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High-Resolution Modeling of the Fastest First-Order Optimization
Method for Strongly Convex Functions
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Abstract— Motivated by the fact that the gradient-based op-
timization algorithms can be studied from the perspective of
limiting ordinary differential equations (ODEs), here we derive
an ODE representation of the accelerated triple momentum
(TM) algorithm. For unconstrained optimization problems with
strongly convex cost, the TM algorithm has a proven faster
convergence rate than the Nesterov’s accelerated gradient
(NAG) method but with the same computational complexity. We
show that similar to the NAG method, in order to accurately
capture the characteristics of the TM method, we need to use a
high-resolution modeling to obtain the ODE representation of
the TM algorithm. We propose a Lyapunov analysis to inves-
tigate the stability and convergence behavior of the proposed
high-resolution ODE representation of the TM algorithm. We
compare the rate of the ODE representation of the TM method
with that of the NAG method to confirm its faster convergence.
Our study also leads to a tighter bound on the worst rate
of convergence for the ODE model of the NAG method. In
this paper, we also discuss the use of the integral quadratic
constraint (IQC) method to establish an estimate on the rate of
convergence of the TM algorithm. A numerical example verifies
our results.

I. INTRODUCTION

As it has been known in the classical optimization literature,
improvement to the rate of convergence of optimization
algorithms within a first-order framework can be obtained
through methods such as quasi-Newton [1], [2], Polyak’s
heavy-ball [3], [4], and Nesterov’s accelerated gradient
(NAG) [5], [6] methods. Among these methods, because of
its simple structure and its global convergence guarantees
for convex objective functions, NAG has received much
attention in the optimization and machine learning commu-
nity. However, the quest for alternative fast converging first-
order optimization algorithms is still an ongoing research
topic. Recently, a new accelerated gradient-based method
called the Triple Momentum (TM) method, which has the
same computational complexity as the NAG method but
with a proven faster convergence rate, was proposed in [7].
Our objective in this paper is to obtain a high-resolution
continuous-time representation for the TM method and study
its stability and convergence via control theoretic tools.

ODE representation and its analysis for optimization algo-
rithms in the continuous-time domain have a long history
going back to [8]; more discussions can be found in [9]—
[13]. Continuous-time modeling comes with ease in the-
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oretical analysis via powerful control theoretic tools such
as Lyapunov analysis, perturbation theory, and the integral
quadratic constraint (IQC) methods. Also, the continuous-
time perspective provides intuition to design new algorithms,
especially arriving at distributed algorithms in a system-
atic way from centralized solutions. Furthermore, the con-
vergence analysis of several gradient-based Markov Chain
Monte Carlo sampling schemes relies on the continuous-
time approximation of such algorithms [14], [15]. Therefore,
recently, ODE modeling has regained popularity to address
the need to design new distributed gradient descent based
optimization algorithms [16]-[20], as well as to analyze
the new accelerated optimization algorithms [21]-[25]. In
[21], a second-order ODE is presented as the limit of the
NAG method. The connection between ODEs and discrete
optimization algorithms is further strengthened in [22] by
establishing an equivalence between the estimate sequence
technique and Lyapunov function techniques. In [23], the
authors propose a variational, continuous-time framework
for understanding accelerated methods and show that there
is a Lagrangian functional that generates a large class of
accelerated methods in continuous time. NAG method and
many of its generalizations can be viewed as a systematic
way to go from the continuous-time curves generated by
the Lagrangian functional to a family of discrete-time accel-
erated algorithms [23]. An ODE-based analysis of mirror
descent given in [26] delivers new insights into the con-
nections between acceleration and constrained optimization,
averaging, and stochastic mirror descent. A deeper insight
into the acceleration phenomenon via high-resolution ODE
representation of various first-order methods is presented in
[24]. These high-resolution ODEs are shown to permit a gen-
eral Lyapunov function framework for convergence analysis
in both continuous and discrete time [24]. Finally, in [25], the
authors show that different types of proximal optimization
algorithms based on fixed-point iteration can be derived from
the gradient flow by using splitting methods for ODE:s.

The connection between ODE representation of optimization
algorithms and their discrete-time counterpart is often estab-
lished by taking the step size of the discrete-time algorithm to
zero and deriving a limiting ODE using first-order derivatives
modeling. This approach works well for gradient descent
and Newton algorithms (thus obtaining & = —V f(x) and
& = —V2f(x) 'V f(x) from z(k + 1) = x(k) — sV f()
and z(k+1) = x(k)—sV2f(x(k)) 'V f(x(k)), respectively,
where s is the step size). However, recent literature has
shown that first-order ODE modeling of accelerated algo-
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rithms such as the Polyak’s heavy-ball and NAG methods
fails to capture the true behavior of these algorithms [24].
In fact, it has been shown that the first-order ODE repre-
sentation cannot differentiate between these two algorithms
since it yields an identical limiting equation for both. Recent
literature, therefore, has looked at higher-order resolution
ODE representation of these algorithms [21], [24]. These
high-resolution ODEs are more accurate since they better
capture the characterizations of the discrete-time accelerated
methods in their continuous-time counterpart representations.

In this paper, we derive a higher-resolution ODE repre-
sentation for the accelerated TM method and show that
the high-resolution ODE is able to accurately capture the
characterizations of the TM method. For clarity, hereafter we
refer to the TM method of [7] as the discrete-time TM. We
first use an IQC framework as a convenient tool to assess the
stability and obtain an estimate on the the rate of convergence
of the continuous-time TM method. However, since the
IQC provides only a sufficient condition for stability and
convergence analysis, next, we use a Lyapunov analysis to
study the stability and convergence behavior of the higher-
resolution ODE representation of TM method. We further
use the Lyapunov analysis to show that the TM method
is robust to minor deviations in algorithm parameters. We
also use our framework to estimate the rate of convergence
of the TM algorithm and compare it to the NAG method,
which confirms its faster convergence. Our work also leads
to a tighter estimate on the rate of convergence of the ODE
representation of the NAG method. Using a numerical ex-
ample, we show the accuracy of our higher-order resolution
ODE representation in capturing the accelerated behavior of
the TM method and its faster convergence over the high-
resolution ODE representation of the NAG method given
in [24].

Notations: R and R+ are the set of real and positive real
numbers. AT is the transpose of matrix A. We let 0,, denote
the vector of n zeros and I,, denote the n x n identity matrix.
When clear from the context, we do not specify the matrix
dimensions. For a vector z € R”, ||z|| = VaTx is the
standard Euclidean norm. The gradient of f : R? — R,
is denoted by Vf(x). The following relations hold for a
differentiable function f : RY — R that is M-strongly
convex, M € Ry, over R? |

O~ STFly =)+ 5V F) =V (1
Mlly =x|* < (y =) (VF(y) = VF(x), (1b)

Mlly =x[| < IV f(y) = V£, (Ic)

for any x,y € R? [27]. When Vf : R? — R? of a convex
function f : RY 5 R is L-Lipschitz continuous, L € R+,

ie, [[Vf(y) = Vf(x)|| < Llly — x|/, we have
FO) = 769 < V569l =+ 5 Iy, Ca)
FO) =106 2 V) Ty )+ £ IVF(0) - TSI 2b)

for all x,y € R? x R? [27]. We represent the class of differ-
entiable and M strongly convex functions whose gradient is

L-Lipschitz with Sys 1.

II. PROBLEM DEFINITION

Consider

x* = argmingcpn f(2), (3)

where f : R" = R and f € Sp 7. We assume that x* exists
and is reachable. The minimizer of this optimization problem
is specified as follows.

Lemma II.1 (Minimizer of (3) [1]). Consider optimization
problem (3). A point x* € R™ is a unique solution of (3) if
and only if V f(x*) = 0.

In what follows, we let

L 1

Ma le—ﬁ~ 4

We refer to « as the condition number of the cost function f.

R =

A. Discrete-time TM Method

Here we consider the TM method, proposed in [7] as the
fastest known globally convergent first-order method for
solving strongly convex optimization problems. The TM
method is an accelerated gradient-based optimization algo-
rithm given as

€1 = (1 + B)ex — Per—1 — aV f(yr), (5a)
yp = (L+7)er — verp—1, (5b)
T = (1 -+ 5)6k — 56]@,1, (5¢)

where the algorithm parameters are given as (recall (4))

l+p p° p’ p’

and €y,e_1 € R™ are the initial conditions, z € R" is the
output. The TM method has the same numerical complexity
as the NAG method but converges faster. In [7], it is shown
that starting from any initial conditions €p,e_; € R", the
trajectories of xy, Y, €;, converge to x* with the same rate but
the convergence error is lowest for the output . We observe
the same trend in the high-resolution ODE representation of
the TM method; see Section V for numerical examples.

Our objective in this paper is to derive a high-resolution ODE
representation of the TM algorithm that accurately captures
the performance characteristics of its discrete-time counter-
part and establish its formal convergence guarantees using
the Lyapunov stability analysis. To facilitate our discussions
given next, we define a function p(«, 8) : Rsg X R — Ry
(or simply u) as

(e, B) = (M)Q- ™

Using the parameter relations given in (4) and (6) for the
TM method, p = u(e, ) can also be written as
B (9k2\/k — 6 K2 + k\/K)L
r= 8K3Kk —12K3 + 14 K2\/k —9K2 + 4Kk — K

®)
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Fig. 1: u/L (solid blue) and p/M (dashed red) vs. .

As shown in Fig. 1, the maximum value of y is L, which is
attained at k =1. When x — oo, u— 0. We can also show that

(e, B) € (0, L]. 9
Replacing L with kM in (7), we can also show that
wlay B) € [M,1.3661M]. (10)

Remark II.1 (Role of parameter ). Parameter p plays a
vital role in the analysis of the high-resolution ODE repre-
sentation of the TM method. Also note that after substituting
appropriate v and 3 values into (7), we obtain pu,,,=M for
NAG method while ¢ > M for the TM method. Therefore
the parameter y also plays an important role when comparing
the convergence rate between the high-resolution NAG and
TM methods. ]

III. CONTINUOUS-TIME REPRESENTATION OF THE TM
METHOD

Let t;, = kv/a and yi = Y (t1) for some sufficiently smooth
curve Y (t). Now the Taylor series expansion at both yj1
and y_, with the step size \/a are

k1 = Y (ter1) = Y (tx) + Y (tr)Va
1. (11)
+ §Y(tk)(¢5)2 +0((Va)?),
Yoo1 =Y (t1) = Y () = Y (ti)Va
1. ) 5 (12)
+ 5V () (Va)? + 0((Va)).
Combining (11) and (12) yields
Y (tpg1) + Y (tee1) — 2Y (t) = oY (t) + O(c?).  (13)
Next, we note that we can rewrite (5) as
€rr1 = €x + B (e — ex—1) — aV f(yr), (14a)
Yr = €k + 7 (€x — €x-1), (14b)
Tk :€k+5(€k 76]6_1). (14¢)
From (14a), we obtain
B (€k—1 — €x) + (€h+1 — €x) + aV f(yr) = 0. (15)

Now adding and subtracting S (ex+1 — €x) and divid-

ing both sides of (15) with Ba yields M +

(lgf) (€rs1 — ek)Jr%Vf(yk) = 0. Substituting €, = &(tx)

and y, = Y (tr) and (13) yields
£(0) +0(@) + 52 () + g20va + ()

+ vi(y(tk)) =0,

where we used e(tr41) —e(ty) = £(tr)vVa+3&(tk) (Vo) +
O((y/a)?). If we consider the limit of (16), when o — 0,
we then obtain the low-resolution representation for the TM
algorithm as

E(ty) +2y/pe(te) + V(Y (tr)) =0,
1—/pa

Yo The low-resolution repre-
sentation in (17) is exactly the same as the low-resolution
ODE obtained for the NAG and heavy ball methods in [24].
Therefore the low-resolution ODE fails to distinguish the
TM method from the NAG and heavy ball methods. Next, we
derive a high-resolution ODE that captures the characteristics
of the TM method, i.e., shows a faster convergence in
comparison to the NAG and heavy ball methods.

Bxf
(16)

a7

where we used 8 =

A. High-resolution ODE of TM Method

We obtain a high-resolution ODE for the TM method by ig-
noring O(«) terms but keeping \/a in (16), which results in

1+5.
35 S+ B\F E(ty) + Vf( (tr)) = 0.

2
Now multiplying both sides of (18) by T f

(18)

and substitut-

ing (7) yields
E(tr) + 2y/ne(tr) + (1 + /pa) V(Y (tx)) = 0,
where we used % = 1+ /po. Next, we note that from
(12) we have
e(ty) —e(tp—1) = é(tp)Va + O(a). 19)
Ignoring the O(a) term and substituting (19) into (14b)

yields Y = e + /ayé. Let z, = X (¢x). Similarly, from
(14c) we have X = ¢ + /adé. Thus, we obtain

E+2/ué+ (14 /ua)VI(Y) = (20a)
Y =+ Voays, (20b)
X =c+adé. (20c)

as a high-resolution ODE that maintains the main characteris-
tics of the TM method with the appropriate initial conditions
€o and Y. Note that differentiating (20a) yields

E2y/uE+ (1+ Jua)V2F(Y)Y =0. (21)
Substituting (20b) and its first and second derivative Y =
€+ +avé and Y = & + /av¥ into (21) yields the high-
resolution representation of the TM method in terms of
output Y as

V4 2/uY +4(1 + /pa)VaV2 f(Y)Y
+(1+/pa)VE(Y) =0

In what follows, we use (22) to analyze the stability and
convergence of the ODE representation of the TM method

(22)
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in (20) and compare its rate of convergence to that of
the high-resolution ODE representation of the NAG method
given in [24] as

V42V MY + /sV2f(Y)Y+(1+VMs)VF(Y)=0, (23)

where s = % One can think of s as the equivalent of «
in the TM method (5), i.e., it is the step-size multiplying
the gradient term. In comparing the TM method to the NAG
method, it is interesting to recall (10). It is important to note
that the main difference between the NAG method given
in (23) and the TM methods in (22) is in the coefficient
multiplying the gradient correction term V?2f (Y)Y Even
though it is not discussed in [24], it is worth mentioning
that by introducing an appropriate intermediate variable
similar to (20b), one can write the NAG method in an
equivalent form that does not require V2 f(Y'). In the ODE
representation of the TM and NAG algorithms we also refer
to the parameters v and s as stepsize.

IV. CONVERGENCE ANALYSIS

In this section, we analyze the stability of (20) and obtain
an estimate on its convergence rate. Before we begin the
analysis, note the equilibrium point of (20a), where & =
¢ = 0. It follows from (20b) and (20c) that g.q = Yoq =
Xeq- As a result, at the equilibrium point, from (20a) we
obtain V f(geq) =0, and thereby V f(Yeq) = Vf(Xeq) = 0.
Consequently, by virtue Lemma II.1 we obtain

Xeg = Yeq = £eq = X 4)

A. Analysis via 1QC

We note that algorithm (20) can be cast as an LTI system
£(t) = AL(t) + Ba(1), (252)
Y(t) = C&(t) + Dq(1), (25b)

with state £(t) = [¢(t) e(t)]T € R, input ¢(t) =

Vf(Y(t)) € R”, and output Y (¢f) € R", where A =
721\/;7 8 ®I,, B= L(1+o\/m) ®In, C=[vay 1]®
ns D = 0pxn. Given (25) representation, the IQC analysis

provides a convenient framework to assess the stability of
continuous-time TM (20) and obtain an estimate on its
convergence rate. When f € Sy, [28] shows that the
nonlinear map ¢(t) = Vf(Y) satisfies the so-called point-
wise IQC condition cast as

[vserov] -0,

! Y~ Y 26

Vf(Y)—Vf(qu)} Qs [Vf(Y)—V.f(qu) (26)

where Q= ( _Lij\ﬁ Lfé‘/[ ) ®I,,. Recall from (24) that Yoq=
xX*.

Lemma IV.1 (An estimate on the rate of convergence of
Y in (20) using an IQC based solution). Given the LTI
representation of the continuous-time TM in (25) satisfies the
point-wise IQC condition (26), the exponential convergence
rate of ||Y(t) — x*|| to zero is p,y. if

Fig. 2: Convergence rate of the TM method given by the IQC
method of Lemma IV.1.

is feasible for some o € R, poc € Rso, P = 0, P €
R™>™ A tighter estimate P on the rate of convergence
can be obtained by maximizing p,,. subject to (27). ([

Given (26), the proof of Lemma IV.1 follows form standard
IQC stability results [29]. Figure 2 shows the convergence
rate pl*Q . the IQC method of Lemma IV.1 for various values
of M and x. As we can see, the IQC approach shows that
similar to the gradient descent method, the rate of conver-
gence of the TM method also decreases as the condition
number x increases. We should mention here though that
the IQC approach offers a sufficient condition for stability
and convergence analysis, which is not guaranteed to yield
a solution for every value of M and L.

B. Lyapunov Analysis

In this section, we establish the exponential stability of the
continuous-time TM algorithm (20) and give an estimate on
its rate of convergence using a framework regardless of the
value of M €R<g and LER<.

Theorem IV.1 (Stability and convergence analysis the ODE
TM). The following two statements hold for the optimization
problem (3) and the algorithm (20):

(1) For a, 3,7, € Rsq, B # 1, starting from any initial
condition £(0),£(0) € R™ the trajectories of ¢ — ¢,
t — X and t — Y converge exponentially fast to x*,
the minimizer of (3). Moreover, f(Y') — f(x*) vanishes
exponentially with a rate no worse than p* where

p* = max p(d),

(28)
PER>0

L 1 4
p() —mind VE 3L s
2 4R(1+ 9/ el +5) 3+ 2
@) If a,8,7,6 > 0 is set to the parameters of the

TM method in (6) and the algorithm is initialized
o’ (I+/Ea)V f (Yo)

\/Ev((i%{(yﬂ)’ where Yy = Y'(0) € R”, then the

trajectory ¢ — Y of (20) satisfies
gLW%—ﬂW_

t

ATP+PA+p, P PB] o [CT 0} Q {C D] <0 J () = 76 a e, tE Ry,
T T f —
B'P 0 D' I 0 I where p is p* evaluated at p given by (8), and v and
@7 7 of the TM method. O
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Fig. 3: p*/V/L vs. &, where p* is given in (28). Here, we use
[ and v of the TM method but implement different values for a.
aTn corresponds to the a of the TM method.

The proof of Theorem IV.1 relies on studying convergence
of (22) using radially unbounded Lyapunov function candi-
date V(1) = (1+ /a@)(f(Y) — f(<*)) + L[V + 1Y +
2/p(Y —x*) + v(1 + /pa)y/aVf(Y)|*. Due to space
limitation the details are provided in [30]. Theorem IV.1
shows that (20) has robustness to deviations from the TM
parameters. But, an interesting observation about our rate of
convergence analysis is that our simulation study of the rate
p in Theorem IV.1 indicates that the best rate is obtained
when we use «, 3,7 of the TM method given in (6), see
Fig. 3 for some example scenarios.

Next, we note that the rate of convergence established for
the ODE representation of the NAG method (23) in [24] is
@. Our analysis show that a tighter bound of

Plog = 02X P (@), (29)

(6)=mi VL  3VL VL 4L
=min , , , .

Prc 2V A/R(1+0) Va(l+3) VR(3+2)

can be obtained for the convergence rate pf, —of the ODE

NAG method; for details see [30]. Given > = M, we

can write py,(¢) = min{%, 4(1‘14)), (pi%), (Sf%)}\/M.

Figure 4 shows how each of the four elements varies with ¢
and the optimal ¢ for which the minimum among the four
elements is at its maximum. As can be seen and also shown
analytically p?, . = %\/M is attained at ¢* = % = 0.75.
Thus, p]jAG is a tighter bound than @ that is established
in [24] as the rate of convergence for the ODE NAG method.
On the other hand, Fig. 5 compares pT—’z with 2 e at different
values of k. As we can see the TM method attains a better
convergence rate than the NAG method. In comparing the
rate of convergences of the TM and NAG methods, it is
worth to remember (8) and (9). It is also interesting to
note that similar to the gradient descent method, the rate
of convergence of the TM and the NAG methods decreases
as k increases. Finally note that ¢* corresponding to p¥ can
9L —16puk++/256(1ur)2+96k L+81L2

320k :

be obtained as ¢* =

V. SIMULATION RESULTS

IQ

Let the cost function in (3) be given by f(z) = STog(272?)
x. For this cost, we have M = 0.038 and L = 1.443. Thus,

0.8

0.6

%0,4 r
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Fig. 4: Variation of the elements of {2, T D (3+%>}
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Fig. 5: Rate of convergence of the ODE representations of the TM
and the NAG methods at different values of «.

K = 37.713. Figure 6(a) shows the convergence error for the
TM, NAG, gradient descent with stepsize 1/L (GD), high-
resolution ODE representations of TM (20) and NAG (23)
methods, and continuous-time gradient descent (ODE GD)
algorithms. Figure 6(b) shows the same plot when a smaller
stepsize is used for all the algorithms. As we can see in these
plots, the high-resolution ODE representation of the TM
algorithm closely captures the characteristics of the discrete-
time TM. Moreover, we can see from the plots that for both
cases, the TM algorithm converges faster than the gradient
descent and the NAG methods. We can also see that using
a smaller stepsize removes the oscillatory behavior that we
see in the trajectories of the TM and NAG methods however
as expected and predicted by our analysis using a smaller
stepsize results in a slower convergence.

VI. CONCLUSION

In this paper, we presented the ODE representation of the
the TM method, which is considered as the fastest first-
order optimization method for strongly convex functions.
We showed that to obtain an accurate continuous-time rep-
resentation of the TM method, we need to use a higher-
resolution limiting ODE representation. We also presented a
Lyapunov analysis to prove the exponential convergence of
the developed continuous-time model of the TM method. We
compared the rate of this ODE model of the TM with that of
the Nesterov method and showed that the Lyapunov analysis
also confirms that the TM method has a faster convergence
than the Nesterov method. We also discussed how an 1QC
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Fig. 6: Convergence error for the TM, NAG and gradient descent [20]
(GD) algorithms.

[21]
approach can be used to obtain an estimate on the conver-  [22]
gence rate of the ODE representation of the TM method. We
validated our theoretical results through several numerical (23]
simulations. Since control theoretic tools in continuous-
domain generally provide a convenient framework for design

. . . [24]
and analysis of algorithms, our future work includes first
devising a distributed version of the continuous-time TM
method that can be used for distributed optimizations. Then,  [25]
our objective is to discretize this algorithm to obtain an
iterative solution that can be implemented over networks with  [26]
wireless communication.

[27]
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