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and elasticity of gels via ultrasonic levitation of gel drops

X. Shao," S. A. Fredericks,? J. R. Saylor,"® and J. B. Bostwick'
'Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, USA

’Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA

ABSTRACT:

A method for obtaining the elasticity, surface tension, and viscosity of ultrasonically levitated gel drops is presented.
The drops examined were made of agarose, a hydrogel. In contrast to previous studies where fluid properties are
obtained using ultrasonic levitation of a liquid drop, herein the material studied was a gel which has a significant
elasticity. The work presented herein is significant in that gels are of growing importance in biomedical applications
and exhibit behaviors partially determined by their elasticities and surface tensions. Obtaining surface tension for
these substances is important but challenging since measuring this quantity using the standard Wilhelmy plate or
DuNuoy ring methods is not possible due to breakage of the gel. The experiments were conducted on agarose gels
having elasticities ranging from 12.2 to 200.3 Pa. A method is described for obtaining elasticity, surface tension, and
viscosity, and the method is experimentally demonstrated for surface tension and viscosity. For the range of
elasticities explored, the measured surface tension ranged from 0.1 to 0.3 N/m, and the viscosity ranged from 0.0084
to 0.0204 Pa s. The measurements of surface tension are, to the authors’ knowledge, the first obtained of a gel using

ultrasonic levitation. © 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001068
(Received 25 July 2019; revised 13 March 2020; accepted 23 March 2020; published online 22 April 2020)

[Editor: Veerle Keppens]

I. INTRODUCTION

Ultrasonic levitation of drops and bubbles has been used
for some time as a method for measuring fluid properties.' ™2
The overall approach typically relies on the development of an
ultrasonic standing wave field which is amplitude modulated
to cause quadrupole shape mode oscillations of the drop.
Characteristics of the drop’s oscillation are then used to extract
one or more fluid properties. The analytical development for
how the acoustic radiation pressure interacts with the drop to
determine drop shape and oscillation characteristics has been
explored by several researchers.>!>~1

Much work has been done on the use of ultrasonic levi-
tation to measure interfacial tension. Marston® presented a
theoretical development showing how the quadrupole
response of a drop or bubble could be used to measure the
interfacial tension, and this approach was experimentally
demonstrated by Marston and Apfel® for a benzene drop in
water, showing that the quadrupole oscillatory characteris-
tics were in agreement with tabulated values of interfacial
tension for benzene. Marston and Apfel investigated a drop
of p-xylene in water, obtaining a value of interfacial tension
that deviated from that obtained using a DuNuoy ring tensi-
ometer measurement by only 4%. This approach was further
explored by Hsu and Apfel’ who also developed an
approach to account for finite viscosity effects and con-
ducted preliminary measurements of changes in interfacial
tension with increasing surfactant concentration on the drop
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surface. Further studies on surfactant measurements were
conducted by Tian er al.*° who measured both the surface
elasticity (not to be confused with the bulk elasticity exam-
ined herein) and surface dilational viscosity of surfactants
on levitated drops. Trinh and Hsu® suggested the possibility
of obtaining the surface tension of an ultrasonically levitated
drop by measuring the outline of the equilibrium shape of
the drop and extracting surface tension using the equation
for the drop shape obtained from a balance of the relevant
forces (see also Marston® and Marston ef al.13). Trinh et al.”
used amplitude modulation of ultrasonically levitated drops
to measure the surface tension of water, hexadecane, sili-
cone oil, and water-glycerin mixtures.

Surface tension and viscosity can be obtained by ultra-
sonically levitating drops, where the general approach is to
use characteristics of the drop oscillation frequency and dis-
sipation to extract both fluid properties. This can be
achieved via a transient approach wherein a drop is excited
into prolate-oblate shape oscillations, the excitation source
is eliminated, and then the decay in drop oscillation is mea-
sured. The frequency and damping constant of the decaying
signal are then used to obtain surface tension and viscosity.
This approach was reviewed and used in a recent publication
by Kremer e al.'® and was shown by Holt et al.'* to be
effective in measuring the difference in the viscosity of nor-
mal blood and the blood of individuals with sickle cell dis-
ease. A more common approach for obtaining viscosity and
surface tension is to obtain the steady-state frequency
response function of a drop. In this method, a modification
of which is the subject of the present work, the amplitude
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modulation frequency is scanned through a range near the
natural frequency of the drop and the response of the drop is
recorded. By treating the drop as a forced damped oscillator,
its response can be described as (following the treatment of
Hosseinzadeh and Holt' l)
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where A is the driving amplitude, @ and w,, are the driving
frequency and natural frequency, respectively, { is the
damping coefficient, and x is the amplitude of drop oscilla-
tion. Obtaining m, and { from experimentally obtained
(x/A, w), values for viscosity p and surface tension o can
then be obtained from Lamb’s'® equations for the n=2

quadrupole shape mode of spherical oscillation for a drop of
radius R and density p,
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This approach has been used by Trinh and co-workers,
Hosseinzadeh and Holt,ll and others. In the above, it should
be noted that Eq. (1) is a simplified version of the more gen-
eral case presented by Marston® and Marston and Apfel,*
where terms for viscous dissipation in the boundary layer
near the interface as well as viscous dissipation in the flow far
from the interface are included [the terms that include “«” in
Egs. (6) and (7) of Marston and Apfel4]. For the conditions
here where the drops are on the order of a millimeter, the gel
and air densities are on the order of 1000 and 1 kg/m>, respec-
tively, and the absolute viscosities of gel and air are on the
order of 107 and 107° Pa s, respectively, the general result
of Marston® and Apfel and Marston* reduces to Eq. (1).
Similarly, Eq. (3) is a simplified equation for the case where
viscous dissipation due to boundary layer effects is neglected
[again eliminating o terms in Egs. (6) and (7) of Marston and
Apfel4 and noted in other works'®~"].

In all of the above investigations, the drops which were
studied were liquids and lacked elasticity. The motivation
of the present work is to develop a method for obtaining the
fluid properties of a drop composed of a hydrogel which has
significant surface tension, viscosity, and elastic modulus.
We are unaware of attempts to do this using ultrasonically
levitated drops. It is noted that McDaniel and Holt*?
obtained the elasticity of aqueous foam drops via the acous-
tic levitation approach. Viscous dissipation and surface ten-
sion were not considered in that work. Below, we develop
an approach for obtaining the frequency response of ultra-
sonically levitated gel drops and using this information to
extract the surface tension, viscosity, and elasticity of that
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gel drop. This approach is then experimentally demonstrated
for obtaining surface tension and viscosity, with the experi-
mental demonstration of obtaining elasticity left as future
work.

The present work focuses on gels, specifically hydro-
gels. These materials, often referred to as soft solids, are
unique in that both surface tension and elasticity can be
roughly comparable in magnitude. Drops composed of a gel
material, therefore, differ from the studies discussed above
which concern liquids for which surface tension is the only
restoring force during drop oscillation. That soft solids have
surface tension and the importance of surface tension in
these materials is illustrated by the rapidly growing field of
elastocapillarity in which both elasticity and capillarity
affect the physics.”> > Surface tension ¢ becomes important
when the characteristic length L of the system is of the same
size as the elastocapillary length ¢, = ¢/G, where G is the
shear modulus of the gel. When L < /,, the gel is subject to
capillarity as observed in recent experiments; e.g., gravity-
driven?® and capillary breakup of a solid cylinder?’ and pla-
nar elastocapillary waves.?®*° Surprisingly, recent work by
Style e al.*® has shown that for soft elastomers (G ~ 1 kPa)
the elastic strength actually increases with liquid inclusion
concentration, in direct contrast to classic Eshelby theory of
inclusions,’! and the magnitude of the increasing stiffness is
directly proportional to the surface tension of the elastomer.
The aforementioned applications highlight the critical need
to be able to measure the surface tension of soft gels. The
measurement technique described herein enables determina-
tion of surface tension for these elastomer composites which
will allow one to optimize/design such composite materials
with minimal inclusions for a desired strength. This is espe-
cially important given that the standard DuNuoy ring and
Wilhelmy plate measurement methods®>* are not possible
for gels, since the measurement itself would break the gel.
We note in passing that the surface tension of liquids can be
measured using the pendant drop method, wherein the image
of the drop outline is used in combination with the Young-
Laplace equation to obtain the surface tension value.>*?
While application of this approach to gels would not suffer
the physical problems associated with Wilhelmy plate or Du
Nuoy ring measurements, we are not aware of any theory
that would enable extraction of the elasticity and surface
tension using this approach.

Gels have grown in importance in recent years due to
their use in various bio-printing technologies such as cell
printing and tissue engineering which employs the basic
principles of inkjet printing but adapted to bioinks. ¢’
Bioinks are typically hydrogels that are capable of sustain-
ing biological function. They have complex rheologies char-
acterized by surface tensions and elasticities that are both
significant. Typically, a cell/gel mixture is forced through a
nozzle, creating a drop containing (usually) a single cell
which then impacts a substrate. Repetition of this process
can be used to build up engineered tissues. Cell viability in
such processes is linked to the strains experienced by the
cell within the gel drop during the printing process.*® These
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strains are in turn partially determined by the surface tension
and elasticity of the gel drop. Hence, development of bio-
printing technologies requires an ability to know (viz., an
ability to measure) the surface tension of gels.

Herein we extend to gel drops the method of obtaining
fluid properties of liquid drops and foams via ultrasonic levi-
tation. While viscosity, elasticity, and surface tension are all
important, only surface tension and viscosity are experimen-
tally obtained by the method presented herein, and elasticity
is measured independently via a standard method.

As will be shown later in this paper, the reason we were
unable to measure elasticity using the method presented
here is due to the moderate amount of noise in the system.
This, coupled with a relatively small range in R in the drops
studied, precluded obtaining elasticity experimentally. We
note that the theory developed herein enables obtaining
measurements of elasticity in principle.

Details surrounding this point are further discussed in
Sec. IV.

Il. EXPERIMENTAL METHOD

A. Droplet levitation and modulating the acoustic
force

The experimental setup is illustrated in Fig. 1. As indi-
cated, an ultrasonic transducer is used to levitate the gel
drop. A camera and light emitting diode illumination source
was used to image the gel drop and obtain its size, with the
illumination source backlighting the drop. The transducer
consists of a horn and reflector, following the general proce-
dure of Trinh.*® The horn and reflector are separated by an
integer number of half wavelengths, with the drop levitated
at one of the nodes. Two pre-stressed PZT transducers
(Channel Industries, Inc.) were used in the horn, and each
had an outer diameter of 46 mm, an inner diameter of
16 mm and a thickness of 3.2mm. The transducer was
driven by an Agilent 33220 A function generator, Kron-Hite
amplifier (7500) combination. A carrier wave was created
by the function generator at the nominal resonant frequency
of the transducer which was 30.3 kHz. The actual resonance
frequency varied due to variances in manufacturing
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tolerances, the degree of coupling between the PZT and the
transducer components due to the clamping force holding
the PZT in place, as well as temperature variations due to
self-heating. The carrier wave was amplitude modulated at a
range of frequencies near the resonant frequency of the
drop, which was on the order of 100 Hz, two orders of mag-
nitude lower in frequency than the carrier wave. During an
experiment, the AM frequency was swept from below to
above the drop resonant frequency. A code written in
LABVIEW was used to control the drop levitation and AM fre-
quency sweep. The AM frequency sweep typically took
3 min.

The transducer was initially tuned by adjusting the dis-
tance between the reflector and horn to most effectively lev-
itate a drop. Then, the carrier wave frequency was adjusted
to do the same. The process was iterated to achieve maxi-
mum levitation. From this point forward, resonance of the
transducer could drift due to heating of the transducer and
changes in temperature and humidity of the air. This drift
would rarely exceed 10 Hz, but this was large enough to
prevent effective levitation of drops. To address this, a
software control in LABVIEW was used to adjust the carrier
wave frequency between AM frequency sweeps to main-
tain transducer resonance as shown in Fig. 2. The applied
voltage and current to the transducer were measured with a
Measurements Computing data acquisition module
(USB-2020 DAC) at a sample rate of 10 MHz. The phase
shift between these two signals was calculated, and the car-
rier wave frequency was adjusted to keep the phase shift
as close as possible to zero, which maximizes the power
applied to the ultrasonic levitation system. The carrier
wave frequency was adjusted 3 times per second. The over-
all method for drop levitation is similar to that presented in
Fredericks and Saylor.*’

The amplitude of gel drop oscillation was measured
using a laser light extinction approach similar to that of
Marston,*" as shown in Fig. 1. A helium-neon laser beam
(632.8nm wavelength) was expanded to ~5mm and
directed at the levitated gel droplet. The resulting occluded
beam strikes an optical detector whose output is a linear
function of the light intensity striking the detector. By
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FIG. 1. Schematic of the experimental apparatus.

2490  J. Acoust. Soc. Am. 147 (4), April 2020

Shao et al.


https://doi.org/10.1121/10.0001068

SR
Levitate

Droplet

L

Measure a <

No
Reverse carrier .
frequency
adjustment R Impt,oved
direction !
Yes

Increment carrier
frequency

FIG. 2. Flow chart depicting the method for adjusting the carrier wave fre-
quency by monitoring the phase shift o.

placing a plate with a 3 mm diameter hole in front of the
detector, the output is proportional to the fraction of the
laser light that is occluded by the oscillating drop. Hence,
the output voltage of the photodetector is linearly related
to the projected area of the levitated droplet, which is taken
as the amplitude of oscillation. It is noted that for small
oscillation amplitudes, this voltage is proportional to the
change in drop radius. The frequency of the detector signal
is equal to the oscillation frequency of the levitated drop.
For each frequency in the AM scan, 5s of data were
acquired. Then the frequency was increased and another 5s
of data were obtained. The frequency was increased in
increments of 1 Hz, and a scan consisted of 30 frequencies.
The amplitude of the resulting drop oscillation at each exci-
tation frequency was obtained by taking the FFT of the last
4s of each 5s time trace. The first second of each trace was
discarded to remove any influence of the previous AM fre-
quency. The amplitude obtained from this FFT is referred to
as x and the amplitude of the driving frequency is referred to
as A in Egs. (1) and (4) presented below. Each experiment
resulted in a point in the plot of the amplitude of drop oscil-
lation versus excitation frequency. The natural frequency
was taken to be the frequency at which a maximum in the
drop oscillation was observed.

B. Formation of gel drops

Following the approach of Tokita and Hikichi,** hydro-
gels were prepared by dissolving agarose powder (Sigma
Aldrich type VI-A) in doubly distilled water (though Tokita
and Hikichi used de-ionized water) at 90°C for 1h. Our
goal was to create gelled drops that were as close to spheri-
cal as possible. We initially allowed the drop to gel on a
Teflon surface, and also experimented with letting the drop
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gel while ultrasonically levitated. However, both of these
approaches resulted in relatively oblate drop shapes along
with significant changes in the drop size due to evaporation.
Herein we followed the method of Chakrabarti** and created
a liquid mixture having a density gradient spanning the den-
sity of the gel. Specifically, we partially filled a beaker
with silicone oil (PDM-7040, Gelest) having a density of
p = 1.07 g/ml, and above this we poured n-octane (Acros
Organics), having a density of p = 0.7 g/ml. Both silicone
oil and n-octane are not miscible in agarose. The agarose
solutions we used had a nominal density of p = 1.0 g/ml,
and when placed in the beaker the agarose drops quickly
migrated to the interface of the two liquids and exhibited a
highly spherical shape as shown in the image of a sample
gel drop presented in Fig. 3. Figure 4 shows one of these
drops levitated in the ultrasonic standing wave field without
amplitude modulation, showing that the equilibrium shape,
though not as spherical as in Fig. 3, is still quite round. In
addition to generating spherical drops, this approach also
had the benefit of allowing gelation without evaporation,
ensuring that the agarose/water concentration did not change
during gelation. After allowing these drops to gel at room
temperature for at least 3h, a drop was removed from the
silicone oil/n-octane beaker after which it was carefully
washed in n-heptane (Fisher Chemicals) for 2 min to remove
any excess silicone oil or octane. The drop was then washed

FIG. 3. (Color online) Image of a gel drop located at the interface between
silicone oil and n-octane in a cuvette. The gel drop has a diameter of
2.86 mm and the gel has an elasticity of G = 13.0 Pa.
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FIG. 4. (Color online) Image of a gel drop levitated in an ultrasonic
standing wave field. The amplitude modulation is zero in this case, showing
the equilibrium shape of the drop in the field. The gel drop diameter is
2.82mm and the elasticity is G = 13.0 Pa.

once more with a fresh solution of n-heptane. After this, the
drop was inserted into the levitation system and an experi-
ment was initiated after allowing 15s to pass so that any
remaining heptane evaporated. Multiple drops were made
from the same agarose solution ensuring that the concentra-
tion and hence the elasticity were the same when doing mul-
tiple runs. Drops made in this way were kept in the silicone
oil/n-octane beaker until needed. For the work presented
here, the drop radius varied from R =1.16-1.6 mm, and the
agarose concentration varied from 0.106 to 0.285 wt. %.

For each concentration of agarose gel used in these
experiments, the complex modulus G = G’ + iG” for that
gel was obtained using an Anton Paar rheometer (MCR
302). This method employs a small Petri dish in which the
gel solution is placed and allowed to gel. The rheometer
then contacts the surface of the gel with a disk. Dynamic
oscillatory shear tests over a range of frequencies from 1 to
50rad/s were then obtained. Prior to these measurements, a
small amount of silicone oil was placed over the annular
region between the disk and the edge of the Petri dish, pre-
venting evaporation during the course of the measurement.
For the gels used here, the loss modulus G” was found to be
over one order of magnitude smaller than the storage modu-
lus G’ and G” is ignored hereinafter. This behavior has been
demonstrated for agarose by other authors as well, for exam-
ple, Monroy and Langevin®® who showed that the loss
modulus was at least one order of magnitude smaller than
the storage modulus for 0.2 wt. % agarose hydrogels (very
similar to the 0.106—0.285 wt. % agarose hydrogels explored
here) over a frequency range from 1072 to 10*> Hz. Thus, the
agarose hydrogels used in our experiments behave as linear
elastic solids. For simplicity, the storage modulus G’ is
referred to as G hereinafter. For the gels investigated here,
G ranged from 122 to 200.3Pa over the agarose
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concentrations explored. The 95% confidence interval for
measurement of G was 5.6 Pa which included the instrument
uncertainty and experimental uncertainty obtained from
measuring several samples of the same gel. For each value
of G explored, at least three experimental runs were con-
ducted, except for the case when G =38 Pa when two runs
were conducted. An average of 3.6 experiments were run for
each value of G.

lll. RESULTS
A. Theoretical model

Obtaining surface tension, elastic modulus, and viscosity,
o, G, and u, from the results presented above requires a
model relating the driving frequency and drop oscillation
amplitude to the natural frequency and damping coefficient
as was done for just ¢ and u using Egs. (1)-(3) in Sec. L
This is done by developing an equation for the oscillations
of a sphere having non-zero elasticity, viscosity, and surface
tension.

Here we begin by following the general approach pre-
sented in Hosseinzadeh and Holt,'" which is a simplifica-
tion of that presented by Marston® for the case of
negligible boundary layer dissipation and which exploits
the similarity of the oscillating drop with the damped-
driven oscillator, an approach which has been exploited in
the study of drops and bubbles in different ways by a range
of researchers, 16,44-52

X4 2lw,x + wix = A cos wt, @)

where ( is the damping ratio, @, the natural frequency, and
(A, w) the driving amplitude and frequency, respectively. In
the harmonic oscillator structure, inertia acts as the “mass,”
the resistive force of surface tension and elasticity as the
“spring constant,” and viscous dissipation as the “damping
constant,” all of which are determined by projecting onto a
particular interface shape 7(0, @, ). Our drop oscillates in
the fundamental mode 1(0, ¢, 1) = x(1)P(cos 0), where P,
is the Legendre polynomial of order n = 2, and we project
onto this mode, which is axisymmetric and oscillates
between an oblate and prolate shape.

Each component of the essential physics that enters into
our model is schematically viewed as a spring or dashpot
whose constant is normalized with respect to the drop mass.
These relationships have been individually determined in
the literature.'®>*>5 Damping is associated with viscous dis-
sipation of a fluid which was computed by Lamb using the
potential flow solution for the spherical drop'® and assuming
negligible viscous dissipation due to boundary layer effects;
this gives { in Eq. (3). Both surface tension and elasticity
resist deformation like a spring and we idealize these two
forces as springs acting in parallel so that we can superim-
pose their effects. We note that this, along with an assump-
tion of a constant value for (o, i, G), independent of drop
deformation, restricts us to Newtonian materials whose elas-
ticity and surface tension do not interact. The spring
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constant due to surface tension is given by Eq. (2) assuming
an inviscid liquid drop.”* The spring constant due to elastic-
ity is computed from a nonlinear characteristic equation
which is derived in the Appendix to give

n(n* = 10)j2(n) — 2(n* — 16)3(n) = 0 (5)

for the scaled elastic frequency

n=owR\/p/G (6)

with j, the spherical Bessel function, assuming an incom-
pressible spherical globe,” which admits a numerical solu-
tion n =2.665 that when rearranged gives the spring
constant due to elasticity

2 G
ok (7

w* = (2.665)
There is no explicit coupling between surface tension and
elasticity in the above development, and to our knowledge
no such model exists for a spherical drop. Combining the
spring constants due to surface tension and elasticity gives
an effective spring constant

n

1
2 2
= ks {Sa+ (2.665)°GR|, (8)

which can be combined with the damping ratio { in Eq. (3)
in the system response, Eq. (1). This enables a relationship
between driving frequency and drop oscillation amplitude to
(6,u,G). Specifically, using the (x/A,w) data from any
given gel drop levitation run and fitting it to Eq. (1) using
, and { as fitting parameters, the resulting (w,,{) can be
obtained and used to get p from Eq. (3), and G and o
from Eq. (8) by doing multiple runs with gel drops having
different R.

B. Experimental results

While experiments were indeed conducted at different
R for gels of the same concentration, the range in R was
small and increasing this range was challenging due to diffi-
culties in forming small drops and in stably levitating large
drops. This, combined with scatter in the data, made difficult
the extraction of (o, u,G) from the experiments using the
approach outlined above. Instead, G was measured as
described in Sec. II, and is used as an input while (o, i) are
extracted from the experimentally obtained (w,, {).

Figure 5 is a plot of drop oscillation amplitude scaled to
the driving amplitude versus driving frequency for a sample
run where the elasticity of the gel was 32 Pa. Along with
this plot are images of a gel drop undergoing shape mode
oscillations over the entire period of the oscillation. The
solid line in the plot was obtained by fitting the data using
Eq. (1). As noted in Sec. II the frequency at which the peak
in this plot is observed is taken as the natural frequency. In
Fig. 5, the peak is located at a frequency of 99.32 Hz, and
was identified using the fit to the data as opposed to the data
alone, since the fit incorporated information from multiple
data points and was therefore less sensitive to a spurious
measurement. It is also noted that while measurements were
obtained at 30 excitation frequencies for each drop, only 21
were used (and presented in Fig. 5) because data points
obtained far from resonance exhibited greater scatter.

The results of all the runs are presented in Figs. 6 and 7
showing how the natural frequency of the gel drop varies
with G. In Fig. 6, the natural frequency is scaled to the capil-
lary natural frequency given in Eq. (2) (designated o, in the
figure), and in Fig. 7 the natural frequency is scaled to the
elastic frequency, Eq. (7) (designated w¢ in the figure). In
both of these plots and those to follow, the vertical error
bars are the 95% confidence intervals for that value of G. As
noted in Sec. II, the 95% confidence interval for G was only
5.6 Pa, and horizontal error bars are not included since this
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FIG. 5. (a) Plot of oscillation amplitude versus excitation frequency f for a sample run where the elasticity was G =32 Pa. (b) Image of a gel drop undergoing a
full period of shape mode oscillation. The drop radius was R = 1.43 mm in this particular experiment.
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FIG. 6. Plot of the gel drop natural frequency scaled to the capillary natural
frequency versus elasticity G.

magnitude in uncertainty is smaller than the width of the
symbols in these figures.

The fact that in neither Fig. 6 nor Fig. 7 is the scaled
frequency a constant demonstrates that both surface tension
and elasticity are playing a role in the gel drop dynamics, as
expected. It also shows that ¢ must be varying with the aga-
rose concentration since a constant value for ¢ independent
of that concentration (which would translate to a constant ¢
independent of G) should give a horizontal line in the plot
of w,/w¢ in Fig. 7, which is not the case.

Applying the theory developed in Sec. II, each data
point presented in the above plots can be translated into a
viscosity and surface tension, and these are presented in
Figs. 8 and 9, respectively. The linear fits presented in Figs.
8 and 9 are

1= 6.005 x 105G + 0.008384 )
and
o = 0.001022G + 0.07229, (10)
respectively.
3.0 T
| |
o
<. 20" . .
Lo
L]
15} d L P
. f
1.0 ; : : :
0 50 100 150 200

G[Pa]

FIG. 7. Plot of the gel drop natural frequency scaled to the natural fre-
quency of a purely elastic drop versus elasticity G.
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FIG. 8. Plot of viscosity u versus elastic modulus G with linear curve fit.

It is noted that obtaining g via the method described
above is more sensitive to errors in data points that were far
from the natural frequency. Hence, in obtaining p, a total of
nine data points were used, the data point at the natural fre-
quency and four above and below that frequency. Since fre-
quency scans were obtained in 1Hz increments, this
corresponds to a range of 8 Hz in frequency when obtaining
u. This approach resulted in less scatter in the data than
when using the entire data set since data farther from the
resonance point was sometimes spurious in nature, occa-
sionally exhibiting an amplitude higher than that at the
natural frequency.

IV. DISCUSSION

Figures 8 and 9 demonstrate the ability of the described
method to obtain (o, i) for levitated gel drops. The ability
to obtain ¢ is especially noteworthy since we are aware of
no other means for obtaining surface tension for a gel. Of
course, this also means that we are unable to compare our
results to other data or methods. However, by setting G =0
in Eqg. (10), we obtain an extrapolated value of ¢ = 0.0723
N/m for the pure water case, which is essentially the exact
value of ¢ for pure water at STP.>®

0.4

0.0 : :
0 50 100 150 200
G[Pa]

FIG. 9. Plot of surface tension ¢ versus elastic modulus G with linear curve fit.
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We should note that the viscosity presented here is not
the viscosity as it is typically understood, viz., the constant
which relates the shear stress to the velocity gradient in a
flowing liquid, since we are considering gels, which do not
flow. Hence, p is simply the quantity which accounts for
energy dissipation in the deforming gel drop. Indeed, when
we set G =0 in Eq. (9), we obtain ¢ = 0.00838 Pa s which
differs from the value of pure liquid water at STP by a factor
of 10, a result which is likely due to the change in what yx in
Eq. (3) represents when a liquid becomes a gel and ceases to
admit flow, even at very small G.

With regard to the measurement of physical properties
by exciting shape oscillations in ultrasonically levitated
drops, it should be noted that Hosseinzadeh and Holt"' dem-
onstrate that, for liquid drops, the measurements of ¢ and u
could be in significant error if the oscillation amplitudes are
too large. Specifically, their work contradicts the oft-cited
conclusion of Becker e al.,’” that for oscillation amplitudes
less than 10%, nonlinearities would not be significant, pre-
sumably avoiding errors in measurements of ¢ and pu.
Indeed, Hosseinzadeh and Holt'' suggest that oscillation
amplitudes be kept to less than 0.5% to avoid errors in mea-
surements of ¢ and p. Herein our oscillation amplitudes
were all less than 5%, which is less than that suggested by
Becker ef al.,”’ but significantly larger than that suggested
by Hosseinzadeh and Holt.'" Though we recognize the
validity of the work of Hosseinzadeh and Holt,'" we think
that our oscillation amplitudes are sufficiently small and jus-
tify our assumption that nonlinearities are not playing a sig-
nificant role in our measurements by the following
arguments. First, as noted by Hosseinzadeh and Holt,!! the
previous work that they reviewed revealed surface tension
measurements that underpredicted or overpredicted known
values when oscillation amplitudes were large. However,
when extrapolating to zero G, our Eq. (10) gives a surface
tension identical to that of water. Second, for the case of vis-
cosity, Hosseinzadeh and Holt'' note that it is the deviation
of the actual velocity field from the infinitesimal amplitude
shape mode oscillations predicted by Lamb,'® which is the
cause for finite amplitude contributions to errors in the mea-
surement of viscosity of ultrasonically levitated /iguid drops.
This is unlikely to be the case for the gel drops considered
here where flow does not occur. Indeed, one author contends
that it is only when turbulent flow occurs that a deleterious
effect on viscosity measurement occurs,™ a situation cer-
tainly not possible here. Finally, even for the case of the
glycerol-water system investigated by Hosseinzadeh and
Holt'! (20 wt. %), their data show that even at a high 12%
amplitude oscillation they see an error in the measurement
of viscosity greater than 10% only for drop diameters larger
than about 1.5 mm (reading off of the data presented in their
Fig. 4). Our results at oscillation amplitudes of 5% or less
are for drop radii ranging from 1.16 to 1.6 mm indicating
that we should only see errors approach 10% for the largest
of the drops we investigated. Hence, we do not see finite
amplitude effects as contributing to errors in our measure-
ments of physical properties, though we recognize that the
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authors we compare to above are all working with liquid
systems and so it would be useful to do a study of the upper
bound of oscillation amplitude for the measurement of
(o,u,G), in gel systems. Perhaps the best way to do this
would be to conduct experiments such as those presented
above, but for a larger range of R where G could be obtained
(see below) and thereby compared with standard rheometer
measurements of G.

As noted in Sec. IIT A, only (g, 1) are obtained herein
from the experimental data. It is possible to obtain (g, i, G)
from the data, taking advantage of small differences in R for
the droplets used at each value of agarose concentration.
However, the range in R for these experiments was small,
and the scatter in the data presented in Figs. 8 and 9 was not
insignificant. However, this does not preclude using this
method for obtaining G given a data set containing a wider
range in R. A likely cause of the scatter is the low frequency
oscillation (on the order of a few Hz) of the drop position
within the ultrasonic standing wave field. Future work
should focus on stabilizing the drop position, perhaps by
including a shroud around the standing wave field to help
block air currents in the room, and the development of a
method for making gel drops capable of a large range in R.
Success in these steps would enable obtaining measurements
of (g, i, G) via this method.

V. CONCLUSIONS

A relationship was developed relating the surface ten-
sion, viscosity, and elasticity of a gel to the oscillatory char-
acteristics of a gel drop. Experiments were conducted
showing that this relationship could be applied to an ultra-
sonically levitated gel drop excited into shape mode oscilla-
tions to measure the surface tension and viscosity of that gel
drop. Specifically, agarose gel drops were investigated hav-
ing a range of elasticity from 12.2 to 200.3 Pa and the mea-
sured surface tension ranged from 0.1 to 0.3 N/m, and the
measured viscosity ranged from 0.01 to 0.02 Pa s. Obtaining
surface tension in this way is especially important given that
existing methods for measuring surface tension (e.g., the
DuNuoy ring method or Wilhelmy plate method) cannot be
used for gels since they would break the gel in the process
of measurement. This work extends that of previous
researchers who have used ultrasonic levitation of liquids to
obtain properties such as surface tension and viscosity. By
extending the work of these researchers to materials having
elasticity, this approach enables measurements of gel prop-
erties, an important step due to the significance of gels in
cell printing and tissue engineering which employs the basic
principles of inkjet printing adapted to bioinks. To our
knowledge, these are the first measurements of surface ten-
sion obtained for a hydrogel using ultrasonic levitation.
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APPENDIX: DERIVATION OF CHARACTERISTIC
EQUATION (5)

Consider a solid sphere of radius R whose surface is dis-
turbed by a small perturbation which generates a time-
dependent displacement field U(x, 7) within the sphere. We
assume a normal mode ansatz U(x,?) = u(x)e’ with fre-
quency o, and define the displacement field u in a spherical
coordinate system,

ll(X) = MI‘(rv 07 @)él + ”9(’3 07 Q))ég + u(/)(r’ 07 @)é(pa
(A1)

where 0 and ¢ refer to the polar and azimuthal angles,
respectively.
For a linearly elastic solid with Lame’ parameters 4 and
G, the displacement field u is governed by the Navier elasto-
dynamic equation
(A+G)V(V-

u) + GV = —po’u, (A2)

where p is the density. The stress-strain relation is given by

T =2G + /Tr(e), (A3)
where Tr is the trace of the strain field
1
=3 (Vu+vuh). (A4)

The governing equation (A2) is simplified by applying the
Helmbholtz decomposition theorem and writing the displace-
ment field in terms of the potential functions (¢, 7,S),

u=Ve¢+Vx(Te,)+V x(S¢,). (A5)

Substituting Eq. (AS) into Eq. (A2) results in a set of
decoupled Helmholtz equations,

Vip+d*p =0, (A6a)

v? <T> + (T) = (A6b)
r r

v? (§> + B (§> = (A6c)
r r

where a = w+/p/(A+2G) and f = w+/p/G.

The general solution of Eq. (A6) can be written by
expanding the potentials ¢,7,S in a spherical harmonic
Y}'(0, @) basis,

o
¢ = Z ZAIWJI(W)Y/M(@’ ),

1=0 m=—1
o0 ]
T=Y % rBuilpr)¥i'(0, ¢), (A7)
=0 m=—1
00 1
S=3" > rCui(Br)¥i' (0, ¢).
1=0 m=—1

2496  J. Acoust. Soc. Am. 147 (4), April 2020

where j; is the spherical Bessel functions of the first kind,
[ the polar wavenumber, and m the azimuthal wavenumber.
Note that we suppress the spherical Bessel function of the
second kind in the solution, which diverges at the origin and
is nonphysical. The unknown constants Ay, By, Cj, are
determined from the traction-free boundary conditions at the
free surface r =R,

7 (R) = 19(R) = 1,9(R) = 0. (A8)

Applying Eq. (A7) to Egs. (A3) and (A4) allows us to
express the boundary conditions (A8) in terms of the
unknown constants A, B, and C, which satisfy

G
F [AlmTll + ClmTIB] = 0; (Aga)
2G
= [AimT31 + CinT33] = 0, (A9D)
2G
ﬁBlmTZZ =0, (A9¢c)
where
2 L 5. .
= (P12 Jiten) + 201 o),
T3 = (I — 1)ji(xn) — xnjiei (xn),
Ty = (1= 1)ji(n) — 17/1+1( ),
T =11+ 1){(l - — i ()}
1 . )
Ty = <12 -1 2'72>J/('7) + njrr1(n)- (A10)
The solvability condition for Eq. (A9) gives
T\ T3 —Ti3T51 =0, Tn=0, (A11)

which admits two classes of solution; spheroidal and tor-
sional modes. The spheroidal modes satisfy the following
characteristic equation:

2 7 _
—% (M - %)]z(’“?)jz(’?)

n?
B+P—20 1), , .
(T ] Ji(en)jrea ()
N P+2P—1-2 1 (e (1)
3 — | ’uKn)ji+1(n
' n "
2-1-P .
+ TK][+1(K1’])][(K1’]) = 0, (A12)
and the torsional modes satisfy
(I = Dji(n) = njiza(n) = 0. (A13)

Here we have scaled time with respect to the elastic shear
wave timescale which admits a dimensionless frequency
1 = ®wR+/p/G and a compressibility factor k = G /(% + 2G),

Shao et al.


https://doi.org/10.1121/10.0001068

https://doi.org/10.1121/10.0001068

n
) S S *.\
\\\ - os=1
__________ \'~-\---._._._._____
s=2
10} S~
— s=3
— s=4
5E
................................................................ e S:5
1 1 1 1 1 1 1 K

FIG. 10. (Color online) Plot of n versus x showing the first five roots of
spheroidal / =2 vibration. Here s correspond to the sth root of Eq. (A12).

which can be written with respect to the Poisson ratio v as
kK =+/(1—-2v)/2(1 —v). For an incompressible material
v=1/2and k=0.

These equations have an infinite number of roots which
correspond to the natural oscillation frequencies of the solid
sphere. For the purposes of this paper, we are interested in
the spheroidal or shape change modes and in particular the
| =2 oblate-prolate mode which satisfies

% <% - %)jz(n)jz(rcn) + (% - 2—l’1>jz(’<’1)j3(71)

12 1\, . 4x .
+K<n3 - n)]z(n)n(mv) - ?JS(’I)B(K”) =0.
(A14)

Setting k =0 delivers Eq. (5).
For reference, the first five roots of Eq. (A14) plotted
against x is shown in Fig. 10.
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