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Abstract20

We investigate the validity and robustness of the Barthelemy et al. [2018] wave break-21

ing onset prediction framework for surface gravity water waves in arbitrary water depth, in-22

cluding shallow water breaking over varying bathymetry. We show that the Barthelemy et al.23

[2018] breaking onset criterion, which they validated for deep and intermediate water depths,24

also segregates breaking crests from non-breaking crests in shallow water, with subsequent25

breaking always following the exceedance of their proposed generic breaking threshold. We26

consider a number of representative wave types, including regular, irregular, solitary, and27

focused waves, shoaling over idealized bed topographies including an idealized bar geom-28

etry and a mildly- to steeply-sloping planar beach. Our results show that the new breaking29

onset criterion is capable of detecting single and multiple breaking events in time and space30

in arbitrary water depth. Further, we show that the new generic criterion provides improved31

skill for signaling imminent breaking onset, relative to the available kinematic or geometric32

breaking onset criteria in the literature. In particular, the new criterion is suitable for use in33

wave-resolving models that cannot intrinsically detect the onset of wave breaking.34

1 Introduction35

Surface wave breaking is a highly dissipative process, transferring excess wave en-36

ergy flux into currents and turbulenceMelville [1996]. Familiar breaking onset manifests37

as a crest breaking event characterized by the formation of a multi-valued free surface and38

entrainment of air bubbles into the water column (excluding micro-breakers which do not39

entrain air). An important exception discussed below is surging breakers over very steep40

beaches, in which the wave crest remains relatively smooth and the initiation of instability41

occurs at the toe (leading edge) of the wave.42

We introduce a new term, breaking inception, which identifies the critical time at which43

a wave crest breaking event is initiated within the growing crest region. This precedes any of44

the familiar visible breaking onset signatures identified above by a finite time, typically a45

small fraction of the local wave period. It is shown below that the breaking inception time is46

crucial for predicting breaking onset and breaking strength in advance of their realization.47

Finding a robust and universal diagnostic parameter that determines the onset of break-48

ing for surface gravity waves, and its strength, is of substantial importance in the prediction49
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of atmosphere-ocean exchanges, nearshore circulation and mixing, design of offshore and50

nearshore infrastructures, etc, but as yet the problem is not completely resolved.51

Considerable effort has been made to find a robust and universal methodology to pre-52

dict the onset of breaking gravity water waves in deep and intermediate depth water [Song53

and Banner, 2002;Wu and Nepf , 2002; Banner and Peirson, 2007; Babanin et al., 2007;54

Tian et al., 2008; Toffoli et al., 2010; Shemer and Liberzon, 2014; Fedele et al., 2016; Saket55

et al., 2017, 2018; Barthelemy et al., 2018; Khait and Shemer, 2018; Craciunescu and Chris-56

tou, 2019; Pizzo and Melville, 2019]. This and other aspects of wave breaking have been57

covered in several excellent reviews of the topic [Banner and Peregrine, 1993;Melville,58

1996; Perlin et al., 2013]. Recently, Perlin et al. [2013] have reviewed the latest progress59

on prediction of geometry, breaking onset, and energy dissipation of steepness-limited break-60

ing waves. The predictive parameters involved can be categorized as (i) geometric, (ii) kine-61

matic, and (iii) dynamic criteria. As summarized in Perlin et al. [2013, §3], none of the62

available criteria can distinguish between breaking and non-breaking crests in a universal63

sense.64

The situation becomes even more complex in shallow water, where waves evolve in65

response to interaction with seabeds of arbitrary, complex geometry. The inclusion of wa-66

ter depth d as an important factor in shallow water breaking leads to the identification of67

a convenient dimensionless parameter γ = H/d [McCowan, 1894], where H is the local68

wave height. Further, analysis of breaking criteria for the simplest case of waves shoaling69

over a planar slope introduces the slope itself as a parameter. The effect of bottom slope m70

in combination with a measure of wave steepness has been studied by Iribarren and Nogales71

[1949], who defined a single combination ξ0 = m/
√

H0/L0 based on offshore wave height72

H0 and wavelength L0, and Battjes [1974], who defined a similar surf similarity parameter73

ξb = m/
√

Hb/Lb , with the index b denoting values taken at the time when visible breaking74

commences. The surf similarity parameter has been found to be useful in discriminating be-75

tween breaker types as well as in refining the prediction of breaking onset based on γ. The76

range of results in the literature is reviewed by Robertson et al. [2013], who list six types of77

dependency of γb on additional parameters such as m and ξ0, and provide a table of thirty-six78

examples of published formulae for the estimation of γb . Robertson et al. concluded that a79

single, easily implementable relationship covering all breaking phenomena is still elusive.80

–3–



Confidential manuscript submitted to JGR-Oceans

Our approach in this paper is underpinned by the conceptual framework paper Barthelemy81

et al. [2018] (hereafter B18) for predicting breaking onset, and its companion paper Derakhti82

et al. [2018] (hereafter D18) for predicting breaking strength. These papers report the dis-83

covery of generic predictors for breaking onset and strength for 2D and 3D modulating waves84

in deep and intermediate depth conditions. We seek to validate that this framework is equally85

valid for predicting shallow water wave breaking onset.86

The local energy flux parameter B introduced by B18 is defined at the wave crest re-87

gion as88

B = F/E |C | (1)

where F = U(p + E) is the local flux of mechanical energy/unit volume, E is the mechanical89

energy/unit volume, and U is the local liquid velocity. The wave crest translates with propa-90

gation speed C = |C |, which is generally time-dependent. On the free surface, the pressure p91

is taken to be zero, reducing the expression for B to92

B = U/C (2)

where U is the component of liquid velocity at the wave crest in the direction of wave prop-93

agation. Although Equation (2) appears similar to the kinematic breaking onset criterion94

[Perlin et al., 2013, §3.2], it represents the normalized flux of mechanical energy at the crest,95

and thus should be considered as a dynamical criterion. The interested reader is referred to96

the discussion on line 21 on p.466 of B18. In the linear approximation, B simplifies to γ/297

and the local wave steepness S = kH/2 (k is the wave number) in shallow and deep water98

respectively.99

B18 explains and validates the role of the parameter B (Eq. 2) as a robust predictor of100

whether the crest of a steepening wave evolves to breaking, or whether it stops growing and101

continues to propagate without breaking. B18 shows that a wave crest will evolve to break-102

ing if B tracked at the evolving wave crest transitions through a generic threshold Bth , which103

then sets the breaking inception time. D18 shows that the rate at which B normalized by the104

local wave period transitions through this generic threshold also sets the breaking strength, or105

total energy dissipated by the breaking event. Should B not transition through Bth , that crest106

will not evolve to breaking. Thus tracking B at the evolving crest has only two outcomes -107

either B fails to transition through Bth , in which case the crest will not evolve to breaking, or108

else the crest will evolve to breaking inception when B transitions through Bth , and will then109

evolve rapidly to visible breaking onset. This mirrors the physics of how breaking occurs. In110
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this case, the normalized rate of change of B at the inception time provides a generic predic-111

tor of the breaking strength [Derakhti et al., 2018], but this aspect of shallow water breaking112

is left for a companion paper in progress.113

Based on numerical simulation of 2D and 3D focused wave packets in deep and in-114

termediate depths, B18 found that a value of Bth in the range [0.85, 0.86] provides a robust115

threshold that identifies imminent breaking crest in 2D and 3D wave packets propagating in116

deep or intermediate uniform water depths. Subsequently, using a different modeling frame-117

work, D18 found consistent results for representative cases of modulated wave trains and118

focused packets in deep and intermediate depth water. These numerical findings for 2D and119

3D cases were closely supported by the laboratory experiments of Saket et al. [2017, 2018]120

which include direct wind forcing.121

It remains to determine whether the breaking threshold framework proposed by B18,122

i.e., Bth ≈ 0.85 as a generic threshold for predicting breaking, is also valid for waves in123

shallow water with relatively rapidly varying depth. Our goal is to investigate in detail to124

what extent the results reported by B18 and D18 for deep and intermediate water waves carry125

over to shallow water conditions. The utility of a predictor such as Bth = 0.85, rather than126

the classic Bth = 1, is its application in models that cannot directly resolve breaking and fail127

before waves reach B = 1.128

We use a large-eddy-simulation (LES)/volume-of-fluid (VOF) model [Derakhti and129

Kirby, 2014a, 2016] and a 2D fully nonlinear potential flow solver using a boundary ele-130

ment method (FNPF-BEM) [Grilli et al., 1989; Grilli and Subramanya, 1996] to simulate131

nonlinear wave evolution, focusing on breaking onset behavior. Simulations are conducted132

for a variety of scenarios including regular, irregular, solitary, and focused waves shoaling133

over idealized bed topographies, including an idealized bar geometry and mildly- to steeply-134

sloping planar beaches. Additionally, we examine the applicability of the criterion for col-135

lapsing/surging breaking cases in shallow water, for which an instability leading to breaking136

may develop close to the toe (leading edge) of the wave front.137

2 Computational approaches138

In this section, we provide a brief overview of the two modeling approaches used: the139

polydisperse two-fluid LES/VOF model of Derakhti and Kirby [2014a] based on the model140

TRUCHAS [Francois et al., 2006], and the FNPF-BEM model of Grilli et al. [1989] and141
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Grilli and Subramanya [1996]. The cases considered here are essentially 2D in the (x, z)142

plane, allowing us to employ a purely 2D version of FNPF-BEM. The FNPF-BEM model143

is not valid beyond the first onset of breaking, and is thus only used below to consider the144

transient solitary wave cases.145

As mentioned, the focus of this study is the examination of geometry, kinematics and146

dynamics of an evolving crest up to the close vicinity of the visible breaking onset stage that147

is essentially before the start of the bubble entrainment process. However, in all simulation148

cases considered here, except the transient solitary wave cases, it is of interest to examine149

how an evolving crest interacts with decaying turbulence patches left behind from precedent150

breaking events. In addition, the LES/VOF model results are used for the examination of the151

wave-breaking-induced energy dissipation in a companion study. For these reasons, a rela-152

tively accurate post-breaking behavior of the simulation cases is needed, which then justifies153

the inclusion of bubble dynamics into our LES/VOF simulations.154

Validation of the models for the present application is discussed in Appendix B.155

2.1 The LES/VOF model156

The LES/VOF computations are performed using the Navier-Stokes solver TRUCHAS157

[Francois et al., 2006] with extensions of a polydisperse bubble phase and various turbulence158

models [Carrica et al., 1999;Ma et al., 2011; Derakhti and Kirby, 2014a]. Details of the159

current mathematical formulations and numerical methods may be found in Derakhti and160

Kirby [2014a, §2].161

The filtered governing equations for conservation of mass and momentum of the liquid162

phase are given by:163

∂αρ

∂t
+
∂αρũ j

∂xj
= 0, (3)

∂αρũi
∂t

+
∂αρũi ũ j

∂xj
=

∂Πi j

∂xj
+ αρgδ3i +Mgl, (4)

where (i, j) = 1, 2, 3; ρ is a constant liquid density; α and ũi are the volume fraction and164

the filtered velocity in the i direction of the liquid phase, respectively; δi j is the Kronecher165

delta function; g is the gravitational acceleration; and Πi j = α(−p̃δi j + σ̃i j − τi j) with p̃166

the filtered pressure, which is identical in each phase due to the neglect of interfacial surface167

tension, σ̃i j viscous stress and τi j the subgrid-scale (SGS) stress estimated using an eddy168

viscosity assumption and the Dynamic Smagorinsky model, which includes water/bubble169
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interaction effects [for more details see Derakhti and Kirby, 2014a, §2.4]. Finally, Mgl are170

the momentum transfers between liquid and gas phases, including the filtered virtual mass,171

lift, and drag forces [Derakhti and Kirby, 2014a, §2.2].172

Using the same filtering process as in the liquid phase, the equations for the bubble173

number density and continuity of momentum for each bubble size class with a diameter db
k
,174

k = 1, · · · , NG , are then given by [Derakhti and Kirby, 2014a, §2]:175

∂Nb
k

∂t
+
∂ũb

k, j
Nb
k

∂xj
= Rb

k , (5)

0 = −
∂αb

k
p̃

∂xj
δi j + α

b
k ρ

bgi +Mlg
k
, (6)

where αb
k
= mb

k
Nb
k
/ρb , mb

k
, Nb

k
and ũb

k, j
are the volume fraction, mass, number density and176

filtered velocity in the j direction of the kth bubble size class; ρb is the bubble density; and177

Rb
k
includes the source due to air entrainment in the interfacial cells [Derakhti and Kirby,178

2014a, §2.3], intergroup mass transfer, and SGS diffusion terms. Finally, Mlg
k
represents the179

total momentum transfer between liquid and the kth bubble size class, and satisfies Mgl +180 ∑NG

k=1 Mlg
k
= 0. In (6), we neglect the inertia and shear stress terms in the gas phase following181

Carrica et al. [1999] and Derakhti and Kirby [2014a].182

2.2 The FNPF-BEM model183

Equations for the 2D FNPF-BEM model are briefly presented here. The velocity po-184

tential φ(x, t) is used to describe inviscid, irrotational flow in the vertical plane (x, z), with185

the velocity defined by u = ∇φ = (u,w). φ is governed by Laplace’s equation in the liquid186

domain Ω(t) with boundary Γ(t),187

∇2φ = 0; (x, z) ∈ Ω(t) (7)

Using the 2D free space Green’s function, G(x, xl) = −(1/2π) log | x − xl |, and Green’s188

second identity, (7) is transformed into the boundary integral equation189

α(xl)φ(xl) =
∫
Γ(x)
[∂φ
∂n
(x)G(x, xl) − φ(x)

∂G(x, xl)
∂n

] dΓ(x) (8)

where x = (x, z) and xl = (xl, zl) are position vectors for points on the boundary, n is the190

unit outward normal vector, and α(xl) is a geometric coefficient. Details of the surface and191

bottom boundary conditions and numerical methods may be found in Grilli et al. [1989] and192

Grilli and Subramanya [1996]. The model provides instantaneous surface elevation and liq-193

uid velocity at the surface.194
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3 Model configuration and test cases195

3.1 Test cases196

Our numerical experiments are performed in a virtual wave tank with three different197

idealized bed geometries, illustrated in Figure 1. Cases include deep to shallow water tran-198

sition conditions. We define the coordinate system (x, y, z) such that x and y represent the199

along-tank and transverse directions respectively and z is the vertical direction, positive up-200

ward and measured from the still water level. We note that waves are usually breaking over201

the bar crest or the down-wave slope for cases of shoaling over a bar (x > 0 in Figure 1b).202

All model simulations are performed with the model initialized with quiescent condi-203

tions. In the LES/VOF model, we specify the total instantaneous free surface, ηw , and liquid204

velocity, (uw,ww), at the model upstream boundary, (xw, y, z), for various incident wave con-205

ditions, including regular sinusoidal, focused packets, modulated wave trains, and irregular206

waves propagating over a flat bed or over a bar geometry, as well as regular cnoidal waves207

shoaling over a plane beach. In the BEM model, we specify solitary waves as initial condi-208

tion on the free surface, using the elevation, potential and normal velocity derived from the209

Tanaka [1986] solution. Table 1 summarizes the input parameters for all simulated cases.210

In all simulated cases, the selected grid size in the x direction, ∆x, is smaller than211

1/100 of the wavelength in the vicinity of the initial breaking point or unbroken crest max-212

imum. A uniform grid of ∆y = ∆z = ∆x/2 is used for the simulated LES/VOF cases, with213

the total number of grid points varies between 0.5 × 106 and 3 × 106. The CPU run-time of214

the LES/VOF simulations is typically less than a day for a 100s simulation time using 200215

processors on an HPC cluster.216

3.1.1 Focused wave packets217

The input focused wave packet was composed of N = 32 sinusoidal components of218

steepness ankn, n = 1, · · · , N , where an and kn are the amplitude and wave number of the nth219

frequency component. The steepness of individual wave components is taken to be constant220

across the spectrum, or a1k1 = aiki = ... = aN kN = Sg/N with Sg =
∑N

n=1 ankn taken221

to be a measure of the wave train global steepness. Based on linear theory, the free surface222

elevation at the wavemaker for 2D wave packets focusing at x = x f is given by [Rapp and223
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Table 1: Input parameters for the simulated cases. Each case identifier has 3 parts indicating the

geometry of the wave tank (P: planar beach, B: barred beach, F: flat bed; numbers: various ge-

ometry parameters), the type of the incident waves (r: regular, i: irregular, s: solitary waves, f:

focused packets, m: modulated wave trains), and the numerical model (LV: LES/VOF, BM: FNPF-

BEM) respectively. Here, Hw and Tw are the wave height and period of the regular waves at the

wavemaker, and ξ0 = s−1/
√

H0/L0 is the surf-similarity parameter [Battjes, 1974]; the rest of the

variables are defined in Figure A.1.

Case Hw (mm) Tw d1 L1 s ξ0 d2 L2 sd

(or Sg ) (s) (m) (m) (or ∆ f / fc ) (m) (m)

P1-r-LV 80, 120, 180, 200, 240 4.0 0.5 0 5 3.9 - 2.3 - - -
P2-r-LV 150 4.0 0.5 0 10 1.43 - - -
P3-r-LV 40, 150 4.0 0.5 0 20 1.38, 0.71 - - -
P4-r-LV 90, 150, 200 4.0 0.5 0 40 0.46 - 0.31 - - -
P5-r-LV 90, 150 4.0 0.5 0 100 0.18, 0.14 - - -
P6-r-LV 90, 120, 150 4.0 0.3 0 200 0.09 - 0.07 - - -
P7-s-LV 240, 260, 270, 350, 500 - 1.0 6.0 8 - - - -
P7-s-BM 240 - 1.0 20.0 8 - - - -
P8-s-BM 300, 450, 600 - 1.0 20.0 15 - - - -
P9-s-BM 200, 600 - 1.0 20.0 100 - - - -
B1-r-LV 41, 43, 46, 46.2, 46.3, 1.01 0.4 6 20 0.30 - 0.25 0.1 2 10

46.5, 47, 50, 53, 59
B2-r-LV 47, 50, 53, 59 1.01 0.4 6 100 0.06 - 0.05 0.1 2 10
B3-r-LV 24, 26, 26.5, 27, 2.525 0.4 6 20 1.05 - 0.81 0.1 2 10

27.5, 30, 34, 40
B4-r-LV 26, 30, 30.5, 31 2.525 0.4 6 100 0.21 - 0.16 0.1 2 10

32, 34, 40
B5-f-LV (0.20, 0.21, 0.22, Tc : 1.14 0.6 3 20 (0.75) 0.2 3 10

0.23, 0.30)
B6-i-LV Hrms : 40 Tp : 1.7 0.47 0 20 0.52 0.12 2 10
B7-i-LV Hrms : 40 Tp : 1.7 0.47 0 20 0.52 0.17 2 10
B8-s-BM 36, 40, 46, 46.6 - 0.4 8 20 - 0.1 2 10

47, 60, 80
F1-f-LV (0.25, 0.3, 0.302, 0.31, Tc : 1.14 0.6 16 - (0.75) - - -

0.32, 0.42, 0.44, 0.46)
F2-f-LV (0.32, 0.36, 0.40) Tc : 1.33 0.6 22 - (1.0) - - -
F3-m-LV (0.160, 0.176) Tc : 0.68 0.55 64 - (0.0954) - - -
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Figure 1: Schematic of the side-view of the computational domain for the waves propagating over

(a) a plane beach, (b) an idealized bar, and (c) a flat bed geometry.

Melville, 1990; Derakhti and Kirby, 2014a]224

ηw =

N∑
n=1

an cos[2π fn(t − t f ) + kn(x f − xw)] (9)

where fn is the frequency of the nth component, x f and t f are the predefined, linear theory225

estimates of location and time of the focal point respectively. The discrete frequencies fn226

are uniformly spaced over the band ∆ f = fN − f1 with the central frequency defined by227

fc = 1/2( fN + f1).228

–10–



Confidential manuscript submitted to JGR-Oceans

3.1.2 Modulated wave trains229

For cases of modulated wave trains, we use the bimodal wave approach of Banner and230

Peirson [2007], with free surface elevation at the wavemaker given by231

ηw = a1 cos(ω1t) + a2 cos(ω2t − π

18
), (10)

where ω1 = 2π f1, ω2 = ω1 + 2π∆ f , Sg = a1k1 + k2a2 and a2/a1 = 0.3. Increasing the global232

steepness Sg increases the strength of the resulting breaking event in both focused packets233

and modulated wave trains.234

3.1.3 Irregular wave trains235

For irregular wave cases, ηw is prescribed using the first N = 2500 Fourier components236

of the measured free surface time series at the most offshore gauge of the cases experimen-237

tally studied byMase and Kirby [1992] with Tp = 1.7s, given by238

ηw = Σ
N
n=1an cos(ωnt + εn) (11)

where an and εn are the amplitude and phase of the nth Fourier component based on the239

measured free surface time series, and ωn is the angular frequency of the nth Fourier com-240

ponent. Mase and Kirby [1992] specified wavemaker conditions for irregular waves based241

on a Pierson-Moskowitz spectrum. Waves then propagated shoreward over a sloping planar242

beach. Here the same incident waves are used but shoal over an idealized bar. Liquid veloc-243

ities for each spectral component are calculated using linear theory and then superimposed244

linearly at the wavemaker. No correction for second order effects was made.245

3.1.4 Regular weakly dispersive, nonlinear waves246

For cnoidal waves, we use the theoretical relations for ηw and (uw,ww) as given in247

Wiegel [1960]. Initial conditions for solitary wave tests were specified using the solution for248

finite amplitude waves due to Tanaka [1986]. This initial condition represents a very accu-249

rate numerical solution to the full Euler equations, and is more suitable for use here with the250

fully nonlinear numerical codes being used than the standard first-order Boussinesq solitary251

wave solution [e.g. Grilli and Subramanya, 1996].252
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3.2 Definition of a breaking crest253

The visible manifestation of surface wave breaking events, excluding micro-breakers, is254

the formation of a multi-valued free surface, which is accompanied by the initiation of wave-255

breaking-induced energy dissipation and entrainment of air bubbles into the water column.256

In most wave breaking modes, the breaking process initiates visibly at the crest of the break-257

ing wave. Exceptions include surging breakers over very steep beaches in which the crest of258

the wave remains relatively smooth and the initiation of instability occurs at the toe (leading259

edge) of the wave.260

Here, we consider an individual evolving crest to be a breaking crest if the initiation261

of multi-valued free surface occurs in the crest region, e.g., developing a vertical tangent on262

the forward face of the crest, followed rapidly by a spilling or plunging plume surging from263

the crest down the forward face. In all breaking crests considered here, the onset of breaking264

occurs fairly rapidly after a vertical tangent becomes apparent onshore of the crest.265

In the BEM framework, there is no dissipation mechanism in the model, and the model266

becomes unstable fairly rapidly after a vertical tangent becomes apparent at or near the crest,267

and a breaker jet starts forming. Thus, as was proposed in earlier work [e.g., Grilli et al.,268

1997], an individual crest in simulations using the FNPF-BEM model is also denoted as a269

breaking crest when the free surface slope at any given point on the front face of the wave270

(i.e., onshore of the crest) becomes vertical; a multi-valued free surface elevation will typi-271

cally occur at the next time step of computations.272

4 Results273

In this section, we examine in detail the onset of breaking on basis of the parameter274

B = U/C (Eq. 2) for representative breaking and non-breaking incident waves in interme-275

diate depth and shallow water. The results for steepness-limited wave breaking in both fo-276

cused packets and modulated wave trains [Derakhti et al., 2018] are also presented. In the277

following section (§5.2), we show that several geometric criteria for predicting the onset of278

breaking are not uniformly robust.279

Frames (a), (d), and (g) of Figure 2 show examples of the computed temporal variation280

of C from shallow to deep water, in which values of C are normalized by their corresponding281

values at the time t∗ = 0 marking either the time when B = 0.85 or, for non-breaking cases,282

the occurrence of maximum crest elevation. In this and subsequent plots, the color black for283
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Figure 2: Examples of the temporal variation of (a, d, g) the crest propagation speed C, (b, e, h)

phase speed c =
√
gk−1 tanh [k(d + Hc)], and (c, f , i) the horizontal particle velocity at the crest U,

all normalized by the corresponding C value at t∗ = 0, for breaking (black symbols and lines) and

non-breaking (orange symbols and lines) crests in (a, b, c): regular waves (R) shoaling over a plane

beach with slope m = 1/s, (d, e, f ): regular waves (R) propagating over a bar, and (g, h, i): focused

packets (F) and modulated wave trains (M) in deep and intermediate water.
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curves or points indicates cases where breaking occurs, while orange indicates non-breaking284

cases. Frames (b), (e), and (h) show results for an estimate of phase speed c based on an ap-285

proximate nonlinear dispersion relation c =
√
gk−1 tanh [k(d + Hc)] which is slightly differ-286

ent than that proposed by Booij [1981] (replacing H/2 by the crest height Hc). The behavior287

of crest translation speed C is seen to be distinctly different from estimates based on disper-288

sion relations for regular waves. The results show that the ratio c/C around t∗ = 0 ranges289

between 0.8 and 1.1 in most cases.290

We note that C is obtained by calculating the rate of change of the horizontal location291

of an evolving crest, e.g., xηc if the crest is propagating in the x direction. In both BEM and292

LES/VOF frameworks, xηc may occur between the grid locations, and thus a local fitting293

(or smoothing) to the predicted free surface locations (η(x, y, t)) is needed to obtain a robust294

estimate of xηc for each evolving crest. Such local fitting (or smoothing) also removes the295

potential noise in the calculated C values due to the existence of local maxima in the crest296

region due to the presence of relatively high frequency waves, especially when they are prop-297

agating in the direction opposite to that of the dominant wave. Although implementing local298

fitting (or smoothing) for predicted maximum η values and their locations significantly im-299

proves the estimation of C, in some cases there are still some small undulations in the C val-300

ues (as shown in the left column of Figure 2) obtained from tracking the location of ηc (e.g.,301

C = dxηc /dt). For unsteadily evolving dispersive wave packets, the generic crest slowdown302

mechanism results in a systematic variability in C [see for example Banner et al., 2014, for303

more details].304

In addition, the estimation of C will be challenging in cases in which the crest region is305

relatively flat. One clear example of such cases is the time at which an evolving crest reaches306

the shoreline and the wave rapidly surges up-slope without overturning; such cases are de-307

tailed later in the text. Considering these uncertainties, we can write C = Ce ± ∆C where308

Ce is the exact propagation speed of the evolving crest and ∆C represents the corresponding309

uncertainty estimate. The results of the temporal variation of C (e.g., Figure 2a,d,g) suggest310

that ∆C/Ce < 0.01 prior to t∗ = 0 in the simulated cases in which the crest region has a311

resolved curvature in the considered discretization.312

In the BEM model, U is the actual particle velocity on the free surface at the wave313

crest. In the LES/VOF model, we set U as the maximum of the computed horizontal near-314

surface velocity over the computational cells in the range xηc ± 3∆x. We also perform a315
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simple smoothing, using the moving average method, on the U time series for each evolv-316

ing crest before calculating B values. Frames (c), (f), and (i) of Figure 2 show examples of317

the temporal evolution of U normalized by their corresponding C values at the time t∗ = 0,318

Ct∗=0. In Figure 2, all C, c, and U values that correspond to an evolving crest are normalized319

by a single value Ct∗=0, the propagation speed of the crest at the time t∗ = 0. Thus U/Ct∗=0320

is not equal to B for t∗ , 0. Our results show that U significantly increases as an evolv-321

ing crest approaches the break point t∗ = t∗
b
(which typically occurs in the range [0, 0.2]),322

as opposed to C, which varies by less than 5% in the range −0.4 < t∗ < t∗
b
for cases of323

shoaling over gentle to moderate slopes or cases in deep and intermediate depth water. For324

these cases, the results suggest that the variation in B is mainly related to variation in U in325

the range −0.4 < t∗ < t∗
b
.326

We also write U in terms of the exact value (Ue) and an uncertainty estimate (∆U),327

U = Ue ± ∆U, in which the results indicate that ∆U/Ue < ∆C/Ce for most cases. Thus, we328

can write329

B =
Ue ± ∆U
Ce ± ∆C

=
Ue

Ce
× 1 ± ∆U/Ue

1 ± ∆C/Ce
= Be(1 ± ∆U/Ue)

(
1 ± ∆C/2Ce +O([∆C/Ce]2)

)
. (12)

where Be represents the exact value of B, and then the uncertainty in the estimated B values,330

denoted by ∆B, reads in relative value as331

±∆B/Be = ±∆U/Ue ± ∆C/2Ce +O([∆C/Ce]2, [∆C/Ce][∆U/Ue]). (13)

Based on these results and taking ∆U/Ue < ∆C/Ce < 0.01, the uncertainty in the estimated332

B values from our numerical experiments (describe below) will be ∆B/Be < 0.015 for the333

cases in which the crest region has a resolved curvature in the considered discretization. In334

particular, ∆B < 0.013 for B values approaching the breaking inception threshold value Bth ,335

which varied in the range [0.85, 0.86] in the numerical cases of B18. Further, Saket et al.336

[2017, 2018] reported an uncertainty estimation of ∆B = 0.020 for their experimental mea-337

surements.338

4.1 Results for waves shoaling over a plane beach339

Figure 3 shows examples of the evolution of regular waves (with Tw = 4 s) over a plane340

beach with a slope m = 1/s; including shoaling, breaking onset and progression of breaking341

crests; and the corresponding temporal variation of the breaking onset parameter B for the342

tracked crests. The incident waves cover a wide range of ξ0 values, demonstrating a transition343
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Figure 3: (a, c, e, g, i): Snapshots of free surface elevations and (b, d, f , h, j): temporal evolution

of the breaking onset parameter B for regular waves (Tw = 4 s) propagating over a plane beach

with a slope m = 1/s, demonstrating a transition from spilling to collapsing and surging breaking

with an increasing ξ0 = s−1/
√

H0/L0 (see Table 1). Here d1 is the still water depth at the beginning

of the plane slope segment (Figure 1a). Cases without an apparent overturning crest are indi-

cated in orange. All results are obtained using the LES/VOF model. The yellow regions indicate

B = 0.85 ± 0.02.
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from spilling breaking, frames (a-b), to collapsing and surging breaking, frames (g-j). We344

observe that B always transitions through the breaking inception threshold value Bth ≈ 0.85345

prior to visible crest breaking in cases in which breaking is due to the initiation of instability346

in the crest region (i.e., spilling or plunging breakers). In these cases, we also observe that347

B exceeds 1 shortly after the breaking inception threshold value Bth ≈ 0.85 is transitioned,348

and the time scale ∆tonset = tB=1 − tB=Bth
is a decreasing function of ξ0 for breaking waves349

with the same wave period (Tw here). Note that in shorebreaks, ∆tonset is relatively small350

and estimating B is challenging due to rapid changes, uncertainty, and ambiguity in defining351

xηc after B = Bth is transitioned. For example, in the shorebreak case shown in frames (g-h),352

the calculation of B is terminated before reaching B = 1 due to a poor estimation of C as the353

wave transitions through the time at which B = Bth . Frames (i) and (j) show the results for354

two cases with ξ0 = 2.26 and 2.61 surging over a slope of 1/5 or slope angle 11.31◦. In both355

cases, the initiation of instability occurs at the toe of the wave, and the maximum B values356

remain below Bth .357

Figure 4 shows similar results to those of Figure 3 for solitary wave cases shoaling over358

steep beaches simulated using the BEM (dashed lines) and LES/VOF (solid lines) models.359

Here and subsequently, dashed and solid lines represent results of simulations using the BEM360

and LES/VOF models, respectively. Breaking of solitary waves on plane slopes from 1/100361

to 1/8 was studied using the BEM model by Grilli et al. [1997], who reported no breaking362

for slopes greater than 12◦. Using a least-square error method based on their numerical ex-363

periments, Grilli et al. [1997] proposed a maximum limit for non-breaking solitary waves364

shoaling on a slope m = 1/s given by Hm
w = 16.9d1/s2. They also introduced a parame-365

ter ζ0 = 1.521/s
√

Hw/d1 and characterized the type of their breaking cases based on ζ0 as366

surging when 0.30 < ζ0 < 0.37, plunging when 0.025 < ζ0 < 0.30, and spilling when367

ζ0 < 0.025.368

Figure 4a shows the BEM model results for the evolution of a plunging breaking soli-369

tary wave on a slope 1/15 with Hw = 0.30 m > Hm
w = 0.08 m and ζ0 = 0.19 (d1 = 1370

m). Frames (c) and (e) show results of the LES/VOF model for two cases on a slope 1/8371

(Hm
w = 0.264) with Hw = 0.50 m (ζ0 = 0.27) and Hw = 0.35 (ζ0 = 0.32). For all three372

cases shown in frames (a-f), the occurrence and breaking type of the incident solitary waves373

predicted by both the BEM and LES/VOF models are consistent with the predictions from374

Hm
w and ζ0 [Grilli et al., 1997]. In all three cases, we observe that the corresponding B pa-375

rameter reaches 0.85 close to a time at which a vertical tangent appears on the crest front376
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Figure 4: (a, c, e, g): Snapshots of the free surface elevations and (b, d, f , h): the temporal evo-

lution of the breaking onset parameter B for solitary waves propagating over a plane beach with a

slope m = 1/s. Dashed and solid lines represent the results for cases simulated using the BEM and

LES/VOF models respectively. The yellow regions indicate B = 0.85 ± 0.02.
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face. As in Figure 3, we also observe that B exceeds 1 shortly after Bth is transitioned for all377

breaking solitary waves, and the time scale ∆tonset = tB=1 − tB=Bth
is a decreasing function378

of ζ0, consistent with the trend observed for regular waves with respect to ξ0 (Figure 3).379

Figure 4g shows the evolution of a non-breaking solitary wave on a slope 1/8 with380

Hw = 0.24 m < Hm
w = 0.264 m predicted by both the BEM and LES/VOF models. Frame381

(h) shows the calculated B curves from both model results. In this case, t0 represents the time382

of occurrence of maximum crest elevation, as opposed to Frames (a-f) in which t0 represents383

the time when B = 0.85. The maximum B values, Bm, from both models remain below Bth;384

however, Bm calculated from the BEM model, is approximately 6% smaller than that from385

the LES/VOF model results.386

Figure 5 shows the temporal variations of xηc , C and U predicted by both models. The387

maximum difference between C and U values predicted by each model is approximately 4%.388

Before the time at which the crest maximum is reached (t < t0), U from the BEM model389

is almost the same as that predicted by the LES/VOF model except close to the crest maxi-390

mum time, where the difference between the two predictions reaches 1%. The BEM model391

prediction for C is smaller and greater than that predicted by the LES/VOF model for t < t0392

and t > t0, indicating that the BEM-predicted wave crest is pitching forward somewhat more393

slowly than the LES/VOF-predicted crest. The discrepancy in the corresponding B values394

is a maximum after t > t0, with a value of ≈ 6%. The discrepancy between the BEM and395

LES/VOF results is partly due to their different spatial resolution (∆xBEM ≈ 13∆xLES/VOF )396

and the neglect of bed friction and viscous effects in the BEM model. Further, a part of the397

discrepancy is related to the uncertainty in the estimation of C as the crest region becomes398

relatively flat, particularly for surging/shorebreak cases. Overall, we find that the two model-399

ing approaches provide consistent estimates of liquid velocity and crest geometry evolution400

in cases where adequate spatial and temporal resolutions are used. This conclusion is further401

supported by the general consistency observed between intermediate and deep water results402

in the studies of B18 and D18, and contrasts with the negative evaluation of the LES/VOF403

approach made in Pizzo and Melville [2019]. This is further supported by validations pre-404

sented in the Appendix B.405
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Figure 5: Temporal evolution of (a) xηc the horizontal location of the crest, and (b) C crest prop-

agation speed and U particle horizontal velocity at the crest for the non-breaking solitary wave

shown in Figure 4g. Dashed and solid lines show results of simulations cases with the BEM and

LES/VOF models, respectively. Here xsl is the cross-shore location of the shoreline.

4.2 Results for waves shoaling over an idealized bar406

As mentioned in the introduction section, the breaking inception threshold value Bth ≈407

0.85 may be considered as the indicator of breaking onset, with any wave for which B ex-408

ceeds Bth inevitably breaking visibly a short time (∆tonset ) later. However, one still needs409

to closely examine the behavior of B in the transition from breaking to non-breaking cases410

in shallow water, including marginal breaking events, to confirm the validity of the breaking411

inception threshold value Bth ≈ 0.85 in a universal sense.412

The transition from breaking to non-breaking of shoaling waves over a plane beach413

may only occur close to the shoreline, where an accurate estimation of B is challenging, as414

discussed above. Thus we consider the behaviour of B for regular, irregular, and solitary415

waves, as well as focused packets, propagating over a submerged bar (Figure 1b), with an416

emphasis on marginally breaking cases. In the following, we present and discuss the com-417

puted temporal variation of B for cases of simulated regular and solitary waves. Cases with418

irregular waves and focused wave packets will be reported elsewhere.419

Figure 6 shows the temporal evolution of two evolving crests and their corresponding420

B values for non-breaking and breaking regular waves (Tw = 1.01 s) propagating over a sub-421

merged bar, as defined in Figure 1b. Each row shows LES/VOF results for a case with an ini-422

tial wave height Hw , where increasing Hw results in a transition from non-breaking (Frames423

a-d) to intermittent breaking (Frames e and f) and breaking (Frames g-j) events. For each in-424

dividual evolving crest, the reference time is the time at which B transitions through 0.85 or425
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reaches its maximum for breaking and non-breaking cases, respectively. Although incident426

crests with the same Hw have exactly the same initial wave conditions, their kinematics and427

dynamics near the break point or crest maximum are not the same, due to their interaction428

with the low-frequency waves in the numerical tank (e.g., seiches), the residual motions due429

to preceding waves, etc. Although these variations have a relatively small effect on the height430

of the evolving crests, they may result in an intermittent breaking, as shown in Frames (e)431

and (f).432

Figure 7 shows similar results as in Figure 6 but for the solitary wave cases, computed433

using the BEM model. Results shown in Figure 6 and Figure 7 confirm the validity of Bth ≈434

0.85 as a robust predictor of breaking onset in shallow water.435
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Figure 6: Temporal evolution of (a, c, e, g, i): wave profiles and (b, d, f , h): the breaking onset pa-

rameter B for two different evolving crests of a regular wave (Tw = 1.01 s) propagating over a bar

with a front slope m = 1/s, demonstrating a transition from non-breaking to spilling breaking with

an increasing ξ0. Here d2 is the still water depth over the top of the bar (Figure 1b). All results are

obtained using the LES/VOF model. The yellow regions indicate B = 0.85 ± 0.02.
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4.3 Summary of the results436

Figure 8 shows the variation of the maximum B values as a function of the wave Froude437

number F (defined in §5.1 below) for all simulated crests, using LES/VOF and BEM models,438

from deep to shallow water. As mentioned above, we observe that if B transitions through439

the threshold value Bth ≈ 0.85 it will attain the level B = 1 when the surface signatures of440

breaking appear for all cases. The two exceptional breaking wave cases indicated by + signs441

below B = 1 represent solitary wave cases simulated using the BEM model, where the sim-442

ulations stop before breaking onset due to insufficient spatial resolution. We observe that the443

breaking inception threshold values Bth , beyond which the crest evolves to breaking, range444

between 0.85 and 0.88 in shallow water wave breaking. This is consistent with the relevant445

previous studies of the variation of Bth in intermediate depth and deep water [Barthelemy446

et al., 2018; Saket et al., 2017, 2018; Derakhti et al., 2018]. The plot also displays a dotted447

line corresponding to the linearized relation B = F. We observe that the maximum occurring448

values of B for all the tabulated steep but nonbreaking crests greatly exceed this lower limit,449

due to a combination of underprediction of fluid velocity in the crest as well as possible re-450

ductions of crest speed prior to breaking in intermediate depth cases.451
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Figure 7: (a, c, e, g): Snapshots of the free surface elevations and (b, d, f , h): temporal evolution

of the breaking onset parameter B, for solitary waves propagating over a bar with a front slope

m = 1/s demonstrating a transition from non-breaking to spilling breaking with an increasing

initial wave height. Here d2 is the still water depth over the top of the bar (Figure 1b). All results

are obtained using the BEM model. The yellow regions indicate B = 0.85 ± 0.02.
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Figure 8: Maximum value of the breaking onset parameter B as a function of the wave Froude

number F, for all breaking (black symbols) and non-breaking (orange symbols) wave crests. In the

breaking cases, the maximum value of B corresponds to the time, after the onset of breaking, at

which the location of the crest maximum becomes noisy.
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5 Discussion452

In this section, we present an evaluation of the other existing breaking criteria from the453

literature. These are the various geometric parameters defined below, which are applied to454

the simulated wave trains. Next, we comment on the extension of the results to 3D shoaling455

and breaking waves in shallow water. Finally, we discuss the implementation of the parame-456

ter B in energy-conserving phase-resolving models.457

5.1 Definition of local geometric parameters used in the analysis458

Following Beji [1995], we define a wave Froude number459

F = gH/2c2
lin, (14)

where c2
lin
= gk−1 tanh kd and k = 2π/L is the local wave number. We note that F simpli-460

fies to the nonlinearity parameter γ/2 in shallow water and to the local steepness S = kH/2461

in deep water. Thus, F may be considered to be a unified nonlinearity parameter in arbitrary462

depth [Beji, 1995; Kirby, 1998]. Further, using the results from linear theory, we can read-463

ily obtain F = ulin/clin = Blin, where ulin is the linear theory prediction of the particle464

velocity at the horizontal crest position and at the mean water level. All of these properties465

suggest that F is a preferable diagnostic geometric parameter compared to γ and S for a uni-466

fied breaking onset criterion in arbitrary depth.467

We define a wave front slope θ in degrees by468

θ =
180
π

tan−1(Hc/l1), (15)

where Hc/l1 is the crest front steepness (see Figure A.1). We further define Av = Hc/H469

and Ah = l1/l2 − 1, which represent instantaneous vertical and horizontal asymmetry of470

the evolving crest, and are related to the statistical third-order moments, normalized wave471

skewness η3 / η2
3/2

and asymmetryH(η)3 / η2
3/2

(whereH denotes the Hilbert transform),472

respectively. Finally, we define A ′
h
= l ′1/l

′
2−1, which represents the horizontal asymmetry of473

the shape of the crest but only considering the upper half part of the crest. A ′
h
is also appli-474

cable for crests without zero-crossing points and is a more robust measure compared to Ah475

for crests with noticeable irregularity at their back face (Figure A.2b).476

The parameter θ is often used as the diagnostic criterion for the onset of breaking in477

Boussinesq models using eddy viscosity-type dissipation to model breaking [see, for exam-478

ple, Schäffer et al., 1993; Kennedy et al., 2000]. A maximum value of θ has also been used479
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as a breaking criterion in potential flow models. Thus, in their 2D-FNPF-BEM model, Guig-480

nard et al. [2001] used a maximum slope criterion to trigger dissipation using an “absorbing481

surface pressure”. Grilli et al. [2019] revised and extended this earlier work and Papoutsel-482

lis et al. [2019] implemented and tested a similar criterion and energy absorption method in483

their 2D-FNPF model. Finally,Mivehchi [2018] used a combination of maximum front slope484

and crest curvature as a breaking criterion in his 3D-BEM model. Note that in such energy485

conserving models, the energy of breaking waves is dissipated by applying an “absorbing”486

surface pressure specified opposite and proportional to the free surface velocity or similar.487

5.2 Evaluation of predictive skills of existing geometric breaking criteria488

Figure 9 shows examples of computed temporal variation of the various geometric489

parameters defined in §5.1 (also in Figure A.1) for breaking (black lines and symbols) and490

non-breaking (orange lines and symbols) wave crests from shallow to deep water. Examples491

shown in frames (a-f) represent regular waves shoaling over a submerged bar with a front492

face slope of 1/20 (Figure 1b), in which breaking is typically observed over the flat region of493

the bar and is characterized as shallow breaking. Examples shown in frames (g-l) represent494

focused packets and modulated waves propagating in intermediate and deep water over con-495

stant depth. Further, Figure 10 shows variation of the four geometric parameters γ, S, F and496

θ (§ 5.1) at the time when B = 0.85 or at the unbroken crest maximum, for which t∗ = 0, for497

all simulated breaking (black symbols) and non-breaking (orange symbols) wave crests from498

shallow to deep water (which includes cases shown in Figure 9).499

The most commonly used breaking onset parameter in shallow water wave breaking500

is γ = H/d; in phase-averaged models the mean depth d + η is typically used instead of501

still water depth d, such that mean wave set-up or set-down is included. There is a large body502

of literature including laboratory and field studies attempting to define γ values at breaking503

onset for various incident waves in shallow water. An extensive review is given in Robert-504

son et al. [2013]. Observed values of γ at breaking onset, in a wave-by-wave sense, are typ-505

ically greater than 0.6 in shallow water. Consistent with the existing relevant literature, re-506

sults shown in Figures 9a and 9g indicate that γ increases as a wave approaches the break-507

point and that γ at breaking onset is an increasing function of the surf-similarity parameter508

ξ0 [Battjes, 1974; Raubenheimer et al., 1996]. However, no unified formulation of γ predict-509

ing the onset of depth-limited wave breaking can be found (see Figure 10a). Further, it is510
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clear that γ is an irrelevant parameter for estimating the breaking onset of steepness-limited511

wave breaking in deep water.512

In the shallow breaking cases shown in Figure 9a, the local depth d decreases over the513

front face of the bar (the shoaling region), then becomes constant over the top of the bar, and514

then increases over the back face of the bar (Figure 1b). The latter explains the noticeable515

decrease of γ for t∗ > 0 for non-breaking crests. During the time a non-breaking crest propa-516

gates over the top of the bar (constant depth region) the variation of γ is relatively small.517

Figures 9b and 9h indicate that as a crest approaches breaking, or its maximum height518

for non-breaking crests, the local steepness S = kH/2 increases both in shallow and deep wa-519

ter cases. We observe that the maximum steepness values of all the simulated non-breaking520

crests are smaller than that given by theMiche [1944] breaking steepness criterion S =521

π/7 tanh kd (dashed line in Figure 10b). We also observe that a large number of simulated522

breaking crests occur with a steepness value smaller than the limiting criterion. We note that523

our definition of L is different from the classical definition for wavelength; our L is much524

smaller than the latter in some of the shallow breaking cases considered here (see Appendix525

A). In summary, breaking is clearly related to steepness, but a unified formulation that is able526

to predict maximum values of S at breaking onset from deep to shallow water remains un-527

known; the same conclusion holds for the wave Froude number F (Eq. 14) (Figure 10c).528

Figures 9c and 9i as well as Figure 10d document the variation of the wave front slope529

θ (Eq. 15) as a function of time and at t∗ = 0, respectively, from shallow to deep water. In530

general, breaking crests have higher maximum values of θ compared to non-breaking crests.531

However, most of the spilling breakers, both in deep and shallow water, maintain their max-532

imum θ values as they approach the breakpoint. Moreover, θ decreases slightly as a crest533

approaches breaking in marginal breaking cases, both in deep and shallow water. These ob-534

servations suggest that θ might be a useful diagnostic breaking onset parameter but should535

be combined with other parameters; such as γ in shallow and with S (shown in Figure 10e)536

in deep water or, more generally, with the wave Froude number F (shown in Figure 10f) in537

order to potentially predict the breaking onset time and location in a phase resolved sense.538

Finally, frames (d) - (f) and (j) - (l) of Figure 9 demonstrate that neither the horizontal539

(Ah and A ′
h
) nor the vertical asymmetry of an evolving crest (as defined in § 5.1) are a good540

candidate as a breaking onset parameter. Further, results show that some of the simulated541

wave crests, both in shallow and deep water, are remarkably symmetric just prior to breaking542
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Figure 9: Examples of temporal evolution of various geometric parameters defined in §5.1 (also

see Figure A.1) for breaking (black lines and symbols) and non-breaking (orange lines and sym-

bols) wave crests (a − f ): in shallow water, and (g − l): in intermediate depth and deep water.

The capital letters in the legend indicate the type of incident waves, R: regular waves, F: focused

packets, and M: modulated wave trains. In the legend, bar and flat denote bar geometry (Figure 1b)

and flat bed (Figure 1c) respectively, and Tw is the period of the regular incident waves.
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Figure 10: Variation of various geometric parameters, defined in §5.1, at the breaking inception

time or crest maximum, for all simulated breaking (black symbols) and non-breaking (orange sym-

bols) wave crests from deep to shallow water. The capital letters in the legend refer to the type of

incident waves, R: regular, I: irregular, S: solitary waves, F: focused packets, and M: modulated

wave trains. Here, γ = H/d is the nonlinear parameter (or breaking index), S = πH/L is the

wave steepness, θ = 180/π tan−1 (S f ) is the wave front slope (all are defined in Figure A.1), and

F = ga/c2
lin

is the wave Froude number.
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(Ah ≈ 0). This result is consistent with field observations made using stereo photography in543

deep water [Schwendeman and Thomson, 2017] and with field observations using LIDAR in544

shallow water [Carini, 2018].545

In summary, our results reveal that a criterion using both θ and F has relatively higher546

skill in predicting the onset of breaking from deep to shallow water, compared to the other547

geometric parameters considered here. However, such a criterion still cannot segregate all548

breaking crests from non-breaking ones.549

5.3 Two- versus three-dimensional shoaling and breaking waves550

While, in shallow water, most breakers end up being locally nearly 2D, 3D processes551

of directional and bathymetric focusing can affect or even govern the evolution of shoaling552

waves towards breaking. Earlier work with 2D- and 3D-BEM models, however, indicates that553

whether in 2D [Grilli et al., 1997] or 3D [Guyenne and Grilli, 2006] once a wave approaches554

breaking onset, there is a “loss of memory” of the physical phenomenon(a) that have led555

to breaking and whether a crest breaks or not and how it breaks essentially depends on lo-556

cal wave properties (here represented by U and C at the crest). Guyenne and Grilli [2006],557

for instance, compared properties of solitary waves shoaling over a 3D sloping ridge or a558

2D plane slope in their 3D-BEM model and found similar velocity and acceleration fields559

near the crest and in the jet of breaking waves. This supports the present investigation of 2D560

shoaling and breaking waves in shallow water. Nevertheless in future work, we will consider561

more complex shallow water bathymetries and confirm the validity of the breaking inception562

threshold value Bth ≈ 0.85 for breaking wave crests in such more realistic 3D shoaling cases.563

5.4 Implementation of the parameter B in energy-conserving phase-resolving564

models565

The new criterion is suitable for use in wave-resolving models that cannot intrinsi-566

cally detect the onset of wave breaking. Some of these models, such as High Order Spec-567

tral (HOS) models [Dommermuth and Yue, 1987;West et al., 1987], become unstable if they568

reach the visible breaking onset stage, i.e., B = 1. Thus, warning of imminent breaking onset569

at Bth ≈ 0.85 is critical in the context of the successful application of the new criterion in570

such wave-resolving energy-conserving models; because at B = Bth the waveform is well de-571

fined, no vertical tangent occurs on the wave front face, and the free surface is single-valued.572
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In a practical implementation of the Bth criterion in wave models such as HOS or573

Boussinesq, one would be able to track the evolution of B = U/C up to the point where the574

criterion is verified, provided wave crests can be identified. This was already demonstrated575

for simple 2D shoaling solitary waves, for instance, byWei et al. [1995] using a fully nonlin-576

ear Boussinesq model and by Seiffert and Ducrozet [2018] for HOS. While a crest location577

and its velocity C can be easily computed in these 2D models, this is more difficult to do in578

3D. Stansell and MacFarlane [2002] identified crests in experimental results and computed579

their velocity c based on a Hilbert transform of the free surface. This method was applied580

by Mivehchi [2018] to detect wave crests and compute their velocity in results of a 3D-BEM581

model, and suppress breaking waves by specifying an “absorbing surface pressure”; here582

breaking was based on a maximum crest curvature/front-slope criterion. A similar Hilbert-583

transform-based method could be applied to detect crests and compute their celerity in re-584

sults of (2D horizontal) HOS or Boussinesq models. In the Boussinesq model, the particle585

velocity at the crest would be obtained from extrapolating to the surface the horizontal veloc-586

ity used in the model at some pre-defined depth, using the model’s assumed velocity profile587

(e.g., parabolic). This could be facilitated by formulating the Boussinesq model with a verti-588

cal boundary-fitted σ coordinate (as recently proposed by Kirby [2020]), which enables the589

simple projection of the model horizontal velocity to σ = 1.590

6 Conclusions591

The model simulation results presented here extend the results of B18 to cases of waves592

shoaling and breaking in shallow water. The local energy flux parameter B exceeding the593

threshold of ≈ 0.85 is confirmed to provide a robust predictor of breaking onset for cases594

where breaking results from a crest instability. In particular, we have simulated cases where595

a weak modulation of periodic waves by tank seiching leads to occasional breaking events in596

a train of otherwise unbroken waves, which are marginally close to breaking. These break-597

ing events are clearly indicated by the passage of B through the ≈ 0.85 threshold. Further, we598

have shown that Bth ≈ 0.85 clearly separates breaking and non-breaking cases for shoaling/de-599

shoaling waves propagating over bars. We conclude that this investigation provides further600

support for the generic applicability of the new breaking framework proposed by B18, which601

was developed with specific reference to the onset of instability and incipient overturning in602

the region localized around wave crests.603
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Our extension to shoaling waves introduces the additional phenomenon of surging604

breakers, with breakdown and generation of turbulence during the uprush of a surging wave605

on a beach. This may be related more directly to instabilities of the strongly curved flow606

closer to the toe of the surging wave front. This process is very different in nature from the607

mechanism covered by the analysis of B18 and occurs without a crest-based criterion being608

exceeded. It thus represents a different route to breaking whose occurrence (or onset) would609

require an alternate criterion to be developed.610

We emphasize that the validity of the proposed criterion also needs to be examined611

in the presence of wind forcing. The laboratory work of Saket et al. [2018] showed that612

Bth ≈ 0.85 also segregates breaking from non-breaking crests in the presence of wind forc-613

ing in deep water breaking. A number of high-fidelity two-phase flow simulations of break-614

ing waves in the presence of wind forcing [e.g., Tang et al., 2017; Yang et al., 2018] have615

been recently performed. Detailed quantification of the effect of direct wind forcing on the616

proposed breaking onset criterion in shallow water is left for future study.617
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A: Sensitivity of local geometric parameters used in the analysis626

Definitions of the various local geometric parameters for an evolving wave crest are627

described in Figure A.1. Among these, the height H and length L of the carrier wave need628

to be defined first. Two main sources of uncertainty in the value of the geometric parameters629

defined in § 5.1 are the selected definitions of the local length L and height H of an evolving630

crest. Here we quantify such uncertainties in detail. In summary, using definitions other than631

those used here may vary the estimated H values for extreme waves by up to 10%. However,632

the sensitivity of the estimated L values at breaking onset are noticeably larger, especially for633

shallow cases.634
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Following Derakhti and Kirby [2016], D18 and Tian et al. [2008], we define the local635

wave length L = 2lzc , where lzc = l1 + l2 (Figure A.1) is the distance between the two636

consecutive zero-crossing points adjacent to the crest. We note that the zero-crossing point637

on the back face of the wave may have noticeably large fluctuations due to the presence of638

higher harmonics in shallow water cases (Figure A.2b) or high-frequency components in639

random waves, etc. Further, in some shallow water cases, e.g., solitary waves, there are no640

zero-crossing points and thus lzc can not be defined.641

To resolve these issues, we fit a skewed-Gaussian function to the instantaneous wave642

profile and then estimate a length scale lsgzc from the skewed-Gaussian fitting as described643

below (Figure A.2). Finally, we take L =Min(2lzc, 2lsgzc ) as the local wave length.644

Figure A.1: Local geometric parameters describing an evolving wave crest. Here lsgzc represents a

length scale obtained from a skewed-Gaussian fit to the crest region. Dotted and thick solid lines

show the still water and the bed elevations respectively. The incident waves are propagating from

left to right.

Here lsgzc is a length scale obtained from the skewed-Gaussian fit f (r) defined as a645

scaled product of the standard normal probability density function φ(r) = exp [−r2/2]/
√

2π646

and its cumulative distribution function Φ(r) = (1 + erf[r/
√

2])/2 (erf denotes the error647

function) given by648

f (r) = c1φ(r)Φ(αr) + c2, (A.1)

where r = (x − xp)/ω with xp and ω are the peak location and scale respectively, α the649

horizontal skewness parameter (α < 0 for waves pitch forward), c1 a scaling parameter and650
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c2 a vertical offset. The instantaneous f for each crest is obtained by a nonlinear fitting of651

Eq. A.1, including five coefficients, to the corresponding simulated wave profile.652

Figure A.2: (a, b, c) Definition of the local zero-crossing length-scale lsgzc obtained from skewed-

Gaussian fitting (dotted lines) to the wave profile (solid lines) for examples of evolving crests

shoaling over a submerged bar as well as (d) the temporal variation of lsgzc/lzc before (shoaling

phase) and after the breaking onset (t = t0) for the crests shown in (a) and (b). (a) Regular waves

with Tw = 1.01 s, (b) regular waves with Tw = 2.525 s, and (c) a solitary wave. Note that lzc does

not exist for solitary waves. In (a, b, c), the dashed lines show the still water levels.

Frames (a), (b), and (c) of Figure A.2 show examples of f (dotted lines) and the cor-653

responding lsgzc , just before breaking onset time, for three simulated evolving crests shoal-654

ing over a submerged bar. In addition, Figure A.2d shows the temporal variation of the ratio655

lsgzc/lzc for the two examples shown in frames (a) and (b). Frames (b) and (d) show that we656

may have lsgzc � lzc at breaking onset in cases with irregularities on the back face of the657

wave, e.g., due to the presence of higher harmonics. Finally, in solitary cases (Figure A.2c)658

we simply define L = 2lsgzc because there are no zero-crossing points and thus lzc cannot be659

defined.660

At breaking onset, Figure A.3a demonstrates that the length scale lsgzc obtained from661

the skewed Gaussian fitting (Eq. A.1) is usually smaller than the zero-crossing length scale662

lzc (Figure A.2). Our results show that lsgzc/lzc > 0.9 in most cases, especially for those663

with d/L0 > 0.1, with d the still water depth and L0 a linear prediction of the local wave664

length obtained by using the linear dispersion relation (2π/T0)2 = gk0 tanh [k0d] with d the665
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still water depth, k0 = 2π/L0 and T0 equal to paddle period for monochromatic waves and666

peak period Tp for incident irregular waves. In some of the shallow cases (d/L0 < 0.1),667

however, we observe lsgzc/lzc values down to 0.4. Figure A.3b shows that our definition of668

L represents a smaller length scale compared to the characteristic wave length L0 where the669

averaged values of L vary between L0/3 in shallow water up to 0.7L0 in intermediate and670

deep water.671

We define the local wave height H as the sum of a crest elevation and averaged trough672

elevations before and after the crest, H = Hc + (Ht1 + Ht2)/2. Our results (Figures A.3c and673

A.3d) indicate that other potential definitions of wave height such as Hc +Ht1 or Hc +Ht2 are674

within 10% of H = Hc + (Ht1+Ht1)/2 in most cases from deep to shallow water. In addition,675

the downstream trough height Ht1 is greater than or equal to the upstream trough height Ht2676

in shallow water cases; the trend is reversed in deep water cases. These trough heights vary677

between 0.2Hc and 0.5Hc in most cases.678

B: Model validation for shallow water breaking679

In this section, the validation of the LES/VOF model [Derakhti and Kirby, 2014a] in-680

cluding detailed comparisons of free surface evolution and organized and turbulent velocity681

fields, is presented for a number of available laboratory data for breaking and non-breaking682

waves in shallow water. The reader is referred to Derakhti and Kirby [2014a,b, 2016] for683

the detailed examination of the model prediction of the free surface evolution, organized684

and turbulent velocity fields, bubble void fraction, integral properties of the bubble plume,685

and the total energy dissipation compared with corresponding measured data, as well as the686

sensitivity of the simulation results with respect to the selected grid resolution for focusing687

laboratory-scale breaking packets in intermediate depth and deep water.688

In all the simulated cases using the LES/VOF model, the selected horizontal grid size689

in the wave propagation direction (which is always +x direction here) ∆x is smaller than690

1/100 of the dominant wavelength at the x location at which the crest maximum was ob-691

served, and ∆z = ∆y ≤ ∆x. Using such spatial resolution, our LES/VOF model captures692

the free surface and organized velocity field fairly accurately up to the break point, and the693

estimates of the loss of total wave energy due to wave breaking are typically within 10% of694

observed levels [Derakhti et al., 2018], after correcting for the change in the downstream695

group velocity following breaking in isolated breaking waves [Derakhti and Kirby, 2016].696
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Figure A.3: Sensitivity of the local height and length of an evolving crest from deep to shallow

water. (a) the ratio between the length scales lsgzc obtained from skewed-Gaussian fitting defined

in Eq. (A.1) and lzc both shown in Figure A.2; and (b) the ratio between the zero-crossing length

scale L =Min(2lzc, 2lsgzc ) and a wave length L0 at breaking onset for the breaking crests or at the

time at which Hc = ηmax for the non-breaking crests. Here, L0 is obtained by using the linear dis-

persion relation (2π/T0)2 = gk0 tanh [k0d] with d the still water depth, k0 = 2π/L0 and T0 equals to

paddle period for monochromatic waves and peak period Tp for incident irregular waves.

Regarding the FNPF-BEM model used in this work, Grilli et al. [1994a] showed that697

surface elevations simulated with the model for solitary waves shoaling over plane slopes698

agreed within 1 − 2% with measured surface elevations, up to the breaking point. Grilli et al.699

[1994b] reported a similarly good agreement of numerical results with experiments for soli-700

tary waves propagating over a trapezoidal breakwater. Grilli et al. [1997] showed that the701

model could accurately predict breaking crest elevations, breaker index, and breaker types702

for solitary waves of various incident height propagating over mild to steep slopes. Finally,703

Grilli et al. [2019] show that the model also accurately simulates the shoaling and propaga-704

tion of periodic waves over a bar similar to that considered here.705
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B.1 Regular waves shoaling over a plane beach706

Here we consider the LES/VOF model performance for the case of regular depth-707

limited wave breaking on a planar beach (P10-r) in terms of phase-averaged free surface708

elevations and wave height using the data set of Ting and Nelson [2011]. We also compare709

the model results of the case P10-r with the free surface and velocity measurements of the710

spilling case of Ting and Kirby [1994]. The experimental set-up and incident wave condi-711

tions of the latter are similar as in P10-r and are also summarized in Table B.1. This experi-712

ment has been widely used by other researchers to validate both RANS [Lin and Liu, 1999;713

Ma et al., 2011; Derakhti et al., 2015, 2016a,b,c] and LES [Christensen, 2006; Lakehal and714

Liovic, 2011] numerical models.715

Figure B.1 shows that the model captures the evolution of phase-averaged free sur-716

face elevations reasonably well compared with the corresponding measurements of Ting and717

Nelson [2011] in the shoaling, transition and inner surfzone. Further, Figure B.2 shows the718

comparison between the predicted and observed cross-shore variation of the wave height H719

calculated from the phase-averaged free surface time-series. Here phase averaging is per-720

formed over N successive waves after the wave field reaches a steady state condition, where721

N is 10 in both the simulated results and the measurements.722

Case Hw Tw d1 L1 s ξ0 d2 L2 sd Exp.

(mm) (s) (m) (m) (m) (m)

P10-r 122 2.0 0.36 0 100
3 0.21 - - - Ting and Nelson [2011]

125 2.0 0.4 0 35 0.20 - - - Ting and Kirby [1994]

B1-r 41.0 1.01 0.4 6 20 0.30 0.1 2 10 Luth et al. [1994]

B3-r 29.0 2.53 0.4 6 20 0.95 0.1 2 10 Luth et al. [1994]

B9-r 97.2 1.43 0.7 2 10 0.57 0.08 0 0 Blenkinsopp and Chaplin [2007]

Table B.1: Input parameters for the simulated cases used for the validation of the LES/VOF model.

Definitions are given in table 1.
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Figure B.1: Comparison between the LES/VOF model results of spanwise-phase-averaged free

surface elevations at various cross-shore locations for the case P10-r and the corresponding mea-

surements by Ting and Nelson [2011]. No spanwise averaging was involved in the measurement.

–39–



Confidential manuscript submitted to JGR-Oceans

Figure B.2: The LES/VOF model-data comparison of the cross-shore variation of the wave height

H for the case P10-r. Here TN11 and TK94 denote the data set of Ting and Nelson [2011] and Ting

and Kirby [1994] respectively.

Figure B.2 also shows that the spatial evolution of H relative to the break point in the723

case P10-r is comparable with that in the spilling case of Ting and Kirby [1994]. Thus al-724

though the incident wave conditions and setup in the latter are slightly different than those in725

the case P10 the wave-driven currents and turbulence statistics should be comparable.726

Figure B.3 shows the spatial distribution of the normalized spanwise-time-averaged,727

〈k〉
1/2
/
√
gh, turbulent kinetic energy for PS-a. Figure B.3 shows that both the magnitude728

and spatial variation of the predicted 〈k〉
1/2
/
√
gh and 〈u〉/

√
gh are consistent with the corre-729

sponding measured values of Ting and Kirby [1994] in the transition and inner surf zone.730
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Figure B.3: The LES/VOF model results of spanwise-time-averaged normalized (a − f ) turbulent

kinetic energy,
√

k/gh, and (A − F) horizontal velocity, u/
√
gh, (undertow) profiles for the case

P10-r at various cross-shore locations after the initial break point. Circles show the measurements

of Ting and Kirby [1994]. Here, σ = (z − η)/h and h = d + η.
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B.2 Regular waves shoaling over an idealized bar731

Here we consider the LES/VOF model performance for cases of regular non-breaking732

(B1-r) and breaking (B3-r and B9-r) waves shoaling over a submerged bar, using the data sets733

of Luth et al. [1994] and Blenkinsopp and Chaplin [2007]. Figures B.4 and B.5 documents734

that the model accurately captures the nonlinear evolution of evolving crests propagating over735

the up-slope (−s(d1 − d2) < x < 0) and top (0 < x < L2) of the bar in all cases. Figure B.5736

also shows that the model fairly reasonably predicts the kinematics of the entrained bubble737

plume compared to the observations. The apparent mismatch between the predicted and ob-738

served wave profiles is mainly due to the mismatch between their corresponding incident739

waves and due to the difference between the low frequency wave climate in the numerical740

and laboratory wave tanks.741

Figure B.4: Comparison of the LES/VOF model results (solid lines) and measurements [Luth

et al., 1994] (circles) of free surface elevations at various x locations for the along-crest uniform

(a−e) non-breaking, with Tw = 1.01 s and Hw = 0.041 m, and (A−E) breaking, with Tw = 2.525 s

and Hw = 0.029 m, regular waves shoaling over a submerged bar. Here −6 < x < 0 and 0 < x < 2

indicate the up-slope and top of the bar respectively (see Figure 1c and Table B.1).
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x (mm)x (m)

Figure B.5: Comparison of the side-view of the predicted (left column) and observed (right col-

umn) bubble plume evolution for the case B9-r. The two dashed lines in the right column indicate

the field of view of the photographs, adopted from Blenkinsopp and Chaplin [2007, Figure 4].
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