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Key Points:

+ The breaking onset criterion developed by Barthelemy et al. [2018] is shown to be
applicable to waves breaking in shallow water over varying bathymetry.

+ The new criterion is suitable for use in wave-resolving models that cannot intrinsically
detect the onset of wave breaking.

+ A comparison of model predictions based on a BEM potential flow solver and the
LES/VOF model developed by Derakhti and Kirby [2014a] shows that the LES/VOF

model provides accurate descriptions of conditions at steep wave crests.
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Abstract

We investigate the validity and robustness of the Barthelemy et al. [2018] wave break-
ing onset prediction framework for surface gravity water waves in arbitrary water depth, in-
cluding shallow water breaking over varying bathymetry. We show that the Barthelemy et al.
[2018] breaking onset criterion, which they validated for deep and intermediate water depths,
also segregates breaking crests from non-breaking crests in shallow water, with subsequent
breaking always following the exceedance of their proposed generic breaking threshold. We
consider a number of representative wave types, including regular, irregular, solitary, and
focused waves, shoaling over idealized bed topographies including an idealized bar geom-
etry and a mildly- to steeply-sloping planar beach. Our results show that the new breaking
onset criterion is capable of detecting single and multiple breaking events in time and space
in arbitrary water depth. Further, we show that the new generic criterion provides improved
skill for signaling imminent breaking onset, relative to the available kinematic or geometric
breaking onset criteria in the literature. In particular, the new criterion is suitable for use in

wave-resolving models that cannot intrinsically detect the onset of wave breaking.

1 Introduction

Surface wave breaking is a highly dissipative process, transferring excess wave en-
ergy flux into currents and turbulence Melville [1996]. Familiar breaking onset manifests
as a crest breaking event characterized by the formation of a multi-valued free surface and
entrainment of air bubbles into the water column (excluding micro-breakers which do not
entrain air). An important exception discussed below is surging breakers over very steep
beaches, in which the wave crest remains relatively smooth and the initiation of instability

occurs at the toe (leading edge) of the wave.

We introduce a new term, breaking inception, which identifies the critical time at which
a wave crest breaking event is initiated within the growing crest region. This precedes any of
the familiar visible breaking onset signatures identified above by a finite time, typically a
small fraction of the local wave period. It is shown below that the breaking inception time is

crucial for predicting breaking onset and breaking strength in advance of their realization.

Finding a robust and universal diagnostic parameter that determines the onset of break-

ing for surface gravity waves, and its strength, is of substantial importance in the prediction
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of atmosphere-ocean exchanges, nearshore circulation and mixing, design of offshore and

nearshore infrastructures, etc, but as yet the problem is not completely resolved.

Considerable effort has been made to find a robust and universal methodology to pre-
dict the onset of breaking gravity water waves in deep and intermediate depth water [Song
and Banner, 2002; Wu and Nepf, 2002; Banner and Peirson, 2007; Babanin et al., 2007,
Tian et al., 2008; Toffoli et al., 2010; Shemer and Liberzon, 2014; Fedele et al., 2016; Saket
etal., 2017, 2018; Barthelemy et al., 2018; Khait and Shemer, 2018; Craciunescu and Chris-
tou, 2019; Pizzo and Melville, 2019]. This and other aspects of wave breaking have been
covered in several excellent reviews of the topic [Banner and Peregrine, 1993; Melville,
1996; Perlin et al., 2013]. Recently, Perlin et al. [2013] have reviewed the latest progress
on prediction of geometry, breaking onset, and energy dissipation of steepness-limited break-
ing waves. The predictive parameters involved can be categorized as (i) geometric, (ii) kine-
matic, and (iii) dynamic criteria. As summarized in Perlin et al. [2013, §3], none of the
available criteria can distinguish between breaking and non-breaking crests in a universal

sense.

The situation becomes even more complex in shallow water, where waves evolve in
response to interaction with seabeds of arbitrary, complex geometry. The inclusion of wa-
ter depth d as an important factor in shallow water breaking leads to the identification of
a convenient dimensionless parameter y = H/d [McCowan, 1894], where H is the local
wave height. Further, analysis of breaking criteria for the simplest case of waves shoaling
over a planar slope introduces the slope itself as a parameter. The effect of bottom slope m
in combination with a measure of wave steepness has been studied by Iribarren and Nogales
[1949], who defined a single combination & = m/ \/m based on offshore wave height
Hj and wavelength Ly, and Battjes [1974], who defined a similar surf similarity parameter
& =m/ \/m , with the index b denoting values taken at the time when visible breaking
commences. The surf similarity parameter has been found to be useful in discriminating be-
tween breaker types as well as in refining the prediction of breaking onset based on y. The
range of results in the literature is reviewed by Robertson et al. [2013], who list six types of
dependency of y;, on additional parameters such as m and &y, and provide a table of thirty-six
examples of published formulae for the estimation of y,. Robertson et al. concluded that a

single, easily implementable relationship covering all breaking phenomena is still elusive.
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Our approach in this paper is underpinned by the conceptual framework paper Barthelemy
et al. [2018] (hereafter B18) for predicting breaking onset, and its companion paper Derakhti
et al. [2018] (hereafter D18) for predicting breaking strength. These papers report the dis-
covery of generic predictors for breaking onset and strength for 2D and 3D modulating waves
in deep and intermediate depth conditions. We seek to validate that this framework is equally

valid for predicting shallow water wave breaking onset.

The local energy flux parameter B introduced by B18 is defined at the wave crest re-
gion as

B =F/E|C|

where ¥ = U(p + E) is the local flux of mechanical energy/unit volume, E is the mechanical
energy/unit volume, and U is the local liquid velocity. The wave crest translates with propa-
gation speed C = |C|, which is generally time-dependent. On the free surface, the pressure p

is taken to be zero, reducing the expression for B to
B=U/C

where U is the component of liquid velocity at the wave crest in the direction of wave prop-
agation. Although Equation (2) appears similar to the kinematic breaking onset criterion
[Perlin et al., 2013, §3.2], it represents the normalized flux of mechanical energy at the crest,
and thus should be considered as a dynamical criterion. The interested reader is referred to
the discussion on line 21 on p.466 of B18. In the linear approximation, B simplifies to y/2
and the local wave steepness S = kH /2 (k is the wave number) in shallow and deep water

respectively.

B18 explains and validates the role of the parameter B (Eq. 2) as a robust predictor of
whether the crest of a steepening wave evolves to breaking, or whether it stops growing and
continues to propagate without breaking. B18 shows that a wave crest will evolve to break-
ing if B tracked at the evolving wave crest transitions through a generic threshold B;j,, which
then sets the breaking inception time. D18 shows that the rate at which B normalized by the
local wave period transitions through this generic threshold also sets the breaking strength, or
total energy dissipated by the breaking event. Should B not transition through Byj,, that crest
will not evolve to breaking. Thus tracking B at the evolving crest has only two outcomes -
either B fails to transition through By, in which case the crest will not evolve to breaking, or
else the crest will evolve to breaking inception when B transitions through B;j,, and will then

evolve rapidly to visible breaking onset. This mirrors the physics of how breaking occurs. In
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this case, the normalized rate of change of B at the inception time provides a generic predic-
tor of the breaking strength [Derakhti et al., 2018], but this aspect of shallow water breaking

is left for a companion paper in progress.

Based on numerical simulation of 2D and 3D focused wave packets in deep and in-
termediate depths, B18 found that a value of By, in the range [0.85,0.86] provides a robust
threshold that identifies imminent breaking crest in 2D and 3D wave packets propagating in
deep or intermediate uniform water depths. Subsequently, using a different modeling frame-
work, D18 found consistent results for representative cases of modulated wave trains and
focused packets in deep and intermediate depth water. These numerical findings for 2D and
3D cases were closely supported by the laboratory experiments of Saket et al. [2017, 2018]

which include direct wind forcing.

It remains to determine whether the breaking threshold framework proposed by B18,
i.e., By, = 0.85 as a generic threshold for predicting breaking, is also valid for waves in
shallow water with relatively rapidly varying depth. Our goal is to investigate in detail to
what extent the results reported by B18 and D18 for deep and intermediate water waves carry
over to shallow water conditions. The utility of a predictor such as B;;, = 0.85, rather than
the classic B, = 1, is its application in models that cannot directly resolve breaking and fail

before waves reach B = 1.

We use a large-eddy-simulation (LES)/volume-of-fluid (VOF) model [Derakhti and
Kirby, 2014a, 2016] and a 2D fully nonlinear potential flow solver using a boundary ele-
ment method (FNPF-BEM) [Grilli et al., 1989; Grilli and Subramanya, 1996] to simulate
nonlinear wave evolution, focusing on breaking onset behavior. Simulations are conducted
for a variety of scenarios including regular, irregular, solitary, and focused waves shoaling
over idealized bed topographies, including an idealized bar geometry and mildly- to steeply-
sloping planar beaches. Additionally, we examine the applicability of the criterion for col-
lapsing/surging breaking cases in shallow water, for which an instability leading to breaking

may develop close to the toe (leading edge) of the wave front.

2 Computational approaches

In this section, we provide a brief overview of the two modeling approaches used: the
polydisperse two-fluid LES/VOF model of Derakhti and Kirby [2014a] based on the model
TRUCHAS [Francois et al., 2006], and the FNPF-BEM model of Grilli et al. [1989] and
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Grilli and Subramanya [1996]. The cases considered here are essentially 2D in the (x, z)
plane, allowing us to employ a purely 2D version of FNPF-BEM. The FNPF-BEM model
is not valid beyond the first onset of breaking, and is thus only used below to consider the

transient solitary wave cases.

As mentioned, the focus of this study is the examination of geometry, kinematics and
dynamics of an evolving crest up to the close vicinity of the visible breaking onset stage that
is essentially before the start of the bubble entrainment process. However, in all simulation
cases considered here, except the transient solitary wave cases, it is of interest to examine
how an evolving crest interacts with decaying turbulence patches left behind from precedent
breaking events. In addition, the LES/VOF model results are used for the examination of the
wave-breaking-induced energy dissipation in a companion study. For these reasons, a rela-
tively accurate post-breaking behavior of the simulation cases is needed, which then justifies

the inclusion of bubble dynamics into our LES/VOF simulations.

Validation of the models for the present application is discussed in Appendix B.

2.1 The LES/VOF model

The LES/VOF computations are performed using the Navier-Stokes solver TRUCHAS
[Francois et al., 2006] with extensions of a polydisperse bubble phase and various turbulence
models [Carrica et al., 1999; Ma et al., 2011; Derakhti and Kirby, 2014a]. Details of the
current mathematical formulations and numerical methods may be found in Derakhti and

Kirby [2014a, §2].

The filtered governing equations for conservation of mass and momentum of the liquid

phase are given by:

0 Oapiij
ﬂ + P J = 0’
ot 8xj
dapi;  Oapi;il; oll;; ;
+ = + 63 + M&,
ar ax; ax; | P8O

where (i, j) = 1,2,3; pis a constant liquid density; @ and #; are the volume fraction and
the filtered velocity in the i direction of the liquid phase, respectively; d;; is the Kronecher
delta function; g is the gravitational acceleration; and IT;; = a(—pd;; + &;; — 7;;) with p
the filtered pressure, which is identical in each phase due to the neglect of interfacial surface
tension, &;; viscous stress and 7;; the subgrid-scale (SGS) stress estimated using an eddy

viscosity assumption and the Dynamic Smagorinsky model, which includes water/bubble

3)

“4)
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interaction effects [for more details see Derakhti and Kirby, 2014a, §2.4]. Finally, M& L are
the momentum transfers between liquid and gas phases, including the filtered virtual mass,

lift, and drag forces [Derakhti and Kirby, 2014a, §2.2].

Using the same filtering process as in the liquid phase, the equations for the bubble
number density and continuity of momentum for each bubble size class with a diameter d?,
k=1,---,Ng, are then given by [Derakhti and Kirby, 2014a, §2]:

oNb  Oab NP
ko 2Tk

k,j 'k b
—_k = RY, 5
ot an k ( )
dalp

k b b 1

0 = _6_6ij +O,’kp 8i +ng, (6)
Xj
b _ bbb b Ab ~b : .
where @) = m] Nk /107, my, Nk and iy, ; are the volume fraction, mass, number density and

filtered velocity in the j direction of the kth bubble size class; p” is the bubble density; and
R,f includes the source due to air entrainment in the interfacial cells [Derakhti and Kirby,
2014a, §2.3], intergroup mass transfer, and SGS diffusion terms. Finally, Mig represents the
total momentum transfer between liquid and the kth bubble size class, and satisfies M&’ +
ZQ’:GI Mig = 0. In (6), we neglect the inertia and shear stress terms in the gas phase following

Carrica et al. [1999] and Derakhti and Kirby [2014a].

2.2 The FNPF-BEM model

Equations for the 2D FNPF-BEM model are briefly presented here. The velocity po-
tential ¢(x, t) is used to describe inviscid, irrotational flow in the vertical plane (x, z), with
the velocity defined by u = V¢ = (u, w). ¢ is governed by Laplace’s equation in the liquid
domain Q(r) with boundary I'(z),

Vip=0; (x2)€Q) (7)

Using the 2D free space Green’s function, G(x,x;) = —(1/2x)log| x — x; |, and Green’s

second identity, (7) is transformed into the boundary integral equation

dG(x,x;)

T] dr'(x) ®)

et = [ 1520960%) - 000

where x = (x,z) and x; = (xy, z;7) are position vectors for points on the boundary, n is the
unit outward normal vector, and a(X;) is a geometric coefficient. Details of the surface and
bottom boundary conditions and numerical methods may be found in Grilli et al. [1989] and
Grilli and Subramanya [1996]. The model provides instantaneous surface elevation and lig-

uid velocity at the surface.
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3 Model configuration and test cases
3.1 Test cases

Our numerical experiments are performed in a virtual wave tank with three different
idealized bed geometries, illustrated in Figure 1. Cases include deep to shallow water tran-
sition conditions. We define the coordinate system (x, y, z) such that x and y represent the
along-tank and transverse directions respectively and z is the vertical direction, positive up-
ward and measured from the still water level. We note that waves are usually breaking over

the bar crest or the down-wave slope for cases of shoaling over a bar (x > 0 in Figure 1b).

All model simulations are performed with the model initialized with quiescent condi-
tions. In the LES/VOF model, we specify the total instantaneous free surface, 7,,, and liquid
velocity, (i, wyy ), at the model upstream boundary, (x,,, ¥, z), for various incident wave con-
ditions, including regular sinusoidal, focused packets, modulated wave trains, and irregular
waves propagating over a flat bed or over a bar geometry, as well as regular cnoidal waves
shoaling over a plane beach. In the BEM model, we specify solitary waves as initial condi-
tion on the free surface, using the elevation, potential and normal velocity derived from the

Tanaka [1986] solution. Table 1 summarizes the input parameters for all simulated cases.

In all simulated cases, the selected grid size in the x direction, Ax, is smaller than
1/100 of the wavelength in the vicinity of the initial breaking point or unbroken crest max-
imum. A uniform grid of Ay = Az = Ax/2 is used for the simulated LES/VOF cases, with
the total number of grid points varies between 0.5 x 10° and 3 x 10°. The CPU run-time of
the LES/VOF simulations is typically less than a day for a 100s simulation time using 200

processors on an HPC cluster.

3.1.1 Focused wave packets

The input focused wave packet was composed of N = 32 sinusoidal components of
steepness a,k,,n = 1,---, N, where a, and k,, are the amplitude and wave number of the nth
frequency component. The steepness of individual wave components is taken to be constant
across the spectrum, or ark; = ajk; = ... = anky = Sg/N with §, = ZnNzl a,k, taken
to be a measure of the wave train global steepness. Based on linear theory, the free surface

elevation at the wavemaker for 2D wave packets focusing at x = xy is given by [Rapp and



Table 1: Input parameters for the simulated cases. Each case identifier has 3 parts indicating the
geometry of the wave tank (P: planar beach, B: barred beach, F: flat bed; numbers: various ge-
ometry parameters), the type of the incident waves (r: regular, i: irregular, s: solitary waves, f:
focused packets, m: modulated wave trains), and the numerical model (LV: LES/VOF, BM: FNPF-
BEM) respectively. Here, H,, and T, are the wave height and period of the regular waves at the
wavemaker, and & = s7!/ \/M is the surf-similarity parameter [Battjes, 1974]; the rest of the

variables are defined in Figure A.1.

Case H,, (mm) Ty d; L, s & dy Ly Sd
(or Sg) (s) (m)  (m) (orAf/fe)  (m)  (m)

Pl-r-LV 80, 120, 180, 200, 240 4.0 0.5 0 5 39-23 - - -

P2-r-LV 150 4.0 0.5 0 10 143 - - -

P3-r-LV 40, 150 4.0 0.5 0 20 1.38,0.71 - - -

P4-r-LV 90, 150, 200 4.0 0.5 0 40 0.46 - 0.31 - - -

P5-r-LV 90, 150 4.0 0.5 0 100 0.18,0.14 - - -

P6-r-LV 90, 120, 150 4.0 0.3 0 200 0.09 - 0.07 - - -

P7-s-LV 240, 260, 270, 350, 500 - 1.0 6.0 8 - - - -

P7-s-BM 240 - 1.0 20.0 8 - - - -

P8-s-BM 300, 450, 600 - 1.0 20.0 15 - - - -

P9-s-BM 200, 600 - 1.0 20.0 100 - - - -

B1-r-LV 41,43, 46, 46.2,46.3, 1.01 0.4 6 20 0.30-0.25 0.1 2 10

46.5, 47, 50, 53, 59
B2-r-LV 47,50, 53, 59 1.01 0.4 6 100 0.06 - 0.05 0.1 2 10
B3-r-LV 24,26, 26.5, 217, 2.525 0.4 6 20 1.05-0.81 0.1 2 10
27.5, 30, 34, 40

B4-r-LV 26, 30, 30.5, 31 2.525 0.4 6 100 0.21-0.16 0.1 2 10
32, 34,40

B5-f-LV (0.20,0.21,0.22, T. : 1.14 0.6 3 20 (0.75) 0.2 3 10
0.23,0.30)

B6-i-LV Hyms : 40 T,:17 047 0 20 0.52 012 2 10

B7-i-LV Hys 40 T, : 1.7 0.47 0 20 0.52 0.17 2 10

B8-s-BM 36, 40, 46, 46.6 - 0.4 8 20 - 0.1 2 10
47, 60, 80

FI-f-LV (0.25,0.3,0.302, 0.31, T. : 1.14 0.6 16 - (0.75) - - -

0.32,0.42, 0.44, 0.46)
F2-f-LV (0.32, 0.36, 0.40) T.:133 06 22 . (1.0) . . .
F3-m-LV (0.160, 0.176) T. : 0.68 0.55 64 - (0.0954) - - -
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Figure 1: Schematic of the side-view of the computational domain for the waves propagating over

(a) a plane beach, (b) an idealized bar, and (c) a flat bed geometry.

Melville, 1990; Derakhti and Kirby, 2014a]

N
D= D an OS2 ott = 17) + iy = 3] ©
n=1

where f; is the frequency of the nth component, xy and # are the predefined, linear theory
estimates of location and time of the focal point respectively. The discrete frequencies f;,
are uniformly spaced over the band Af = fy — f; with the central frequency defined by

Je =172(fx + 1)

—10-



229

230

232

233

234

235

236

287

238

239

240

241

242

243

244

245

246

247

248

249

250

252

3.1.2 Modulated wave trains

For cases of modulated wave trains, we use the bimodal wave approach of Banner and

Peirson [2007], with free surface elevation at the wavemaker given by

LBy

Ny = ay cos(wit) + ap cos(wyt — 18

where w1 = 2 fi, wy = w1 +27Af, S; = a1ky + kzap and az/a; = 0.3. Increasing the global
steepness S, increases the strength of the resulting breaking event in both focused packets

and modulated wave trains.

3.1.3 Irregular wave trains

For irregular wave cases, 7,, is prescribed using the first N = 2500 Fourier components
of the measured free surface time series at the most offshore gauge of the cases experimen-

tally studied by Mase and Kirby [1992] with T,, = 1.7s, given by

Ny = Zr’:’:lan cos(wpt + €,)

where a, and ¢, are the amplitude and phase of the nth Fourier component based on the
measured free surface time series, and w,, is the angular frequency of the nth Fourier com-
ponent. Mase and Kirby [1992] specified wavemaker conditions for irregular waves based
on a Pierson-Moskowitz spectrum. Waves then propagated shoreward over a sloping planar
beach. Here the same incident waves are used but shoal over an idealized bar. Liquid veloc-
ities for each spectral component are calculated using linear theory and then superimposed

linearly at the wavemaker. No correction for second order effects was made.

3.1.4 Regular weakly dispersive, nonlinear waves

For cnoidal waves, we use the theoretical relations for 7,, and (u,,, w,,) as given in
Wiegel [1960]. Initial conditions for solitary wave tests were specified using the solution for
finite amplitude waves due to Tanaka [1986]. This initial condition represents a very accu-
rate numerical solution to the full Euler equations, and is more suitable for use here with the
fully nonlinear numerical codes being used than the standard first-order Boussinesq solitary

wave solution [e.g. Grilli and Subramanya, 1996].
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253 3.2 Definition of a breaking crest

254 The visible manifestation of surface wave breaking events, excluding micro-breakers, is
255 the formation of a multi-valued free surface, which is accompanied by the initiation of wave-
256 breaking-induced energy dissipation and entrainment of air bubbles into the water column.
257 In most wave breaking modes, the breaking process initiates visibly at the crest of the break-
258 ing wave. Exceptions include surging breakers over very steep beaches in which the crest of
259 the wave remains relatively smooth and the initiation of instability occurs at the toe (leading
260 edge) of the wave.

261 Here, we consider an individual evolving crest to be a breaking crest if the initiation

262 of multi-valued free surface occurs in the crest region, e.g., developing a vertical tangent on
263 the forward face of the crest, followed rapidly by a spilling or plunging plume surging from
264 the crest down the forward face. In all breaking crests considered here, the onset of breaking
265 occurs fairly rapidly after a vertical tangent becomes apparent onshore of the crest.

266 In the BEM framework, there is no dissipation mechanism in the model, and the model
267 becomes unstable fairly rapidly after a vertical tangent becomes apparent at or near the crest,
268 and a breaker jet starts forming. Thus, as was proposed in earlier work [e.g., Grilli et al.,

269 1997], an individual crest in simulations using the FNPF-BEM model is also denoted as a

270 breaking crest when the free surface slope at any given point on the front face of the wave

271 (i.e., onshore of the crest) becomes vertical; a multi-valued free surface elevation will typi-
272 cally occur at the next time step of computations.

273 4 Results

274 In this section, we examine in detail the onset of breaking on basis of the parameter

275 B = U/C (Eq. 2) for representative breaking and non-breaking incident waves in interme-
276 diate depth and shallow water. The results for steepness-limited wave breaking in both fo-

277 cused packets and modulated wave trains [Derakhti et al., 2018] are also presented. In the

278 following section (§5.2), we show that several geometric criteria for predicting the onset of
279 breaking are not uniformly robust.

280 Frames (a), (d), and (g) of Figure 2 show examples of the computed temporal variation
281 of C from shallow to deep water, in which values of C are normalized by their corresponding
282 values at the time t* = 0 marking either the time when B = 0.85 or, for non-breaking cases,
283 the occurrence of maximum crest elevation. In this and subsequent plots, the color black for

—12—-



(a’) —+—R: plane, s =200, T}, =4 s 3
—o—R: plane, s =100, T, = 4 s |
——R: plane, s =40, T, =4s ||

——R: bar, T, = 1.0 s| !
——R:bar, T, =2.5s

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2

t* t* t*

Figure 2: Examples of the temporal variation of (a, d, g) the crest propagation speed C, (b, e, h)

phase speed ¢ = y/gk~!tanh [k(d + H..)], and (c, f, i) the horizontal particle velocity at the crest U,
all normalized by the corresponding C value at #* = 0, for breaking (black symbols and lines) and
non-breaking (orange symbols and lines) crests in (a, b, ¢): regular waves (R) shoaling over a plane
beach with slope m = 1/s, (d, e, f): regular waves (R) propagating over a bar, and (g, h,i): focused

packets (F) and modulated wave trains (M) in deep and intermediate water.
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curves or points indicates cases where breaking occurs, while orange indicates non-breaking

cases. Frames (b), (e), and (h) show results for an estimate of phase speed ¢ based on an ap-

proximate nonlinear dispersion relation ¢ = y/gk~! tanh [k(d + H_.)] which is slightly differ-
ent than that proposed by Booij [1981] (replacing H /2 by the crest height H..). The behavior
of crest translation speed C is seen to be distinctly different from estimates based on disper-
sion relations for regular waves. The results show that the ratio ¢/C around t* = 0 ranges

between 0.8 and 1.1 in most cases.

We note that C is obtained by calculating the rate of change of the horizontal location
of an evolving crest, e.g., x;,. if the crest is propagating in the x direction. In both BEM and
LES/VOF frameworks, x,_ may occur between the grid locations, and thus a local fitting
(or smoothing) to the predicted free surface locations (77(x, y, ¢)) is needed to obtain a robust
estimate of x;, for each evolving crest. Such local fitting (or smoothing) also removes the
potential noise in the calculated C values due to the existence of local maxima in the crest
region due to the presence of relatively high frequency waves, especially when they are prop-
agating in the direction opposite to that of the dominant wave. Although implementing local
fitting (or smoothing) for predicted maximum 7 values and their locations significantly im-
proves the estimation of C, in some cases there are still some small undulations in the C val-
ues (as shown in the left column of Figure 2) obtained from tracking the location of 1. (e.g.,
C = dxy,_/dt). For unsteadily evolving dispersive wave packets, the generic crest slowdown
mechanism results in a systematic variability in C [see for example Banner et al., 2014, for

more details].

In addition, the estimation of C will be challenging in cases in which the crest region is
relatively flat. One clear example of such cases is the time at which an evolving crest reaches
the shoreline and the wave rapidly surges up-slope without overturning; such cases are de-
tailed later in the text. Considering these uncertainties, we can write C = C, + AC where
C. is the exact propagation speed of the evolving crest and AC represents the corresponding
uncertainty estimate. The results of the temporal variation of C (e.g., Figure 2a,d,g) suggest
that AC/C, < 0.01 prior to t* = 0 in the simulated cases in which the crest region has a

resolved curvature in the considered discretization.

In the BEM model, U is the actual particle velocity on the free surface at the wave
crest. In the LES/VOF model, we set U as the maximum of the computed horizontal near-

surface velocity over the computational cells in the range x,,. + 3Ax. We also perform a
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simple smoothing, using the moving average method, on the U time series for each evolv-
ing crest before calculating B values. Frames (c), (f), and (i) of Figure 2 show examples of
the temporal evolution of U normalized by their corresponding C values at the time t* = 0,
Ci+=o. In Figure 2, all C, ¢, and U values that correspond to an evolving crest are normalized
by a single value C;-—g, the propagation speed of the crest at the time t* = 0. Thus U/Cy+—
is not equal to B for t* # 0. Our results show that U significantly increases as an evolv-

ing crest approaches the break point t* = ¢, (which typically occurs in the range [0, 0.2]),

as opposed to C, which varies by less than 5% in the range 0.4 < 1" < 1, for cases of
shoaling over gentle to moderate slopes or cases in deep and intermediate depth water. For
these cases, the results suggest that the variation in B is mainly related to variation in U in

* *
the range —0.4 < 1" <1;.

We also write U in terms of the exact value (U, ) and an uncertainty estimate (AU),
U = U, + AU, in which the results indicate that AU/U, < AC/C, for most cases. Thus, we

can write

U, xAU U, _1xAU/U,

B= — - S x_—_~'°°
C.+AC C, 1xAC/C.

= B,(1 + AU/Ue)(l + AC/2C, + O([AC/CE]Z)). (12)

where B, represents the exact value of B, and then the uncertainty in the estimated B values,

denoted by AB, reads in relative value as
+AB/B, = =AU /U, + AC/2C, + 0([AC/C6]2, [AC/C.][AU/U.)). (13)

Based on these results and taking AU /U, < AC/C, < 0.01, the uncertainty in the estimated
B values from our numerical experiments (describe below) will be AB/B, < 0.015 for the
cases in which the crest region has a resolved curvature in the considered discretization. In
particular, AB < 0.013 for B values approaching the breaking inception threshold value By,
which varied in the range [0.85, 0.86] in the numerical cases of B18. Further, Saket et al.
[2017, 2018] reported an uncertainty estimation of AB = 0.020 for their experimental mea-

surements.

4.1 Results for waves shoaling over a plane beach

Figure 3 shows examples of the evolution of regular waves (with T}, = 4 s) over a plane
beach with a slope m = 1/s; including shoaling, breaking onset and progression of breaking
crests; and the corresponding temporal variation of the breaking onset parameter B for the

tracked crests. The incident waves cover a wide range of &y values, demonstrating a transition
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Figure 3: (a,c,e, g, i): Snapshots of free surface elevations and (b, d, f, h, j): temporal evolution
of the breaking onset parameter B for regular waves (7,, = 4 s) propagating over a plane beach
with aslope m = 1/s, demonstrating a transition from spilling to collapsing and surging breaking
with an increasing & = s~!/ \/Im (see Table 1). Here d; is the still water depth at the beginning
of the plane slope segment (Figure 1a). Cases without an apparent overturning crest are indi-

cated in orange. All results are obtained using the LES/VOF model. The yellow regions indicate

B =0.85+0.02.
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from spilling breaking, frames (a-b), to collapsing and surging breaking, frames (g-j). We
observe that B always transitions through the breaking inception threshold value B;;, ~ 0.85
prior to visible crest breaking in cases in which breaking is due to the initiation of instability
in the crest region (i.e., spilling or plunging breakers). In these cases, we also observe that

B exceeds 1 shortly after the breaking inception threshold value B, ~ 0.85 is transitioned,
and the time scale At,,5e; = tp=1 — tp=8,, is a decreasing function of &j for breaking waves
with the same wave period (7, here). Note that in shorebreaks, At s, is relatively small
and estimating B is challenging due to rapid changes, uncertainty, and ambiguity in defining
Xy, after B = By, is transitioned. For example, in the shorebreak case shown in frames (g-h),
the calculation of B is terminated before reaching B = 1 due to a poor estimation of C as the
wave transitions through the time at which B = B,;,. Frames (i) and (j) show the results for
two cases with & = 2.26 and 2.61 surging over a slope of 1/5 or slope angle 11.31°. In both
cases, the initiation of instability occurs at the toe of the wave, and the maximum B values

remain below B;j,.

Figure 4 shows similar results to those of Figure 3 for solitary wave cases shoaling over
steep beaches simulated using the BEM (dashed lines) and LES/VOF (solid lines) models.
Here and subsequently, dashed and solid lines represent results of simulations using the BEM
and LES/VOF models, respectively. Breaking of solitary waves on plane slopes from 1/100
to 1/8 was studied using the BEM model by Grilli et al. [1997], who reported no breaking
for slopes greater than 12°. Using a least-square error method based on their numerical ex-
periments, Grilli et al. [1997] proposed a maximum limit for non-breaking solitary waves
shoaling on a slope m = 1/s given by H™ = 16.9d; /s>. They also introduced a parame-
ter {o = 1.521/ s\/m and characterized the type of their breaking cases based on ¢y as
surging when 0.30 < ¢y < 0.37, plunging when 0.025 < ¢y < 0.30, and spilling when
4o < 0.025.

Figure 4a shows the BEM model results for the evolution of a plunging breaking soli-
tary wave on a slope 1/15 with H,, = 0.30m > H]} = 0.08 mand {y = 0.19(d; = 1
m). Frames (c) and (e) show results of the LES/VOF model for two cases on a slope 1/8
(H]! = 0.264) with H,, = 0.50 m ({p = 0.27) and H,, = 0.35 ({p = 0.32). For all three
cases shown in frames (a-f), the occurrence and breaking type of the incident solitary waves
predicted by both the BEM and LES/VOF models are consistent with the predictions from
H]! and ¢y [Grilli et al., 1997]. In all three cases, we observe that the corresponding B pa-

rameter reaches 0.85 close to a time at which a vertical tangent appears on the crest front
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Figure 4: (a,c, e, g): Snapshots of the free surface elevations and (b, d, f, h): the temporal evo-

lution of the breaking onset parameter B for solitary waves propagating over a plane beach with a

slope m

LES/VOF models respectively. The yellow regions indicate B = 0.85 + 0.02.
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face. As in Figure 3, we also observe that B exceeds 1 shortly after By, is transitioned for all
breaking solitary waves, and the time scale At,,5er = tp=1 — tB=p,, is a decreasing function

of y, consistent with the trend observed for regular waves with respect to &, (Figure 3).

Figure 4g shows the evolution of a non-breaking solitary wave on a slope 1/8 with
H,, = 0.24 m < H] = 0.264 m predicted by both the BEM and LES/VOF models. Frame
(h) shows the calculated B curves from both model results. In this case, #y represents the time
of occurrence of maximum crest elevation, as opposed to Frames (a-f) in which 7y represents
the time when B = 0.85. The maximum B values, B,,,, from both models remain below B, ;
however, B,,, calculated from the BEM model, is approximately 6% smaller than that from

the LES/VOF model results.

Figure 5 shows the temporal variations of x;,_, C and U predicted by both models. The
maximum difference between C and U values predicted by each model is approximately 4%.
Before the time at which the crest maximum is reached (¢ < fy), U from the BEM model
is almost the same as that predicted by the LES/VOF model except close to the crest maxi-
mum time, where the difference between the two predictions reaches 1%. The BEM model
prediction for C is smaller and greater than that predicted by the LES/VOF model for ¢ < 1,
and ¢ > f, indicating that the BEM-predicted wave crest is pitching forward somewhat more
slowly than the LES/VOF-predicted crest. The discrepancy in the corresponding B values
is a maximum after ¢ > 7y, with a value of ® 6%. The discrepancy between the BEM and
LES/VOF results is partly due to their different spatial resolution (Axggy ~ 13Axres/voF)
and the neglect of bed friction and viscous effects in the BEM model. Further, a part of the
discrepancy is related to the uncertainty in the estimation of C as the crest region becomes
relatively flat, particularly for surging/shorebreak cases. Overall, we find that the two model-
ing approaches provide consistent estimates of liquid velocity and crest geometry evolution
in cases where adequate spatial and temporal resolutions are used. This conclusion is further
supported by the general consistency observed between intermediate and deep water results
in the studies of B18 and D18, and contrasts with the negative evaluation of the LES/VOF
approach made in Pizzo and Melville [2019]. This is further supported by validations pre-
sented in the Appendix B.
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Figure 5: Temporal evolution of (a) x,,. the horizontal location of the crest, and (b) C crest prop-
agation speed and U particle horizontal velocity at the crest for the non-breaking solitary wave
shown in Figure 4g. Dashed and solid lines show results of simulations cases with the BEM and

LES/VOF models, respectively. Here x; is the cross-shore location of the shoreline.

4.2 Results for waves shoaling over an idealized bar

As mentioned in the introduction section, the breaking inception threshold value By, =~
0.85 may be considered as the indicator of breaking onset, with any wave for which B ex-
ceeds By, inevitably breaking visibly a short time (Az,,s.;) later. However, one still needs
to closely examine the behavior of B in the transition from breaking to non-breaking cases
in shallow water, including marginal breaking events, to confirm the validity of the breaking

inception threshold value B, ~ 0.85 in a universal sense.

The transition from breaking to non-breaking of shoaling waves over a plane beach
may only occur close to the shoreline, where an accurate estimation of B is challenging, as
discussed above. Thus we consider the behaviour of B for regular, irregular, and solitary
waves, as well as focused packets, propagating over a submerged bar (Figure 1b), with an
emphasis on marginally breaking cases. In the following, we present and discuss the com-
puted temporal variation of B for cases of simulated regular and solitary waves. Cases with

irregular waves and focused wave packets will be reported elsewhere.

Figure 6 shows the temporal evolution of two evolving crests and their corresponding
B values for non-breaking and breaking regular waves (7, = 1.01 s) propagating over a sub-
merged bar, as defined in Figure 1b. Each row shows LES/VOF results for a case with an ini-
tial wave height H,,, where increasing H,, results in a transition from non-breaking (Frames
a-d) to intermittent breaking (Frames e and f) and breaking (Frames g-j) events. For each in-

dividual evolving crest, the reference time is the time at which B transitions through 0.85 or
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reaches its maximum for breaking and non-breaking cases, respectively. Although incident
crests with the same H,, have exactly the same initial wave conditions, their kinematics and
dynamics near the break point or crest maximum are not the same, due to their interaction
with the low-frequency waves in the numerical tank (e.g., seiches), the residual motions due
to preceding waves, etc. Although these variations have a relatively small effect on the height
of the evolving crests, they may result in an intermittent breaking, as shown in Frames (e)

and (f).

Figure 7 shows similar results as in Figure 6 but for the solitary wave cases, computed
using the BEM model. Results shown in Figure 6 and Figure 7 confirm the validity of By, =

0.85 as a robust predictor of breaking onset in shallow water.
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Figure 6: Temporal evolution of (a, c, ¢, g,i): wave profiles and (b, d, f, h): the breaking onset pa-
rameter B for two different evolving crests of a regular wave (7, = 1.01 s) propagating over a bar
with a front slope m = 1/s, demonstrating a transition from non-breaking to spilling breaking with
an increasing &y. Here d, is the still water depth over the top of the bar (Figure 15). All results are

obtained using the LES/VOF model. The yellow regions indicate B = 0.85 + 0.02.
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4.3 Summary of the results

Figure 8 shows the variation of the maximum B values as a function of the wave Froude
number F' (defined in §5.1 below) for all simulated crests, using LES/VOF and BEM models,
from deep to shallow water. As mentioned above, we observe that if B transitions through
the threshold value By, ~ 0.85 it will attain the level B = 1 when the surface signatures of
breaking appear for all cases. The two exceptional breaking wave cases indicated by + signs
below B = 1 represent solitary wave cases simulated using the BEM model, where the sim-
ulations stop before breaking onset due to insufficient spatial resolution. We observe that the
breaking inception threshold values B;j, beyond which the crest evolves to breaking, range
between 0.85 and 0.88 in shallow water wave breaking. This is consistent with the relevant
previous studies of the variation of B, in intermediate depth and deep water [Barthelemy
et al., 2018; Saket et al., 2017, 2018; Derakhti et al., 2018]. The plot also displays a dotted
line corresponding to the linearized relation B = F. We observe that the maximum occurring
values of B for all the tabulated steep but nonbreaking crests greatly exceed this lower limit,
due to a combination of underprediction of fluid velocity in the crest as well as possible re-

ductions of crest speed prior to breaking in intermediate depth cases.
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Figure 7: (a,c, e, g): Snapshots of the free surface elevations and (b, d, f, h): temporal evolution
of the breaking onset parameter B, for solitary waves propagating over a bar with a front slope

m = 1/s demonstrating a transition from non-breaking to spilling breaking with an increasing
initial wave height. Here d, is the still water depth over the top of the bar (Figure 15). All results

are obtained using the BEM model. The yellow regions indicate B = 0.85 + 0.02.
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Figure 8: Maximum value of the breaking onset parameter B as a function of the wave Froude
number F, for all breaking (black symbols) and non-breaking (orange symbols) wave crests. In the
breaking cases, the maximum value of B corresponds to the time, after the onset of breaking, at

which the location of the crest maximum becomes noisy.
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5 Discussion

In this section, we present an evaluation of the other existing breaking criteria from the
literature. These are the various geometric parameters defined below, which are applied to
the simulated wave trains. Next, we comment on the extension of the results to 3D shoaling
and breaking waves in shallow water. Finally, we discuss the implementation of the parame-

ter B in energy-conserving phase-resolving models.

5.1 Definition of local geometric parameters used in the analysis

Following Beji [1995], we define a wave Froude number
F = gH/2c[2in, (14)

where Clzin = gk~ 'tanh kd and k = 27/L is the local wave number. We note that F simpli-
fies to the nonlinearity parameter y/2 in shallow water and to the local steepness S = kH/2
in deep water. Thus, F may be considered to be a unified nonlinearity parameter in arbitrary
depth [Beji, 1995; Kirby, 1998]. Further, using the results from linear theory, we can read-
ily obtain F = wujjn/clin = Biin, Where uy;;, is the linear theory prediction of the particle
velocity at the horizontal crest position and at the mean water level. All of these properties

suggest that F is a preferable diagnostic geometric parameter compared to v and S for a uni-

fied breaking onset criterion in arbitrary depth.

We define a wave front slope 6 in degrees by
180
6=— tan”' (H,/1y), (15)

where H, /I, is the crest front steepness (see Figure A.1). We further define A, = H./H
and A, = [/l — 1, which represent instantaneous vertical and horizontal asymmetry of
the evolving crest, and are related to the statistical third-order moments, normalized wave
skewness n_% / ?3/2 and asymmetry W / ?3/2 (where H denotes the Hilbert transform),
respectively. Finally, we define A; = [{/l] — 1, which represents the horizontal asymmetry of
the shape of the crest but only considering the upper half part of the crest. A, is also appli-
cable for crests without zero-crossing points and is a more robust measure compared to Ay,

for crests with noticeable irregularity at their back face (Figure A.2b).

The parameter 6 is often used as the diagnostic criterion for the onset of breaking in
Boussinesq models using eddy viscosity-type dissipation to model breaking [see, for exam-

ple, Schdffer et al., 1993; Kennedy et al., 2000]. A maximum value of 6 has also been used
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as a breaking criterion in potential flow models. Thus, in their 2D-FNPF-BEM model, Guig-
nard et al. [2001] used a maximum slope criterion to trigger dissipation using an “absorbing
surface pressure”. Grilli et al. [2019] revised and extended this earlier work and Papoutsel-
lis et al. [2019] implemented and tested a similar criterion and energy absorption method in
their 2D-FNPF model. Finally, Mivehchi [2018] used a combination of maximum front slope
and crest curvature as a breaking criterion in his 3D-BEM model. Note that in such energy
conserving models, the energy of breaking waves is dissipated by applying an “absorbing”

surface pressure specified opposite and proportional to the free surface velocity or similar.

5.2 Evaluation of predictive skills of existing geometric breaking criteria

Figure 9 shows examples of computed temporal variation of the various geometric
parameters defined in §5.1 (also in Figure A.1) for breaking (black lines and symbols) and
non-breaking (orange lines and symbols) wave crests from shallow to deep water. Examples
shown in frames (a-f) represent regular waves shoaling over a submerged bar with a front
face slope of 1/20 (Figure 1b), in which breaking is typically observed over the flat region of
the bar and is characterized as shallow breaking. Examples shown in frames (g-1) represent
focused packets and modulated waves propagating in intermediate and deep water over con-
stant depth. Further, Figure 10 shows variation of the four geometric parameters vy, S, F and
6 (§ 5.1) at the time when B = 0.85 or at the unbroken crest maximum, for which t* = 0, for
all simulated breaking (black symbols) and non-breaking (orange symbols) wave crests from

shallow to deep water (which includes cases shown in Figure 9).

The most commonly used breaking onset parameter in shallow water wave breaking
isy = H/d; in phase-averaged models the mean depth d + 7 is typically used instead of
still water depth d, such that mean wave set-up or set-down is included. There is a large body
of literature including laboratory and field studies attempting to define y values at breaking
onset for various incident waves in shallow water. An extensive review is given in Robert-
son et al. [2013]. Observed values of y at breaking onset, in a wave-by-wave sense, are typ-
ically greater than 0.6 in shallow water. Consistent with the existing relevant literature, re-
sults shown in Figures 9a and 9g indicate that y increases as a wave approaches the break-
point and that y at breaking onset is an increasing function of the surf-similarity parameter
&o [Battjes, 1974; Raubenheimer et al., 1996]. However, no unified formulation of y predict-

ing the onset of depth-limited wave breaking can be found (see Figure 10a). Further, it is
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clear that 7 is an irrelevant parameter for estimating the breaking onset of steepness-limited

wave breaking in deep water.

In the shallow breaking cases shown in Figure 9a, the local depth d decreases over the
front face of the bar (the shoaling region), then becomes constant over the top of the bar, and
then increases over the back face of the bar (Figure 15). The latter explains the noticeable
decrease of y for t* > 0 for non-breaking crests. During the time a non-breaking crest propa-

gates over the top of the bar (constant depth region) the variation of vy is relatively small.

Figures 96 and 9/ indicate that as a crest approaches breaking, or its maximum height
for non-breaking crests, the local steepness S = kH/2 increases both in shallow and deep wa-
ter cases. We observe that the maximum steepness values of all the simulated non-breaking
crests are smaller than that given by the Miche [1944] breaking steepness criterion § =
7t/7 tanh kd (dashed line in Figure 105). We also observe that a large number of simulated
breaking crests occur with a steepness value smaller than the limiting criterion. We note that
our definition of L is different from the classical definition for wavelength; our L is much
smaller than the latter in some of the shallow breaking cases considered here (see Appendix
A). In summary, breaking is clearly related to steepness, but a unified formulation that is able
to predict maximum values of S at breaking onset from deep to shallow water remains un-

known; the same conclusion holds for the wave Froude number F (Eq. 14) (Figure 10c¢).

Figures 9c and 9i as well as Figure 10d document the variation of the wave front slope
0 (Eq. 15) as a function of time and at t* = 0, respectively, from shallow to deep water. In
general, breaking crests have higher maximum values of 6 compared to non-breaking crests.
However, most of the spilling breakers, both in deep and shallow water, maintain their max-
imum 6 values as they approach the breakpoint. Moreover, 6 decreases slightly as a crest
approaches breaking in marginal breaking cases, both in deep and shallow water. These ob-
servations suggest that 6 might be a useful diagnostic breaking onset parameter but should
be combined with other parameters; such as y in shallow and with S (shown in Figure 10e)
in deep water or, more generally, with the wave Froude number F' (shown in Figure 10f) in

order to potentially predict the breaking onset time and location in a phase resolved sense.

Finally, frames (d) - (f) and (j) - (1) of Figure 9 demonstrate that neither the horizontal
(Ap and A ) nor the vertical asymmetry of an evolving crest (as defined in § 5.1) are a good
candidate as a breaking onset parameter. Further, results show that some of the simulated

wave crests, both in shallow and deep water, are remarkably symmetric just prior to breaking
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Figure 9: Examples of temporal evolution of various geometric parameters defined in §5.1 (also
see Figure A.1) for breaking (black lines and symbols) and non-breaking (orange lines and sym-
bols) wave crests (a — f): in shallow water, and (¢ — [): in intermediate depth and deep water.
The capital letters in the legend indicate the type of incident waves, R: regular waves, F: focused
packets, and M: modulated wave trains. In the legend, bar and flat denote bar geometry (Figure 1b)

and flat bed (Figure 1¢) respectively, and T,, is the period of the regular incident waves.
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Figure 10: Variation of various geometric parameters, defined in §5.1, at the breaking inception
time or crest maximum, for all simulated breaking (black symbols) and non-breaking (orange sym-
bols) wave crests from deep to shallow water. The capital letters in the legend refer to the type of
incident waves, R: regular, I: irregular, S: solitary waves, F: focused packets, and M: modulated
wave trains. Here,y = H/d is the nonlinear parameter (or breaking index), S = xH/L isthe
wave steepness, # = 180/mtan™! (87) is the wave front slope (all are defined in Figure A.1), and

F =ga/ clz. is the wave Froude number.
n
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(A =~ 0). This result is consistent with field observations made using stereo photography in
deep water [Schwendeman and Thomson, 2017] and with field observations using LIDAR in

shallow water [Carini, 2018].

In summary, our results reveal that a criterion using both 6 and F has relatively higher
skill in predicting the onset of breaking from deep to shallow water, compared to the other
geometric parameters considered here. However, such a criterion still cannot segregate all

breaking crests from non-breaking ones.

5.3 Two- versus three-dimensional shoaling and breaking waves

While, in shallow water, most breakers end up being locally nearly 2D, 3D processes
of directional and bathymetric focusing can affect or even govern the evolution of shoaling
waves towards breaking. Earlier work with 2D- and 3D-BEM models, however, indicates that
whether in 2D [Grilli et al., 1997] or 3D [Guyenne and Grilli, 2006] once a wave approaches
breaking onset, there is a “loss of memory” of the physical phenomenon(a) that have led
to breaking and whether a crest breaks or not and how it breaks essentially depends on lo-
cal wave properties (here represented by U and C at the crest). Guyenne and Grilli [2006],
for instance, compared properties of solitary waves shoaling over a 3D sloping ridge or a
2D plane slope in their 3D-BEM model and found similar velocity and acceleration fields
near the crest and in the jet of breaking waves. This supports the present investigation of 2D
shoaling and breaking waves in shallow water. Nevertheless in future work, we will consider
more complex shallow water bathymetries and confirm the validity of the breaking inception

threshold value By, =~ 0.85 for breaking wave crests in such more realistic 3D shoaling cases.

5.4 Implementation of the parameter B in energy-conserving phase-resolving

models

The new criterion is suitable for use in wave-resolving models that cannot intrinsi-
cally detect the onset of wave breaking. Some of these models, such as High Order Spec-
tral (HOS) models [Dommermuth and Yue, 1987; West et al., 1987], become unstable if they
reach the visible breaking onset stage, i.e., B = 1. Thus, warning of imminent breaking onset
at By, =~ 0.85 is critical in the context of the successful application of the new criterion in
such wave-resolving energy-conserving models; because at B = By, the waveform is well de-

fined, no vertical tangent occurs on the wave front face, and the free surface is single-valued.
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In a practical implementation of the By, criterion in wave models such as HOS or
Boussinesq, one would be able to track the evolution of B = U/C up to the point where the
criterion is verified, provided wave crests can be identified. This was already demonstrated
for simple 2D shoaling solitary waves, for instance, by Wei et al. [1995] using a fully nonlin-
ear Boussinesq model and by Seiffert and Ducrozet [2018] for HOS. While a crest location
and its velocity C can be easily computed in these 2D models, this is more difficult to do in
3D. Stansell and MacFarlane [2002] identified crests in experimental results and computed
their velocity ¢ based on a Hilbert transform of the free surface. This method was applied
by Mivehchi [2018] to detect wave crests and compute their velocity in results of a 3D-BEM
model, and suppress breaking waves by specifying an “absorbing surface pressure”; here
breaking was based on a maximum crest curvature/front-slope criterion. A similar Hilbert-
transform-based method could be applied to detect crests and compute their celerity in re-
sults of (2D horizontal) HOS or Boussinesq models. In the Boussinesq model, the particle
velocity at the crest would be obtained from extrapolating to the surface the horizontal veloc-
ity used in the model at some pre-defined depth, using the model’s assumed velocity profile
(e.g., parabolic). This could be facilitated by formulating the Boussinesq model with a verti-
cal boundary-fitted o~ coordinate (as recently proposed by Kirby [2020]), which enables the

simple projection of the model horizontal velocity to o = 1.

6 Conclusions

The model simulation results presented here extend the results of B18 to cases of waves
shoaling and breaking in shallow water. The local energy flux parameter B exceeding the
threshold of ~ 0.85 is confirmed to provide a robust predictor of breaking onset for cases
where breaking results from a crest instability. In particular, we have simulated cases where
a weak modulation of periodic waves by tank seiching leads to occasional breaking events in
a train of otherwise unbroken waves, which are marginally close to breaking. These break-
ing events are clearly indicated by the passage of B through the ~ 0.85 threshold. Further, we
have shown that B;;, = 0.85 clearly separates breaking and non-breaking cases for shoaling/de-
shoaling waves propagating over bars. We conclude that this investigation provides further
support for the generic applicability of the new breaking framework proposed by B18, which
was developed with specific reference to the onset of instability and incipient overturning in

the region localized around wave crests.
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Our extension to shoaling waves introduces the additional phenomenon of surging
breakers, with breakdown and generation of turbulence during the uprush of a surging wave
on a beach. This may be related more directly to instabilities of the strongly curved flow
closer to the toe of the surging wave front. This process is very different in nature from the
mechanism covered by the analysis of B18 and occurs without a crest-based criterion being
exceeded. It thus represents a different route to breaking whose occurrence (or onset) would

require an alternate criterion to be developed.

We emphasize that the validity of the proposed criterion also needs to be examined
in the presence of wind forcing. The laboratory work of Saket et al. [2018] showed that
B, = 0.85 also segregates breaking from non-breaking crests in the presence of wind forc-
ing in deep water breaking. A number of high-fidelity two-phase flow simulations of break-
ing waves in the presence of wind forcing [e.g., Tang et al., 2017; Yang et al., 2018] have
been recently performed. Detailed quantification of the effect of direct wind forcing on the

proposed breaking onset criterion in shallow water is left for future study.
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A: Sensitivity of local geometric parameters used in the analysis

Definitions of the various local geometric parameters for an evolving wave crest are
described in Figure A.1. Among these, the height H and length L of the carrier wave need
to be defined first. Two main sources of uncertainty in the value of the geometric parameters
defined in § 5.1 are the selected definitions of the local length L and height H of an evolving
crest. Here we quantify such uncertainties in detail. In summary, using definitions other than
those used here may vary the estimated H values for extreme waves by up to 10%. However,
the sensitivity of the estimated L values at breaking onset are noticeably larger, especially for

shallow cases.
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Following Derakhti and Kirby [2016], D18 and Tian et al. [2008], we define the local
wave length L = 2/,., where [, = [| + [ (Figure A.1) is the distance between the two
consecutive zero-crossing points adjacent to the crest. We note that the zero-crossing point
on the back face of the wave may have noticeably large fluctuations due to the presence of
higher harmonics in shallow water cases (Figure A.2b) or high-frequency components in
random waves, etc. Further, in some shallow water cases, e.g., solitary waves, there are no

zero-crossing points and thus ;. can not be defined.

To resolve these issues, we fit a skewed-Gaussian function to the instantaneous wave
profile and then estimate a length scale ;5 from the skewed-Gaussian fitting as described

below (Figure A.2). Finally, we take L = Min(2/,, 2[;5) as the local wave length.

A > HC’
Hc/2 U - /_/\[\/\
i Il S
H=H.+ (Hq+ Hp)/2 Ap=11/ls—1
Le=li+1 d A -1

L = Min(2l.., 21%) A, = H,/JH

/’y: H/d S=rxH/L 6=180/mtan"!(H./l;)

Figure A.l: Local geometric parameters describing an evolving wave crest. Here /35 represents a

length scale obtained from a skewed-Gaussian fit to the crest region. Dotted and thick solid lines

show the still water and the bed elevations respectively. The incident waves are propagating from

left to right.

Here 3¢ is a length scale obtained from the skewed-Gaussian fit f(r) defined as a
scaled product of the standard normal probability density function ¢(r) = exp [-r2/2]/V2n
and its cumulative distribution function ®(r) = (1 + erf[r/V2])/2 (erf denotes the error

function) given by
f(r) = c19(r)®(ar) + c,

where r = (x — x,)/w with x,, and w are the peak location and scale respectively, a the

horizontal skewness parameter (¢ < 0 for waves pitch forward), c; a scaling parameter and
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¢, a vertical offset. The instantaneous f for each crest is obtained by a nonlinear fitting of

Eq. A.1, including five coefficients, to the corresponding simulated wave profile.

1% ~1*H./(H.— h*) f i

5

(c) £ (d) oz

139 ~ I"H,/(H, — h*)

05
t— t(] [S}

Figure A.2: (a, b, ¢) Definition of the local zero-crossing length-scale /35 obtained from skewed-
Gaussian fitting (dotted lines) to the wave profile (solid lines) for examples of evolving crests
shoaling over a submerged bar as well as () the temporal variation of 15 /. before (shoaling
phase) and after the breaking onset (f = 1) for the crests shown in (a) and (b). (a) Regular waves

with T,, = 1.01 s, (b) regular waves with 7, = 2.525 s, and (¢) a solitary wave. Note that /,. does
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not exist for solitary waves. In (a, b, ¢), the dashed lines show the still water levels.

Frames (a), (b), and (c) of Figure A.2 show examples of f (dotted lines) and the cor-
responding I35, just before breaking onset time, for three simulated evolving crests shoal-
ing over a submerged bar. In addition, Figure A.2d shows the temporal variation of the ratio
138 /1, for the two examples shown in frames (a) and (b). Frames (b) and (d) show that we

may have [}

¥ < I, at breaking onset in cases with irregularities on the back face of the
wave, e.g., due to the presence of higher harmonics. Finally, in solitary cases (Figure A.2c)
we simply define L = 2[5 because there are no zero-crossing points and thus /.. cannot be

defined.

At breaking onset, Figure A.3a demonstrates that the length scale /35 obtained from
the skewed Gaussian fitting (Eq. A.1) is usually smaller than the zero-crossing length scale
I, (Figure A.2). Our results show that I35 /I, > 0.9 in most cases, especially for those
with d/Ly > 0.1, with d the still water depth and Ly a linear prediction of the local wave

length obtained by using the linear dispersion relation (27r/Ty)> = gk tanh [kod] with d the
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still water depth, kg = 27/Ly and Ty equal to paddle period for monochromatic waves and
peak period T}, for incident irregular waves. In some of the shallow cases (d/Ly < 0.1),
however, we observe I35 /1, values down to 0.4. Figure A.3b shows that our definition of
L represents a smaller length scale compared to the characteristic wave length Ly where the
averaged values of L vary between Ly/3 in shallow water up to 0.7L¢ in intermediate and

deep water.

We define the local wave height H as the sum of a crest elevation and averaged trough
elevations before and after the crest, H = H. + (H;; + H;;)/2. Our results (Figures A.3¢ and
A.3d) indicate that other potential definitions of wave height such as H. + H;; or H. + H;; are
within 10% of H = H. + (Hy + Hy1)/2 in most cases from deep to shallow water. In addition,
the downstream trough height H,; is greater than or equal to the upstream trough height Hy,
in shallow water cases; the trend is reversed in deep water cases. These trough heights vary

between 0.2H,. and 0.5H, in most cases.

B: Model validation for shallow water breaking

In this section, the validation of the LES/VOF model [Derakhti and Kirby, 2014a] in-
cluding detailed comparisons of free surface evolution and organized and turbulent velocity
fields, is presented for a number of available laboratory data for breaking and non-breaking
waves in shallow water. The reader is referred to Derakhti and Kirby [2014a,b, 2016] for
the detailed examination of the model prediction of the free surface evolution, organized
and turbulent velocity fields, bubble void fraction, integral properties of the bubble plume,
and the total energy dissipation compared with corresponding measured data, as well as the
sensitivity of the simulation results with respect to the selected grid resolution for focusing

laboratory-scale breaking packets in intermediate depth and deep water.

In all the simulated cases using the LES/VOF model, the selected horizontal grid size
in the wave propagation direction (which is always +x direction here) Ax is smaller than
1/100 of the dominant wavelength at the x location at which the crest maximum was ob-
served, and Az = Ay < Ax. Using such spatial resolution, our LES/VOF model captures
the free surface and organized velocity field fairly accurately up to the break point, and the
estimates of the loss of total wave energy due to wave breaking are typically within 10% of
observed levels [Derakhti et al., 2018], after correcting for the change in the downstream

group velocity following breaking in isolated breaking waves [Derakhti and Kirby, 2016].
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Figure A.3: Sensitivity of the local height and length of an evolving crest from deep to shallow
water. (a) the ratio between the length scales /35 obtained from skewed-Gaussian fitting defined

in Eq. (A.1) and [, both shown in Figure A.2; and (b) the ratio between the zero-crossing length
scale L = Min(2l,,,2[;%) and a wave length L at breaking onset for the breaking crests or at the
time at which H. = n,,4x for the non-breaking crests. Here, L is obtained by using the linear dis-
persion relation (277/Ty)? = gk tanh [kod] with d the still water depth, ko = 271/ Lo and Tj equals to

paddle period for monochromatic waves and peak period 7}, for incident irregular waves.

Regarding the FNPF-BEM model used in this work, Grilli et al. [1994a] showed that
surface elevations simulated with the model for solitary waves shoaling over plane slopes
agreed within 1 — 2% with measured surface elevations, up to the breaking point. Grilli et al.
[1994b] reported a similarly good agreement of numerical results with experiments for soli-
tary waves propagating over a trapezoidal breakwater. Grilli et al. [1997] showed that the
model could accurately predict breaking crest elevations, breaker index, and breaker types
for solitary waves of various incident height propagating over mild to steep slopes. Finally,
Grilli et al. [2019] show that the model also accurately simulates the shoaling and propaga-

tion of periodic waves over a bar similar to that considered here.
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B.1 Regular waves shoaling over a plane beach

Here we consider the LES/VOF model performance for the case of regular depth-

limited wave breaking on a planar beach (P10-r) in terms of phase-averaged free surface

elevations and wave height using the data set of Ting and Nelson [2011]. We also compare

the model results of the case P10-r with the free surface and velocity measurements of the

spilling case of Ting and Kirby [1994]. The experimental set-up and incident wave condi-

tions of the latter are similar as in P10-r and are also summarized in Table B.1. This experi-

ment has been widely used by other researchers to validate both RANS [Lin and Liu, 1999;

Ma et al., 2011; Derakhti et al., 2015, 2016a,b,c] and LES [Christensen, 2006; Lakehal and

Liovic, 2011] numerical models.

Figure B.1 shows that the model captures the evolution of phase-averaged free sur-

face elevations reasonably well compared with the corresponding measurements of Ting and

Nelson [2011] in the shoaling, transition and inner surfzone. Further, Figure B.2 shows the

comparison between the predicted and observed cross-shore variation of the wave height H

calculated from the phase-averaged free surface time-series. Here phase averaging is per-

formed over N successive waves after the wave field reaches a steady state condition, where

N is 10 in both the simulated results and the measurements.

Case H,, Tw di Ly s & dy L, sg4 Exp.
(mm)  (s) (m) (m) (m)  (m)
P10-r 122 20 0.36 0 1%0 0.21 - - - Ting and Nelson [2011]
125 20 04 0 35 0.20 - - - Ting and Kirby [1994]
Bl-r 410 101 04 6 20 030 0.1 2 10 Luth et al. [1994]
B3r 290 253 04 6 20 095 0.1 2 10 Luth et al. [1994]
B9-r 972 143 0.7 2 10 057 008 O 0 Blenkinsopp and Chaplin [2007]

Table B.1: Input parameters for the simulated cases used for the validation of the LES/VOF model.

Definitions are given in table 1.
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Figure B.1: Comparison between the LES/VOF model results of spanwise-phase-averaged free

surface elevations at various cross-shore locations for the case P10-r and the corresponding mea-

surements by Ting and Nelson [2011]. No spanwise averaging was involved in the measurement.
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Figure B.2: The LES/VOF model-data comparison of the cross-shore variation of the wave height
H for the case P10-r. Here TN11 and TK94 denote the data set of Ting and Nelson [2011] and Ting

and Kirby [1994] respectively.

Figure B.2 also shows that the spatial evolution of H relative to the break point in the
case P10-r is comparable with that in the spilling case of Ting and Kirby [1994]. Thus al-
though the incident wave conditions and setup in the latter are slightly different than those in

the case P10 the wave-driven currents and turbulence statistics should be comparable.

Figure B.3 shows the spatial distribution of the normalized spanwise-time-averaged,
—1/2
(k) / /N gh, turbulent kinetic energy for PS-a. Figure B.3 shows that both the magnitude
and spatial variation of the predicted (k) / /~Vgh and (u)/+/gh are consistent with the corre-

sponding measured values of Ting and Kirby [1994] in the transition and inner surf zone.
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Figure B.3: The LES/VOF model results of spanwise-time-averaged normalized (¢ — f) turbulent

kinetic energy, \/z/ gh,and (A — F) horizontal velocity, u/+/gh, (undertow) profiles for the case
P10-r at various cross-shore locations after the initial break point. Circles show the measurements

of Ting and Kirby [1994]. Here, 0 = (z—7n)/hand h = d + 7.
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B.2 Regular waves shoaling over an idealized bar

Here we consider the LES/VOF model performance for cases of regular non-breaking
(B1-r) and breaking (B3-r and B9-r) waves shoaling over a submerged bar, using the data sets
of Luth et al. [1994] and Blenkinsopp and Chaplin [2007]. Figures B.4 and B.5 documents
that the model accurately captures the nonlinear evolution of evolving crests propagating over
the up-slope (—s(d; — d») < x < 0) and top (0 < x < L) of the bar in all cases. Figure B.5
also shows that the model fairly reasonably predicts the kinematics of the entrained bubble
plume compared to the observations. The apparent mismatch between the predicted and ob-
served wave profiles is mainly due to the mismatch between their corresponding incident
waves and due to the difference between the low frequency wave climate in the numerical

and laboratory wave tanks.

-0.03 = 76.3‘ m -0.03 ‘ ‘ = 76.3‘ m
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-0.03
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43
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Figure B.4: Comparison of the LES/VOF model results (solid lines) and measurements [Luth

et al., 1994] (circles) of free surface elevations at various x locations for the along-crest uniform
(a—e) non-breaking, with 7,, = 1.01 s and H,, = 0.041 m, and (A— E) breaking, with T}, = 2.525 s
and H,, = 0.029 m, regular waves shoaling over a submerged bar. Here =6 < x < 0and 0 < x < 2

indicate the up-slope and top of the bar respectively (see Figure 1c and Table B.1).
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Figure B.5: Comparison of the side-view of the predicted (left column) and observed (right col-

umn) bubble plume evolution for the case B9-r. The two dashed lines in the right column indicate

the field of view of the photographs, adopted from Blenkinsopp and Chaplin [2007, Figure 4].
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