile . 

The average trip duration is 

vehicle hours 

number of trips 
× occupancy = 

91 , 608 

202 , 262 

∗ 0 . 6 ∗ 60 = 16 . 3 min . 

We estimate that a 16 min, 2.4-mile ride In Manhattan costs $17. TNC drivers in New York earn an average of $22.6 per

hour before expenses ( Parrott and Reich, 2018 ). This suggests w = λp d /N = $22 . 6 , and so p d = 22 . 6 N/λ = $10 . 2 per trip. 

Note that our estimates (13) are solutions to the profit-maximizing problem (9) . We now utilize these solutions to

‘reverse-engineer’ the model parameters ( N 0 , λ0 , α, β). In particular, we select ( N 0 , λ0 , α, β) so that the solutions to

(9) match the real data (13) . This can be realized by substituting (13) into (12) and solving the first-order conditions (12) .

We obtain: 

N 0 = 13 , 512 , λ0 = 1512 / min , α = 3 . 2$ / min , β = 1 , e p = 0 . 0262 , e d = 1 , M = 226 , μ = 1 / 16 . 3 min 

−1 
. (14)

Empirical study suggests that the value of travel time (VOT) is between $20 to $100 per hour ( Schwieterman and Liv-

ingston, 2018 ), and the value of waiting time is 2 to 3 times the value of in-vehicle travel time ( Quarmby, 1967 ). Our

estimate of α = $3 . 2 per min corresponds to a VOT between $64 and $96 per hour. 

Results: We vary λ0 between 10 0 0 and 20 0 0 to study how the platform decision varies at different times of the day ( λ0 

is large during peak hours). The results are shown in Figs. 2–7 . As λ0 increases, the number of passengers ( λ) and drivers

( N ) both increase. At the same time, occupancy rate ( Fig. 4 ), and the ride price increase ( Fig. 5 ). At peak hours, the drivers

benefit since they earn more ( Fig. 6 ), but the passengers travel at a higher cost (2) due to the increased trip fare. 

Note that as the number of potential passengers ( λ0 ) doubles from 10 0 0 to 20 0 0 riders per minute, the profit-maximizing

fare ( p f ) per ride set by the platform increases by 13% from $15.8 to $17.8 per trip, driver payment ( p d ) increases by 16%

from $9.4 to $10.9 per trip, and the platform’s share increases by 8% from $6.4 to $6.9. The 33% increase in driver wages

from $17.8 to $25.1 per hour is due jointly to the increases in per trip payment to the driver and the vehicle occupancy

(from 0.55 to 0.63). By the same token, a driver’s hourly wage declines by 33% from peak to off-peak hours. Thus in the

absence of a wage floor, drivers bear most of the risk of shifts in demand. 
8 Since p f = p d = λ = N = 0 is always a solution, throughout the paper by ‘solution’ we refer to strictly positive solutions unless otherwise stated. 
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Fig. 2. Number of drivers under different potential passengers. 

Fig. 3. Arrival rates of Passengers (per minute). 

Fig. 4. Occupancy rate under different potential passengers. 

Fig. 5. Per mile ride price and driver payment. 

 

5. TNC decisions with wage floor 

This section is devoted to platform pricing with a wage floor. A driver minimum wage w imposes the constraint λp d /N ≥
w. 9 After a wage floor is imposed the platform may find it prohibitive to hire all drivers who wish to join and, thus, limit
9 New York City Taxi and Limousine Commission imposes the minimum driver payment (1) . We assume a constant speed, so per-minute price can be 

transformed to per-mile price, and we use p d to represent the sum of the first and second term in (1) . If we neglect the constant shared ride bonus, (1) is 

proportional to λp d / N . 
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Fig. 6. Driver wage per hour under different potential passengers. 

Fig. 7. Passenger travel cost under different potential passengers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the entry of new drivers. We capture this by relaxing (10b) to the inequality (16b). The profit maximizing problem subject

to a wage floor is 

max 
p f ≥0 ,p d ≥0 ,N 

λ(p f − p d ) (15) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

λ = λ0 

[ 
1 − F p 

(
αt w 

(N − λ/μ) + βp f 

)] 
(a) 

N ≤ N 0 F d 

(
λp d 

N 

)
(b) 

λp d 
N 

≥ w (c) 

(16) 

Constraint (16b) indicates that the platform can hire up to the number of all available drivers. This introduces an addi-

tional decision variable N . It can be solved via numerical computation as in Bai et al. (2018) . Similarly to Proposition 2 , we

can show that (16) has at least one non-trivial solution if F p ( αt w 

( N 0 )) < 1. 

5.1. A Cheap–Lunch theorem 

Example: Consider an example for which we calculate the profit-maximizing prices (15) for different wage floors w . We

assume that the waiting time function t w 

is of form (4) , and that the reservation cost of passengers and the reservation

wage of drivers are both uniformly distributed. We set the model parameters as (13) and (14) . We emphasize that these

assumptions are only needed for numerical simulations. Our analysis does not depend on these assumptions or model pa-

rameters. Figs. 8–16 reveal the market response to different levels of the wage floor, including number of drivers, arrival

rates of passengers, vehicle occupancy rate, driver wage, passenger pickup time, platform prices, and platform profit. The

response has three distinct regimes: 

• w < $22.6: The wage floor constraint (16c) is inactive and the solution to (15) is the same as that to (9) because even in

the absence of the minimum wage constraint the platform sets w = $22 . 6 to attract enough drivers. 
• $22.6 ≤ w < $36.3: Both (16b) and (16c) constraints are active. As the minimum wage increases, the platform hires all

drivers whose reservation wage is below the minimum wage, the ride cost (2) goes down, the quality of service (pickup

time) improves, driver wage increases, more passengers are served, and the platform profit reduces. 
• w ≥ $36.3: Only the wage floor constraint (16c) is active. As the minimum wage exceeds $36.3, the platform hires fewer

drivers than wish to work, both ride fare ( p f ) and pickup time ( t p ) increase, fewer passengers take the ride-hailing option,
the drivers who are hired earn more, and the platform profit reduces further. 
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Fig. 8. Number of drivers under different wage floors. 

Fig. 9. Arrival rates of Passengers (per minute). 

Fig. 10. Occupancy rate under different wage floors. 

Fig. 11. Per mile ride price and driver payment. 

 

 

 

 

 

According to Theorem 1 below, the qualitative behavior of most variables, including number of drivers, arrival of passen-

gers, driver wage, travel cost, and platform rent remains consistent with Figs. 8–16 for all model parameters. The behavior

of p f may depend on model parameters. When α is small, the trip fare p f may decrease in the second regime of Fig. 11 .

This is because for small α passengers are more sensitive to trip fare, and the platform may find it more effective to attract

passengers by reducing the trip fare. However, we emphasize that the total travel cost (2) as the sum of p f and pickup time

always decreases in the second regime. 
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Fig. 12. Commission rate defined as percentage of service fee in p f . 

Fig. 13. Driver wage per hour under different wage floors. 

Fig. 14. Passenger pickup time under different wage floor. 

Fig. 15. Total cost of passengers under different caps. 

 

 

 

 

 

Remark 5. When the wage floor reaches $39 per hour, the platform profit is 0. In this case, the platform may exit the

market. This regulatory risk associated with the ride-sharing business model is explicitly called out by Uber and Lyft in their

IPO registration statements ( Uber, 2019; Lyft, 2019 ). In practice, it is unlikely that regulations will drive platform revenue to

zero. New York city’s wage floor of $27.86 per hour (before expenses) will predictably lead to 10.5% decrease in platform

profit from $76K to $68K per hour. 

Assuming the optimum solution to (15) is unique, write it as a function of w : (N 

∗(w ) , λ∗(w ) , p ∗
f 
(w ) , p ∗

d 
(w )) . We have

the following theorem. 
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Fig. 16. Platform profit ($/hour) under different wage floors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 1. Assume that (15) has a unique solution. 10 For any parameters ( N 0 , λ0 , α, β) and any distributions F p ( ·) and F d ( ·) that

satisfy F p ( αt w 

( N 0 )) < 1 and N 0 > λ0 / μ, we have ∇ + N 

∗( ̃  w ) > 0 and ∇ + λ∗( ̃  w ) > 0 , where ∇ + denotes the right-hand derivative,

and ˜ w is the optimal driver wage in absence of regulation, i.e., the solution to (9) . 

The proof of Theorem 1 can be found in Appendix D . Theorem 1 holds for every pickup time t w 

that satisfies Assumption

1 and it does not assume any specific formula for pickup time or a specific matching algorithm utilized by the platform. This

implies that the second regime always exists: when w ≤ ˜ w , the minimum floor constraint (16c) is inactive, so the solution is

in regime 1. When w = ˜ w , the right-hand derivative of N and λ are both strictly positive. This corresponds to the beginning

of the second regime, where the platform hires more drivers and serves more passengers. The increase in the number of

drivers and passengers implies that the wage of drivers increases and the total cost of passengers decreases. 

Discussion: The effect of minimum wage on labor markets has been the subject of many studies in labor economics

since its inception as part of Fair Labor Standard Act of 1938, and it still remains a contentious topic among economists. We

provide a brief overview of the existing literature on the effect of the minimum wage regulation on employment. We then

discuss how our result connects to the current literature. 

There is mixed empirical evidence on whether imposing a minimum wage has a positive or negative effect on employ-

ment; for instance, the authors in Card and Krueger (1994, 20 0 0) and Neumark and Wascher (20 0 0) use the data from

fast-food industry in Pennsylvania and New Jersey and draw drastically different conclusions on the impact of an increase

in the minimum wage. A recent meta-study ( Belman and Wolfson, 2014 ) found that it is equally likely to find positive or

negative employment effect of the minimum wage in the literature; a similar observation is made in Schmitt et al. (2013) . 11

A similar division in economic theory literature exists regarding the direction of the employment effect of minimum

wage ( McConnell et al., 2016 ). One strand of work that assumes that the labor market is perfectly competitive concludes

that minimum wage has a negative effect on employment. Another strand of work considers a monopsony framework where

the employer has bargaining power over the wage, and the labor demand is upward-sloping. This work contends that the

minimum wage may actually increase employment ( Laing, 2011 ). 

Our results above are similar to those of the monopsony framework in the literature. In a ride-sharing market, a TNC

has market power over drivers as it explicitly sets price p d for drivers. Moreover, given the significant size of its drivers (e.g.

Uber is the largest for-profit employer in New York city if we consider drivers as employees Parrott and Reich, 2018 ), TNC

does not face a perfectly competitive labor market. 12 

Our model is different from the standard economic equilibrium model in which supply and demand are equal. We con-

sider a model where the supply (drivers N ) must exceed the demand (riders λ), and the difference between the supply and

demand (idle cars N I ) contributes to the total cost the riders faces through waiting times t w 

( N I ). Nevertheless, we can use

the monopsony framework to provide an intuitive explanation of Theorem 1 below. 

Consider Fig. 17 , where curve W ( L ) depicts the wage corresponds to every employment level L and curve MRP represents

the resulting marginal-revenue product equivalent to employment level L . We note that in deriving the MRP curve, we ignore

the effect of waiting time t w 

and assume that c = βp f . The intersection of W ( L ) and MRP (point E ) determines the outcome

in a competitive labor market with employment L ∗c and wage ω 

∗
c . However, a TNC does not face a perfectly competitive labor

market, and sets wages to maximize its profit. From W ( L ) we can determine the marginal cost of labor MCL defined as the

marginal cost the TNC has to pay to hire one more driver; we note that to hire an additional driver the TNC has to increase

the wage for all of his existing drivers, thus, MLC curve lies above W ( L ). Figs. 17–19 depicts the resulting MCL curves for

three different regimes depending on the value of the minimum wage ω m 

. The optimal employment level and wage can be
10 For almost all parameter values there will not be multiple solutions with the same optimal value. 
11 We refer the interested reader to ( Card and Krueger, 2015; Neumark and Wascher, 2007 ) for surveys of studies on the effects of minimum wage. 
12 We note that in labor economics, the term monopsony does not only refer to the traditional company town with a single employer with full market 

power. It applies more broadly to cases where the employer has some market power to set wages and faces upward-sloping labor supply ( Boal and 

Ransom, 1997 ). 
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Fig. 17. Regulated market with wage floor w m < ω 

∗
1 (first regime). 

Fig. 18. Regulated market with wage floor ω 

∗
1 ≤ w m ≤ ω 

∗
c (second regime). 

Fig. 19. Regulated market with wage floor w m > ω 

∗
c (third regime). 

 

 

 

 

 

determined by the intersection of MRP and MCL curves, i.e. point A in the first regime, point B in the second regime, and

point C in the third regime. 

As the minimum wage ω m 

increases, it is easy to verify that the number of drivers is constant in the first regime ( Fig. 17 ),

increases in the second regime ( Fig. 18 ), and decreases in the third regime ( Fig. 19 ). Ignoring the effect of idle vehicles and

waiting time t w 

on cost c , the number of riders follow a similar pattern as the number of drivers. Consequently, the cost

for riders is constant in the first regime, decreases in the second regime, and increases in the third regime. The above
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Fig. 20. Number of drivers under different caps. 

Fig. 21. Arrival rates of Passengers (per minute). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

monopsony argument does not capture the presence of idle vehicles and their effect on waiting time t w 

. The results of

Theorem 1 establishes the result formally incorporating the impact of t w 

on total cost c to riders. 

6. TNC decisions with cap on number of drivers 

Let N cap be the cap on the total number of drivers. With a cap constraint, the platform pricing problem is 

max 
p f ≥0 ,p d ≥0 

λ(p f − p d ) (17)

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

λ = λ0 

[ 
1 − F p 

(
αt w 

(N − λ/μ) + βp f 

)] 
(a) 

N = N 0 F d 

(
λp d 

N 

)
(b) 

N ≤ N cap (c) 

(18)

It is unnecessary to relax (18b), since the platform can always lower p d to increase its profit. As with Proposition 2 we can

show that (18) admits a non-trivial solution if F p ( αt w 

( N 0 )) < 1. This is a non-convex program. One approach is via numerical

computation as in Bai et al. (2018) . This is suitable for a small problem. Alternatively, we can find the optimal solution based

on first order conditions for the following special case: 

Proposition 4. Assume that (a) the waiting time function t w 

satisfies (4) ; (b) the reservation cost and the reservation wage

are uniformly distributed as F p (c) = min { e p c, 1 } and F d (w ) = min { e d w, 1 } , with e p ∈ R and e d ∈ R ; (c) the profit maximizing

problem (17) has at least one solution at which the objective value is positive. Then the first order conditions of (17) admit a

unique solution ( p f , p d , λ, N ), which is the globally optimal solution to (17) . 

The proof is deferred to Appendix E , and the first order conditions of (17) are defined in the proof. 

Example: Consider an example where the platform solves the profit-maximizing problem (17) for different levels of N cap .

We assume that the waiting time function t w 

is of form (4) , and that the reservation cost of passengers and the reservation

wage of drivers are both uniformly distributed. We set the model parameters as (13) and (14) . 

Figs. 20–28 exhibit the market response to different caps on the total number of vehicles. These responses include the

arrival rates of passengers, occupancy rate, platform prices, driver wage, pickup time and platform profit. It is more instruc-

tive to “read” the figures from right to left, as the cap decreases. As the cap decreases, the supply of vehicles drops ( Fig. 20 ),

so it is more difficult for passengers to find a ride. In this case, pickup time increases ( Fig. 26 ), and the number of rides

decreases ( Fig. 21 ). Here are some interesting observations: 

• The platform loses passengers faster than it loses drivers. This is evidenced by the drop in occupancy ( Fig. 22 ). 
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Fig. 22. Occupancy rate under different caps. 

Fig. 23. Per mile ride price and driver payment under different caps. 

Fig. 24. Commission rate defined as percentage of service fee in p f . 

Fig. 25. Driver wage per hour under different caps. 

 

 

 

 

 

• The pickup time increases at an increasing rate ( Fig. 26 ). This is just a counterpart of the aforementioned network exter-

nality. 
• Both trip fare and driver wage drop ( Figs. 23 and 25 ). 

These observations can be explained. As the cap reduces the number of drivers, the passenger pickup time increases.

Since t p is a decreasing convex function of N , it has an increasing derivative as N decreases. Therefore customers leave the

platform at an increasing rate as N cap decreases. This rate is greater than the decreasing rate of N cap , so occupancy rate

decreases. In this case, the platform loses passengers quickly, and has to reduce trip prices to keep passengers from leaving.

This further squeezes driver pay ( Fig. 25 ). 
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Fig. 26. Passenger pickup time under different caps. 

Fig. 27. total cost of passengers under different caps. 

Fig. 28. Platform profit ($/hour) under different caps. 

 

 

 

 

 

 

 

 

 

 

A surprising fact is that the cap on number of drivers hurts the earning of drivers ( Fig. 25 ). This is contrary to the

common belief that limiting their number will protect drivers, as expressed in the regulation freezing the number of TNC

vehicles in New York for one year ( Shapiro, 2018 ). This happens because the platform hires drivers with lowest reservation

wage first. That is, with a smaller cap on the number of drivers, the platform responds by reducing driver pay and hiring

drivers with lower reservation costs. Thus the benefit of limiting supply is intercepted by the platform. This is in contrast

with the situation of taxis that need a medallion to operate. A limit on the number of medallions will increase their value

and benefit their owners, 13 who may be taxi drivers. In the TNC case, the platform accumulates the increased value. This

conclusion holds in general and is not affected by the model parameters. 

7. TNC decisions with congestion surcharge 

As of Jan 2019, all trips by for-hire vehicles that cross 96th street in NYC incur a congestion surcharge of $2.75 per

TNC trip. We model the likely impact of this policy by adding a congestion surcharge p c to the travel cost (2) . The profit-

maximizing problem for the platform now is 

max 
p f ≥0 ,p d ≥0 

λ(p f − p d ) (19)
13 The platform revenue (sum of platform rent and driver payments) divided by the number of drivers increases as the cap decreases. 
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Fig. 29. Number of drivers under different surcharge. 

Fig. 30. Arrival rates of Passengers (per minute). 

 

 

 

 

 

 

 

 

⎧ ⎪ ⎨ 

⎪ ⎩ 

λ = λ0 

[ 
1 − F p 

(
αt w 

(N − λ/μ) + βp f + βp c 

)] 
(a) 

N = N 0 F d 

(
λp d 

N 

)
(b) 

(20) 

As with Proposition 2 , we can show that the constraint set (20) is non-empty if F p 

(
αt w 

(N 0 ) + βp c 

)
< 1 . Since (19) is not

a convex program, one approach to solve (19) is via brute-force computation ( Bai et al., 2018 ). Alternatively, we can show

that the first order conditions are sufficient for global optimization for some special cases: 

Proposition 5. Assume that (a) the waiting time function t w 

satisfies (4) ; (b) the reservation cost and the reservation wage are

uniformly distributed as F p (c) = min { e p c, 1 } and F d (w ) = min { e d w, 1 } , with e p ∈ R and e d ∈ R ; (c) the profit maximizing problem

(19) has at least one solution at which the objective value is positive. Then the following equations have a unique solution ( p f , p d , 

λ, N ), which is the globally optimal solution to (19) . ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂λ

∂ p f 
(p f − p d ) + λ = 0 (a) 

∂λ

∂ p d 
(p f − p d ) − λ = 0 (b) 

λ = λ0 

[ 

1 − F p 

( 

αM √ 

N − λ/μ
+ βp f + βp c 

) ] 

(c) 

N = N 0 F d 

(
λp d 

N 

)
(d) 

(21) 

The proof is similar to that for Proposition 3 , and is therefore omitted. 

We estimate the platform’s response to various values of congestion surcharge p c by numerical simulation. In this exam-

ple, we impose the same assumptions and model parameters as in Section 4.2 . Simulation results, presented in Figs. 29–34 ,

show that under a congestion surcharge of $2.75 per trip, the number of TNC vehicles drops by 11.9% from 5089 to 4480,

TNC rides reduce by 17.1% from 187/min to 155/min, and platform revenue shrinks by 37.3% from $76, 006/hour to $47,686

per hour. This also suggests that the TNC business model is vulnerable to regulatory risk. 
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Fig. 31. Per mile ride price and driver payment under different surcharge. 

Fig. 32. Driver wage per hour under different surcharge. 

Fig. 33. Total cost of passengers under different surcharge. 

Fig. 34. Platform profit ($/hour) under different surcharge. 

 

 

 

8. Extensions 

We formulate some extensions of the basic model to examine platform subsidy, platform competition and autonomous

mobility on demand. 

8.1. Platform subsidy 

The ride-hailing platform company is not always a short-term profit maximizer. In its early stages, it tries to grow its

business via subsidies to both passengers and drivers. To model this, we consider a ride-hailing platform that sets prices
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Fig. 35. Subsidies to passengers and drivers under different subsidy budgets. 

Fig. 36. Arrival rate of passengers under different subsidy budgets. 

Fig. 37. Number of drivers under different subsidy budgets. 

 

 

 

 

 

 

 

 

 

to maximize the number of rides or passengers λ subject to a reservation revenue R , which may be positive or negative

(negative R indicates subsidy): 

max 
p f ≥0 ,p d ≥0 

λ (22) 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

λ = λ0 

[ 
1 − F p 

(
αt w 

(N − λ/μ) + βp f 

)] 
(a) 

N = N 0 F d 

(
λp d 

N 

)
(b) 

λ(p f − p d ) ≥ R (c) 

(23) 

For notational convenience, let (λ� , p � 
f 
, p � 

d 
) be the solution to (22) , and denote ( ̃ λ, ˜ p f , ˜ p d ) as the solution to the non-

subsidy case (9) . 

We define subsidy as ε f = p � 
f 
− ˜ p f and εd = ˜ p d − p � 

d 
, where εf and εd represent the subsidy to passengers and drivers, re-

spectively. Note that this definition essentially compares (p � 
f 
, p � 

d 
) to the profit-maximizing prices. For ease of understanding,

we define B = ̃

 λ( ̃  p f − ˜ p d ) − R as the subsidy budget. When reservation revenue is the maximal profit, i.e., R = ̃

 λ( ̃  p f − ˜ p d ) ,

the subsidy budget is 0, and ε f = εd = 0 . 

We estimate the platform’s ridership under different levels of subsidy. In the numerical example we impose the same

assumptions and model parameters as in Section 4.2 . Simulation results presented in Figs. 35–37 show that the platform

should always subsidize both sides of the market, regardless of the subsidy level. Another interesting observation is that

the platform should subsidize drivers more than it does passengers. This conclusion, however, depends on the elasticities of
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demand and supply because the platform has to grow both sides of the market to maximize profit. Under a fixed budget,

the platform allocates more subsidy to the less price-sensitive side as it costs more to grow this side of the market by one

unit. 

8.2. Platform competition 

Consider two platforms (e.g., Uber and Lyft) competing with each other to maximize their profits. The profits are coupled

through the market response to the joint decisions of both platforms: Passengers choose the platform with lower overall

cost, and drivers work for the platform with a higher wage rate. This subsection modifies the model to capture this compe-

tition. 

Each platform selects its passenger fare and driver wage. Passengers and drivers respond to the platform prices until the

market settles down. Assume that when the market settles down, both platforms survive with a positive profit. In this case

neither passengers nor drivers deviate from their choice of platform at the market equilibrium, so the passenger costs and

driver wages for the two platforms are equal. This gives rise to the following profit maximization problem for one platform,

given the pricing decisions (p ′ 
f 
, p ′ 

d 
) of its competitor: 

max 
p f ≥0 ,p d ≥0 

λ(p f − p d ) (24)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

αt w 

(N − λ/μ) + βp f = αt w 

(N 

′ − λ′ /μ) + βp ′ 
f 

(a) 

λp d 
N 

= 

λ′ p ′ 
d 

N 

′ (b) 

λ + λ′ = λ0 

[ 
1 − F p 

(
αt w 

(N − λ/μ) + βp f 

)] 
(c) 

N + N 

′ = N 0 F d 

(
λp d 

N 

)
(d) 

(25)

Constraints (25a) and (25b) guarantee that if both platforms have positive number of passengers and drivers, then the

passenger cost and driver wage in the two platforms are the same, so no passenger or driver has an incentive to switch

platforms. Note that the market outcomes ( N, λ, N 

′ , λ′ ) are not given. Instead, they are governed by the market equilibrium

conditions (25a)-(25b) and the platform prices (p f , p d , p 
′ 
f 
, p ′ 

d 
) . One difference between (24) -(25b) and the monopoly case

(9) -(10b) is that in the former the waiting time for each TNC depends on the number of its own idle vehicles rather than

on the sum of the idle vehicles of the two platforms. The second difference, by contrast, is that the wage rate (25a) is

determined by the sum of the demand for drivers by both platforms. 

Analogously, the second platform’s decisions (p ′ 
f 
, p ′ 

d 
) will maximize its own profits given the decisions ( p f , p d ) of the

first. The solution of the two decision problems will be a Nash equilibrium. 

Due to non-convexity of (24) , the question of existence and uniqueness of Nash equilibrium remains open. It is possible

that the two platforms will split the heterogeneous passengers, with one platform offering a higher fare, lower waiting time,

luxury rides to passengers with higher reservation cost; the emergence of such equilibrium outcomes with product quality

differentiation was first demonstrated by Shaked and Sutton (1982 , 1983) in oligopolies. 

8.3. Autonomous vehicles 

Autonomous vehicles (AV) will revolutionize road transportation ( Talebpour and Mahmassani, 2016 ). AV companies claim

they will banish 94% of all accidents attributed to human error ( Waymo, 2018 ). So commuters can sit back and relax, work,

or entertain themselves. Eventually there will be hardly any need for human drivers. The impact on our lives will be pro-

found. Uber and Lyft have R&D efforts to build self-driving ride-hailing vehicles. Billions of venture capital are flowing into

the race to develop AVs. 

We model a company that owns and operates a fleet of autonomous vehicles to provide autonomous mobility on de-

mand (AMoD) service ( Spieser et al., 2014; Rossi et al., 2018 ), and compare it to a ride-hailing service with human drivers.

We modify the model (9) -(10b) to relate the decisions of an AMoD monopoly and those of a TNC monopoly. The AMoD

monopoly will set its ride rates to maximize its profit (26) subject to demand (27) : 

max 
p f ≥0 ,N≥0 

λ(p f − Nc a v ) (26)

s.t. λ = λ0 

[ 
1 − F p 

(
αt w 

(N − λ/μ) + βp f 

)] 
(27)

Here N is the number of deployed AVs and c av is the per ride investment and operating cost of an AV. Comparing this with

the TNC decision making model (9) -(10b) we get a straightforward formal identification: 

number of AVs deployed 

. = number of drivers hired, and wage rate w 

. = c a v vehicle cost . 
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Following the NYTLC ruling, we take w = $27 . 86 per hour or an annual cost of $55,0 0 0 for 20 0 0 h per year of driver (plus

vehicle) service. So for the AMoD monopoly to be as profitable as the TNC monopoly (26) implies that an AV’s annual

investment and operating cost should be smaller than $55,0 0 0. How likely is this? 

Today’s AVs do not meet this cost target. In records submitted to the California Department of Motor Vehicles (DMV)

Waymo reported that in its 2017 AV tests its safety drivers disengaged autonomous driving once every 5500 miles

( Waymo, 2018 ). Waymo reports a disengagement when its evaluation process identifies the event as having ‘safety sig-

nificance’, so this rate is almost 100 times worse than the estimated 50 0,0 0 0 miles per accident in 2015 for human drivers.

With this poor safety performance, each AV will require a safety driver, making its total cost more than twice today’s TNC

cost. Of course AV safety will improve over time with more and more testing and R&D but it’s anyone’s guess as to when

an AV will perform as safely as human drivers. 

Alternatively, AMoD service can be scaled back to very controlled environments that reduce the risk of accidents by a

factor of 100. That direction is also being pursued. For example, Waymo is providing rides to 400 people in the calm, sunny

suburb of Chandler, AZ ( Sage, 2018 ). These AMoD rides use AVs with a safety driver. 

One additional piece of evidence also suggests that the cost of AVs is very high. Two proposed contracts show the leasing

cost of AV cars and shuttles of well over $10 0,0 0 0 each per year ( Waddell, 1918 ). EasyMile is charging more than $27,0 0 0 a

month per small electric shuttle for cities that sign up for one year of service. Drive.ai charges $14,0 0 0 monthly per vehicle

for one year. Considering that a TNC driver (with car) costs $55,0 0 0 per year or $4,400 per month, it seems unlikely that

these are viable business models, except in selective subsidized niche markets. 14 

9. Conclusion 

This paper analyzed the impact of three regulations on the ride-hailing app-based platforms or TNCs like Uber and Lyft:

(a) A floor under driver wage; (b) a cap on total number of drivers; and (c) a per-trip congestion tax that goes to the public

transit. We constructed a general equilibrium model to predict market responses to the platform’s decision on fares and

wages, with and without these regulations. We showed that imposing a wage floor proposed by NYTCL increases driver

employment, lowers pickup time, decreases ride cost, and attracts more passengers, over a wide range of parameters. Our

analysis suggests that a higher minimum wage benefits both drivers and passengers, at the expense of platform profits. On

the other hand, a cap on the number of drivers or vehicles hurts drivers, as the platform benefits by hiring cheaper drivers

when supply is limited. Variants of our model were analyzed from other perspectives as well, including platform subsidy,

platform competition and autonomous vehicles. 

Our study advocates a wage floor for TNC drivers. Our simulation shows that increasing driver wage by 23.3% (from

$22.6 to $27.86 per hour before expense) will increase the number of TNC vehicles by 23.3% (from 5089 to 6276), increase

TNC ridership by 24.6% (from 187 to 233 per min), improve the pickup time by 10% (from 5 min to 4.5 min), decrease

the travel cost by 3.6% (from $33.4 to $32.2 per trip), and reduce the platform rent by 10.5% (from $76K to $68K per

hour). This indicates that enforcing a minimum wage for drivers benefits both drivers and passengers. Under the wage

floor, the platform is motivated to hire more drivers to attract more passengers so as to increase the platform sales. As a

consequence, more drivers are hired, more passengers are delivered, drivers earn more, and each passengers spend less.

The wage floor squeezes the monopoly profit of the platform and improves the efficiency of the system. It benefits the TNC

economy without costing taxpayer’s money. 

A congestion surcharge will relieve traffic congestion by reducing the number of TNC vehicles. Numerical simulation sug-

gests that a surcharge of $2.75 per trip in New York will reduce TNC vehicles by 11.9% (from 5089 to 4480) and TNC rides

by 17.1% (from 187 to 155 per min). More importantly, the funds raised from this surcharge can be used to subsidize public

transit. In New York, it is estimated that the congestion surcharge will yield $1M per day. The money goes to the Metropoli-

tan Transportation Authority to upgrade the subway system. It can be used to make public transportation cleaner, faster,

and safer, so that more residents will commute by transit. Increased public transit ridership will improve the efficiency of

the city’s transportation system, and reduce the environmental footprint of transportation, which accounts for 28% of the

total carbon emissions in the US. 

Interest in TNC regulation has been driven by concerns about working conditions of TNC drivers and by the deleterious

impact on urban transport of TNC growth. This paper deals only with the impact on driver wage and ride fare. There is

a debate whether TNC drivers are more like ‘independent contractors’ or more like employees ( Tirole, 2019b ). This paper

contributes to that debate in showing that TNC driver wages can be significantly increased and passenger fares decreased at

the cost of lower TNC profits. 
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Appendix A. Proof of Proposition 1 

Proof. We prove the result in two steps. (i) First, we consider the case of a passenger located at the origin and N I = N − λ/μ
idle vehicles uniformly and independently distributed in a disk of radius R centered at the origin. We show that the expected

distance of the passenger to the closest idle vehicle is 
√ 

N I 0 
E { d(N I 0 

) } 1 √ 

N I 
(1 + O( max { N 

−1 
I 0 

, N 

−1 
I 

} )) . (ii) Second, based on the

result of part (i), we show that for a city with any two-dimensional area A , the expected shortest distance to an idle vehicle

of a passenger is also given by 
√ 

N I 0 
E { d(N I 0 

) } 1 √ 

N I 
(1 + O( max { N 

−1 
I 0 

, N 

−1 
I 

} )) . 
(i) To prove the first step, let d ( n ) := min (| x 1 |, ���, | x n |) be the shortest distance to the origin among n idle vehicles where

x i ∈ R 2 is the location of the i th idle vehicle. Then the cumulative distribution function (cdf) of d ( n ) is 

P { d(n ) ≤ r} = 1 − P { d(n ) > r} = 1 − P {| x i | > r, ∀ i } = 1 −
(

1 − π r 2 

πR 

2 

)n 

Therefore, the probability density function (pdf) of d is 

f d(n ) (r) = n 

(
1 − r 2 

R 

2 

)n −1 
2 r 

R 

2 

Consequently, 

E { d(n ) } = 

∫ R 

0 

f d(n ) (r) × r × dr = 

∫ R 

0 

2 n 

(
1 − r 2 

R 

2 

)n −1 
r 2 

R 

2 
dr 

= 

2 

3 

n 

(
1 − r 2 

R 

2 

)n −1 
r 3 

R 

2 

∣∣∣R 
0 

+ 

∫ R 

0 

2 

2 

3 

n (n − 1) 

(
1 − r 2 

R 

2 

)n −2 
r 4 

R 

4 
dr 

= 

∫ R 

0 

2 

2 

3 

n (n − 1) 

(
1 − r 2 

R 

2 

)n −2 
r 4 

R 

4 
dr 

· · ·

= 2 

n 

∏ n −1 
i =0 (n − i ) ∏ n 

i =1 (2 i + 1) 

r 2 n +1 

R 

2 n 

∣∣∣R 
0 

= 

(2 

n n !) 2 

(2 n + 1)! 
R 

in which the fifth equality follows from an iterative application of integration by parts (similar to the one that leads to the

third equality). Therefore, (for any N I 0 
) 

E { d(N I ) } = 

⎧ ⎨ 

⎩ 

E { d(N I 0 ) } 
∏ N I −1 

i = N I 0 

(
2 i 

2 i +1 

)
if N I > N I 0 

E { d(N I 0 ) } 1 ∏ 

N I 0 
−1 

i = N I ( 2 i 
2 i +1 ) 

if N I < N I 0 

Next, we prove that 
∏ n 

i = m 

(
2 i 

2 i +1 

)
= 

√ 

m √ 

n 
(1 + O(m )) for m < n . We have, 

ln 

( 

n ∏ 

i = m 

(
2 i 

2 i + 1 

)) 

= 

n ∑ 

i = m 

ln 

(
1 − 1 

2 i + 1 

)
. 

For x ∈ [0, ∼ 0.43], we have −x − x 2 ≤ ln (1 − x ) ≤ −x . Thus, 

−1 

2 

n ∑ 

i = m 

1 

i + 

1 
2 

−
n ∑ 

i = m 

1 

(2 i + 1) 2 
≤

n ∑ 

i = m 

ln 

(
1 − 1 

2 i + 1 

)
≤ −

n ∑ 

i = m 

1 

2 i + 1 

⇐⇒ 

−1 

2 

n ∑ 

i = m 

1 

i + 

1 
2 

− 1 

2 

n ∑ 

i = m 

[
1 

i − 1 
2 

− 1 

i + 

1 
2 

]
≤

n ∑ 

i = m 

ln 

(
1 − 1 

2 i + 1 

)
≤ −1 

2 

n ∑ 

i = m 

1 

2 i + 1 

�⇒ 

−1 

2 

ln 

(
n 

m 

)
+ O(m 

−1 ) − 1 

2 

[
1 

m − 1 
2 

− 1 

n + 

1 
2 

]
≤

n ∑ 

i = m 

ln 

(
1 − 1 

2 i + 1 

)
≤ −1 

2 

ln 

(
n 

m 

)
+ O(m 

−1 ) . 
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Therefore, 
∏ n 

i = m 

(
2 i 

2 i +1 

)
= 

√ 

m √ 

n 
(1 + O(m 

−1 )) for m < n . Consequently, 

E { d(N I ) } = 

⎧ ⎨ 

⎩ 

E { d(N I 0 ) } 
√ 

N I 0 √ 

N I 
(1 + O(N 

−1 
I 0 

)) if N I > N I 0 

E { d(N I 0 ) } 
√ 

N I 0 √ 

N I 
+ (1 + O(N 

−1 
I 

)) if N I < N I 0 

= 

√ 

N I 0 E { d(N I 0 ) } 1 √ 

N I 

(1 + O( max { N 

−1 
I 0 

, N 

−1 
I } )) 

(ii) We cannot directly apply the result of part (i) for a passenger with an arbitrary location inside A . Nevertheless, based

on the result of part (i) we can iteratively provide an approximation. For every point x ∈ A consider a disk B r ( x ) of radius

r > 0 around x, r > 0. We partition A into two sets C and D, where (a) C = { x ∈ A : B r (x ) ⊂ A} is the set of points such that

B r ( x ) is contained in A , and (b) let D := { x ∈ A : B r (x ) �⊂ A} is the set of points such that B r ( x ) is not completely contained

in A . 

In the following, we first determine an approximate of E { d(x ) | N I idle vehicles } for x ∈ C. We then provide an upper

bound approximation for E { d(x ) | N I idle vehicles } for x ∈ D. Putting the results of (ii-a) and (ii-b) together we provide an

approximate equation for a general shape A ; see (Iteration 1). We then use the approximation provided in (Iteration 1), to

provide a better approximation for E { d(x ) | N I idle vehicles } for x ∈ D, and improve our approximation for a general shape

A ; see (Iteration 2). We repeat the above process iteratively, and determine the best approximation by analyzing the limit

point of the above iterative process which leads to the final approximation 

√ 

N I 0 
E { d(N I 0 

) } 1 √ 

N I 
(1 + O( max { N 

−1 
I 0 

, N 

−1 
I 

} )) . 
Let |A| and L denote the area and length of the (assumed smooth) boundary of A , respectively. Then the areas of C and

D are |C| := A − O (Lr ) and |D| := O(Lr) , respectively. 

(ii-a) First consider an arbitrary point x ∈ C. Suppose N I idle vehicles are uniformly and independently distributed in A .

Then the pdf of the number m of these vehicles that lie in B r ( x ) is a binomial distribution B (N I , 
π r 2 

A ) with mean N I 
π r 2 

A and

variance N I 
π r 2 

A 

(
1 − π r 2 

A 

)
. 

Let l := { max | y − z| : x, y ∈ A} denote the largest distance between two points in A . Then, for ev-

ery realization of m > 1, the conditional expected shortest distance of an idle vehicle to x is given by√ 

N I 0 
π r 2 E { d(N I 0 

π r 2 ) } 1 √ 

m 

(
1 + O 

(
max { (N I 0 

π r 2 ) −1 , m 

−1 } ))1 { m > 0 } + O(l) 1 { m = 0 } from part (i) where 1 { · } denotes the

indicator function. Note that we modify the expression from part (i) since the shortest distance of an idle vehicle cannot

exceed l when m = 0 . Moreover, we substitute N I 0 
with N I 0 

π r 2 

A to reflect the fact among the N I 0 
idle vehicles uniformly

distributed in A , on average N I 0 
π r 2 

A vehicles are inside B r ( x ). 

Taking the expectation with respect to m , the expected shortest distance of an idle vehicle to x is given by 

E { d(x ) | N I idle vehicles } = E m 

{ √ 

N I 0 

π r 2 

A 

E 

{
d 

(
N I 0 

π r 2 

A 

)}
1 √ 

m 

( 

1 + O 

( 

max 

{ (
N I 0 

π r 2 

A 

)−1 

, m 

−1 

} ) ) 

1 { m > 0 } + O(l) 1 { m = 0 } 
} 

(28) 

We can write the first term in this expectation as 

E m 

{ √ 

N I 0 

π r 2 

A 

E 

{
d 

(
N I 0 

π r 2 

A 

)}
1 √ 

m 

(
1 + O 

(
max { (N I 0 

π r 2 

A 

) −1 , m 

−1 } 
))

1 { m > 0 } 
} 

= 

√ 

N I 0 

π r 2 

A 

E 

{
d 

(
N I 0 

π r 2 

A 

)}

1 √ 

N I 
π r 2 

A 

E m 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 √ 

1 + 

m −N I 
π r 2 

A 

N I 
π r 2 

A 

( 

1 + O 

( 

max 

{ (
N I 0 

π r 2 

A 

)−1 

, 

(
N I 

π r 2 

A 

)−1 (
1 + 

m − N I 
π r 2 

A 

N I 
π r 2 

A 

)−1 
} ) ) 

1 { m > 0 } 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

√ 

N I 0 E 

{
d 

(
N I 0 

π r 2 

A 

)}
1 √ 

N I 

(
1 + O 

(
max { N 

−1 
I 0 

, N 

−1 
I } ))P { m > 0 } (29) 

where the last equality is by Taylor expansion for terms 1 √ 

1+ m −N I 
π r 2 
A 

N I 
π r 2 
A 

and (1 + 

m −N I 
π r 2 

A 
N I 

π r 2 
A 

) −1 , along with the fact that E m 

{ m −

N I 
π r 2 

A } = 0 and E m 

{ ( m −N I 
π r 2 

A 
N I 

π r 2 
A 

) 2 } = O(N 

−1 
I 

) . 

Moreover, we have P { m = 0 } = (1 − π r 2 

A ) 
N I . Using inequality ln ((1 − x ) n ) ≤ −nx, we have 

P { m = 0 } = exp 

( 

ln 

( (
1 − π r 2 

A 

)N I 
) ) 

≤ exp 

(
−N I 

π r 2 

A 

)
. 
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Set r = O(N 

−1 
2 

+ δ
I 

) for some δ ∈ (0, 1/2]. Then we have 

P { m = 0 } = O( exp (−N 

2 δ
I )) . (30)

Consequently, P { m > 0 } = 1 − P { m = 0 } = 1 + O( exp (−N 

2 δ
I 

)) . Substituting P { m > 0 } and P { m = 0 } in (28) , we get 

E { d(x ) | N I idle vehicles } = E { d(x ) | N I 0 idle vehicles } 
√ 

N I 0 √ 

N I 

(
1 + O 

(
max { N 

−1 
I 0 

N 

1 −2 δ
I , N 

−2 δ
I , exp (−N 

2 δ
I ) } )) (31)

for x ∈ C(x ) and δ ∈ (0, 1/2]. 

(ii-b) For points x ∈ D, consider the intersection of B r ( x ) and A . We assume that | B r (x ) ∩A| 
r 2 

= O(1) since A has a smooth

boundary. (Here |R| is the area of R .) Apply an argument similar to the one given in (ii-a) for B r (x ) ∩ A , and we can show

that with large enough probability the closest idle vehicles to x has a distance smaller than r . More precisely, 

E { d(x ) | N I idle vehicles } ≤ O (r ) + O (exp(−N I r 
2 )) = O(N 

−1 
2 + δ

I 
) + O(exp(−N 

2 δ
I )) (32)

for x ∈ D, where the last equality follows from r = O(N 

−1 
2 

+ δ
I 

) . Therefore, from (32) , 

E { d (x ) | N I idle vehicles } −
√ 

N I 0 √ 

N I 

E { d (x ) | N I 0 idle vehicles } ≤ O(N 

−1 
2 + δ

I 
) + O(exp(−N 

2 δ
I )) 

−
√ 

N I 0 √ 

N I 

E { d(x ) | N I 0 idle vehicles } 

= O(N 

−1 
2 + δ

I 
) + O(exp(−N 

2 δ
I )) + 

√ 

N I 0 √ 

N I 

[ 
O(N 

−1 
2 + δ

I 0 
) + O(exp(−N 

2 δ
I 0 

)) 
] 

= O(N 

−1 
2 + δ

I 
) + O(exp(−N 

2 δ
I )) + 

(
O(N 

−1 
2 

I 
N 

δ
I 0 
) + O(N 

1 
2 

I 0 
N 

− 1 
2 

I 
exp(−N 

2 δ
I 0 

) 
)

for x ∈ D, where the first equality follows from 

0 ≤
∣∣∣∣∣
√ 

N I 0 √ 

N I 

E { d(x ) | N I 0 idle vehicles } 
∣∣∣∣∣ ≤
√ 

N I 0 √ 

N I 

[ 
O(N 

−1 
2 + δ

I 0 
) + O(exp(−N 

2 δ
I 0 

)) 
] 
. 

Therefore, for x ∈ D, we can write 

E { d (x ) | N I idle vehicles } = 

√ 

N I 0 √ 

N I 

E { d (x ) | N I 0 idle vehicles } + O 

(
max { N 

−1 
2 + δ

I 
, exp(−N 

2 δ
I ) , N 

−1 
2 

I 
N 

δ
I 0 
, N 

1 
2 

I 0 
N 

− 1 
2 

I 
exp(−N 

2 δ
I 0 

) } 
)

(33)

(Iteration 1) Using (31) for x ∈ C and (33) for x ∈ D, along with P { x ∈ D} = 

|D| 
|A| = O( Lr 

|A| ) = O(N 

− 1 
2 

+ δ
I 

) , we have, 

E x ∈A { d(x ) | N I idle vehicles } = 

[ 
E x { d(x ) 1 { x ∈ C}| N I idle vehicles } 

] 
+ 

[ 
E x { d(x ) 1 { x ∈ D}| N I idle vehicles } 

] 

= 

[ √ 

N I 0 √ 

N I 

E x ∈C { d(x ) | N I 0 idle vehicles } (1 + O 

(
max { N 

−1 
I 0 

N 

1 −2 δ
I , N 

−2 δ
I , exp(−N 

2 δ
I ) } ))

] 
(1 − P { x ∈ D} ) 

+ 

[ √ 

N I 0 √ 

N I 

E x ∈D { d(x ) | N I 0 idle vehicles } + O 

(
max { N 

−1 
2 + δ

I 
, exp(−N 

2 δ
I ) , N 

−1 
2 

I 
N 

δ
I 0 
, N 

1 
2 

I 0 
N 

− 1 
2 

I 
exp(−N 

2 δ
I 0 

) } 
)] 

P { x ∈ D} 

= 

√ 

N I 0 √ 

N I 

E x ∈A { d(x ) | N I 0 idle vehicles } 

+ 

[ √ 

N I 0 √ 

N I 

E x ∈C { d(x ) | N I 0 idle vehicles }O 

(
max { N 

−1 
I 0 

N 

1 −2 δ
I , N 

−2 δ
I , exp(−N 

2 δ
I ) } )(1 − P { x ∈ D} ) 

] 

+ 

[ 
O 

(
max { N 

−1 
2 + δ

I 
, exp(−N 

2 δ
I ) , N 

−1 
2 

I 
N 

δ
I 0 
, N 

1 
2 

I 0 
N 

− 1 
2 

I 
exp(−N 

2 δ
I 0 

) } 
)
P { x ∈ D} 

] 

= 

√ 

N I 0 √ 

N I 

E x ∈A { d(x ) | N I 0 idle vehicles } 

+ 

√ 

N I 0 √ 

N I 

E x ∈A { d (x ) | N I 0 idle vehicles } 
[
E x ∈C { d (x ) | N I 0 idle vehicles } 
E x ∈A { d (x ) | N I 0 idle vehicles } O 

(
max { N 

−1 
I 0 

N 

1 −2 δ
I , N 

−2 δ
I , exp(−N 

2 δ
I ) } )(1 − P { x ∈ D} ) 
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+ 

√ 

N I √ 

N I 0 

1 

E x ∈A { d(x ) | N I 0 idle vehicles } O 

(
max { N 

−1 
2 + δ

I 
, exp(−N 

2 δ
I ) , N 

−1 
2 

I 
N 

δ
I 0 
, N 

1 
2 

I 0 
N 

− 1 
2 

I 
exp(−N 

2 δ
I 0 

) } 
)
P { x ∈ D} 

]

= 

√ 

N I 0 √ 

N I 

E x ∈A { d(x ) | N I 0 idle vehicles } 

+ 

√ 

N I 0 √ 

N I 

E x ∈A { d(x ) | N I 0 idle vehicles } 
[
O(1) O 

(
max { N 

−1 
I 0 

N 

1 −2 δ
I , N 

−2 δ
I , exp(−N 

2 δ
I ) } )( 1 − P { x ∈ D} ) 

+ 

√ 

N I √ 

N I 0 

1 

O(N 

−1 
2 

I 0 
) 
O 

(
max { N 

−1 
2 + δ

I 
, exp(−N 

2 δ
I ) , N 

−1 
2 

I 
N 

δ
I 0 
, N 

1 
2 

I 0 
N 

− 1 
2 

I 
exp(−N 

2 δ
I 0 

) } 
)
P { x ∈ D} 

]

= 

√ 

N I 0 √ 

N I 

E x ∈A { d(x ) | N I 0 idle vehicles } 

+ 

√ 

N I 0 √ 

N I 

E x ∈A { d(x ) | N I 0 idle vehicles } 
[
O 

(
max { N 

−1 
I 0 

N 

1 −2 δ
I , N 

−2 δ
I , exp(−N 

2 δ
I ) } )(1 − O(N 

−1 
2 + δ

I 
)) 

+ 

√ 

N I O 

(
max { N 

−1 
2 + δ

I 
, exp(−N 

2 δ
I ) , N 

−1 
2 

I 
N 

δ
I 0 
, N 

1 
2 

I 0 
N 

− 1 
2 

I 
exp(−N 

2 δ
I 0 

) } 
)
O(N 

−1 
2 + δ

I 
) 

]

= 

√ 

N I 0 √ 

N I 

E x ∈A { d(x ) | N I 0 idle vehicles } 
(

1 + O( max N 

−1 
I 0 

N 

1 −2 δ
I , N 

−2 δ
I , exp(−N 

2 δ
I ) , N 

−1 
2 +2 δ

I 
, N 

δ
I exp(−N 

2 δ
I ) , N 

− 1 
2 + δ

I 
N 

δ
I 0 
, 

N 

1 
2 

I 0 
N 

−1 
2 + δ

I 
exp(−N 

2 δ
I 0 

)) 

)
, 

for δ ∈ (0 , 1 2 ] . 

Setting δ = 

1 
8 we have, 

E x ∈A { d (x ) | N I idle vehicles } = 

√ 

N I 0 √ 

N I 

E x { d (x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

N 

3 
4 

I 
, N 

− 1 
4 

I 
, N 

− 3 
8 

I 
N 

1 
8 

I 0 
} 
))

. (34) 

where we neglect O(exp(−N 

1 
4 

I 
)) , O(N 

0 . 125 
I 

exp(−N 

1 
4 

I 
)) and O(N 

0 . 5 
I 0 

N 

−0 . 375 
I 

exp(−N 

1 
4 

I 
)) in comparison to O 

(
N 

− 1 
4 

I 

)
. 

(Iteration 2) We can now use (34) to provide a better approximation for x ∈ D in part (ii-b) and iterate the process. Note

that the number of idle vehicles in D (on average) is equal to |D| 
|A| N I = O (r ) N I = N 

1 
2 

+ δ
I 

; similarly, we need to substitute N I 0 

with N I 0 
O (r ) = N I 0 

N 

−1 
2 

+ δ
I 

in (34) . 15 Therefore, 

E { d (x ) | N I idle vehicles } = 

√ 

N I 0 √ 

N I 

E x { d (x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

N 

7 
8 − 1 

4 δ

I 
, N 

− 1 
8 − 1 

4 δ

I 
, N 

1 
8 

I 0 
N 

−1 
4 − 1 

4 δ

I 
} 
))

(35) 

for x ∈ D. 16 

Using (31) for x ∈ C and (35) for x ∈ D, along with |D| = O(r) = O(N 

−1 
2 

+ δ ) , we have 

E x ∈A { d(x ) | N I idle vehicles } = E x { d(x ) 1 { x ∈ C}| N I idle vehicles } + E x { d(x ) 1 { x ∈ D}| N I idle vehicles } 

= 

√ 

N I 0 √ 

N I 

E x { d(x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

N 

1 −2 δ
I , N 

−2 δ
I , N 

−1 
I 0 

N 

3 
8 + 3 4 δ

I 
, N 

− 5 
8 + 3 4 δ

I 
, N 

1 
8 

I 0 
N 

− 3 
4 + 3 4 δ

I 
, exp(−N 

2 δ
I ) } 
))

. 

Setting δ = 

5 
22 , we have an improved approximation 

E x ∈A { d (x ) | N I idle vehicles } = 

√ 

N I 0 √ 

N I 

E x { d (x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

N 

6 
11 

I 
, N 

− 5 
11 

I 
, N 

1 
8 

I 0 
N 

− 5 
11 − 1 

8 

I 
} 
))

, (36) 
15 We note that the number of vehicles in D is a random variable. Nevertheless, considering the variation in the number of vehicles around the average 

of N 
1 
2 + δ

I 
one can follow a similar approach we used in (ii-a) using Taylor expansion, and show that the error term due to such a randomness is smaller 

than other error terms and does not affect the result. 
16 We note that the closest idle vehicles for x ∈ D does not necessarily belong to D and can be inside C. Nevertheless, we can still use (34) for the 

expected distance of the closest idle vehicle for x . This is because for area D we can follow an argument similar to the one that leads to (34) , and divide 

it to an interior region ˜ C and an exterior region ˜ D , ; however, we consider the border of D that separates it from C as a part of the interior region ˜ C (and 

not ˜ D ). Consequently, equation (34) is also applicable for x ∈ D. 
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where we neglect O(exp(−N 

5 
11 

I 
)) in comparison to O(N 

− 5 
11 

I 
) . 

(Iteration K ) We can iterate the same process similar to the one described in iteration 2. Assume that at the end of

iteration K − 1 we show that 

E x ∈A { d (x ) | N I idle vehicles } = 

√ 

N I 0 √ 

N I 

E x { d (x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

N 

α( K−1 ) 
I 

, N 

−(1 −α( K−1 )) 
I 

, N 

1 
8 

I 0 
N 

−(1 −α( K−1 )) − 1 
8 

I 
} 
))

.

(37)

where α(K − 1) ∈ (0 , 1 2 ] . Note that in iteration 2 we have α(2) = 

6 
11 . We now use (37) to provide a better approximation for

x ∈ D and iterate the process another time. Once again note that the number of idle vehicles in D (on average) is equal to

|D| 
|A| N I = O (r ) N I = N 

1 
2 

+ δ
I 

; similarly, we substitute N I 0 
with N I 0 

O (r ) = N I 0 
N 

−1 
2 

+ δ
I 

in (36) . Consequently, 

E { d(x ) | N I idle vehicles } = √ 

N I 0 √ 

N I 

E x { d(x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

N 

1+ α( K−1 ) 
2 −(1 −α( K−1 )) δ

I 
, N 

− 1 −α( K−1 ) 
2 −(1 −α( K−1 )) δ

I 
, 

N 

1 
8 

I 0 
N 

− 1 −α( K−1 ) 
2 −(1 −α( K−1 )) δ− 1 

8 

I 
} 
))

, (38)

for x ∈ D. 

Using (31) for x ∈ C and (38) for x ∈ D, along with |D| = O(r) = O(N 

−1 
2 

+ δ ) , we have 

E x ∈A { d(x ) | N I idle vehicles } = E x { d(x ) 1 { x ∈ C}| N I idle vehicles } + E x { d(x ) 1 { x ∈ D}| N I idle vehicles } 

= 

√ 

N I 0 √ 

N I 

E x { d(x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

N 

1 −2 δ
I , N 

−2 δ
I , N 

−1 
I 0 

N 

α( K−1 ) 
2 + α( K−1 ) δ

I 
, N 

− 2 −α( K−1 ) 
2 + α( K−1 ) δ

I 
, 

N 

1 
8 

I 0 
N 

− 2 −α( K−1 ) 
2 + α( K−1 ) δ− 1 

8 

I 
, exp(−N 

2 δ
I ) } 
))

. 

Setting δ = 

2 −α( K−1 ) 
2(2+ α( K−1 )) 

, we have an improved approximation for iteration K as 

E x ∈A { d(x ) | N I idle vehicles } = 

√ 

N I 0 √ 

N I 

E x { d(x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

N 

2 α( K−1 ) 
2+ α( K−1 ) 

I 
, N 

− 2 −α( K−1 ) 
2+ α( K−1 ) 

I 
, N 

1 
8 

I 0 
N 

− 2 −α( K−1 ) 
2+ α( K−1 ) 

− 1 
8 

I 
} 
))

= 

√ 

N I 0 √ 

N I 

E x { d(x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

N 

α(K) 
I 

, N 

1 −α(K) 
I 

, N 

1 
8 

I 0 
N 

1 −α(K) − 1 
8 

I 
} 
))

, (39)

where α(K) = 

2 α( K−1 ) 
2+ α( K−1 ) 

and we neglect O( exp (−N 

2 −α( K−1 ) 
2+ α( K−1 ) 

I 
)) in comparison to O(N 

− 2 −α( K−1 ) 
2+ α( K−1 ) 

I 
) . 

Iterating the above process, it is easy to show that the sequence of α(K) = 

2 α( K−1 ) 
2+ α( K−1 ) 

converges to α∗ = 0 . 

Therefore, we have 

E x ∈A { d(x ) | N I idle vehicles } = 

√ 

N I 0 √ 

N I 

E x { d(x ) | N I 0 idle vehicles } 
(

1 + O 

(
max { N 

−1 
I 0 

, N 

−1 
I , N 

1 
8 

I 0 
N 

− 9 
8 

I 
} 
))

. 

�

Appendix B. Proof of Proposition 2 

Proof. We can represent ( N, λ, p f , p d ) as a function of total travel cost c and driver wage w : ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

λ = λ0 [ 1 − F p (c) ] (a) 
N = N 0 F d (w ) (b) 

p f = 

1 

β

[ 
c − αt w 

(
N 0 F d (w ) − λ0 [1 − F p (c)] /μ

)] 
(c) 

p d = 

wN 

λ
= w 

N 0 F d (w ) 

λ0 [ 1 − F p (c) ] 
(d) 

(40)

where (40c) and (40d) are obtained based on the definition of c and w , i.e., (2) and (6) . To prove Proposition 2 , it suffices to

show that there exists c > 0 and w > 0 such that ⎧ ⎪ ⎨ 

⎪ ⎩ 

c > αt w 

(
N 0 F d (w ) − λ0 [1 − F p (c)] /μ

)
(a) 

F p (c) < 1 (b) 
F d (w ) > 0 (c) 

(41)
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Note that (41a) corresponds to p f > 0, and (41b) and (41c) guarantee that p d > 0, N > 0 and λ> 0. As t w 

is decreasing (see

Assumption 1 ), it suffices to prove that there exists c > 0 and w > 0 such that F p ( c ) < 1, F d ( w ) > 0 and that: 

c > αt w 

(
N 0 − λ0 [1 − F p (c)] /μ

)
. (42) 

The left hand side of (42) is an increasing function of c , while the right hand side is decreasing function. Define c ∗ =
inf c { c| F p (c) = 1 } . It suffices to show that c ∗ > αt w 

( N 0 ). This is equivalent to F p ( αt w 

( N 0 )) < 1, which completes the proof. �

Appendix C. Proof of Proposition 3 

Proof. To prove Proposition 3 , we first show that there is at most one solution to (12) . Then we show that this solution

exists, and it coincides with the globally optimal solution to (9) . 

Uniqueness : let f p ( c ) and f d ( w ) be the probability density function of c and w , respectively. Since c and w are subject to

uniform distribution, we have: f p (c) = e p ∗ 1 e p c≤1 and f d (w ) = e d ∗ 1 e d w ≤1 , where 1 A is the indicator function of A . Assume

for the moment that (12) admits a non-trivial solution. Denote it as ( ̃  p f , ˜ p d , ̃
 λ, ˜ N ) , and denote ˜ c and ˜ w as the corresponding

passenger cost and driver wage, respectively. We first show that e p ̃  c ≤ 1 and e d ˜ w ≤ 1 . This is because if e p ̃  c > 1 , then λ = N =
0 , this is a trivial solution. If e d ˜ w > 1 , we can decrease ˜ p d without affecting ˜ λ, indicating that 

∂�

∂ p d 
< 0 , which contradicts

with (12b). Therefore, we can rewrite (12c) and (12d) as: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

λ = λ0 

[ 

1 − e p 

( 

αM √ 

N − λ/μ
+ βp f 

) ] 

N = N 0 e d 

(
λp d 

N 

)
. 

This can be further simplified to: 

λ = λ0 

⎡ 

⎣ 1 − e p 

⎛ 

⎝ 

αM √ √ 

N 0 e d λp d − λ/μ

+ βp f 

⎞ 

⎠ 

⎤ 

⎦ (43) 

It suffices to show that there exists at most one set of ( ̃  p f , ˜ p d , ̃
 λ) that satisfies (12a), (12b) and (43) . Using the implicit

function theorem on (43) , we can derive 
∂λ

p f 
and 

∂λ

p d 
, thus (12a)-(12b) becomes: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−λ0 βe p 

(√ 

N 0 e d p d λ − λ/μ
)3 / 2 

(√ 

N 0 e d p d λ − λ/μ
)3 / 2 

− 1 

2 

αMe p λ0 

[ 
1 

2 

√ 

N 0 e d p d /λ − 1 /μ
] (p f − p d ) + λ = 0 (a) 

1 

4 

λ0 e p αM 

√ 

N 0 e d λ/p d (√ 

N 0 e d p d λ − λ/μ
)3 / 2 

− 1 

2 

αMe p λ0 

[ 
1 

2 

√ 

N 0 e d p d /λ − 1 /μ
] (p f − p d ) − λ = 0 (b) 

(44) 

This reduces to: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 

4 

λ0 e p αMp f 
√ 

N 0 e d λ/p d = λ
(√ 

N 0 e d p d λ − λ/μ
)3 / 2 

+ αMe p λ0 λ/ 2 μ (a) 

β
√ 

p d /λ
(√ 

N 0 e d p d λ − λ/μ
)3 / 2 

= 

1 

4 

αM 

√ 

N 0 e d (b) 

p f λ0 e p β
√ 

N 0 e d = 

√ 

N 0 e d λ + 2 

√ 

λp d e p λ0 β/μ (c) , 

(45) 

where (45a) directly follows from (44b), (45b) follows from (44a) and (44b), and (45c) are derived by plugging (45b) into

(45a). 

Assume there is another solution, denoted (p ′ 
f 
, p ′ 

f 
, λ′ , N 

′ ) . Without loss of generality, suppose p ′ 
f 

≤ ˜ p f . If p ′ 
f 

< ˜ p f , then

there are three cases: 

• p ′ 
d 

≥ ˜ p d . Based on (43) , we have λ′ > ̃

 λ. However, (45c) dictates that λ′ < ̃

 λ. A contradiction. 

• p ′ 
d 

< ˜ p d and 

√ 

N 0 e d p 
′ 
d 
λ′ − λ′ /μ ≥

√ 

N 0 e d ̃  p d 
˜ λ − ˜ λ/μ. Note that (45a) is equivalent to: 

1 

4 

λ0 e p αM 

√ 

N 0 e d λp f = 

√ 

p d λ

[(√ 

N 0 e d p d λ − λ/μ
)3 / 2 

+ αMe p λ0 / 2 μ

]
(46) 
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Therefore, based on (46) , p ′ 
d 
λ′ < ˜ p d 

˜ λ. On the other hand, since 
√ 

N 0 e d p 
′ 
d 
λ′ − λ′ /μ ≥

√ 

N 0 e d ̃  p d 
˜ λ − ˜ λ/μ and p ′ 

f 
< ˜ p f , based

on (43) , we have λ′ > ̃

 λ. This indicates that 
√ 

N 0 e d p 
′ 
d 
λ′ − λ′ /μ < 

√ 

N 0 e d ̃  p d 
˜ λ − ˜ λ/μ. A contradiction. 

• p ′ 
d 

< ˜ p d and 

√ 

N 0 e d p 
′ 
d 
λ′ − λ′ /μ < 

√ 

N 0 e d ̃  p d 
˜ λ − ˜ λ/μ. Note that (45b) is equivalent to: 

β
√ 

p d ( 
√ 

N 0 e d p d −
√ 

λ/μ) 
(√ 

N 0 e d p d λ − λ/μ
)1 / 2 

= 

1 

4 

αM 

√ 

N 0 e d (47)

As p ′ 
d 

< ˜ p d and 

√ 

N 0 e d p 
′ 
d 
λ′ − λ′ /μ < 

√ 

N 0 e d ̃  p d 
˜ λ − ˜ λ/μ, (47) indicates that λ′ < ̃

 λ. On the other hand, (45b) also indicates

that p ′ 
d 
/λ′ > ˜ p d / ̃

 λ. Note that (43) can be written as 

λ = λ0 

⎡ 

⎣ 1 − e p 

⎛ 

⎝ 

αM √ √ 

λN 0 e d p d − λ/μ

+ βp f 

⎞ 

⎠ 

⎤ 

⎦ (48)

As p ′ 
f 

< ˜ p f and p ′ 
d 
/λ′ > ˜ p d / ̃

 λ, (48) indicates that λ′ > ̃

 λ. A contradiction. 

If p ′ 
f 

= ˜ p f and p ′ 
d 

< ˜ p d , then we can find a contradiction by exactly the same argument. In addition, if p ′ 
f 

= ˜ p f and

p ′ 
d 

= ˜ p d , then λ and N are uniquely determined by (45) . 

Existence and optimality : Based on (40) , we can represent ( N, λ, p f , p d ) as a function of total travel cost c and driver

wage w . Therefore, the platform profit λ(p f − p d ) is a function of c and w : 

R = λ0 [1 − F p (c)] ∗
[

c 

β
− α

β
t w 

(
N 0 F d (w ) − λ0 [1 − F p (c)] /μ

)
− w 

N 0 F d (w ) 

λ0 [ 1 − F p (c) ] 

]
(49)

Note that R is well-defined if λ> 0, N > 0, and the number of idle vehicle is positive, i.e., N 0 F d (w ) > λ0 [1 − F d (c)] /μ. There-

fore, R is a continuous function of c and w defined in 

D = { (c, w ) | 0 ≤ c < 1 /e r , 0 < w ≤ 1 /e r , N 0 e d w > λ0 (1 − e p c) /μ} . 
It can be verified that R ≤ 0 on the boundary of D. Based on our assumption, there exists (c ∗, w 

∗) ∈ D at which R > 0. This

indicates that the optimal solution to (9) is in the interior of D, which solves (12) . Since (12) has at most one solution, this

completes the proof. �

Appendix D. Proof of Theorem 1 

Proof. We will first prescribe a procedure to compute the optimal solution to (15) , then we use the procedure to prove that

∇ + N 

∗( ̃  w ) > 0 and ∇ + λ∗( ̃  w ) > 0 . 

Computation procedure : Let (p ∗
f 
, p ∗

d 
, λ∗, N 

∗) denote the optimal solution to (15) . Note that (16b) at equality uniquely

defines an increasing mapping from N to λp d . Denote this mapping as λp d = g(N) , then (16b) reduces to λp d ≥ g ( N ), (16c)

reduces to λp d ≥ Nw . Therefore, (16b) and (16c) can be combined as λp d ≥ max { g ( N ), wN }, and (15) is equivalent to: 

max 
p f ,N 

λp f − max { g(N ) , wN } (50)

s.t. λ = λ0 

[ 

1 − F p 

( 

αM √ 

N − λ/μ
+ βp f 

) ] 

. 

Consider the following problem: 

max 
p f ,N 

λp f − g(N) (51)

s.t. λ = λ0 

[ 

1 − F p 

( 

αM √ 

N − λ/μ
+ βp f 

) ] 

. (52)

Let ( p̄ f , N̄ , ̄λ) be the optimal solution to (51) , and denote the optimal value as R̄ . To facilitate our discussion, define �1 ( N )

as a function representing the optimal value of (51) for any given N , then R̄ = max N �1 (N) . Similarly, define: 

max 
p f ,N 

λp f − wN (53)

s.t. λ = λ0 

[ 

1 − F p 

( 

αM √ 

N − λ/μ
+ βp f 

) ] 

. (54)
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Let ( ˆ p f , ˆ N , ̂  λ) be the optimal solution to (53) , and denote the optimal value as ˆ R . Define �2 ( N ) as the optimal value of

(53) for any given N , then 

ˆ R = max N �2 (N) . 

Lemma 1. There are three cases for the solution to (15) : 

(a) if �1 ( ̄N ) < �2 ( ̄N ) , then the solution to (15) is given by that to (51) ; 

(b) if �2 ( ̂  N ) < �1 ( ̂  N ) , then the solution to (15) is given by that to (53) ; 

(c) if �1 ( ̄N ) ≥ �2 ( ̄N ) and �2 ( ̂  N ) ≥ �1 ( ̂  N ) , then the solution to (15) is given by: 

max 
p f ,N 

λp f − wN (55) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

λ = λ0 

[ 

1 − F p 

( 

αM √ 

N − λ/μ
+ βp f 

) ] 

(a) 

N = N 0 F d (w ) (b) 

(56) 

The proof of Lemma 1 can be found in Appendix F . It provides a procedure to compute the solution to (15) : first compute

N̄ and 

ˆ N by solving (51) and (53) respectively, then identify which case of (a), (b), (c) applies, and obtain N 

∗ correspondingly.

Driver : We first prove that ∇ + N 

∗( ̃  w ) > 0 . Based on Lemma 1 , there are three cases: (a) �1 ( ̄N ) < �2 ( ̄N ) , (b) �2 ( ̂  N ) <

�1 ( ̂  N ) , (c) �1 ( ̄N ) ≥ �2 ( ̄N ) and �2 ( ̂  N ) ≥ �1 ( ̂  N ) . In case (a), the constraint (16c) is inactive at the optimal solution to

(15) (see proof of Lemma 1 ). Therefore, case (a) corresponds to w ≤ ˜ w . When w > ˜ w , the minimum wage constraint is

active, and either case (b) and (c) applies. 

Note that in case (c), both (16b) and (16c) are active at the optimal solution (see proof of Lemma 1 ). Therefore, when w

increases, N also increases. Then it suffices to show that there exists w̄ > ˜ w , such that the condition of case (c) holds when

˜ w < w ≤ w̄ . 

Assume not, then there exists w̄ 

′ > ˜ w such that the conditions of case (b) holds when ˜ w ≤ w ≤ w̄ 

′ . In this case, we

have �1 ( ̄N ) < �2 ( ̄N ) for w ≤ ˜ w and �2 ( ̂  N ) < �1 ( ̂  N ) for ˜ w ≤ w ≤ w̄ 

′ . Since �2 ( N ) is continuous with respect to w , let w

approaches ˜ w from the let, then we have �1 ( ̃  N ) ≤ �2 ( ̃  N ) . Let w approaches ˜ w from the right, then we have �1 ( ̃  N ) ≤ �2 ( ̃  N ) .

This implies that �1 ( ̃  N ) = �2 ( ̃  N ) . 

In other words, the optimal solution to (51) and (53) are the same when w = ˜ w . This indicates that partial derivative

of their objective functions with respect to N at N = N 

∗ are the same, i.e., ∇g(N 

∗) = ˜ w . Note that w = ˜ w indicates N 

∗ = 

˜ N .

Therefore, we have ∇g( ̃  N ) = ˜ w . Since x = g(N) is defined as N = N 0 F d (x/N) , applying implicit function theorem, we can

obtain ∇g ( N ) and derive that ∇g( ̃  N ) = ˜ w is equivalent to 

1 + f d ( ̃ λ ˜ p 2 / ̃  N ) N 0 ̃
 λ ˜ p 2 / ̃  N 

2 

f d ( ̃ λ ˜ p 2 / ̃  N ) N 0 / ̃  N 

= 

˜ λ ˜ p 2 
˜ N 

, (57) 

which is clearly impossible. A contradiction. 

Passenger : We now prove that ∇ + λ∗( ̃  w ) > 0 . Consider w such that ˜ w < w < w̄ . In this regime, both (16b) and (16c) are

active at the optimal solution. Therefore (15) is equivalent to: 

max 
p f ≥0 

λp f − Nw (58) 

{ 

λ = λ0 

[ 
1 − F p 

(
αt w 

(N − λ/μ) + βp f 

)] 
(a) 

N = N 0 F d (w )(b) 
(59) 

We can plug (40a), (40b) and (40c) into the objective function of (58) , transforming (58) to: 

max 
c 

λ0 [1 − F p (c)] · 1 

β

[ 
c − αt w 

(
N 0 F d (w ) − λ0 [1 − F p (c)] /μ

)] 
− N 0 F d (w ) · w. (60) 

Note that w is exogenous. The first order condition dictates that the derivative of (60) with respect to c is 0 at the optimal

solution: 

�(c, w ) = −λ0 f p (c) · 1 

β
[ c − αt w 

(N I ) ] + λ0 [1 − F p (c)] · 1 

β

[
1 − αt ′ w 

(N I ) λ0 f p (c) /μ
]

= 0 , (61)

where N I = N 0 F d (w ) − λ0 [1 − F p (c)] /μ. Based on (40a), λ is a decreasing function of c , thus it suffices to show that the

positive partial derivative of c with respect to w is strictly negative, i.e., 
∂c 

∂ + w 

< 0 . According to implicit function theorem,

we have: 

∂c 

∂ + w 

= − ∂�

∂ + w 

/ 
∂�

∂c 
. 
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If c ∗ is local maximum for (60) , then �( c, w ) > 0 in the neighborhood c ∗ − ε < c < c ∗ and �( c, w ) < 0 in c ∗ < c < c ∗ + ε. This

indicates that 
∂�

∂c ∗
< 0 , thus it suffices to show that 

∂�

∂ + w 

< 0 . We have: 

∂�

∂ + w 

= λ0 F p (c) 
α

β
t ′ w 

(N I ) N 0 f d (w ) − λ0 [1 − F p (c)] 
αλ0 

βμ
t ′′ w 

(N I ) f p (c) N 0 f d (w ) < 0 . 

This completes the proof. �

Appendix E. Proof of Proposition 4 

Proof. To solve (17) , we first obtain the solution to (9) and denote it as ( ̃  p f , ˜ p d , ̃
 λ, ˜ N ) . If ˜ N ≤ N cap , then the cap constraint

(18c) is inactive, and (17) reduces to (9) . 

If ˜ N > N cap , then (18c) is active. In this case, (18a) and (18b) is equivalent to ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

λ = λ0 

[ 

1 − e p 

( 

αM √ 

N cap − λ/μ
+ βp f 

) ] 

(a) 

N cap = N 0 e d 
λp d 
N cap 

(b) 

(62)

According to (62b), λp d = 

N 

2 
cap 

N 0 e d 
. Therefore, the objective function is R = λp f −

N 

2 
cap 

N 0 e d 
. Apply implicit function theorem on

(62a), we can obtain 

∂λ

∂ p f 
and further 

∂R 

∂ p f 
. The first order condition becomes 

λ0 e p βμp f = λ0 e p αM 

λ

2(N cap − λ/μ) 3 / 2 
+ λμ. (63)

Uniqueness : We first show that there is at most one set of λ> 0, p f > 0 and p d > 0 that satisfy (62a), (62b), and (63) .

Assume not, i.e., ( λ, p f , p d ) and (λ′ , p ′ 
f 
, p ′ 

d 
) are both solutions to (62a), (62b), and (63) . If p f = p ′ 

f 
, then it is easy to verify

that p d = p ′ 
d 

and λ′ = λ. Therefore, we consider p ′ 
f 

> p f without loss of generality. Based on (62a), we have λ′ < λ. However,

(63) dictates that λ′ > λ, A contradiction. 

Existence and optimality : Note that for any p f ≥ 0 such that 

e p 

( 

αM √ 

N cap 

+ βp f 

) 

< 1 . (64)

There is a unique λ> 0 that satisfies (62a). This is because the righthand side of (62a) is a concave function λ which has

a unique intersection with the left-hand side of (62a). We can therefore view λ as a function of p f determined by (62a),

denoted by λ = h 1 (p f ) . Apply implicit function theorem on (62a), we have 
∂λ

∂ p f 
< 0 . Therefore, it is a decreasing function

such that h 1 (0) > 0, and it can be verified that h 1 ( p f ) → 0 for sufficiently large p f that satisfies (64) . On the other hand,

(63) prescribes λ as an increasing function of p f . We denote it as λ = h 2 (p f ) , and we have h 2 (0) = 0 . To prove existence, it

suffices to show that h 1 ( p f ) intersects with h 2 ( p f ) at some p ∗
f 

> 0 , which is clearly true. 

p ∗
f 

is either local minimum or local maximum. Note that p f is bounded between 0 and an upper bound determined by

(64) . On the boundary the objective value R is smaller than that in the interior where λ> 0 and p f > 0 (since the revenue

λp f on the boundary is 0). This indicates that p ∗
f 

has to be local maximum. Since there is a unique solution to the first order

conditions, p ∗
f 

is the globally optimal solution. This completes the proof. �

Appendix F. Proof of Lemma 1 

Proof. Let (p ∗
f 
, λ∗, N 

∗) , ( ̄p f , ̄λ, N̄ ) and ( ̂  p f , ̂
 λ, ˆ N ) be the optimal solution (50), (51) and (53) , respectively. Define R ∗, R̄ and R̂

as the corresponding optimal values. Note that R ∗ ≤ R̄ and R ∗ ≤ ˆ R . This is because the objective value of (50) is smaller than

that of (51) and (53) . We consider the following three cases: 

• �1 ( ̄N ) < �2 ( ̄N ) . Given N , the optimization problems (51) and (53) are equivalent (since the second term of the objective

functions are constants). Therefore, the corresponding optimal solution (i.e., λ and p f ) are the same when N are the same,

and �1 (N) − �2 (N) = wN − g(N) for any N . This indicates that g( ̄N ) > w ̄N . It further implies that the objective value of

(50) can attain R̄ when N = N̄ . Since R ∗ is upper bounded by R̄ , we conclude that N 

∗ = N̄ . 
• � ( ̂  N ) < � ( ̂  N ) . In this case we have N 

∗ = 

ˆ N . Proof is the same as case (a). 
2 1 
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• �1 ( ̄N ) ≥ �2 ( ̄N ) and �2 ( ̂  N ) ≥ �1 ( ̂  N ) . In this case, we can show that g(N 

∗) = wN 

∗. Assume not, then without loss of

generality, consider the case where g ( N 

∗) > wN 

∗. Consider the following problem: 

max 
p f ,N 

λp f − g(N) (65) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

λ = λ0 

[ 

1 − F p 

( 

αM √ 

N − λ/μ
+ βp f 

) ] 

(a) 

g(N) ≥ wN (b) 

(66) 

We conclude that N 

∗ is the optimal solution to (65) . This is because if not, then there exists another solution that

satisfies (66) and obtains a higher value than R ∗, which contradicts with the fact that N 

∗ is optimal solution to (50) . Since

g ( N 

∗) > wN 

∗, the constraint (66b) is inactive at the optimal solution to (65) , therefore, it is equivalent to (51) , i.e., N 

∗ = N̄ .

In this case, g ( N 

∗) > wN 

∗ implies g( ̄N ) > w ̄N . Since �1 (N) − �2 (N) = wN − g(N) for any N , we have �1 ( ̄N ) < �2 ( ̄N ) . This

contradicts with the assumption that �1 ( ̄N ) ≥ �2 ( ̄N ) . Therefore, g(N 

∗) = wN 

∗. This indicates that both (16b) and (16c)

are active at the optimal solution to (15) , which leads to (55) . 

This completes the proof. �
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