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a b s t r a c t

A soft viscoelastic layer is susceptible to interfacial instability due to self-weight when oriented
in a heavy over light configuration. This is the solid Rayleigh–Taylor instability. We perform an
elastodynamic stability analysis for the viscoelastic layer in a cylindrical container and compute the
dispersion relationship, as it depends upon the dimensionless elastogravity number, elastocapillary
number, solid Deborah number, compressibility number, and the aspect ratio. The stability diagram is
mapped in the parameter space and we compute the wavenumber and associated growth rate for the
dominant mode. The presence of the cylindrical boundary restricts the allowable modes and we show
how this affects mode number selection. Our predictions compare favorably to previously reported
experimental work in the literature.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Soft materials, such as polymer-based gels and biological tis-
ues, are susceptible to large deformations due to external loading
r self-weight and this gives rise to many interesting phenom-
na including soft fracture [1,2], soft wetting [3–5], and surface
orphological instabilities [6,7]. These materials are typically
haracterized by small elasticity E, such that surface tension σ
ecomes important in systems with length scales L larger than
he elastocapillary length ℓe ≡ σ/E, L > ℓe. The study of
ystems for which L ∼ ℓe belongs to the field of elastocapillar-
ty [8–10]. This unique behavior of soft solids suggest they are
ubject to many of the classical instabilities of hydrodynamics
nd many of these have been recently observed in soft solids;
lateau–Rayleigh breakup of a cylinder [11,12], fingering insta-
ilities [13], and drop oscillations [14,15]. Our focus is on the
ravity-driven instability of an elastic material oriented in an ad-
erse density gradient, the elastic analogue of the Rayleigh–Taylor
nstability [16,17].

Rayleigh–Taylor instability in solids is relevant to a number of
iverse fields, such as geology and the density-stratified layers of
he continental lithosphere [18,19], astrophysics and the explo-
ion of supernova [20], as well as high-energy physics [21]. For
his reason, much attention has been paid to this problem over
he years [22–27]. Recently, Mora et al. [28] observed gravity-
riven instabilities on the free surface of a soft elastic layer in
cylindrical container. Here, the competition between gravity

nd elasticity gave rise to undulating surface patterns beyond
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a threshold value for the non-dimensional elastogravity num-
ber that agreed with a theoretical prediction due to an energy
analysis. Beyond threshold, finite-size deformations lead to a
steady shape that has been described through nonlinear bifur-
cation analysis in a later work [29]. These theories assumed an
incompressible solid layer of infinite horizontal extent. The effect
of geometric confinement on the Rayleigh–Taylor instability in
fluids is well-known [30,31] and Zheng et al. [32] have recently
shown finite-size effects in soft solids. In this paper we will
develop a model of Rayleigh–Taylor instability in soft solids that
incorporates geometric effects, in addition to gravity, surface
tension, elasticity, compressibility, and viscoelasticity.

Static stability analysis is useful in determining the overall
stability of a system and the range of unstable wavenumbers
when the system is unstable. However, only a dynamic stability
analysis can determine the dominant mode in the system that
ultimately leads to pattern formation. Boundary effects also play
a large role in wavenumber selection by restricting the allowable
modes. We perform a dynamic stability analysis of a linear vis-
coelastic layer confined laterally by a cylindrical container and
compute the dispersion relationship, as it depends upon the di-
mensionless parameters: elastogravity number α, elastocapillary
umber Σ , solid Deborah number τ , compressibility number ν̃,
nd aspect ratio R̃. Gravity destabilizes the interface above a
hreshold value of α when oriented in the classic Rayleigh–Taylor
onfiguration of heavy over light, while surface tension stabilizes
he range of unstable wavenumbers, and we compute the stability
iagram in the parameter space. Each dispersion curve exhibits
single maximum and we compute the critical wavenumber

nd associated growth rate for this dominant mode. For a finite-
ized container, we identify the range of parameters for which a

iven mode is the dominant mode and show there are regions
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Fig. 1. Definition sketch in 3D perspective (left) and 2D projection (right) views.
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hich exhibit multiple dominant modes with the same growth
ate. Our predictions compare favorably to previously reported
xperiments. Lastly, we end with some concluding remarks.

. Mathematical formulation

Consider a soft viscoelastic layer of thickness h in cylindrical
oordinates (r, θ, z), as shown in Fig. 1. The layer is rigidly bound
o a container of radius R at z = h, has a free surface at z = 0
hat is endowed with a surface tension σ , and is oriented such
hat gravity g acts from the solid through the free surface. This
s sometimes referred to as negative loading, i.e. the heavy over
ight configuration that is required for the Rayleigh–Taylor insta-
ility. The layer has the following material properties: density ρ,
amé parameters λ and µ, and Poisson ratio ν.

.1. Field equations

The solid is considered to be a linearly viscoelastic material
ith the stress field τij related to the strain field εij by [33],

ij(t) = 2
∫ t

−∞

µ(t−t ′)
∂εij(t ′)
∂t ′

dt ′+δij

∫ t

−∞

λ(t−t ′)
∂εkk(t ′)
∂t ′

dt ′, (1)

where µ(t) and λ(t) are relaxation moduli, which are related to
each other through the Poisson ratio ν as, λ = 2ν/(1− 2ν)µ. The
strain εij is related to the three-dimensional displacement field
U(r, θ, z), as, εij =

1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
. The stress tensor satisfies the

quilibrium equation,

∂τij

∂xj
= ρ

∂2Ui

∂t2
. (2)

2.2. Normal modes and the reduced equations

Normal modes est are assumed with s is the growth rate,
e.g. the displacement field is defined as U = u(r, θ, z)est , with
u(r, θ, z) = ur (r, θ, z)êr + uθ (r, θ, z)êθ + uz(r, θ, z)êz the time-
independent field. We use a two-sided Laplace transform f̃ (s) =

1
√
2π

∫
∞

−∞
f (t)estdt to convert from the time domain to the growth

rate domain.
Applying the two-side Laplace transform to (1) yields

τ̃ij(s) = 2µ̃(s)ε̃ij(s) + δijλ̃(s)ε̃kk(s), (3)

where the complex shear modulus µ̃(s) is defined as

µ̃(s) = µ̃′(s) + iµ̃′′(s) = s
∫

∞

0
Ψ (t)e−stdt, (4)

with µ̃′(s) and µ̃′′(s) the storage and loss modulus, respectively.
The relaxation function Ψ is determined by the rheology of the
material and will be discussed shortly. For a complex solid, they
are both function of the frequency or in our particular case, the
 t
unstable growth rate. In most cases, the Poisson ratio ν is con-
sidered to be constant and independent of the dynamics. Using
(3) and the normal mode solution, we can write the governing
equation (2) as

(λ̃(s) + µ̃(s))∇(∇ · u) + µ̃(s)∇2u = ρs2u. (5)

2.3. Rheology

We assume our soft solid behaves as a power law gel where
µ′(s) and µ′′(s) both scale with time as t−n [34,35]. Here, n is the
power law exponent and its value typically range from 0.5 ∼ 1.
The complex modulus for these materials can be approximated
as [36],

µ̃(s) = µ
(
1 + (stv)n

)
, (6)

where µ is the static or reference shear modulus and tv is
the relaxation timescale. Note that tv = 0 corresponds to the
purely elastic limit. This is sometimes referred to as the fractional
Kelvin–Voigt model, as the special case of n = 1 gives the classical
Kelvin–Voigt model.

2.4. Boundary conditions

The boundary between the elastic layer and container z = h
is assumed to be rigidly bonded and no displacement conditions
are enforced there,

ur = uθ = uz = 0. (7)

Continuity of stress is enforced at the free surface z = 0,

τrz = τθz = 0, (8a)

τzz = −ρguz + σ∇ · n, (8b)

here the former are the shear-free conditions and the latter
s the linearized Young–Laplace equation governing the jump in
ormal stress across an interface with surface tension. Here n

is the outward unit normal to the free surface and ∇ · n =

−( ∂
2

∂r2
+

1
r
∂
∂r +

1
r2

∂2

∂θ2
)uz is the linearized curvature there. The

ravitational term accounts for the excess weight due to the free
urface disturbance.
For now, we assume the layer is semi-infinite or extends to

nfinity in the xy plane. This simplification allows us to introduce
continuous wavenumber, which allows us to explicitly recover
rior results for some limiting cases. In a later section, we intro-
uce a lateral boundary at r = R, which ‘quantizes’ the allowable
olutions; the continuous wavenumber is now replaced by an
nteger-valued mode number and the solution depends upon the
eometry of the container. In our case, this is the aspect ratio of
he cylinder.
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3. Solution method

We construct a solution to the governing equation (5) by
introducing the scalar potentials (φ,ψ, ζ ) and expanding the
displacement using the toroidal–poloidal decomposition,

u = ∇φ + ∇ × (ψ êz) + ∇ × ∇ × (ζ êz). (9)

This particular decomposition was chosen such that the shape
modes φ, ζ and torsional modes ψ decouple [37]. Substituting
(9) into (5) yields set of uncoupled Helmholtz equations,

∇
2φ − k21φ = 0, ∇

2ψ − k22ψ = 0, ∇
2ζ − k22ζ = 0, (10)

where k1 = s
√

ρ

λ+2µ̃ , and k2 = s
√

ρ

µ̃
. The general solution of (10)

is given by

φ =

(
A cosh

(√
k21 + k2

)
z + B sinh

(√
k21 + k2

)
z
)
Jn(kr)einθ ,

(11a)

=

(
C cosh

(√
k22 + k2

)
z + D sinh

(√
k22 + k2

)
z
)
Jn(kr)einθ ,

(11b)

ζ =

(
E cosh

(√
k22 + k2

)
z + F sinh

(√
k22 + k2

)
z
)
Jn(kr)einθ ,

(11c)

where n is the polar mode number, k the radial wavenumber, and
Jn the Bessel function of order n.

3.1. Non-dimensionalization

Lengths are scaled by the thickness h and time by elastic wave
time scale

√
ρh2/µ. Applying these scalings to the governing

equations give rise to the following dimensionless quantities,

η = sh
√
ρ

µ
, κ = kh, Γ1 =

√
ν̃2η2

1 + (τη)n
+ κ2,

Γ2 =

√
η2

1 + (τη)n
+ κ2,

ν̃ =

√
1 − 2ν
2(1 − ν)

, α =
ρgh
µ
, Σ =

σ

µh
, τ = tv

√
µ

ρh2 ,

µ̃ = µ(1 + (τη)n).

(12)

Here η is the non-dimensional growth rate, κ the scaled
wavenumber, and ν̃ a compressibility factor that ranges between
ν̃ = 0 for an incompressible ν = 1/2 material and ν̃ = 1/

√
2 for a

fully compressible ν = 0 material. Three dimensionless numbers
appear; α the elastogravity number and Σ the elastocapillary
umber, which represent the competition between gravity and
apillarity with elasticity, respectively, and τ the solid Deborah
umber that is a measure of the relaxation time of the material
ith τ = 0 corresponding to the purely elastic limit.
Applying the scalings to (11) and substituting these into the

oundary conditions (7) & (8) delivers a set of linear equations
or the unknown coefficients A, B, C,D, E, F . Solutions to these
quations can be decomposed into torsional modes and shape
hange modes. Our interest is stability and therefore we focus on
he shape change modes. For reference, we simply state the result
or torsional modes and do not discuss further.
.2. Torsional modes

The equations for the coefficients C,D associated with the
otential ψ decouple,

coshΓ2 + D sinhΓ2 = 0, DΓ2 = 0, (13)

nd the solvability condition gives the following dispersion re-
ationship for the torsional modes, Γ2 coshΓ2 = 0. These admit
scillatory solutions η = ±iκ .

.3. Shape-change modes

The equations for the remaining coefficients A, B, E, F are
iven by,

coshΓ1 + B sinhΓ1 + EΓ2 sinhΓ2 + FΓ2 coshΓ2 = 0, (14a)

Γ1 sinhΓ1 + BΓ1 coshΓ1 + Eκ2 coshΓ2

+ Fκ2 sinhΓ2 = 0, (14b)

BΓ1 + E(Γ 2
2 + κ2) = 0, (14c)

Γ 2
2 + κ2)A + 2Fκ2Γ2 + BΓ1

(α −Σκ2)
1 + (τη)n

+ Eκ2 (α −Σκ2)
1 + (τη)n

= 0.

(14d)

he solvability condition for the linear system in (14) is

4Γ1Γ2κ
2(Γ 2

2 + κ2) − κ2 (
4Γ 2

1 Γ
2
2 + (Γ 2

2 + κ2)2
)
sinhΓ1 sinhΓ2

− Γ1Γ2 coshΓ1 coshΓ2(Γ 4
2 + 2Γ 2

2 κ
2
+ 5κ4)

Γ1(Γ 2
2 − κ2)

α −Σk2

1 + (τη)n
(Γ1Γ2 sinhΓ1 coshΓ2

− κ2 coshΓ1 sinhΓ2) = 0.

(15)

Note that the polar mode number n does not appear for the semi-
infinite layer case and the wavenumber κ is continuous. This is
sometimes referred to as the high wavenumber limit κ ≫ 1 that
corresponds to the case of an infinitely wide two-dimensional
Cartesian geometry. For reference, the solution for the Cartesian
system is given in Appendix B.

4. Results

Eq. (15) is a nonlinear equation that can be solved numerically
to yield the dispersion relationship η = η(κ), as it depends upon
the dimensionless numbers α,Σ, ν̃, τ , n. We report our results in
terms of the square of the growth rate η2 with the understanding
that η2 > 0 corresponds to instability and η2 < 0 corresponds to
stability (i.e. oscillations). Our focus is on instability. We focus our
presentation on the results for a purely elastic material τ = 0 and
later show the effect of viscoelasticity on the instability.

4.1. Dispersion relation

Fig. 2 plots dispersion curves, growth rate squared η2 against
wavenumber κ , as they depend upon the dimensionless numbers
α,Σ, ν̃. Each curve displays a range of unstable wavenumbers
κ ∈ [κmin, κs] that can destabilize the base-state with κs the
static limit. Each curve also exhibits a fastest growing mode
distinguished by a wavenumber κm and growth rate η2m. The
quantities κs, κm, η2m define the dispersion relationship.

An incompressible solid ν̃ = 0 without surface tension Σ = 0
is unstable, as shown in Fig. 2(a). This limiting case has been
previously reported by Mora et al. [28] using an energy analysis
showing that the system becomes unstable at α = 6.22 with as-
sociated wavenumber κ = 2.12. This illustrates the competition
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Fig. 2. Dispersion relation for a purely elastic material τ = 0 plotting the squared growth rate η2 against scaled wavenumber κ , as it depends upon (a) the
lastogravity number α (fixed ν̃ = Σ = 0), (b) the elastocapillary number Σ (fixed α = 10, ν̃ = 0), and (c) compressibility number ν̃ (fixed α = 10,Σ = 0).
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etween elastic energy and surface energy. We recover this static
tability limit, as could be expected. Increasing the elastogravity
umber α further destabilizes, increasing both the range of unsta-
le wavenumbers and the growth rate, and shifting κm to higher
avenumbers (cf. Fig. 2(a)). Surface tension tends to stabilize
he system, as shown in Fig. 2(b), and is most pronounced for
igh wavenumbers. This is best illustrated by the large decrease
n κs with increased Σ . In contrast, the onset wavenumber κmin
s relatively unaffected by Σ . Increasing the compressibility ν̃
imilarly tends to destabilize as shown in Fig. 2(c). In contrast to
estabilization due to increased α, increasing ν̃ shifts κm to lower
avenumbers and can also destabilize the long wavelength κ = 0
isturbances.
Most soft gels of practical interest are considered incompress-

ble [38]. Hence, we focus the remaining presentation on this limit
˜ = 0. Wavenumber selection is determined by the fastest grow-
ng mode and Fig. 3(a, b) plots η2m and κm, as they depend upon
he elastogravity α and elastocapillary Σ numbers, respectively.
hese plots provide a means to identify the dominant mode in
xperiment and the time scale on which to observe the instability.
s discussed earlier, increases in Σ tend stabilize by shifting κm
o lower wavenumbers and decreasing the growth rate η2m. The
pposite is true for increasing α which is destabilizing. Similarly,
ncreasing the compressibility ν̃ is also destabilizing and reduces
he threshold α for fixed Σ , as shown in Fig. 3(c).

.2. Finite-size effects and mode selection

In the previous Section 4.1 we focused on the high wavenum-
er limit κ ≫ 1 where κ was continuous and the dispersion
elationship was independent of container geometry. This geom-
try becomes important when the disturbance wavelength λ =

/κ is the same order as the container size, in which case κ can
o longer be considered continuous and takes on discrete values
etermined by the lateral boundary conditions at the container
dge. Accordingly, we introduce the no-penetration condition at
he side wall ur = 0. This gives the following relationship for κ ,

R̃Jn−1(κ R̃) − nJn(κ R̃) = 0, (16)

here R̃ = R/h is the container aspect ratio. The complementary
oundary condition is one with free-slip in the vertical direction
uz/∂r = 0 which generates the same condition as in (16). These
re the natural boundary conditions. For reference, the condition
or the torsional mode is Jn(κ R̃) = 0.

Note the presence of the polar mode number n in Eq. (16),
hich admits a discrete set of solutions κ that can be numerically
rdered such that a radial mode number m can be defined. Each
ode can then be defined by the mode number pair (m, n) with
rowth rate that depends upon the aspect ratio R̃. Note the polar
ode number n = 0, 1, . . . ,∞ and the radial mode number
= 1, 2, . . . ,∞. Fig. 4(a) plots η2 against the aspect ratio R̃ for

he dominant modes with α = 10,Σ = 0, ν̃ = 0 in that range
f R̃. For a given aspect ratio R̃, there is always a single dominant
ode with fastest growth rate except when two curves intersect
t which point there are two modes both of which have the
astest growth rate. In this region, hysteresis and nonlinear effects
an be expected to be important in mode number selection. For
ncreasing R̃, modes tend to become bunched together and the
ange of R̃ for which a particular mode is dominant becomes
maller. Eventually, for large R̃ ≫ 1 the effect of container
eometry is lost and κ can be assumed to be continuous. Mode
election is dictated by the fastest growing mode and Fig. 4(b)
hows a mode selection diagram as it depends upon R̃. For each
˜ , the dominant mode can be easily read off of Fig. 4(b). For small
˜ < 2, the m = 1 modes are selected and the range of R̃ for
given mode is relatively large, particularly for the (1,1) mode.
or large aspect ratios R̃ > 3, modes tend to switch order quite
requently indicating possible clustering of many modes close to
he maximum growth rate. In these regions, mode selection could
e influenced by small imperfections in experimental conditions,
.e. small variations in height or gel shear modulus, and may even
ecome statistical. The mode selections diagrams in Fig. 4(c, d)
hows that changing Σ and α does not change the ordering of
odes, but rather the range of R̃ over which they appear. For
xample, increasing Σ tends to expand the range of R̃ for a given
ode (cf. Fig. 4(c)), whereas increasing α shrinks the range R̃ (cf.
ig. 4(d)) and leads to clustering of modes within small ranges of

˜ .
A given mode (m, n) will achieve its maximum growth rate

nd become the dominant mode at a critical aspect ratio R∗, as
hown in Fig. 4(a). Naturally, R∗ can be expected to depend upon
he dimensionless numbers α,Σ, ν̃. Fig. 5(a, b) shows how R∗

hanges with α and Σ , respectively. Near the stability thresh-
ld α = 6.22, R∗ achieves its maximum value and decreases
onotonically with increasing α for a given mode. For a given
, any mode can be accessed by changing the aspect ratio R̃. This
s seen by traversing the graph in Fig. 5(a) vertically. However,
or a fixed R̃ it is not possible to access any mode by changing
he elastogravity number α, e.g. for R̃ = 3, the (1,1), (1,0)
modes are not accessible for any α, as seen by traversing Fig. 5(a)
horizontally. For large α, the modes tend to cluster in a small
ange of R̃ and here small changes in R̃ can lead to significant
changes in mode selection. Fig. 5(b) shows the elastocapillary
number Σ has the opposite effect on R∗, i.e. R∗ increases with
ncreasing Σ . Similarly, for fixed aspect ratio R̃ it may not be
possible to access any mode, e.g. for R̃ = 2, the (3,1) mode cannot
be observed for any Σ and some modes might be stable. This is
a signature of pattern formation with finite-size effects.
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Fig. 3. (a) Maximum growth rate squared η2m , (b) wavenumber at maximum growth κm , and (c) static stability limit κs , as they depend upon elastogravity α and
elastocapillary Σ numbers for an incompressible purely elastic material (ν̃ = 0, τ = 0). Dashed line in sub-figures (a, b) denotes the stability boundary. (c) Stability
diagram for a given compressibility ν̃ separates stable and unstable regions in the α −Σ parameter space.

Fig. 4. Mode selection for incompressible purely elastic material (ν̃ = 0, τ = 0). (a) Growth rate squared η2 against aspect ratio R̃ for modes (m, n) with α = 10,Σ = 0
shows a dominant mode for each R̃. (b, c, d) Dominant modes are mapped against aspect ratio R̃ for (b) α = 10,Σ = 0, (c) α = 10,Σ = 0.5, and (d) α = 20,Σ = 0.

Fig. 5. Critical aspect ratio R∗ against (a) elastogravity number α (Σ = 0) and (b) elastocapillary number Σ (α = 10) for an incompressible purely elastic material
(ν̃ = 0, τ = 0).
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Fig. 6. Viscoelastic effects illustrated in the (a) dispersion relationship plotting η2 against κ , as it depends upon the solid Deborah number τ for α = 20, σ = 0.5, ν̃ =

0, n = 0.5 and (b) critical aspect ratio R∗ again τ for α = 10,Σ = 0, ν̃ = 0, n = 0.5.
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4.3. Comparison with experiment

Our analysis presented in the previous section can be com-
pared with recent experimental observations of gravity-driven
instabilities of soft elastic layers in cylindrical containers [28,32].
Zheng et al. [32] have observed the (1,1) and (1,0) modes on soft
hydrogels with µ = 32 Pa in containers which correspond to
α = 10.26 and R̃ = 0.7. For ν̃ = 0 and Σ = 0, the model
predictions shown in Fig. 4(b) for α = 10 are close to those
experimental conditions and it is clearly seen that the (1,1) is
the dominant mode for this set of parameters. In addition, they
also observed the (1,0) mode for the same set of parameters
indicating a coexistence of dominant modes. Our predictions in
Fig. 4(b) show the (1,0) mode is the dominant mode for larger
R̃. This discrepancy between experiment and our model could be
caused by a number of factors including (i) nonlinear effects due
to large deformations [27,29], (ii) nonlinear saturation of a given
mode, or (iii) surface tension effects. Mora et al. [28] observed
similar coexistence phenomena including three different mode
patterns for fixed experimental conditions and attributed this
observation to uncontrollable inhomogeneities in both space and
time. Their experimental conditions were performed for higher
aspect ratio containers R̃ = 3.23 and we find agreement between
the experiment with α = 6.3 and our model predictions for the
(2,0) mode [28, Fig. 2d]. Other experiments with α = 6.74 [28,
Figs. 2e,2f,2g] produce modes with higher polar mode numbers
n = 3, 4, 6, respectively, for the same experimental conditions
and we note our model predicts the dominant modes, (2,3), (2,4),
and (1,6), for slightly larger aspect ratio R̃ > 3.23. In any case, it is
clear that mode number selection is sensitive in this system and
more comprehensive modeling and experiments could be done
to further investigate modal coexistence and possible hysteresis.

4.4. Viscoelastic effects

Fig. 6(a) shows how viscoelasticity affects the dispersion re-
lationship through the solid Deborah number τ . Here increasing
τ has a damping effect as κm is shifted to smaller wavenumber
and the growth rate η decreases. Note that the range of unstable
wavenumbers κs is not affected by viscoelasticity. This is similar
to viscous damping in fluids [39]. The effect of τ on the critical
aspect ratio R∗ for the dominant modes is shown in Fig. 6(b). Here
R∗ increases with τ for a fixed mode number and the ordering of
the modes remain unchanged.

5. Concluding remarks

We have derived a dispersion relationship for the gravity-
driven instability of a soft viscoelastic layer in a cylindrical con-
tainer, which depends upon gravity, surface tension, compress-
ibility, viscoelasticity, and geometry through the following non-
dimensional numbers: elastogravity number α, elastocapillary
numberΣ , compressibility ν̃, solid Deborah number τ , and aspect
atio R̃. Solutions to the governing elastodynamic equations are
defined by the mode number pair (m, n) with associated growth
rate η. For large aspect ratio R̃ ≫ 1, the modes are no longer
discrete but defined by a continuous wavenumber κ . Gravity
destabilizes the system to a range of unstable wavenumbers that
define static stability, whereas surface tension is a stabilizing
force that shrinks this range. Our dynamic analysis is distin-
guished from static analysis in that we predict the most unstable
wavenumber κm with maximum growth rate ηm. This distinction
is important as this mode is the one to be observed in experi-
ment. For finite-sized containers, we give model predictions for
mode selection (cf. Figs. 4, 5) and these predictions show good
greement with prior experimental results [28,32].
Again, gravity and surface tension plays a role in this mech-

nism where a particular mode is selected at increasingly lower
spect ratio with increasing gravitational acceleration, higher as-
ect ratios with increasing surface tension effects. We find that
ur model only predicts one of the observed modes as the dom-
nant one. This points to possible nonlinear effects playing a role
n determining the dominant modes. Viscoelasticity also plays a
ole in defining the critical aspect ratio for that particular mode.

Our model gives a simple, yet elegant, mode selection mech-
nism for Rayleigh–Taylor instability in soft viscoelastic solids
ith finite surface tension and compressibility. Future model
xtensions could include nonlinear effects and detailed analysis
f mode selection in regions which exhibit modal coexistence and
erhaps hysteresis. It is also possible to consider other configura-
ions for the Rayleigh–Taylor instability in solids, such as multiple
ayers of varying density (heavy over light). For the case of two
aterials, previous studies have noted that this introduces the
twood number At ≡

ρ1−ρ2
ρ1+ρ2

[24], which is a non-dimensional
density difference that varies between 0 to 1. Our model corre-
sponds to the limiting case At = 1. Smaller values of At tend to
damp the instability growth rate. The number of non-dimensional
parameters will increase significantly when considering multiple
layers with unique material properties.

Lastly, we note that it may be possible to develop a quick and
inexpensive method to estimate the surface tension of soft gels by
simply correlating experimental observations to our model treat-
ing surface tension σ as a fit parameter. This is something that is
critically needed for the field of elastocapillarity and is important
because the typical surface tension measurement methods for
liquids, e.g. Wilhelmy plate, du Nuoy ring, pendant drop, do
not work for gels. Other researchers have recently applied this
approach to mechanically-excited Faraday waves [40], oscillating
gel drops [41,42], and the characterization of the wetting ridge
geometry at the contact-line (i.e. Neumann’s triangle) [43–45],
to name a few. The advantage of the gravity-driven instability
approach over the previously mentioned techniques is that no
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sophisticated or expensive lab equipment is required, thus mak-
ing this a true table-top technique. Nonlinearity in soft gels can
undergo strain stiffening [46] which could affect the instability
shape and therefore this proposed technique. However, our anal-
ysis for small strains agrees reasonably well with experiment and
therefore the current model could be a useful predictor of the
surface tension of soft gels. Future experiments could be designed
to further explore this area.
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Appendix A. Cylindrical field components

The general solution for the potential functions (φ,ψ, ζ ) is
given by Eq. (11). The corresponding components of displacement
are given by

ur =[A cosh az + B sinh az + b (E sinh bz + F cosh bz)](
kJn−1(kr) −

n
r
Jn(kr)

)
einθ

+
in
r

[C cosh bz + D sinh bz]Jn(kr)einθ (A.1a)

θ =
in
r

[A cosh az + B sinh az + b(E cosh bz + F sinh bz)]Jn(kr)einθ

(A.1b)

− [C cosh bz + D sinh bz]
(
kJn−1(kr) −

n
r
Jn(kr)

)
einθ (A.1c)

uz =[b (A cosh az + B sinh az)+ k2 (E cosh bz + F sinh bz)]

× Jn(kr)einθ , (A.1d)

where a =

√
k21 + k2, b =

√
k22 + k2. Similarly, the components of

stress are given by

τzz =2µ̃

[
b2 + k2

2
(A cosh az + B sinh az)

+ bk2(E cosh bz + F cosh bz)

]
Jn(kr)einθ (A.2a)

τrz =µ̃

[ (
2b(A sinh az + B cosh az) + (b2 + k2)

× (E cosh bz + F cosh bz)
)

(
kJn−1(kr) −

n
r
Jn(kr)

)
+

inb
r

(C sinh bz + D cosh bz)

]
einθ

(A.2b)

θz =µ̃

[
in
r

{2a(A sinh az + B cosh az) + (b2 + k2)

× (E cosh bz + F sinh bz)}
Jn(kr) − b(C sinh bz + D cosh bz)
(
kJn−1(kr) −

n
r
Jn(kr)

)]
einθ .

(A.2c)

Appendix B. Dispersion relation for the Cartesian system

The analysis presented here for the purely elastic τ = 0
case can be readily adapted to a 2D Cartesian system with cor-
responding displacement field u(x, y) = ux(x, y)êx + uy(x, y)êy
which obeys the governing equation (5). Here we take following
decomposition

u(x, y) = ∇Φ + ∇ × Ψ , (B.1)

which admits general solutions for the potential Φ,Ψ ,

Φ = (A1 cosh ay + A2 sinh ay)eikx, (B.2a)

Ψ = (B1 sinh by + B2 cosh by)eikx, (B.2b)

where k is the wavenumber with the symbols having been de-
fined previously. Applying (B.2) to the equivalent displacement
(7) and stress (8) boundary conditions at y = 0 and y = h,
respectively, we get the following linear systems of equations for
the unknowns A1, A2, B1, B2,

iκ(A1 coshΓ1 + A2 sinhΓ1) + Γ2(B1 coshΓ2 + B2 sinhΓ2) = 0,

(B.3a)
Γ1(A1 sinhΓ1 + A2 coshΓ1) − iκ(B1 sinhΓ2 + B2 coshΓ2) = 0,

(B.3b)

2iκA2 + (Γ 2
2 + κ2)B2 = 0. (B.3c)

(Γ 2
2 + κ2)A1 − 2iκΓ2B1 +

(α −Σκ2)
1 + (τη)n

(Γ1A2 − iκB2) = 0. (B.3d)

he solvability condition for this system of equations gives,

4Γ1Γ2κ
2(Γ 2

2 + κ2) +
(α −Σκ2)
1 + (τη)n

Γ 2
1 Γ2(Γ 2

2 − κ2) sinhΓ1 coshΓ2

− Γ1Γ2(Γ 4
2 + 2Γ 2

2 κ
2
+ 5κ2) coshΓ1 coshΓ1

−
(α −Σκ2)
1 + (τη)n

Γ1κ
2(Γ 2

2 − κ2) coshΓ1 sinhΓ2

+ κ2(4Γ 2
1 Γ

2
2 + (Γ 2

2 + κ2)2 sinhΓ1 sinhΓ2) = 0

(B.4)

from which the dispersion relationship can be computed.
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