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Recent experiments have observed the emergence
of standing waves at the free surface of elastic
bodies attached to a rigid oscillating substrate and
subjected to critical values of forcing frequency and
amplitude. This phenomenon, known as Faraday
instability, is now well understood for viscous fluids
but surprisingly eluded any theoretical explanation
for soft solids. Here, we characterize Faraday waves
in soft incompressible slabs using the Floquet theory
to study the onset of harmonic and subharmonic
resonance eigenmodes. We consider a ground state
corresponding to a finite homogeneous deformation
of the elastic slab. We transform the incremental
boundary value problem into an algebraic eigenvalue
problem characterized by the three dimensionless
parameters, that characterize the interplay of gravity,
capillary and elastic waves. Remarkably, we found
that Faraday instability in soft solids is characterized
by a harmonic resonance in the physical range of
the material parameters. This seminal result is in
contrast to the subharmonic resonance that is known
to characterize viscous fluids, and opens the path
for using Faraday waves for a precise and robust
experimental method that is able to distinguish
solid-like from fluid-like responses of soft matter at
different scales.

1. Introduction
In 1831, Faraday first observed standing capillary waves
at the free surface of several fluids on a thin plate
subjected to a periodic vertical oscillation [1]. Notably,
he remarked that the characteristic frequency of the
emerging patterns was half that of the driving frequency
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of the imposed vibration. This seminal observation of subharmonic resonance later inspired Lord
Rayleigh in 1883 to propose a theoretical explanation based on a parametric oscillator governed
by the Mathieu equation [2]. The analytic solution of the linear stability analysis for an ideal fluid
was given after several decades by Benjamin and Ursell, showing a marginal stability diagram
alternating loci of subharmonic and harmonic (i.e. isochronous) resonance [3].

The later analysis for a viscous fluid has shown that the dominance of a resonance mode
over the other is mainly controlled by the ratio between the basin height and the typical length-
scale of the viscous boundary at the free surface [4,5]. Subharmonic resonance dominates in
the nearly inviscid case, while bicritical points where both modes emerge simultaneously are
encountered in shallow basins since the viscous effects are enhanced by the presence of the bottom
rigid substrate [6]. The emergence of Faraday waves having a critical wavenumber is observed
when the acceleration of the vertical oscillation reaches a critical threshold. Cubic terms are the
weakest nonlinearities allowed to resonate with subharmonic linear eigenmodes in the associated
amplitude equations, thus controlling the morphological transition to a large variety of ordered
patterns [7]. Similar to other supercritical fluid instabilities [8], in the subharmonic regime, the
selection and the weakly nonlinear development of such patterns is mainly driven by the shape of
the edge constraints of the basin [9,10]. In the case where subharmonic and harmonic eigenmodes
compete near the instability threshold, the patterns can arrange to a superlattice, localize in space
and display chaotic motion on a slow timescale [11]. In experimental conditions with flexible
boundaries, Faraday waves enable a localized wave particle interaction reminiscent of quantum
mechanics, resulting into complex dynamics of self-propagation [12,13].

In this work, we aim to characterize the interaction of elastic, gravity and capillary waves
for the onset of Faraday instability in soft solids. The elastic behaviour of the medium has been
recently found to have a dramatic regularizing effect on some well-known dynamic phenomena
in fluid mechanics, such as Rayleigh-Plateau [14,15] or Rayleigh-Taylor instabilities [16–18].
Despite the recent experimental interest in this subject, very little is known about the elastic
effects on the propagation of Faraday waves. For non-Newtonian solutions of polymers, it has
been observed that the instability threshold increases with respect to the Newtonian case as the
driving frequency increases, suggesting that viscosity of the solution conversely decreases [19].
For linear viscoelastic fluids, the resonant mode becomes harmonic in the range where elastic
forces are of the same order as the surface tension at the free boundary [20,21]. Moreover, the
corresponding instability diagram is strongly affected by variations of the liquid relaxation time
[22]. For soft solids, recent experiments reported the dispersion relations of standing waves in
soft agarose gels [23], paving the way for a positive use of Faraday instability to measure the
rheological properties of complex matter at scales where capillary-gravity and Rayleigh waves
interact.

This work is organized as follows. In §2, we show some recent experimental results
highlighting the emergence of standing waves in soft slabs subjected to a vertical oscillation.
In §3, we define the nonlinear elastic problem and identify its homogeneous solution as the
ground state. In §4, we derive the incremental boundary value problem that is solved using the
Floquet theory, considering both harmonic and subharmonic resonance modes. In §5a, we define
the dimensionless parameters governing the problem and in §5b, we collect both the numerical
and the analytical results of the linear stability analysis. Finally, we collect in §5c the results of the
marginal stability analysis with respect to the governing dimensionless parameters, adding with
few concluding remarks in §6.

2. Experimental investigation of Faraday waves in soft materials
We have observed Faraday waves on agarose gels using the experimental set-up shown in
figure 1a. Here, a square plexiglass container with edge length 9 cm is affixed to a mechanical
shaker which vertically drives the container over a range of frequencies fd = 30–90 Hz to give the
images presented in figure 1b. The amplified signal of a function generator is used to drive the
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Figure 1. Faradaywaves in soft gels: (a) schematic of experimental set-up, (b) typicalwave pattern for a gelwith shearmodulus
μ = 19 Pa in a square container, as it depends upon driving frequency f , and (c) typical instability tongue plotting critical
acceleration a against frequency f for a given mode in a circular container.

shaker, and the container acceleration is measured using an accelerometer mounted to the tank
support. The soft materials used in these experiments are agarose gels made by dissolving agarose
powder (Sigma Aldrich Type VI-A) in warm deionized water. The liquid is then allowed to gel
in a container having a height h= 24 mm. The rheology of the gels are measured using an Anton
Paar MCR-302 rheometer which admits a complex modulus G′ + iG′′. The storage modulus is
typically many orders of magnitude larger than the loss modulus G′ �G′′ implying that these
gels behave as an elastic solid with shear modulus in the range μ = 1 − 300 Pa. Because our gels
are soft, they are also subject to surface tension effects and the observed properties of the Faraday
waves depend upon the resistance to motion caused by both shear modulus μ and surface tension
γ with the relative importance quantified by the elastocapillary length � = γ /μ. An advantage
of exploring these soft agarose hydrogels is that these materials are often used in cell-printing
applications for tissue engineering because they are capable of sustaining biological function.
Studying Faraday wave formation in these gels may facilitate methods for patterning cells in a
hydrogel matrix.

Above a critical acceleration threshold, waves appear on the gel surface as shown in figure 1b,
which tend to exhibit square-wave symmetry and align with the container geometry. For low
driving frequency, the surface wave exhibits a discrete mode number and finite bandwidth over
which that mode can be excited [7,9]. The bandwidth is illustrated in the typical instability tongue
shown in figure 1c. Here, the resonance frequency ≈11 Hz coincides with the minimum value of
the threshold acceleration. In general, for high driving frequency, the instability tongues become
clustered closer together, there is no longer a finite bandwidth, the spatial wavenumber k is
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Figure 2. Sketch of the reference configuration of the model: L is the reference length of the elastic slab and H is its reference
height. It is clamped to a rigid substrate and it is subjected to its own weight and to a vertical sinusoidal oscillation with
amplitude a and frequencyω. (Online version in colour.)

continuous, and the container geometry does not affect the wave pattern, as shown by [24] using
irregular container geometries. The wavenumber k increases with the driving frequency and for
accelerations much above threshold the waves lose their symmetry and become chaotic in nature.
In our theoretical development, we assume the wavenumber is continuous and this corresponds
to the high-frequency limit. We have also measured the critical acceleration for Faraday wave
onset using essentially the same set-up shown in figure 1, except using a circular tank. The HeNe
laser beam (632.8 nm) shown in the figure is directed at the gel surface, and the reflected beam is
captured by a position sensitive detector (PSD). The PSD output gives the location of the centroid
of the light striking the detector which, in these experiments, is essentially the location of the
laser spot on the detector. The vertically oscillating gel surface results in an oscillating signal from
the PSD whose frequency is obtained via an FFT to yield the surface wave frequency fo. In our
experiments, we observe that fo = 0.5fd, a subharmonic response which is a signature of Faraday
waves. We have obtained Faraday wave tongues by fixing fd, performing an amplitude sweep and
locating the threshold acceleration ac. By repeating this for a range of fd, Faraday wave tongues
are traced out in a − fd space. An example of such a tongue is presented in figure 1c for the case
of an agarose gel having an elasticity of μ = 3.5 Pa.

3. The nonlinear elastic problem and its ground state
Let E

3 be the three-dimensional Euclidean space, we consider a soft hyperelastic body with
a reference domain Ω0 ∈E

3 in its undeformed state. The body is infinitely long along the Z
direction, so that a plane strain assumption can be made, hence

Ω0 = {X = [X,Y,Z] ∈E
3 : X ∈ (0,L),Y ∈ (0,H),Z ∈R},

where H is the reference height, L is the reference length and X is the material position vector. The
body is attached to a rigid substrate at Y= 0 and free to slide at the lateral walls X= 0, X= L, being
subjected to its own weight and to a vertical sinusoidal oscillation of amplitude a and frequency
ω, as sketched in figure 2. We consider in the following a Cartesian coordinate system that is fixed
with the rigid substrate, with unit material vectors Ei, with i=X,Y,Z,

The actual position vector is given by x= χ (X, t), where χ : Ω0 → Ω ∈E
3 is a one-to-one

mapping at time t, so that the kinematics of motion is described by the geometrical deformation
tensor F= Grad x= ∂x/∂X. We also assume that the body is made of an incompressible neo–
Hookean material with strain energy density given by

W(F) = μ

2
(tr C − 2) − p (det F − 1) , (3.1)

where μ is the shear modulus, C= FTF is the right Cauchy–Green tensor and p is the Lagrangian
multiplier enforcing the internal constraint of incompressibility. Using the constitutive
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assumption in equation (3.1), the nominal stress tensor S and the Cauchy stress tensors T are given,
respectively, by [25]

S= ∂W(F)
∂F

− pF−1 = μFT − pF−1, T= FS. (3.2)

Thus, the balance of linear momentum for the elastic body reads

Div S + ρG(t)Ey = ρ
∂2u
∂t2

in Ω0, (3.3)

where Div is the material divergence operator, ρ is the material density, u(X) = χ (X) − X is the
displacement vector, G(t) = g − a cos(ωt) is the time-dependent gravitational acceleration in the
moving framework.

The nonlinear elastic problem is complemented by the following boundary conditions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u · EX = (λx − 1)X, u · EY = 0 for Y= 0
STEY = γKF−TEY for Y=H
EY · STEX = 0 for X= 0,X= L
u · EX = 0 for X= 0
u · EX = (λx − 1)L for X= L,

(3.4)

where λx is the applied horizontal stretch at the side boundaries X= 0 and X= L, γ is the surface
tension at the free boundary Y=H and K is the oriented curvature of the free surface due to
the Young–Laplace law [26]. The homogeneous deformation field u0 solving the boundary value
problem equations (3.3)–(3.4) is given by

u0 = χ0(X) − X =

⎧⎪⎨
⎪⎩
ux = (λx − 1)X

uy =
(

1
λx

− 1
)
Y

. (3.5)

This basic solution maps the ground state with the geometrical deformation tensor F0 given by

F0 =
⎡
⎣λx 0

0
1
λx

⎤
⎦ . (3.6)

From equation (3.3) and the second boundary condition in equation (3.4), with K0 = 0 due to
the imposed deformation field F0 in equation (3.6), the expression of the Lagrange multiplier p0 in
the ground state is given by

p0 (X,Y, t) = μ

λ2
x

+ ρ

λx

(
a cos(ωt) + g

)
(Y − H) , (3.7)

so that the body is subjected to a hydrostatic pressure linearly dependent on Y and periodically
oscillating over the time t.

4. Incremental equations
In order to investigate the stability of such a homogeneous deformation, the theory of incremental
deformations superposed on finite strains will be used [25]. Let us superpose an infinitesimal
displacement δu over the finite strain mapping the homogeneous ground state x= χ0(X), as
follows:

x̄= x + δu= χ0(X) + χ1(x), (4.1)

where x̄ is the perturbed position vector and χ1(x) : Ω → Ω ′ is the incremental mapping that takes
the finitely deformed position vector x into the perturbed configuration Ω ′. Let Γ = grad χ1(x) =
∂χ1(x)/∂x be the spatial displacement gradient associated with the incremental deformation.
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Hence, we can define the perturbed deformation gradient

F̄= F0 + δF= F0 + Γ F0, (4.2)

where δF is the increment of the basic deformation gradient F. The perturbed nominal stress tensor
is given by

S̄= S0 + δS0, (4.3)

where S0 = S(F0, p0) is the stress tensor in the ground state given in equation (3.2) and δS0 is its
increment. In particular, we can compute the push-forward of the increment δS0, such as

δS= F0 δS0 =A0 : Γ + p0 δF0 − δp I,

where, using [27],
(A0)jikl = μBjkδil,

is the fourth-order tensor of the instantaneous elastic moduli, B= F0FT0 the left Cauchy–Green
tensor, δil is the Kronecker-delta, the operator (:) denotes the double contraction of the indices, i.e.
(A0 : Γ )ij = (A0)ijhk Γkh, I is the identity tensor and δp is the increment of the Lagrangian multiplier.

With respect with the finitely deformed coordinates x= λxX and y=Y/λx, the incremental
equilibrium equations and the incremental incompressibility constraint read, respectively,

div δS= ρ
∂2δu
∂t2

in Ω (4.4)

and
tr Γ = 0 in Ω . (4.5)

Using K0 = 0, the incremental boundary conditions read

δu= 0 for y= 0, (4.6)

δST EY = γ δKEY for y=H/λx (4.7)

Ey · δSTEx = 0 for x= 0, x= λxL (4.8)

δu · Ex = 0 for x= 0, , x= λxL, (4.9)

where the expression of the incremental curvature can be obtained by a standard variational
argument following [28] and it is given by

δK= 1

λ3
x

∂2uy
∂x2 .

Since the effective gravitational acceleration is a periodic function, the solutions to the boundary
value problem given by equations (4.4)–(4.7) are assumed to be of the Floquet form. By imposing
the incompressibility constraint, i.e. tr Γ = 0, we can introduce a stream function ψ(x, y, t) [29,30]
such that the incremental displacement δu is given by

δu= ∂ψ(x, y, t)
∂y

ex − ∂ψ(x, y, t)
∂x

ey. (4.10)

In particular, we make the following ansatz of the Floquet type:

ψ(x, y, t) = eηt(eikx + e−ikx)
+∞∑

n=−∞
ψ1,n(y) einωt, (4.11)

where k is the horizontal spatial wavenumber, ω is the frequency of the external oscillation
imposed and η is the Floquet exponent equal to

η = s + iαω, (4.12)

with s= s(k) and α = α(k) being real and having finite values. Such a functional dependence
along the x-direction suitably describes both the infinite geometry, where k is assumed to be



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200129

...........................................................

a continuous variable, and a finite length L, so that k= 2πm/(λxL), with any integer mode m.
The mathematical formulation of ψ implies that we are considering a linear superposition of
waves with different amplitudes along the y-directions, multiple frequencies of ω and the same
wavelength along the x-direction.

Since we are interested in the onset of Faraday instability in this system model, we set s= 0
and we consider both the subharmonic and the harmonic resonance modes in the following.

(a) Subharmonic resonance
In the subharmonic case (SH), i.e. setting α = 1/2, the stream function and the incremental
Lagrange multiplier read

ψ(x, y, t) = eiωt/2(eikx + e−ikx)
+∞∑

n=−∞
Ψ1,n(y) einωt (4.13)

and

δp(x, y, t) = eiωt/2(eikx + e−ikx)
+∞∑

n=−∞
pSH

1,n(y)einωt, (4.14)

where the eigenmodes satisfy the reality conditions

Ψ1,−n = Ψ ∗
1,n−1; pSH

1,−n =
(
pSH

1,n−1

)∗
SUBHARMONIC (SH), (4.15)

and the superscript ∗ denotes the complex conjugate. The unknowns of the incremental problem
are pSH

1,n and the amplitude of the n-wave, i.e. Ψ1,n. From the first component of equation (4.4), we

obtain the expression for pSH
1,n , such as

pSH
1,n(y) = − i

4k3λ2
x

(
4ak2λ2

xρΨ1,n−1(y) + 4ak2λ2
xρΨ1,n+1(y) + 4gk2λ2

xρΨ1,n(y)

− 4k2λ4
xμ(Ψ1,n(y))′ + 4λ2

xn
2ρω2(Ψ1,n(y))′ + 4λ2

xnρω2(Ψ1,n(y))′

+ λ2
xρω2(Ψ1,n(y))′ + 4μ(Ψ1,n(y))′′′

)
. (4.16)

Then, by substituting equation (4.16) into the second component of equation (4.4), we obtain a
fourth-order differential equation given by

ASH (Ψ1,n)′′′′(y) + BSH (Ψ1,n)′′(y) + CSH Ψ1,n(y) = 0, (4.17)

where

ASH = μ

k3λ2
x

; BSH = ρ(2nω + ω)2

4k3 −
(
λ4
x + 1

)
μ

kλ2
x

; CSH =
(
4k2λ2

xμ − ρ(2nω + ω)2)
4k

.

The general solutions of equation (4.17) is

Ψ1,n(y) = S1,n cosh(Qny) + S2,n sinh(Qny) + S3,n cosh(ky) + S4,n sinh(ky), (4.18)

where

Qn = λx

H

√
k2H2λ2

x − (1 + 2n)2

4
ω2H2

μ/ρ
. (4.19)

To find the expressions for the constant Si,n with i= 1, 2, 3, 4, we have to impose equations (4.6)
and (4.7). Accordingly, Si,n with i= 1, 2, 3 can be rewritten as a function of S4,n, such as

S1,n = −S3,n; S2,n = − k S4,n

Qn
and S3,n = S4,nGn, (4.20)

where

Gn = −
k
(
k2 sinh

(
HQn
λx

)
− 2kQn sinh

(
Hk
λx

)
+ Q2

n sinh
(
HQn
λx

))
k2Qn

(
cosh

(
HQn
λx

)
− 2 cosh

(
Hk
λx

))
+ Q3

n cosh
(
HQn
λx

) . (4.21)
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Finally, from the second component of equation (4.7), we get the following recursion relation:

ζnS4,n = a (τnS4,n−1 + σnS4,n+1), (4.22)

where the complete form of ζn, τn, σn are reported in appendix A.
Following the linear analysis for viscous fluids [6], we can rewrite the recursion relation

equation (4.22) into a matrix form, such as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

. . . ζ−2 0 0 0 . . .

. . . 0 ζ−1 0 0 . . .

. . . 0 0 ζ0 0 . . .

. . . 0 0 0 ζ1 . . .

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
S4,−2
S4,−1
S4,0
S4,1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

. . . 0 σ−1 0 0 . . .

. . . τ−2 0 σ0 0 . . .

. . . 0 τ−1 0 σ1 . . .

. . . 0 0 τ0 0 . . .

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
S4,−2
S4,−1
S4,0
S4,1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.23)

or in a compact way as
BS4,n = a CS4,n. (4.24)

An ordinary eigenvalue problem can be easily constructed from equation (4.24) by inverting B,
such as

MSHS4,n = 1
a

S4,n, (4.25)

where MSH =B−1C. Thus, the subharmonic resonance condition imposes that an eigenvalue of
MSH be equal the inverse of the forcing amplitude a.

(b) Harmonic resonance
In the harmonic case (H), i.e. setting α = 0, the stream function and the incremental Lagrange
multiplier read

ψ(x, y, t) = (eikx + e−ikx)
+∞∑

n=−∞
Φ1,n(y)einωt (4.26)

and

δp(x, y, t) = (eikx + e−ikx)
+∞∑

n=−∞
pH1,n(y)einωt, (4.27)

where the eigenmodes satisfy the harmonic reality conditions

Φ1,−n = Φ∗
1,n pH1,−n =

(
pH1,n

)∗
HARMONIC (H). (4.28)

We get a vectorial equation depending on n, which has to be solved at each n with respect
to the unknowns pH1,n and Φ1,n. The expression of pH1,n is obtained from the first component of
equation (4.4), i.e.

pH1,n(y) = − i

k3λ2
x

(
ak2λ2

xρΦ1,n−1(y) + ak2λ2
xρΦ1,n+1(y) + gk2λ2

xρΦ1,n(y)

− k2λ4
xμ(Φ1,n(y))′ + λ2

xn
2ρω2(Φ1,n(y))′ + μ(Φ1,n(y))′′′

)
. (4.29)

By substituting equation (4.29) into the second component of equation (4.4), we obtain a fourth-
order differential equation

AH (Φ1,n)′′′′(y) + BH (Φ1,n)′′(y) + CH Φ1,n(y) = 0, (4.30)

where

AH = μ

k3λ2
x

; BH = n2ρω2

k3 − λ2
xμ

k
− μ

kλ2
x

; CH = kλ2
xμ − n2ρω2

k
.
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The general integral of equation (4.30) is given by

Φ1,n(y) = A1,n cosh(Pny) + A2,n sinh(Pny) + A3,n cosh(ky) + A4,n sinh(ky), (4.31)

where

Pn = λx

H

√
k2H2λ2

x − n2 ω2H2

μ/ρ
. (4.32)

If λx = 1, in equation (4.32), the case n= 0 simplifies as

P0 = k. (4.33)

This means that, for λx = 1 and n= 0, k is a root of double multiplicity equal of the characteristic
polynomial associated with the differential equation equation (4.30). Hence, for λx = 1, the general
solution has to be correct and the right one is given by

Φ1,n

∣∣∣
λx=1

(y) =
{

A1,0 cosh(ky) + A2,0 sinh(ky) + A3,0 y cosh(ky) + A4,0 y sinh(ky) if n= 0

A1,n cosh(Pny) + A2,n sinh(Pny) + A3,n cosh(ky) + A4,n sinh(ky) if n 	= 0
. (4.34)

By imposing the boundary conditions equation (4.6) and the first component of equation (4.7),
for λx 	= 1, we can express Ai,n with i= 1, 2, 3 as a function of A4,n, such as

A1,n = −A3,n; A2,n = − kA4,n

Pn
; A3,n = A4,nJn; (4.35)

where

Jn = −
k
(
k2 sinh

(
HPn
λx

)
− 2kPn sinh

(
Hk
λx

)
+ P2

n sinh
(
HPn
λx

))
k2Pn

(
cosh

(
HPn
λx

)
− 2 cosh

(
Hk
λx

))
+ P3

n cosh
(
HPn
λx

) . (4.36)

In the other case, such as λx = 1, the constants Ai,n with i= 1, 2, 3 are given by

A1,n =
{

0 if n= 0

−A3,n if n 	= 0
; A2,n =

{
− A3,0

P0
if n= 0

− kA4,n
Pn

if n 	= 0
and A3,n =

{
J0A4,0 if n= 0

JnA4,n if n 	= 0
;

where

Jn
∣∣∣
λx=1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k(−2HkP0 sinh(Hk) − 2P0 cosh(Hk))

−k2 sinh(HP0) + 2Hk2P0 cosh(Hk) + 2kP0 sinh(Hk) − P2
0 sinh(HP0)

if n= 0

k
(
k2 sinh(HPn) − 2kPn sinh(Hk) + P2

n sinh(HPn)
)

2k2Pn cosh(Hk) − k2Pn cosh(HPn) + P3
n(− cosh(HPn))

if n 	= 0

. (4.37)

Finally, by imposing the second component of equation (4.7), we obtain the recursion relation
in the harmonic case, such as

ZnA4,n = a (TnA4,n−1 + ΣnA4,n+1), (4.38)

where the complete expressions of Zn, Tn, Σn are reported in appendix B. We can rewrite
equation (4.38) in a compact form, such as

DA4,n = a EA4,n, (4.39)
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where ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

...
. . . Z−2 0 0 0 0 . . .

. . . 0 Z−1 0 0 0 . . .

. . . 0 0 Z0 0 0 . . .

. . . 0 0 0 Z1 0 . . .

. . . 0 0 0 0 Z2 . . .

...
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
A4,−2
A4,−1
A4,0
A4,1
A4,2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

...
. . . 0 Σ−1 0 0 0 . . .

. . . T−2 0 Σ0 0 0 . . .

. . . 0 T−1 0 Σ−1 0 . . .

. . . 0 0 T0 0 Σ2 . . .

. . . 0 0 0 T1 0 . . .

...
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
A4,−2
A4,−1
A4,0
A4,1
A4,2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.40)

The ordinary eigenvalue problem can be constructed from equation (4.39) by inverting D, to get

MHA4,n = 1
a

A4,n, (4.41)

where MH =D−1E . Thus, the harmonic resonance condition imposes that an eigenvalue of MH

be equal the inverse of the forcing amplitude a.
The results of the marginal stability analysis are collected in the next section.

5. Marginal stability analysis
In this section, we first identify the dimensionless parameters governing the nonlinear elastic
problem. We later present a numerical procedure to solve robustly the eigenvalue problems
in equations (4.25) and (4.41) determining the influence of such parameters on the onset of
Faraday instability. We finally perform some asymptotic limits to retrieve some known results
for Rayleigh–Taylor instability.

(a) Dimensionless parameters
Before solving the eigenvalue problems, we have rewritten the nonlinear elastic problem in a
dimensionless form. The order parameter of the Faraday instability is the dimensionless quantity
ã= a/g, determining the relative intensity of the imposed gravitational acceleration. Moreover,
we set the characteristic length of the system to be the height H of the elastic slab, so that k̃= kH
is taken to be the dimensionless wavenumber of the standing wave. The onset of the instability is
characterized by the emergence of a marginally unstable wave with critical mode (ωH/

√
μ/ρ)cr

when the forcing amplitude reaches a critical threshold ãcr. These critical values are controlled by
the following dimensionless parameters:

αω = ω

ωcar
= ωH√

μ/ρ
; αg = ρgH

μ
and αγ = γ

μH
. (5.1)

The parameter αω represents the ratio between the forcing frequency ω and the characteristic
frequency ωcar = √

μ/ρ/H of shear waves inside the elastic material. It can be rewritten as
αω = k̃(c/cs), where c= ω/k is the velocity of the standing wave and cs = √

μ/ρ is the velocity
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of the shear elastic wave. Since αω/k̃ is the ratio of the velocities of the standing and shear waves,
we expect a physical range of admissible solutions in the subsonic range, i.e. αω/k̃< 1.

The parameter αg is the ratio between the characteristic value of the gravitational potential
energy ρgH and of the elastic energy μ. Thus, if αg � 1 gravity waves are negligible with respect
to shear waves, while if αg =O(1) we expect the gravitation effects to be of the same order as the
elastic ones.

Finally, αγ is the ratio between the capillary length � = γ /μ and the characteristic height of the
slab H. Thus, if αγ � 1 capillary waves are negligible with respect to shear waves, while if αγ =
O(1) we expect the surface tension effects to be of the same order as the elastic ones. Accordingly,
αg/αγ represents the ratio between gravity and capillarity.

In the next section, we discuss the results of the linear stability analysis varying the physical
parameters defined in equation (5.1) and the pre-stretch parameter λx.

(b) Marginal stability thresholds
In equations (4.25) and (4.41), the two matrices Mi with i= SH, H possess infinite entrances.
Following [6], we propose a robust numerical procedure for solving these eigenvalue problems
considering truncated matrices involving only the first resonant mode, i.e a 2 × 2 matrix for the
SH mode and a 3 × 3 one for the H mode.

In particular, we implemented an iterative algorithm using the software Mathematica
(Wolfram Inc., v. 12), varying the physical parameters αg, αγ , αω defined in equation (5.1), the pre-
stretch λx, and the wavenumber k̃. We compute numerically using Arnoldi’s method the largest
eigenvalue of MSH in equation (4.25) and of MH in equation (4.41), and we obtain the smallest
value of the marginal stability threshold ã(k̃). The critical value k̃cr is selected as the wavenumber
corresponding to the smallest value ãcr = min(ã(k̃)) computed for all subsonic modes k̃ at fixed
physical parameters.

The subsonic regime can be explicitly identified in the limit αg � 1 and αγ � 1, i.e. when
gravity and capillary effects become negligible with respect to elastic ones. By simple Taylor
expansion of the eigenvalues of the truncated matrices Mi with i= SH, H we find that the
subsonic range is αω ∈ [0, (π/2λx)) for the H resonant mode, and αω ∈ [0, (π/λx)) for the SH
resonant mode.

In figure 3a,b, we plot the inverse of the largest eigenvalue ã versus the wavenumber k̃ setting
λx = 1, αγ = 0 and αg = 0.1 at different values of αω in the subsonic regime for subharmonic
and harmonic resonance modes, respectively. We note that the dispersion curves are smooth
and admit a minimum value representing the marginal stability threshold ãcr at the critical
wavenumber k̃cr. In figure 3c, fixing λx = 1, we depict the harmonic and subharmonic thresholds
when αg = 0.1 and αγ = 0 to illustrate that harmonic resonance occurs before the subharmonic
one. By these considerations, at fixed values of λx, αg and αγ , the eigenvalue problem has to be
solved until the marginal stability threshold ãcr goes to zero.

We found that the first marginally stable eigenmode is the harmonic one for all physical
ranges of the dimensionless parameters. This is completely different with respect to what happens
in viscous fluids, see [6], where the subharmonic resonance dominates. This is illustrated in
figure 4a,b, for λx = 1, αγ = 0 and αg = 0.001, showing the critical values ãcr and k̃cr versus the
subsonic range of αω.

We further note that both the harmonic and the subharmonic curves collapse on the same one
in the limit αω � 1, suggesting the onset of a different kind of elastic bifurcation, i.e. an elastic
Rayleigh-Taylor instability [18,31].

In figure 4c,d, we plot the marginal stability threshold ãcr and the corresponding critical
wavenumber k̃cr versus αω in the critical H case varying αg at fixed λx = 1 and αγ = 0. For graphic
clarity, in figure 4c, we vary αg ∈ [1, 5] step 0.5 and we note that as we increase αg, as the critical
threshold ãcr decreased at fixed αω, and the physically admissible range of αω decreases. As
depicted in figure 4d, the critical wavenumber does not depend on αg even if the range of αω

does, so that all the curves collapse on the same one.
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Figure 3. Marginal stability curves showing the order parameter ã versus the horizontal wavenumber k̃ where
we fix λx = 1, αγ = 0 and αg = 0.1. (a) α = 1/2 and αω = {0.5, 1, 2, 2.5, 3, 3.1,π}; (b) α = 0 and αω =
{0.3, 0.6, 0.9, 1.3, 1.5, 1.56,π/2}. (c) Critical threshold ãcr versus αω fixing λx = 1, αγ = 0 and αg = 0.1: the blue
line is the subharmonic case α = 1/2 (SH), while the yellow one is the harmonic resonant mode α = 0 (H). (Online version
in colour.)

Finally, the influence of surface tension is illustrated by the marginal stability curves in
figure 4e,f. As expected the presence of a surface tension has a regularized effect on the onset of a
Faraday instability, since it penalizes any morphological transition creating a non-flat free surface
[14,15]. The physical range of interest for the dimensionless parameter αγ for soft solids with
shear modulus in the range μ ∈ [10, 100] Pa made by hydrogels with γ ∈ [0, 0.05] N m−1 [23] is
about αγ ∈ [0, 0.2]. In figure 4e,f, we plot the marginal stability threshold ãcr and the corresponding
critical wavenumber k̃cr versus αω fixing λx = 1, αg = 0.001 and varying αγ ∈ [0, 0.2] step 0.05. We
only depict the first unstable resonant eigenmode that is always the harmonic case. We note that
by increasing αγ , the critical wavenumber decreases, while the marginal stability threshold for
the relative acceleration increases.

In figure 5, we show the effects of the pre-stretch λx on both the critical acceleration ãcr and
the critical wavenumber k̃cr as a function of αω. We find that the marginally stable Faraday
wave is always given by the harmonic eigenmode in the physical range of αω ∈ [0, π/(2λx)]. We
consider a range of λx ∈ [0.6, 1.5] that excludes the possibility of a surface (or Biot) instability
in compression [32]. Comparing with figure 4a, where λx = 1, from figure 5a, we immediately
note that a compressive pre-stretch favours the onset of a Faraday instability, while a tensile pre-
stretch has a stabilizing effect. We further remark, by comparing figure 4b with figure 5b, that
the critical wavenumber increases in compression and decreases in traction. Comparing figure 5a
with figure 5e and figure 5b with figure 5f, we remark that an increase of the surface tension results
into a decrease of the critical wavenumber while the marginal stability threshold ãcr increases.

Moreover, we consider αg = 0.1 and αγ = 0 in figure 5c,d. Compared to the results in figure 5a,
we confirm that increasing αg favours the onset of a Faraday instability.

Finally, we study the morphology of the emerging Faraday wave by computing the
incremental displacement δux and δuy defined in equation (4.10), where we substitute the
expressions of Φ1,n defined in equation (4.31) if λx 	= 1 and equation (4.34) if λx = 1 superposing
the harmonic modes n= 0, −1, 1, 2, −2, 3, −3. We collect in table 1, the resulting displacement
fields over one critical wavelength of the eigenmode within the elastic slab. We depict the critical
morphology for three different values of the pre-stretch parameter λx: one in compression at
λx = 0.8, one without pre-stretch at λx = 1 and one in extension at λx = 1.2. We fix αg = 1 and
αγ = 0 and we consider two different values of αω.
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Figure 4. Plot of the critical value ãcr and the critical wavenumber k̃cr versus αω fixing λx = 1 and varying
the physical quantities. (a–b) αγ = 0 and αg = 0.001, (c) α = 0, αγ = 0 and αg ∈ [1, 5] step 0.5 for graphical
reasons, (d) α = 0, αγ = 0 and αg ∈ [0, 6.22] step 0.2, (e–f ) α = 0, αg = 0.001 and αγ ∈ [0, 0.2] step 0.05.
In (a–b), the yellow line is the harmonic solution while the blue one is the subharmonic one. (Online version
in colour.)

(c) Asymptotic limit of Rayleigh–Taylor instability
In this section, we give a few analytic results of the asymptotic behaviour of the marginal stability
curves for αω � 1, i.e. in the limit when the driving frequency of the oscillation is small and the
imposed acceleration can induce a Rayleigh–Taylor instability.

(A1) If λx = 1 and a= 0, an elastic bifurcation occurs for αg � 6.22 and k̃cr � 2.11.

Setting λx = 1 and a= 0, the undeformed elastic slab does not oscillate. Hence, the right-hand
side terms in equations (4.24) and (4.39) vanish. Thus, the dispersion relations simplify as the
vanishing of the determinant of the matrix B and the matrix D. Performing a series expansion
around αω = 0, both expression read at the leading order

αg =
2k̃

(
2k̃2 + cosh(2k̃) + 1

)
sinh(2k̃) − 2k̃

, (5.2)

which is the same expression reported in [31]. Equation (5.2) has a minimum for (αg)min � 6.22
and the corresponding minimum wavenumber is (k̃)min � 2.11, which is the known threshold for
an elastic Rayleigh–Taylor instability.
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Table 1. Solutions of the linearized incremental problem atαγ = 0 and differentλx wherewe fixαg = 1 andαω = 0.1 (top)
andαω = 3/(2λx ) (bottom). The amplitude of the incremental displacement A4,n has been set equal to 0.05H for the sake of
graphical clarity.
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If λx 	= 1, the dispersion relation reads

αg =
k̃
(
− (

λ8
x + 6λ4

x + 1
)

sinh
(

k̃
λx

)
sinh(k̃λx) + (

λ8
x + 2λ4

x + 5
)
λ2
x cosh

(
k̃
λx

)
cosh(k̃λx) − 4

(
λ6
x + λ2

x
))

λ2
x
(
λ4
x − 1

) (
λ2
x sinh

(
k̃
λx

)
cosh(k̃λx) − sinh(k̃λx) cosh

(
k̃
λx

)) . (5.3)

In figure 6, we plot the marginal stability threshold (αg)min and (k̃cr)min from equation (5.3) versus
the applied pre-stretch λx.
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(A2) If λx = 1 and a 	= 0, an elastic bifurcation occurs if the following relation holds:

ãcr = 6.22
αg

− 1. (5.4)

This asymptotic limit corresponds to a Rayleigh–Taylor instability corresponding to a maximum
effective acceleration given by G= (g + a). We obtain equation (5.4) by performing a series
expansion of the matrices Mi with i= SH, H around αω = 0 and by computing the corresponding
eigenvalues. The critical value ãcr given by equation (5.4) is physically relevant only if
αg < 6.22. By imposing that, this threshold is an extremal point with respect to variations
of the wavenumber. We also find that the expression of the critical wavenumber k̃cr is
independent on αg.

6. Conclusion
This work has investigated the onset of Faraday instability in a pre-stretched elastic slab
whose lateral sides are free to slide, that is attached at the bottom to a rigid substrate and
subjected to a vertical oscillation with a forcing frequency ω and amplitude a. The soft solid
is assumed to behave as an incompressible hyperelastic material of the neo-Hookean type.
We have used the Floquet theory to study the onset of harmonic and subharmonic resonance
eigenmodes from the ground state corresponding to a finite homogeneous deformation of the
elastic slab. The incremental boundary value problem is characterized by the three dimensionless
parameters defined in equation (5.1), that characterize the interplay of gravity, capillary and
elastic waves. Remarkably, we found that Faraday instability in soft solids is characterized
by a harmonic resonance in the physical range of the material parameters, in contrast to the
subharmonic resonance that is known to characterize viscous fluids and shearing motions in
nonlinear elastodynamics [13,29]. The dominance of harmonic modes was earlier observed
in viscoelastic fluids [20,21], but it first proved here for nonlinear elastic solids. Moreover,
the critical threshold for the relative acceleration decreases by increasing the parameter αg,
demonstrating that gravity waves can favour the instability when their potential energy is of
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the same order as the elastic strain energy. On the contrary, the presence of surface tension has a
stabilizing effect by introducing an energy penalty to the emergence of standing waves at the free
boundary. Interestingly, both harmonic and subharmonic eigenmodes become simultaneously
unstable in the limit of small driving frequency, highlighting the transition towards an elastic
bifurcation of the Rayleigh–Taylor type. Noteworthy, we found that the application of a finite pre-
stretch can alter significantly the marginal stability curves and the morphology of the emerging
standing waves. In particular, a compressive pre-stretch favours the onset of Faraday instability
with shorter critical wavelength. This novel result suggests a new path for the experimental
characterization of soft materials using Faraday waves. The application of a wide range of
controlled pre-stretch indeed allows to measure the corresponding dispersion relations of the
standing waves, thus inferring the mechanical parameters of the soft matter. Since Faraday waves
are found to be controlled by radically different resonance modes for viscous liquids and elastic
matter, this precise and robust experimental method may be suitable to distinguish solid-like from
fluid-like responses of soft matter at different scales.

Further analysis will be focused on extending the proposed analysis to study pattern formation
in a three-dimensional experimental setting, considering the weakly nonlinear interactions of
linear eigenmodes travelling in different directions.
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Appendix A. Expressions of ζn, τn andσn
We report the functions ζn, τn and σn, we introduced in equation (4.22), such as
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, (A 1)

where Qn and Gn are, respectively, defined in equations (4.19) and (4.21)

Appendix B. Expressions of Zn, Tn andΣn
We report the functions Zn, Tn and Σn, we introduced in equation (4.38), such as
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k3λ3
xPn

(
kPn

(
Jn

((
gkλ3

xρ − γ k3
)

cosh
(
HPn
λx

)

+ k cosh
(
Hk
λx

) (
γ k2 − gλ3

xρ
)

+ λx sinh
(
Hk
λx

)
(
k2

(
λ4
x + 1

)
μ − λ2

xn
2ρω2

))
− gkλ3

xρ sinh
(
Hk
λx

)

+ γ k3 sinh
(
Hk
λx

)
+ k2λ5

xμ cosh
(
Hk
λx

)

+ k2λxμ cosh
(
Hk
λx

)
− k2λ5

xμ cosh
(
HPn

λx

)

− 2k2λxμ cosh
(
HPn

λx

)
− λ3

xn
2ρω2 cosh

(
Hk
λx

)

+ λ3
xn

2ρω2 cosh
(
HPn

λx

))
+ k3

(
gλ3

xρ − γ k2
)

sinh
(
HPn
λx

)
− λxJnP2

n sinh
(
HPn
λx

)
(
k2

(
λ4
x + 2

)
μ − λ2

xn
2ρω2

)
+ λxμJnP4

n sinh
(
HPn
λx

)
+ kλxμP3

n cosh
(
HPn

λx

))

Tn =
ρJn+1 cosh

(
Hk
λx

)
k

−
ρJn+1 cosh

(
HPn+1

λx

)
k

+
ρ sinh

(
Hk
λx

)
k

−
ρ sinh

(
HPn+1

λx

)
Pn+1

Σn =
ρJn−1 cosh

(
Hk
λx

)
k

−
ρJn−1 cosh

(
HPn−1

λx

)
k

+
ρ sinh

(
Hk
λx

)
k

−
ρ sinh

(
HPn−1

λx

)
Pn−1

, (B 1)

where Pn and Jn are, respectively, defined in equations (4.32) and (4.36).
In the case λx = 1, Zn|λx=1, Tn|λx=1 and Σn|λx=1 are given by
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(B 2)

with Jn is defined in equation (4.37).
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