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Plateau–Rayleigh instability in a soft
viscoelastic material

S. I. Tamim and J. B. Bostwick *

A soft cylindrical interface endowed with surface tension can be unstable to wavy undulations. This is known

as the Plateau–Rayleigh instability (PRI) and for solids the instability is governed by the competition between

elasticity and capillarity. A dynamic stability analysis is performed for the cases of a soft (i) cylinder and (ii)

cylindrical cavity assuming the material is viscoelastic with power-law rheology. The governing equations are

made time-independent through the Laplace transform from which a solution is constructed using displace-

ment potentials. The dispersion relationships are then derived, which depend upon the dimensionless

elastocapillary number, solid Deborah number, and compressibility number, and the static stability limit,

critical disturbance, and maximum growth rate are computed. This dynamic analysis recovers previous

literature results in the appropriate limits. Elasticity stabilizes and compressibility destabilizes the PRI. For an

incompressible material, viscoelasticity does not affect stability but does decrease the growth rate and shift

the critical wavenumber to lower values. The critical wavenumber shows a more complex dependence

upon compressibility for the cylinder but exhibits a predictable trend for the cylindrical cavity.

1 Introduction

Surface tension arises frommolecular interactions at the interface
between two immiscible materials. For liquids, surface tension
forces dominate the response, i.e. flow, when the length scale of

the system L is smaller than the capillary length ‘c ¼
ffiffiffiffiffiffiffiffiffiffiffi
s=rg

p
, Lo

cc, where s is the surface tension, r the density and g the
gravitational constant. The literature for these capillary flows is vast
and well-studied in the fluid mechanics community. Solids also
possess a surface tension,1,2 but this is often neglected as elasticity
typically dominates the response for most common materials, e.g.
metals or ceramics. Surface tension becomes important in solids
when L is smaller than the elastocapillary length ce � s/E, L o ce,
where E is the elastic modulus, and studies of such systems
belong to the field of elastocapillarity.3,4 Many soft gels have
EB 10 Pa, such that ce B 1 mm, and it is therefore unsurprising
that many classical capillary instabilities have been observed in
soft solids, such as the buoyancy-driven Rayleigh–Taylor
instability,5,60 the Saffman–Taylor instability,7 parametrically-
excited Faraday waves,8 and drop oscillations.6,9 In this paper,
we analyze the Plateau–Rayleigh instability of a soft viscoelastic
cylinder.

A liquid cylinder will breakup into droplets due to surface
tension, as is commonly seen in a dripping faucet. Plateau10

used a static energy analysis to show that a cylinder with length
longer than its circumference is unstable. This is the Plateau

limit. This static analysis, however, is unable to predict the final
drop size and associated wavelength of the instability. It was
Rayleigh,11,12 who used a dynamic stability analysis to give a
dispersion relationship that was able to determine the wave-
number with fastest growth rate and correctly predict the final
drop size. For this reason, this has come to be known as the
Plateau–Rayleigh instability, hereafter simply referred to as PRI.

Mora et al.13 have observed PRI in soft agar gels using a
novel experimental approach in which gel cylinders are cast in
polystyrene molds are then immersed in toluene, which dissolves
the mold and allows the instability to develop. Here they observe
permanent undulations of the cylinder, but not complete
breakup into drops, when ce/R 4 6.2. They perform a static
stability analysis for a linear elastic cylinder to correctly predict
this limit. Note that this is similar to the approach of Plateau.
We use a dynamic analysis to predict the dispersion relationship
from which the critical wavenumber of maximum growth rate is
obtained, as it depends upon elastocapillarity, viscoelasticity,
and compressibility. In this sense, our work is complementary to
that of Mora et al.13 in the same way that Rayleigh’s dynamic
analysis complemented the static analysis of Plateau.

PRI in soft solids is of interest to 3D bioprinting tech-
nologies14,62 and nonstandard inkjet,15 patterning of micro-
fluidic devices,16,17 and pathologies related to biological
tubes.18,19 PRI in solids is different from fluids in that the
competition between elastic and capillary energy can give rise
to stable corrugated patterns.20–23 This can be viewed as a
phase separation between different regions of stretch that
forms the beads-on-a-string structure due to PRI.24–26 The
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cylindrical cavity is the complementary problem to the cylinder
and has also received some attention recently.27–29 We analyze
both the cylinder and cylindrical cavity in this work.

Soft materials often exhibit a complex rheology and are char-
acterized as viscoelastic materials with both an elasticity and
viscosity, which are often frequency dependent.30,31 Gels are one
class of soft material that typically consists of a cross-linked
polymer network that generally behaves as a solid with tunable
elasticity.32 The crosslinking networks present in these materials
exhibit stress relaxation behaviour over a finite timescale which is
typical of viscoelastic solids.33 This viscoelastic relaxation of hydro-
gels can be manipulated to mimic behaviour of muscle tissues.34

During 3D bioprinting, viscoelasticity of bioinks are known to
affect the printability and structural integrity.35 They are also used
in creating biopolymers for numerous medical applications.36 Poly-
acrylamide microgels are used to 3D print extracellular matrices,37

while PDMS have recently seen its use in 3D printing active structure
that responds to external stimuli.38 Commonly used soft hydrogels
like agarose behave essentially as a linear elastic material for small
strains39 and has a capillary effect that is comparable to the bulk
elasticity.9 Materials with amore complex rheology can exhibit more
complex behaviors that lead to experimentally-observed stick-slip
motions during the spreading of a liquid over a soft material.40,41

Here viscous, elastic, and capillary forces are all of similar
magnitude.42 Notably, Karpitschka et al.43 have developed a model
for a moving contact-line over a viscoelastic substrate recovering
these stick-slip motions. These models are based on viscoelastic
solids like PDMS that follow a power-law rheology with the
characteristic viscoelastic timescale being in the range of 0–1 s.
In our model development, we take a similar approach and
assume the soft viscoelastic material behaves as a power-law gel
which admits a characteristic time scale that becomes zero in the
purely elastic limit.44,45 Viscoelastic fluids are also characterized
with a slow relaxation timescale which increases with elasticity.46

In this work we choose the capillary timescale in line with recent
viscoelastic modelling approaches,47 which allows us to compare
our results to classical results of PRI.

We begin this paper by defining the governing equations for a
soft viscoelastic (i) cylinder and (ii) cylindrical cavity in Section 2. A
solution is constructed in Section 3 by introducing displacement
potentials, which gives rise to a dispersion relationship that
depends upon dimensionless numbers that define elastocapillary,
viscoelastic, and compressibility effects. In Section 4, we show
how the dispersion relationship and stability characteristics are
affected by the dimensionless numbers and we note that we
recover previous results in the appropriate limit. Lastly, we end
with some concluding remarks and discuss future directions.

2 Formulation

Consider a cylindrical rod of radius R in a cylindrical coordinate
system (r, y, z), as shown in Fig. 1(a). This soft material is
characterized by a density r, Lamé parameters l, m, Poisson
ratio n, and the interface is endowed with a surface tension s. Our
analysis presented herein is sufficiently general such that it is

straightforward to also consider the complementary case of the
cylindrical cavity in a soft material, as shown in Fig. 1(b). In what
follows, we perform a parallel analysis of these two problems.

2.1 Field equations

The soft solid is assumed to be a linear viscoelastic material
with the stress field tij and strain field eij related by,48

tijðtÞ ¼ 2

ðt
�1

m t� t 0ð Þ@eij t
0ð Þ

@t 0
dt 0 þ dij

ðt
�1

l t� t 0ð Þ@ekk t 0ð Þ
@t 0

dt 0;

(1)

where m(t) and l(t) are the relaxation moduli, which are related
to one another through the Poisson ratio n, l = 2n/(1� 2n)m. The
strain field eij is related to the displacement field U,

eij ¼
1

2

@Ui

@xj
þ @Uj

@xi

� �
: (2)

Fig. 1 Definition sketches for the soft (a) cylinder and (b) cylindrical cavity.
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The equation of motion is given by Newton’s second law

@tij
@xj

¼ r
@2Ui

@t2
: (3)

The jump in normal stress across the free surface boundary
r = R is given by the Young–Laplace equation and is propor-
tional to the linearized curvature,

terr � tirr ¼ �s
@2ur

@z2
þ ur

R2

� �
; (4)

valid for small disturbances ur { 1. Here i, e denote the inner and
exteriormaterial, respectively. For the cylinder te = 0, whereas for the
cylindrical cavity ti = 0. Continuity of shear stress is also enforced,

trz = try = tzy = 0. (5)

2.2 Normal modes

Normal modes est are assumed with s is the growth rate, e.g. the
displacement field is defined as U = u(r, y, z) with u(r, y, z) =
ur(r, y, z)êr + uy(r, y, z)êy + uz(r, y, z)êz the time-independent field.
We choose to work with the growth rate s instead of the frequency
o because our focus is on instability s 4 0. We take the following
Laplace transform,

f ðsÞ ¼
ð1
0

f ðtÞe�stdt (6)

and apply it to the constitutive relationship (1) to get,

~tij(s) = 2~m(s)~eij(s) + dij~l(s)~ekk(s), (7)

where the complex shear modulus ~m(s) is defined as,

~mðsÞ ¼ ~m0ðsÞ þ i~m0ðsÞ ¼ s

ð1
0

CðtÞe�stdt: (8)

Here ~m0(s) and ~m00(s) are the storage and loss modulus, respectively,
and C is the relaxation function which is determined by the
rheology of the material. For a complex solid, they are both a
function of the frequency, or in our particular case, unstable growth
rate. In most cases, the Poisson ratio n is considered to be constant
and independent of the frequency and therefore l = 2mn/1 � 2n.
Using (7) and the normal mode solution, the governing eqn (3) can
be written as

(~l(s) + ~m(s))r(r�u) + ~m(s)r2u = rs2u. (9)

The boundary conditions (4) and (5) have no explicit time
dependence and follow similarly.

2.3 Rheology of soft gels

To solve (9) requires knowledge of the rheology of the viscoelastic
solid, i.e. l(s) and m(s).49 The simplest models of viscoelasticity are
the Maxwell model and the Kelvin–Voigt model. The former is
more applicable to fluids while the latter is typically applied to
solids. However, these single spring-dashpot model do not capture
the wide ranging viscoelastic behavior of complex solids. Many soft
solids consist of cross-linked polymers and are typically known as
power law gels where m0(s) and m00(s) both scale with time as t�n.44, 45

Here, n is the power law exponent and its value typically ranges

from 0.5–1 based on the stoichiometry of the polymer mixture. For
these materials, the complex modulus is given by

~m(s) = mo(1 + (iotv)
n) (10)

Here, mo is the static or reference shear modulus and tv is a
viscoelastic timescale. Note io is the complex frequency which
is the same as the unstable growth rate, i.e., s = io. Also, tv = 0
corresponds to the purely elastic limit. The n = 1 case corre-
sponds to the Kelvin–Voigt limit, in which the term motv
becomes the solid viscosity. For this reason (10) is sometimes
referred to as the fractional Kelvin–Voigt model.50 Other frac-
tional models have been put forth51 and it would be straight-
forward to analyze these cases by simply substituting the
functional form of ~m in (9).

3 Solution

We construct a solution to (9) by introducing the potential
functions (F, F) and using the Helmholtz decomposition of the
displacement field,

u = rF + r � F. (11)

Here F is a scalar potential and F is a vector potential. Applying
(11) to (9) results in a set of decoupled Helmholtz equations,

r2F � a2F = 0 (12a)

r2F � b2F = 0. (12b)

Here, a ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffir
~lþ 2~m

r
and b ¼ s

ffiffiffi
rem

r
. The general solution of (12) is

given by

Fðr; zÞ ¼ A0I0 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ kz2

p� �
eikzz þ B0K0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ kz2

p� �
eikzz;

(13a)

Frðr; zÞ ¼ ArI1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ kz2

p� �
eikzz þ BrK1 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ kz2

p� �
eikzz;

(13b)

Fyðr; zÞ ¼ AyI1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ kz2

p� �
eikzz þ ByK1 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ kz2

p� �
eikzz;

(13c)

Fzðr; zÞ ¼ AzI0 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ kz2

p� �
eikzz þ BzK0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ kz2

p� �
eikzz;

(13d)

where we have assumed axisymmetry, i.e. no y dependence,
consistent with the Steiner symmetrization procedure which gives
the most destabilizing disturbance.52,53 Here, Fr, Fy, Fz are the
scalar components of F, kz is the wavenumber in the z-direction,
and I and K are the modified Bessel functions of the first and
second kind, respectively. The Bessel function I diverges at
r - N, while K diverges at r - 0. Therefore, for the case of
the cylinder we set B0 = Br = By = Bz = 0 and for cylindrical cavity
we set A0 = Ar = Ay = Az = 0 to ensure a physical solution.
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3.1 Nondimensionalization

We scale the lengths with undisturbed radius R and time with

the capillary time scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR3=s

p
. This gives rise to the following

non-dimensional parameters,

k ¼ kzR; x¼ s

ffiffiffiffiffiffiffiffiffi
rR3

s

s
; S¼ s

moR
; t¼ tv

ffiffiffiffiffiffiffiffiffi
s

rR3

r
; k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2n
2ð1�nÞ

s
;

g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x2~Sþk2

q
; g2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2~Sþk2

q
~S¼ S0

1þðtxÞn:

(14)

Here, x is the non-dimensional growth rate and k the scaled
wavenumber. Three dimensionless numbers appear; k is a
compressibility number that ranges from k = 0 for an incom-

pressible n = 0.5 material to k¼ 1
� ffiffiffi

2
p

for a fully compressible
n = 0 material, t is the solid Deborah number54 that is a
measure of the relaxation time of the material relative to the
capillary time scale with t = 0 corresponding to the
purely elastic limit, and S is the elastocapillary number repre-
senting the relative balance of capillary and elastic forces.
Experiments using agarose gels have obtained softness up to
S B O(10),9,13 while thin columns of ultrasoft gels can have
even higher S.

3.2 Dispersion equations

Applying the solution (13) to the boundary conditions (4) and
(5) yields a set of linear equations for the unknown A’s in the
cylinder case and the unknown B’s for the cylindrical cavity.
The solvability condition for each case gives the corresponding
dispersion relationship.

3.2.1 Solid cylinder. We begin with the case of the cylinder
and write the boundary conditions (4) and (5) as

A0
g2

2 þ k2

2
I0ðg1Þ � g1I1ðg1Þ

� �
� Ayik g2I0ðg2Þ � I1ðg2Þð Þ

¼ A0

~S
2
ð1� k2Þg1I1ðg1Þ þ Ay

~S
2
ikð1� k2ÞI1ðg2Þ;

(15a)

A02ikg1I1(g1) + Ay(g2
2 + k2)I1(g2) = 0, (15b)

Ar(ik)(g2I0(g2) � 2I1(g2)) � Az(g2
2I0(g2) � 2g2I1(g2)) = 0,

(15c)

ArkI1(g2) + Azig2I1(g2) = 0. (15d)

Note that (15a) and (15b) and (15c) and (15d) are decoupled and
admit two classes of solution. Our focus is on the shape change
modes which are described by eqn (15a) and (15b), whose
solvability condition generates the dispersion relationship

2k2g1g2I0ðg2ÞI1ðg1Þ �
1

2
g2

2 þ k2
� 	2

I0ðg1ÞI1ðg2Þ

þ 1þ
~S
2
ð1� k2Þ

� �
g1 g2

2 � k2
� 	

I1ðg1ÞI1ðg2Þ ¼ 0:

(16)

3.2.2 Cylindrical cavity. Similarly, we can write the boundary
conditions (4) and (5) for the cylindrical cavity as

B0
g2

2 þ k2

2
K0ðg1Þ þ g1K1ðg1Þ

� �
þ Byik g2B0ðg2Þ þ K1ðg2Þð Þ

¼ B0

~S
2

1� k2
� 	

g1K1ðg1Þ þ By

~S
2
ikð1� k2ÞK1ðg2Þ;

(17a)

B02ikg1K1(g1) � By(g2
2 + k2)K1(g2) = 0, (17b)

Br(ik)I0(g2) + Bzg2I0(g2) = 0, (17c)

BrkI1(g2) � Bzig2I1(g2) = 0. (17d)

The solvability condition for the shape modes (17a) and (17b)
gives the dispersion relationship

2k2g1g2K0ðg2ÞK1ðg1Þ �
1

2
g2

2 þ k2
� 	2

K0ðg1ÞK1ðg2Þ

� 1�
~S
2
ð1� k2Þ

� �
g1ðg22 � k2ÞK1ðg1ÞK1ðg2Þ ¼ 0

(18)

4 Results

The dispersion curve x(k) can be computed numerically from
(16) and (18) for the rod and cylindrical cavity, respectively. For
reference, the dispersion relationship for the classical PRI is
given by,11

x2 ¼ ð1� k2ÞkI1ðkÞ
I0ðkÞ

; (19)

which neglects both viscosity and elasticity. In what follows, we
systematically investigate how the dispersion relationship
depends upon the dimensionless numbers S, k, t, n focusing
on the role of viscoelasticity. We start with the rod and begin by
focusing on the purely elastic limit t = 0 before showing how
viscoelasticity affects stability. We then analyze the cylindrical
cavity highlighting the difference with the cylindrical rod.

4.1 Solid cylinder

Fig. 2 plots the dispersion curves, growth rate x against wave-
number k, for a purely elastic t = 0 material illustrating the
competing roles of elastocapillarity S and compressibility k.
Most soft gels are hydrogels that are comprised mainly of water
such that they are incompressible k = 0.39,55 Fig. 2(a) plots the
dispersion curve for an incompressible material k = 0 for a
range of elastocapillary numbers S. Each curve exhibits a range
of unstable wavenumbers ks that define the static limit x = 0 and
a maximum growth rate xm that occurs at a wavenumber km.
In the limit S - N, we recover the PRI as could be expected.
Increasing the elasticity relative to surface tension corresponds
to decreasing the elastocapillary number S, which is shown to be
stabilizing in that both the maximum growth rate xm and range
of unstable wavenumbers ks shrink. In contrast, increasing the
compressibility k is destabilizing, as shown in Fig. 2(b). Note that
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the wavenumber of maximum growth km shifts to a long
wavelength km = 0 disturbance for a range of k, which corre-
sponds to a uniform shrinking or collapse of the cylinder due to
capillarity.

The relative balance between stabilizing elasticity and desta-
bilizing compressibility gives rise to the stability diagram shown
in Fig. 3 plotted in the S � k parameter space for a purely elastic
material t = 0. Here the incompressible k = 0 limit agrees with
the static analysis of Mora et al.13 which yields the threshold

value S = 6. As the compressibility k increases, the threshold

value of elastocapillary number S decreases to S = 2 at k ¼ 1
� ffiffiffi

2
p

.

Notably, this limit has been reported as the instability threshold

for the cylindrical cavity by Xuan et al.,27 which we discuss
further shortly.

Although most gels used in experiment can be reasonably
approximated to be incompressible materials, compressible
gels might be useful to specific applications.56 Compressibility

can destabilize beyond the PRI limit. Fig. 4 shows how the
stability properties ks, km, xm are affected by the compressibility
k for a purely elastic t = 0 cylinder. The stability limit ks is a
monotonically increasing function k, whereas the properties of

the critical disturbance are more complex. The maximum

growth rate xm similarly increases monotonically with both
S and k, but the critical wavenumber displays a more complex
dependence on S, k. For large elastocapillary number S = 20, km
monotonically decreases with k until the long wavelength k = 0
limit is reached, whereas for small elastocapillary number S = 7,
km increases with k, reaches a maximum value and then rapidly
decreases to k = 0. This highlights a complex interplay between
surface tension, elasticity, and compressibility.

4.1.1 Viscoelasticity. Eqn (19) is the PRI dispersion relation-
ship for an inviscid liquid cylinder, which exhibits three main
properties; (1) the most unstable wavenumber is km = 0.697, (2)
the growth rate for the most unstable wavenumber is xm = 0.343,
and (3) the static stability limit is ks = 1. This result is an upper
bound for an incompressible elastic solid k = 0, as elasticity is
shown to be a stabilizing effect (cf. Fig. 2(a)).

Viscoelasticity is also stabilizing and is described in our
model by the Deborah number t and exponent n. Fig. 5 plots
the dispersion relationship x against k, as it depends upon
these viscoelastic properties. In Fig. 5(a), we show that the
growth rate x decreases and km shifts to lower wavenumbers as
t increases from the purely elastic limit t = 0. The effect of the
exponent n is shown in Fig. 5(b) with increased damping
associated with decreasing n with the Kelvin–Voigt case n = 1
being the most unstable in this range of parameters. Note
that the static stability limit ks is unaffected by both t and n
(cf. Fig. 5). That is, viscoelasticity damps the growth rate but
does not change the range of unstable wavenumbers. The is
further illustrated in Fig. 6(a) which plots ks against the
elastocapillary number S showing that t has not effect on the
stability limit. However, t does shift km to lower wavenumbers
and decreases xm, as shown in Fig. 6(b and c), respectively.
Again, the S - N is the most unstable situation, regardless of
t and n.

The critical disturbance km and associated growth rate xm
are shown in Fig. 7, as they depend upon the elastocapillary
number S and solid Deborah number t. The trend is monotonic
in both dimensionless numbers; the growth rate increases with
(i) increasing S and (ii) decreasing t. The same monotonic
trends exist for variations in the exponent n.

Fig. 2 Dispersion curves for a cylinder plotting growth rate x against
wavenumber k for a purely elastic solid t = 0, as it depends upon (a) the
elastocapillary number S for an incompressible k = 0material and (b) com-
pressibility number k for fixed S = 10. The solid line is the dispersion
relation for the PRI, eqn (19).

Fig. 3 Stability diagram for the purely elastic t = 0 cylinder in the parameter
space defined by the elastocapillary S and compressibility k numbers.
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4.2 Cylindrical cavity

Fig. 8 plots the growth rate x against wavenumber k for a cylin-
drical cavity immersed in a purely elastic t = 0 material. For an

incompressible material k = 0, decreasing S, i.e. increasing elasti-
city, is stabilizing (cf. Fig. 8(a)). In the capillary limit S - N, the
dispersion approaches the PRI limit for a cylindrical cavity,

x2 ¼ 1� k2
� 	

k
K1ðkÞ
K0ðkÞ

; (20)

which admits the stability characteristics, ks = 1, km= 0.484, xm =
0.82. For an incompressiblematerial k = 0, this is themost unstable
situation. In contrast, for fixed S increasing the compressibility of
the material is destabilizing (cf. Fig. 8(b)). Interestingly, the static
stability limit ks is nearly unaffected by k unlike the case of
the cylinder (cf. Fig. 2(b)). The stability boundary is given by
S = 2 irrespective of k and this agrees with previous literature.27

Fig. 9 plots the stability characteristics (ks, km, xm) for a
purely elastic t = 0 cylindrical cavity against the compressibility
k. The static stability limit ks shows a very weak dependence
upon k that increases with S (cf. Fig. 9(a)). The critical wave-
number km decreases with increasing compressibility k and
eventually becomes km = 0 at a critical value of the compressi-
bility k* which decreases with increasing S (cf. Fig. 9(b)). The
maximum growth rate xm increases with both S and k, as
shown in Fig. 9(c). Lastly, we note that the growth rate remains
the same order of magnitude over the entire range of k, un-
like the cylinder whose growth rate varied substantially with k
(cf. Fig. 4(c)).

4.2.1 Viscoelasticity. Similar to the cylinder, viscoelasticity
affects the critical wavenumber km and growth rate xm, but not
the static stability limit ks for the incompressible k = 0

Fig. 4 Stability characteristics for a compressible purely elastic t = 0 cylinder plotting (a) the static stability limit ks, (b) critical wavenumber km, and
(c) maximum growth rate xm against the compressibility k, as it depends upon the elastocapillary number S.

Fig. 5 Viscoelastic effects illustrated in the dispersion relationship plotting
growth rate x against wavenumber k, as it depends upon (a) solid Deborah
number t (S = 10, n = 0.5) and (b) exponent n (S = 10, t = 1).

Fig. 6 Stability characteristics of an incompressible k = 0 viscoelastic cylinder plotting the (a) static stability limit ks, (b) critical wavenumber, and (c) maximum
growth rate xm against the elastocapillary number S, as it depends upon the solid Deborah number t for n = 0.5. The dashed line denotes the PRI limit.
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cylindrical cavity, as shown in Fig. 10. Increasing the solid
Deborah number t shifts km to lower wavenumbers and
decreases the growth rate for fixed S. In the limit S - N,
the PRI limit is approached and the effect of t is negligible.

Fig. 11 plots the critical disturbance km and associated
growth rate xm for the incompressible k = 0 cylindrical cavity,
as they depend upon the elastocapillary number S and solid
Deborah number t. The trend is monotonic in both dimensionless
numbers; the growth rate increases with (i) increasing S and (ii)
decreasing t.

5 Comparison with experiment

Here we compare our results to the experimental data on
capillary driven instability in solid cylinders by Mora et al.13

Their experiments were performed using thin cylinders (R = 240 mm)
of agar and show the emergence of an unstable wavy undulation
along the axis of the cylinder. The instability disappeared with
decreasing elastocapillary number S o 6, consistent with pre-
dictions from our model. For a cylinder with S = 10.6 (Mora et al.
Fig. 2d), they observed an unstable wavelength lE 30R, which is
much longer than that predicted by Rayleigh’s theory l E 9.1R.
This is presumably due to the elasticity of the agar gel. Our
purely elastic solution (t = 0) predicts wavelengths l E 13R,
longer than the Rayleigh limit, but still lower than experimental
observation. We hypothesize that this discrepancy is due to a
viscoelastic effect which shifts to longer wavelengths according
to our model (cf. Fig. 5). Even though the capillary time scale is
small E10�3 s, the non-dimensional viscoelastic relaxation time t
can be O(1) for materials with short relaxation times, as is true for
the agar gels used in the experiments by Mora et al. Fig. 1. As
shown in Fig. 5, increasing t leads to smaller km, i.e., longer critical

wavelengths. Also, the Ohnesorge number Oh ¼ Gotvffiffiffiffiffiffiffiffiffi
rsR

p
� �

corres-

ponding to the parameters in the Mora experiment should be
larger than 1. This shows the importance of including solid
viscoelasticity in the dynamic stability analysis. If we assume a
simple Kelvin–Voigt rheology (n = 1) we can fit the observed
wavelength from experiment for S = 10.6 to our model when

Fig. 7 Critical disturbance plotting (a) the wavenumber km and (b) growth
rate xm against the elastocapillary number S and solid Deborah number t
for an incompressible k = 0 cylinder with n = 0.5.

Fig. 8 Dispersion curves for a cylindrical cavity plotting growth rate x against
wavenumber k, as it depends upon (a) the elastocapillary number S for k = 0
and (b) compressibility number k for S = 5. The solid line is the PRI dispersion
for a cylindrical cavity given by eqn (20).
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t = 5. This shows the importance of including viscoelastic
effects into the analysis to predict critical wavelength. Further-
more, a recent paper has also shown through numerical non-
linear analysis that the final modes are indeed selected by a
dynamic process.23

6 Concluding remarks

We have developed a model for the PRI in viscoelastic solids for
the complementary geometries of the cylinder and cylindrical
cavity. Dispersion relationships have been derived and depend
upon the non-dimensional numbers S, t, k, which account
for elastocapillary, viscoelasticity, and compressibility, respec-
tively. Our dynamic model is distinguished in that we predict
the critical wavenumber km of maximum growth rate xm that
should be observed in experiment, and we also recover the
previously reported static stability results for the incompressible
cylinder S = 613 and incompressible cylindrical cavity S = 227 by
setting the growth rate x = 0. This approach is similar to how
Rayleigh’s dynamic analysis11 complemented the static analysis
of Plateau10 for the PRI. Both elasticity and viscoelasticity are
stabilizing effects, whereas compressibility is destabilizing. For
an incompressible material, viscoelasticity does not affect the
range of unstable wavenumbers ks, but does affect the critical
disturbance by shifting km to lower wavenumbers and decreasing
the growth rate xm (cf. Fig. 6 and 10). The effect of the power law
exponent n is quantitative but does not qualitatively change our

results. For a compressible material, the stability limit for S
decreases with increasing k for the cylinder, but is a constant
S = 2 for the cylindrical cavity and independent of compressi-
bility. For the cylinder, compressibility increases the range of
unstable wavenumbers ks and increases the growth rate xm, but
the critical wavenumber km has a more complex dependence on
S, k, as shown in Fig. 4. The associated trends for the cylindrical
cavity are more monotonic (cf. Fig. 9).

The classic PRI of an inviscid liquid sees the cylindrical jet
breakup into spherical droplets in what are naturally large-
amplitude disturbances. Soft solids tend to show nonlinear
behavior at large strain57 and this causes the PRI to assume an
undulating shape in experiment.13 Our analysis assumes small
strains, but still should be able to describe the instability
mechanism, predict the stability limit, as well as the critical
disturbance which often persists (i.e. the linear mode quenches
itself) in weakly nonlinear analysis provided the bifurcation is
supercritical.58 Nevertheless, understanding the role of non-
linear elasticity and complex rheology of soft solids has seen
sustained interest among researchers.61 Yield stress materials
behave elastically beyond the jamming transition threshold.
This enhances the stability of 3D printed structures59 pointing
to a nonlinear response of the material. Future directions in the
study of the PRI could focus on large strains in the nonlinear
regime and how this affects the morphology of the instability.
This will aid in developing fabrication techniques for soft solids,
i.e. bioprinting, which exploit pattern formation, as these are
naturally large amplitude disturbances. Lastly, the techniques

Fig. 10 Stability characteristics for an incompressible k = 0 cylindrical cavity plotting (a) the static stability limit ks, (b) critical wavenumber km, and
(c) maximum growth rate xm against the elastocapillary number S, as it depends upon the solid Deborah number t for n = 1. Dashed line refer to the PRI limit.

Fig. 9 Stability characteristics for a compressible purely elastic t = 0 cylindrical cavity plotting (a) the static stability limit ks, (b) critical wavenumber km,
and (c) maximum growth rate xm against the compressibility k, as it depends upon the elastocapillary number S.
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developed here could be used to model other systems, e.g., soft
tubes or channels of finite thickness filled with a flowing viscous
fluid, that could shed light on other dynamic elastocapillary
phenomena.
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Appendix: cylindrical components

The displacement and stress components required for derivation
of the dispersion relations are obtained using general solutions
in eqn (13).

A.1 Cylinder

The displacement components of a solid cylinder are,

ur = (A0aI1(ar) � Ay(ikz)I1(br))e
ikzz, (21a)

uy = (Ar(ikz)I1(br) � AzbI1(br))e
ikzz, (21b)

uz = (A0(ikz)I0(ar) + AybI0(br))e
ikzz, (21c)

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ kz2

p
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ kz2

p
. Using the constitutive

relation (7), the stresses are obtained as

trr ¼ 2~m A0
b2 þ kz

2

2
I0ðarÞ �

a

r
I1ðarÞ

� �


� Ay ikzð Þ bI0ðbrÞ �
1

r
I1ðbrÞ

� ��
eikzz;

(22a)

trz = ~m[A0(ikz)2aI1(ar) + Ay(b
2 + kz

2)I1(br)]e
ikzz, (22b)

try ¼ ~m ArðikzÞ bI0ðbrÞ �
2

r
I1ðbrÞ

� �


� Az b2I0ðbrÞ �
2b

r
I1ðbrÞ

� ��
eikzz;

(22c)

tyz = ~m[�Arkz
2I1(br) � Azb(ikz)I1(br)]e

ikzz. (22d)

A.2 Cylindrical cavity

Similarly for a hollow cylindrical cavity, the displacements
components are

ur = (�B0aK1(ar) � By(ikz)K1(br))e
ikzz, (23a)

uy = (Br(ikz)K1(br) + BzbK1(br))e
ikzz, (23b)

uz = (B0(ikz)K0(ar) � BybK0(br))e
ikzz, (23c)

and the stress components are

trr ¼ 2~m B0
b2 þ kz

2

2
K0ðarÞ þ

a

r
K1ðarÞ

� �


þ By ikzð Þ bK0ðbrÞ þ
1

r
K1ðbrÞ

� ��
eikzz;

(24a)

trz = ~m[�B0(ikz)2aK1(ar) + By(b
2 + kz

2)K1(br)]e
ikzz,

(24b)

try = ~m[Br(ikz)bK0(br) + Bzb
2K0(br)]e

ikzz, (24c)

tyz = ~m[�Brkz
2I1(br) � Bzb(ikz)I1(br)]e

ikzz. (24d)
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