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Deterministic Privacy Preservation in Static
Average Consensus Problem

Amir-Salar Esteki and Solmaz S. Kia

Abstract—In this letter, we consider the problem of pri-
vacy preservation in the static average consensus problem.
This problem normally is solved by proposing privacy
preservation augmentations for the popular first order
Laplacian-based algorithm. These mechanisms however
come with computational overhead, may need coordination
among the agents to choose their parameters and also alter
the transient response of the algorithm. In this letter, we
show that an alternative iterative algorithm that is proposed
in the literature in the context of dynamic average consen-
sus problem has intrinsic privacy preservation and can be
used as a privacy preserving algorithm that yields the same
performance behavior as the well-known Laplacian consen-
sus algorithm but without the overheads that come with the
existing privacy preservation methods.

Index Terms—Privacy preservation, static average con-
sensus, networked systems.

[. INTRODUCTION

HIS letter considers the problem of privacy preservation
T in the in-network average consensus (PrivCon) problem,
where the objective is to enable a group of V = {1,..., N}
communicating agents interacting over a strongly connected
and weight-balanced digraph G(V, &, A),! see Fig. 1, to cal-
culate r*V¢ = 1%/27:1 ¢ using local interactions but without
disclosing their local reference value ri, i € V, to each other.
The privacy preservation for average consensus is normally
formalized as concealing the reference value of each agent
from a malicious agent that is defined as follows.

Definition 1 (Malicious Agent): A malicious agent in the
network is an agent that wants to obtain the reference value
of the other agents without perturbing/interrupting the execu-
tion of the average consensus algorithm. The knowledge set
of this malicious agent consists of (a) the network topology
GV, &, A), (b) its own local states and reference input, (c) the
received signals from its out-neighbors, and (d) the agreement
state x' (k) of each agent i € } converges asymptotically to r2',
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Fig. 1. The network in plot (a) is an example of a strongly connected and
weight-balanced digraph, while the network in plot (b) is an example of

a;
a connected undirected graph. An edge i N j from an agent i to agent
Jj means that agent i can obtain information from agent j; a;; > 0 is the
corresponding adjacency matrix element.

The solutions to the PrivCon problem in the literature
mainly center around designing privacy preservation aug-
mentation mechanisms for the popular average consensus
algorithm

N
M+ 1) =x) — A ayd (k) — ¥ k),
j=1
Oy =r, ieV, (D
which with proper choice of stepsize A guarantees x' — r2'g,
i € V,as k — oo [1]. In a weighted digraph, a; > 0 if
there is an edge from agent i to agent j, i.e., agent i can
obtain information from agent j, otherwise @;; = 0. Thus, algo-
rithm (1) requires each agent i € V to share its reference value
r' with its in-neighbors (agents that receive messages from i)
in the first step of the algorithm, resulting in a trivial breach
of privacy. Standard observability analysis [2] shows also that
when the adjacency matrix A = [a;;] of the network topology
is known to an agent i € V, agent i may obtain the initial con-
dition of algorithm (1), and consequently, the reference value
of all or some of the other agents of the network; see [3] for
details.

A popular approach explored to induce privacy preser-
vation to algorithm (1) is the encryption where either a
trusted third-party generates the public-key [4] or agents share
their keys in which the network is restricted to a point-to-
point or tagged undirected communication framework [5], [6].
Also, [5] requires extra communication channels for key gen-
eration purposes. Moreover, in [5], [6], the network should
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be connected at the first step of communication and there-
fore, it does not have robustness to possible switching in the
topology. Differential privacy [7]-[9] and additive obfusca-
tion noise methods [10]-[12] are other popular techniques
to conceal the exact reference value of the agents, but the
malicious agent can obtain an estimate on the reference value
using a stochastic estimator. In addition, final convergence is
perturbed in [7]-[10] and convergence rate is altered in [11].
Moreover, these classes of privacy preserving measures cause
noisy transient response for the algorithm, which results in
excessive energy expenditure if agents use local controls to
track the consensus trajectory as a reference input. Lastly, the
guarantees established in all the methods discussed above are
only for connected undirected graphs. Interested reader can
also find privacy preservation methods for the continuous-time
implementation of algorithm (1) in [13] and [14].

In this letter, we focus on a solution for PrivCon problem
that does not perturb the final convergence value. We address
the PrivCon problem by proposing to use an alternative algo-
rithm (see algorithm (2)) that yields similar transient and
convergence performance to that of algorithm (1). We ana-
lyze the privacy preservation of this algorithm carefully and
show that this algorithm intrinsically yields exactly the same
privacy preservation guarantees as in [10]-[12] in terms of
which agents’ privacy can be preserved. More precisely, we
show that similar to the results in [10]-[12] the privacy of any
agent that has at least one out-neighbor that is not the out-
neighbor of the malicious agent is preserved. In comparison
to the privacy preservation by use of the additive obfusca-
tion noise methods [10]-[12], however, algorithm (2) offers a
deterministic and stronger sense of privacy preservation, i.e.,
it meets the privacy preservation definition given below.

Definition 2 (Privacy preservation): Privacy of an agent is
preserved from a malicious agent if the malicious agent cannot
obtain any estimate on the reference value of the agent.

To show that the privacy of an agent i is preserved in the
sense of Definition 2, we show that there exists other val-
ues of r', arbitrarily different from the true one, that give
the same trajectory for the information the malicious agent
receives from its out-neighbors. Therefore, the malicious agent
cannot distinguish between the true reference value and the
arbitrary alternatives. This, in essence, is a stronger notion of
privacy preservation than that of the e-differential privacy [15]
or that of [11] where even though the malicious agent cannot
obtain the exact reference value of the agents but it obtains an
estimate on the reference value.

In our demonstration study in Section IV, we compare in
particular our suggested PrivCon problem solution to the addi-
tive obfuscation noise method of [11]. Reference [11] is a
prominent solution in the class of additive obfuscation noise
methods that guarantees exact convergence while not allow-
ing a malicious agent to obtain the exact reference value
of the agents under the connectivity condition stated earlier.
However, in the framework of [11] there are disclosure of
information about the reference value in two levels. First, as
shown in [11], the malicious agent can employ a stochas-
tic observer to obtain an estimate on the reference value of
other agents. The normalized variance of this estimator can

be very small compared to the size of the reference value of
the agents. Moreover, in [11] agents need to coordinate to
choose a common parameter ¢ in their noise generator and
also use a common variance. The knowledge about the noise
parameters also is another level of disclosure of an estimate
on the reference value of the agents, as the transmit message
of each agent at the initial step of the algorithm is the refer-
ence value plus a value generated by their local noise whose
variance is the same for all the agents. Moreover, in choos-
ing the variance value for the noise, agents need to consider
the size of their local reference values to yield meaningful
obfuscation. We note that using a noise with large variance
results in a more perturbed transient response and a slower
convergence. The advantage of our proposed solution is to
meet the privacy preservation as given in Definition 1 while
rendering a similar transient and convergence behavior to that
of algorithm (1), having no need for coordination to choose
the parameters of the algorithm, and no extra computations.
Our notation is standard, though certain pieces of notation are
defined as need arises.

[I. PROBLEM SETTING

Our graph theoretic definitions follow [16]. A weighted
digraph is a triplet G(V, £, A) where V is the node set,
€ C V x V is the edge set and A) = [a;] is the weighted
adjacency matrix defined such that a; > 0 if (i, ) € &, other-
wise a;; = 0. Given an edge (i, ), i is called an in-neighbor
of j, and j is called an out-neighbor of i. The (weighted) in-
degree and out-degree of each node i € V are respectively are
diy = Y1, a; and di = >N a;. A weighted digraph is
undirected if @; = a;; for all i,j € V. A digraph is weight-
balanced if at every node i € V, di, = d . A digraph is
strongly connected if there is a directed path from every node
to every other node. The Laplacian matrix of a digraph G is
L = Diag(d},,, ..., dY,) — A.

Let the interaction topology of the agents be a strongly
connected and weight-balanced digraph G = (V, £, A). We

consider the average consensus algorithm

N
Vik+1) =vik) + A ag(xik) — 2 (k).

(2a)
j=1
X+ 1) =Xk + A( — k)= 1)
=Y Ak — (k) - (k)), (2b)
j=1

N
K(0),V(0) €R, ieV, st. Y V(0)=0, ()

j=1

proposed in [17], as a solution for privacy preserving average
consensus algorithm over G. As discussed in [18], (2) yields
a similar transient response to that of algorithm (1). In our
analysis, the privacy preservation in the sense of Definition 2
is against a malicious agent defined as in Definition 1.
Our study is different than the privacy preservation study
in [17] where the continuous-time representation of algo-
rithm (2) is considered and the reference values are assumed
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to be dynamic time-varying signals. The guarantees provided
crucially depend on the time varyingness of the reference
values.

Letx=(',....a"), v=00 .0, D=1y — 4 1y15,
and T = r™€1y. Moreover, let + = ——1y, and 2R such

VN
that [« m][;;] - [;H[t :] = Iy. Then, using the
q1 [ tT i| OT
change of variable |:q§¢IN :| | [mT ] [v;r,!.r], algo-
P2y 0 [;%Ti|

) pik+) T _ [1 o p1(k)
rithm (1) reads as [Pz;lzv(kﬂ)] = [0 I—AL+][p2:1N(k)
algorithm (2) as

a1 (k+1) 0 0 0 ai k)
Gkt | _ [ 0 a-a1r o 0 Qv ()
piktl) |~ | -a 0 a-a) 0 pik) |’

1-aLt 1L pyy(h)

Pon(k+1) 0 —AI 0

where LT = 9RTLSR. These equivalent representations show
the connection between the internal dynamics of algorithms (1)
and (2). For a strongly connected and weight-balanced
digraph, L has a simple zero eigenvalue and the rest of the
eigenvalues {)L,-}ﬁ\': , have non-zero positive real parts. Then,
the eigenvalues of L™ are {)L,-}ﬁvzz. Using [18, Lemma S1], the
exponential convergence of (1) and (2) is guaranteed, respec-
tively, for any A € (0, A) and A € (0, min{2, A}), where
A :min{2Ri(_‘k2") }?’z ,- Given a similar performance, an imme-
diate appeal of algorithm (2) over algorithm (1) is that the
reference value of agents is not trivially transmitted to the
in-neighbors because the transmitted state x’ is initialized arbi-
trarily, see (2c). The question we address in the subsequent
section is whether the malicious agent can use its knowl-
edge set to compute the reference values of other agents when
agents implement algorithm (2).

] and

[1l. PRIVACY PRESERVATION ANALYSIS

In this section we show that algorithm (2) intrinsically yields
the same privacy preservation guarantees as in [10]-[12] in
terms of which agents’ privacy can be preserved. However,
the guarantees of algorithm (2) are valid also for strongly
connected and weight-balanced digraphs. Moreover, unlike
the privacy preservation of [10]-[12] which is obtained by
using additive noises and comes with disclosure of a stochas-
tic estimate on the private value of the agents, algorithm (2)
offers a deterministic and stronger sense of privacy preserva-
tion, i.e., it meets the privacy preservation objective defined
in Definition 2. In what follows without loss of generality
we assume that agent 1 is the malicious agent. The initializa-
tion condition Zﬁvz V'(0) = 0 is trivially satisfied when every
agent i € )V uses v'(0) = 0. Other choices need coordination
among agents with no strong guarantee that the choices are
private. Thus , we assume that vi(0) =0, i € V and is known
to the malicious agent. Moreover, N and N, are, respec-
tively, the set of in-neighbors and out-neighbors of agent i. We
also define MF = NI U (i},

Lemma 1 (A sufficient condition for privacy preservation
when algorithm (2) is implemented): Let the interaction topol-
ogy G of the agents implementing algorithm (2) with A €
(0, min{2, A}), initialized at x'(0) € R and v/(0) =0, i € V,
be strongly connected and weight-balanced digraph. Let the

knowledge set of malicious agent 1 be as in Definition 1. The
privacy of any agent i € V\{l} is preserved from agent 1 if
agent i has at least one out-neighbor that is not an out-neighbor
of agent 1.

Proof: To prove the statement, we consider the worst case
where agent i whose privacy is being evaluated is an out-
neighbor of agent 1, i.e., agent 1 receives the transmitted
message of agent i. Without loss of generality let this agent be
labeled agent 2. Let agent 3 be the out-neighbor of agent 2 that
is not an out-neighbor of agent 1, i.e., 2 € ]\/lf1 but 1 ¢ J\/lf1 To
show privacy preservation for agent 2, we show that there are
infinitely many executions of algorithm (2) with different val-
ues of > € R and r? € R that yield exactly the same received
signal by agent 1. To this end, consider two executions of
algorithm (2). Let ¢f = x! —x and ¢, = v\ —1b, i € V.
Moreover, let the reference value of the agents in the first
execution be {r"1 }f.V: , and in the second execution be {rg}?’z h
such that e} = ri —rh # 0if i € N7, otherwise ¢/ = 0.
Moreover, vazl e£ =0, ie., r?vg = r;wg. Lastly, ei(O) =0,
for i € V\{3}. Next, we show that for any ei(O) € R there
exists ¢} # 0, i € N7, such that &y(k) = 0, j € V\{3} for
k € Z>o. Therefore, the signals received by agent 1 for these
two distinct executions is exactly the same and agent 1 cannot
distinguish between them.

The error dynamics at each agent i € V) reads as

ekt D) = el + A Y1 ayleld — ). G
ek +1) = (k) + A(—(ek(k) — ¢})
— Y @il — k) — ). Gb)

e(0) =0, ifi#3,
e £0 ifi=3

If ¢l(k) = 0 for any i € V\{3}, then ¢! (k) =0, and €/,(k) =0
for k € Z> satisfy the error dynamics (3) for any i € V\/\fi?f.
On the other hand, for i € ./\/1?1

el (0) =0, { (e)

e (k+1) = e} (k) — Aag e} (k), (4a)
0=cl +azel k) — e k), (4b)

and since Zivz a3 =d2,,, (3) for agent 3 reads as
Sk +1) = el k) + Add el k), (52)
Ek+1) =ek)+Al — (1 +d ek — e k). (5b)
Note that with adding (4a) and (5a) we have

3 jenz+ €h(k) = 0. Considering SNian = & = d3,
and ) ,_\s+ e} = 0 also, it follows from adding up (5b)
and (4b) for i € N2T that

ek+1)=(1—Aelk). (6)
Then, since eg (0)=0, it follows from (5b), (6), and (4b) that
e =d2,e20), e =-aze0), ieN. (7)

Since vazl as = d? = d3,, it follows from (7) that indeed
> ien+ er = 0. Therefore, we can conclude that r‘llvg = r‘zwg.
It is then proven that with an unbounded error in the initial
2 varies unboundedly as well yet the malicious

state of e3, e
agent receives the same signals from its out-neighbors, i.e.,
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el(k) =0,k € Zxo, for i € N},. Note here that since || —A| <
1, it follows from (6) that ei(k) also converges to zero as
k — oo showing that all the agents converge to the same final
average point in both execution 1 and 2. |

Our next result shows that when the malicious agent has
access to the messages transmitted to and from an agent i,
similar to the methods proposed in [10]-[12], the privacy of
agent i is not preserved. To establish this result we show that
the malicious agent can implement an observer to obtain r'.

Lemma 2 (A Sufficient Condition for Loss of Privacy
Preservation When Algorithm (2) is Implemented): Let the
interaction topology G of the agents implementing algo-
rithm (2), initialized at x'(0) € R and v/(0) = 0, i € V,
be a strongly connected and weight-balanced digraph. Let the
knowledge set of malicious agent 1 be as in Definition 1. If
agent 1 is the in-neighbor of agent o € V\{1} and all its out-
neighbors, then at any k € Zx1 agent 1 can obtain r’ using
x°(k), x°(k — 1) and {¥/(k — D}jene, -

Proof: Proof of Lemma 2 follows from a simple algebraic
manipulation over (2) to obtain r° in terms of x°(k), x°(k— 1)
and (¥ (k — D}jenr, . [

Lemma 1 and 2 gives us the following main statement on
the privacy preservation guarantees of Algorithm (2).

Theorem 1 (Privacy Preservation Guarantee of
Algorithm (2)): Let the interaction topology G of the
agents implementing algorithm (2), initialized at x'(0) € R
and v'(0) = 0, i € V, be strongly connected and weight-
balanced digraph. Let the knowledge set of malicious agent 1
be as in Definition 1. Privacy of agent i € V\{1} is preserved
from agent 1 if and only if agent i has an out-neighbor that
is not an out-neighbor of agent 1.

So far, we have shown the intrinsic privacy property of
Algorithm (2). Now the natural question is whether we can
loosen the topology restriction of Theorem 1 using additive
perturbation signals and preserve privacy for agents whose
all communication signals (in-coming and out-going) are
available to the malicious agent. Herein, we show that this
mechanism has no contribution and the malicious agent can
still derive local information asymptotically. A comprehen-
sive protection via perturbation signals suggests adding a
signal g'(k) : Z=¢ — R to the transmitted message of every
agent i € V, and additive signal f{(k) : Zso — R and
fk) : Z=9 — R to the right hand side of (2a) and (2b),
respectively. However, without loss of generality, the effect of
all these signals can be captured via adding only a dynamic
perturbation signal fi(k) : Z=o — R, i € V to the right hand
side of (2b) as follows,

N
Vik+ 1) = Vi) + A a;(x (k) — ¥ k),
j=1
Mk+1) =X (k) + A= k) — 1)

(8a)

N
=Y @i (k) — X (k) — V() + (k). (8b)

j=1
Instead of wusing a particular perturbation signal as
in [10]-[12], we follow the approach in [19] and first inves-
tigate for what set of perturbation signals, which we call

admissible perturbation signals, the final convergence point
of the algorithm is not perturbed. It is natural that any nec-
essary condition defining the admissible perturbation signal is
known to all the agents. Then, we show that by knowing a
necessary condition on the perturbation, the malicious agent
can employ an observer to obtain the reference input regard-
less of what the exact additive admissible perturbation signal
the agent uses.

Theorem 2 (A Necessary Condition on Admissible
Perturbation Signals): Let the interaction topology G of the
agents implementing algorithm (8) with A € (0, min{2, A}),
initialized at x'(0) € R and v/(0) = 0, i € V, be strongly
connected and weight-balanced digraph. Let the knowledge
set of malicious agent 1 be as in Definition 1. A neces-
sary condition for preserving the average consensus, i.e.,
limg_, o0 X' (k) = 18 for i € V is

N k
ZZ(I—A)"_”‘ im)=0, ie).

i=1 m=0

lim
k— o0

C))

Proof: Using the change of variable introduced in
Section II, (8) can be written as

aik+1) =a;(k) =0,
Gk +1) = (1= A)ayyk) + ARTHR),

pitk+1) = (1 — A)pik) + A f(k),
Pov(k+ 1) = (= ALHPyy (k) — Aty (k) + ARTF(K),

where we used q1(0)=Y"N ,1/(0) = 0. Then,

k
pirtk) = (1= AP0 = > (1 = A" A(=cTi(m)). (10)
m=0

Since [png] =] ;:T ](x — r?¥&1y), the necessary condition for

reaching average consensus then is lim_, o P(k) = 0. Given
that limy_ oo (1 — A)k = 0, then it follows from (10) that (9)
is a necessary condition for limg_, 5, p1(k) = 0. [ |

Remark 1: Condition (9) that defines the admissible per-
turbation signals couples the choices of all the agents. In a
decentralized setting, since there is no third-party to assign
local perturbation signals f?, for agents to satisfy (9) with-
out any coordination among themselves, agents choose their
admissible perturbations according to

k

. k—m i :
klinéon;(l A m)y =0, ieV. (11)

In our next statement, we investigate whether a malicious
agent can derive the local reference value of an agent if it
knows condition (11) and all the transmitted messages to and
from the agent.

Theorem 3 (Use of locally chosen perturbation signals
in (8) does not increase privacy protection level): Let the
interaction topology G of the agents implementing algo-
rithm (8) with A € (0, min{2, A}), initialized at x/(0) € R
and v/(0) = 0, i € V, be strongly connected and weight-
balanced digraph. Suppose agents are implementing locally
chosen admissible perturbation signals that satisfy (11), and let
the knowledge set of malicious agent 1 be as in Definition 1.
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If agent 1 is the in-neighbor of agent i € V\{l} and all its
out-neighbors, then agent 1 can employ the observer

N
Vk+1) =¥k — A Z a;(x'(k) — ¥ (k)),  (12a)
j=1

N
Rk+1) =%k + A(Za,-,-<x"<k> — ¥ (k))

j=1

+ (k) — %"(k)), (12b)

Fk) = X (k) + X' (k), (12¢)

initialized at ?(0) = 2/(0) = 0 to have 2/(k) — I’ as k — oo.
Proof: By substitution, from (12¢c) we obtain Z/(k + 1) =
2i(k) + A(=2'(k) — (Vi(k) — P (k)) 4+ 1 + fi(k)), which gives
us 2(k) = (1 — A)FZ(0) + A Yk _o(1 — AYF=(r + fi(m)).
We note that using the sum of geometric series we can write
k kem _ 1=(=A) i
Y omeo(l — A) = ———x~>—. Then, since |1 — A| < 1
and given the necessary condition (11) the observer con-
verges to the local reference value of agent i, i.e., 3 k) — ri
as k — oo. |
We proved that an additive perturbation signal has
no contribution in the level of privacy provided by
algorithm (2).

IV. DEMONSTRATION EXAMPLES

To provide a context to appreciate the implications of our
privacy preserving solution for average consensus problem
versus the method of [11], we consider an optimal power
dispatch (OPD) problem over the undirected connected graph
in Fig. 1(b) . Reference [11] is a representative of the common
method of privacy preservation via additive noises for algo-
rithm (1). We conduct our study over an undirected connected
graph since the results in [11] are established only for such
graphs. In our OPD problem a group of generators interacting
over the graph of Fig. 1(b) are expected to meet the demand of
Pp = 1500 MW (p' +- - -4p°> = 1500) while minimizing their
collective cost Z?=1 fi(p"). The parameters of the local cost
fi(pi) = %m(pi—i-aiﬂ—i—yi, ie{l,...,5}, are chosen from the
IEEE bus 118 generator list according to corresponding com-
ponents of {ozi}j.‘=1 = {188.3,592.5,2567.2,1793.3, 2567.2},
{ﬁi}le = {7.17,45.9,208.2, 166.6,208.2}. Here o' and
B' are supposed to be the private value of each agent
i € V. The optimal solution of this problem for each agent
PD+ZJ-A;1 o i
—~rg ¢ [20].
To generate this solution in a distributeé manner, let us
assume that these N = 5 agents employ two static aver-
age consensus algorithms to obtain o = %Zii] o' and
B=x20 B

Then, by knowing N and Pp, agents have all the information
to obtain p™*. Fig. 1(b) is used in the numerical example
of [11] where agent 5 is the malicious agent, so as we assume
here. The privacy of agents {1, 2,3} is preserved if agents
use algorithm (1) augmented by the additive noise method
of [11, Corollary 1] (hereafter referred to as method M1) or
algorithm (2) (see Theorem 1). Let us assume that when

i € {1,...,5}) is given by p* = p!

3 x10°

Fig. 2. Trajectories of the average consensus algorithms to obtain
a (left plot) and B (right plot). The thick gray lines and the thin gray
lines show trajectories of two executions of method M1 [11, Corollary 1],
each employing a different noise realization. The blue lines show the
trajectories of the agreement state of algorithm (2).

Fig. 3. Normalized covariances of the maximum likelihood estimator
that the malicious agent uses to obtain an estimate of reference input
of the agents implementing method M1. The dashed line is the steady-
state value and the solid lines show the time history. This plot is the
same as [11, Fig. 4] where o = 1 is used.

using the method M1, the agents use the same ¢ = 0.9
as [11, Sec. 6] and given the value of their parameters, they
agree to use an additive Gaussian noise with mean 0 and stan-
dard deviation o = 100. Note that these values should be
common for all agents, and thus agents need to coordinate
to choose them. Fig. 2 shows the trajectories generated by
method M1 for two different executions (each uses a different
noise realization) overlaid over the trajectories generated by
Algorithm (2). As seen, the trajectories of method M1 are
quite noisy and convergence is slower. Using method MI,
malicious agent 5 cannot obtain the exact value of {oc"}?=1
and {,Bi}?=1 because as shown in [11, Fig. 4] the covariance
of a maximum likelihood estimator that agent 5 uses to obtain
the private reference value of {1, 2, 3} has a steady state non-
vanishing value, see Fig. 3. However, agent 5 knows that in
99.7% of the times (30 rule) the error rate to obtain each
{a!}3_| and {B}]_, is respectively (0.972%, 0.618%, 0.071%)
and (25.512%,7.972%, 0.879%) according to the computed
normalized covariances P;; as in Fig. 3. Given the numeri-
cal values of these parameters, this level of protection gives
a good approximate value of the optimal operating point of
the supposedly private agents {1, 2, 3} to the malicious agent.
On the other hand, the privacy preservation guarantees that
algorithm (2) provides for agents {1, 2, 3} is stronger, as the
malicious agent cannot obtain any estimate on the private val-
ues of the agent. See Fig. 4 for an example scenario, where
two alternative cases of reference input signals for o denoted
by {ab}), = {—1311.6,3592.5,1067.2, 1793.3,2567.2},
and {of}? , = ({1688.3, —2407.4,4067.2, 1793.3,2567.2}.
where jlvzis:l oe} 1%,2?:1 af, j € {2,3} result in
exactly the same transmit message to the malicious agent 5.
Therefore, agent 5 cannot distinguish between these dif-
ferent references for agents {1,2,3}. Here, {ali }le are
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Fig. 4. Three executions of (2) yield exactly the same received signals
by the malicious agent 5, while converging to the same average value of

1 5 i
N2zt

the actual inputs given in the OPD problem definition
earlier.

V. CONCLUSION

We considered the problem of privacy preservation in the
static average consensus problem. This problem normally is
solved by proposing privacy preservation mechanism that are
added to the popular first order Laplacian-based algorithm.
These mechanisms come with computational overheads or pre-
coordinating among the agents to choose the parameters of the
algorithm. They also alter the transient response of the algo-
rithm. In this letter we showed that an alternative algorithm
that is proposed in the literature in the context of dynamic aver-
age consensus problem can be a simple solution for privacy
preservation for average consensus problem. The advantage
of our proposed solution over existing results in the literature
was to provide a stronger notion of privacy while rendering a
similar transient and convergence behavior to that of the well-
known Laplacian average consensus algorithm, having no need
for coordination to choose the parameters of the algorithm, and
no extra computations.
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