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Abstract

Detecting synaptic connections using large-scale extracellular spike recordings presents a statistical challenge.
While previous methods often treat the detection of each putative connection as a separate hypothesis test, here
we develop a modeling approach that infers synaptic connections while incorporating circuit properties learned
from the whole network. We use an extension of the Generalized Linear Model framework to describe the cross-
correlograms between pairs of neurons and separate correlograms into two parts: a slowly varying effect due to
background fluctuations and a fast, transient effect due to the synapse. We then use the observations from all
putative connections in the recording to estimate two network properties: the presynaptic neuron type (excitatory
or inhibitory) and the relationship between synaptic latency and distance between neurons. Constraining the
presynaptic neuron’s type, synaptic latencies, and time constants improves synapse detection. In data from
simulated networks, this model outperforms two previously developed synapse detection methods, especially on
the weak connections. We also apply our model to in vitro multielectrode array recordings from mouse
somatosensory cortex. Here our model automatically recovers plausible connections from hundreds of neurons,

and the properties of the putative connections are largely consistent with previous research.

New & Noteworthy Detecting synaptic connections using large-scale extracellular spike recordings is a difficult
statistical problem. Here we develop an extension of a Generalized Linear Model that explicitly separates fast
synaptic effects and slow background fluctuations in cross-correlograms between pairs of neurons while
incorporating circuit properties learned from the whole network. This model outperforms two previously
developed synapse detection methods in the simulated networks, and recovers plausible connections from

hundreds of neurons in in-vitro multielectrode array data.
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Introduction

Using in vivo or in vitro multielectrode arrays, the extracellular spiking of hundreds of neurons can be recorded
simultaneously. These recordings are allowing new, large-scale studies of neuronal networks (Hahn et al. 2019;
Harris et al. 2003; Levenstein et al. 2019; Okun et al. 2015; Tingley and Buzsaki 2018), and the number of
neurons that can be simultaneously recorded is increasing approximately exponentially (Stevenson and Kording
2011). Depending on the species, brain area, and electrode configuration, these simultaneously recorded
neurons can have tens of thousands of potential synapses between them. Detecting and characterizing these
synapses represents a major challenge for neural data analysis. Here, we develop a model-based method
incorporating network-level constraints on 1) the presynaptic neuron type and 2) the synaptic latencies
between pre- and postsynaptic neurons. We examine whether these constraints can improve synapse detection

using simulated data and large-scale in vitro multielectrode array recordings.

Detecting synaptic connections from extracellular spike observations is a difficult statistical problem. Since both
spiking and synapses themselves are sparse, it is often difficult to distinguish between changes in spike
probability that are due to a specific synaptic input, changes that are due other (typically unobserved) inputs, or
due to chance. Using extracellular spike data, researchers often identify putative monosynaptic connections by
examining cross-correlograms between the spiking of two neurons. If two neurons are connected, there will often
be a fast-onset, short-latency peak (excitatory) or trough (inhibitory) in the cross-correlogram, where the post-
synaptic neuron tends to spike more (excitatory) or less (inhibitory) following a pre-synaptic spike. Previous
methods for distinguishing putative synaptic connections and non-connections in large-scale recordings used
hypothesis testing to ask whether a peak or trough is significantly different from a baseline level of expected
spiking (Bartho et al. 2004; Fetz et al. 1991; Fujisawa et al. 2008; Hatsopoulos et al. 2003; Perkel et al. 1967a).
Recently, Kobayashi et al. (2019) developed a method that detects putative connections by applying a
Generalized Linear Model to cross-correlograms (GLMCC), and used Matthews correlation coefficient (MCC,

Matthews 1975) to find the optimal threshold for detecting connections. These methods typically treat decisions
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about the presence or absence of a synapse between each pair of neurons as separate hypothesis tests.
However, synapses from the same presynaptic neuron are likely to share certain properties, and these shared
properties could potentially improve the detection of synaptic connections. Here we aim to incorporate
information from two basic features of neural circuits: 1) that neurons tend to be either excitatory or inhibitory
and not both (Dale’s Law (Eccles et al. 1954)), and 2) that the synaptic latency between a pair of neurons should
grow with the distance between the neurons (all else being equal). For example, knowing that there is an
excitatory connection from neuron A to neuron B, increases the chances that other connections from neuron A
should be excitatory. Similarly, if the distance between neuron A and B is known, then the latency of that
connection provides some information about what latencies we might expect for neuron A’'s other connections.
These sources of information could potentially allow weak connections that are consistent with the circuit to be
more readily detected and false positives due to noise to be rejected when that noise is inconsistent with the

circuit.

To apply these circuit-level constraints, here we develop an extension of a Generalized Linear Model (extended
GLM) to describe cross-correlograms between pairs of neurons and to automatically detect putative synaptic
connections. Similar to (Kobayashi et al. 2019), here we fit an explicit model for the rate of post-synaptic spiking
at each interval relative to the presynaptic neuron’s firing. This model includes both a fast, transient synaptic
effect and a slower effect that accounts for potentially fluctuating baseline correlation. Here we add two
constraints to the model: based on Dale’s law and the expected linear relationship between distance and synaptic
latency, we rule out false positives by constraining presynaptic neuron type, synaptic latencies, and time
constants. We then evaluate our model using two simulated integrate-and-fire networks. Our model outperforms
previous synapse detection methods: spike jitter method and thresholding method, especially on the weak
connections. We also apply our model to in vitro multielectrode array (MEA) data, where our model recovers
plausible connections between hundreds of neurons in a slice culture of mouse somatosensory cortex. Many of
the neurons appear to follow approximately linear distance-latency relationships, consistent with previous
research in vivo (English et al. 2017), and neurons with excitatory/inhibitory connections often have waveforms
that are wide/narrow, consistent with previous research in vivo (Barthé et al. 2004). Altogether, by incorporating

constraints due to circuit structure, the model-based approach presented here may allow more accurate
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automated detection of synapses from large-scale spike recordings.

Methods

Extended Generalized Linear Model for Synaptic Detection

Here we develop an extension of a generalized linear model (extended GLM) to describe the spike correlograms
between pairs of neurons: a suspected presynaptic neuron i and postsynaptic neuron j. For the binned spike

trains of the two neurons, n; and n; (1 when there is a spike and 0 otherwise), the cross-correlogram is given by

yy@m) = > ni(©m(e = m)

t

where m denotes the interval between pre- and postsynaptic spikes, and y;;(m) is the number of the times

spikes in n; and n; are separated by an interval [m — Atzﬂ, m+ Atzﬂ) for bin size Aty;,,. Here in this study, we set

the bin size Aty;, to 0.5 ms, and model the intervals within a +25ms window m = {—25,—-24.5,---,25}ms

We then model the cross-correlogram using two components: 1) a slow effect caused by fluctuating firing rates
and common input from other neurons, and 2) a fast effect caused by a potential synaptic connection. Namely,
we model the rate of counts A;; as a linear combination of the slow effect and the fast effect passed through an
output nonlinearity:
Agj(m) = exp(Bo + X (M) + wyj a(m,7,At) )

where S, + X.(m)p. describes the slow effect and w;; a(m, 7, At) describes the fast effect. For the slow effect,
X.(m) represents a set of smooth basis functions learned by applying a low-rank, nonlinear matrix factorization
to all the cross-correlograms in the dataset (see below). For the fast effect, we use an alpha function a(m, t,At) =

m-—At m-—At

T

exp (1 - ) with a latency At and a time constant z, while w; ; represents the connection strength from
neuron i to neuron j (positive for excitatory connections, negative for inhibitory). o, B¢, At, 7, and w; ; are the

parameters that are estimated in the model (see below for the details about optimization). Note that, since

log 4;;(m) is nonlinear in the parameters 7 and At, this model is not a traditional GLM but an extension. The

parameters, thus, cannot be optimized with traditional methods (e.g. iterative reweighted least squares).

In addition to this extended GLM (the full model), we also fit a reduced, slow model that is a GLM, 1;;(m) =
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exp(By + X.(m)p. ), which only contains the basis functions without the alpha function to capture the synaptic
effect. If the full model substantially outperforms the slow model, we can infer that there is putative synaptic

connection from the pre- to postsynaptic neuron.

Generating basis functions to describe the slow effect

To capture the slow fluctuations in correlograms, we use low-rank nonlinear matrix factorization to learn a set of
smooth basis functions X.. Here we aim to reconstruct all of the correlograms in a given multielectrode recording
using a generalized bilinear model:

A =exp(ux, +AX,)

where A is a reconstruction matrix that aims to model the observed correlograms in terms of a vector of baseline
correlations p, a matrix of weights A, and the smooth basis functions X.. Note that here we model all p
correlograms in the dataset simultaneously (p = c(c — 1)/2 if there are c neurons). To ensure that X, is smooth
we further decompose this matrix as X, = BX; where X; is a set of cubic B-spline curves with equally spaced
knots. Altogether, the matrix of correlograms is reconstructed using the parameters u, A and B. Ais ap X ng
matrix, where ng is the number of basis functions that we aim to learn from the dataset (here set to 6). B is a
ng X ng, matrix, where ng is the number of spline curves (here set to 16). And u is a vector that describes the
baseline correlation for each correlogram, and that is multiplied by a row vector of ones x,. In order to estimate
the parameters we use an alternating gradient descent algorithm to approximately maximize the overall log-
likelihood Y;; Zm(yl-j(m) log A;j(m) — A;j(m) ) We alternate between updating the fits to each correlogram (u
and A) given a fixed set of bases (B) and updating the bases (B) given a fixed description of the individual

correlograms (1 and A). Finally, we generate the basis functions as X, = BX;.

Although some pairs of neurons may have fast synaptic effects in addition to slower fluctuations due to common
input, the proportion of these pairs is expected to be small. Since these connected pairs also have different
weights, latencies, and time constants, the overall effect on the shapes of the learned bases X, should be

relatively small.

Parameter Estimation



142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

We fit the cross-correlogram y;; using the full model 4;;(m) = exp(ﬁ0 + X.(m)B. + w;j a(m, 7, At) ) in two stages:
1) an initial fit that does not constrain the synaptic latencies, and 2) a subsequent fit that does. Using the
estimated synaptic latency from the initial fit, we estimate the linear relationship between the distance and the
synaptic latency. This enables us to use the estimated relationship to constrain the synaptic latency in the

subsequent fit.

In stage 1, we fit the cross-correlogram y;; optimizing the penalized negative Poisson log-likelihood: l¢,,;; 1(8)
—Zm(}’ij(m)loglij(m) - Aij(m)) + TIw”Wij“z + TIT”Tij - To||2 ; where Aij(m) = eXP(.Bo +
Xc(m)Be + w;j a(m,7, At)) and estimate the parameters 6 = {,, B, w;;, 7, At}. This function is not convex due

to the structure of the alpha function. However, we optimize the penalized log-likelihood using a non-linear
conjugate gradient descent algorithm by using the minFunc toolbox in MATLAB (Schmidt 2005), and we use
random restarts (50 times) in order to reduce the chances of getting stuck in local minima. Here n,, and n, are

regularization hyperparameters that penalize large weights w;; and differences between the time constant z;;
from a reference t,, respectively. Using the estimated latency At;; from the initial fit and the distance between

the neurons, we then estimate a “conduction” velocity v; and synaptic delay dt; for the presynaptic neuron i

(see below).

In stage 2, using the estimated v; and dt;, we fit the cross-correlogram with an additional constraint on synaptic

latency and estimate the parameters 6 = {f,, 5., w;j, 7, At}. Here we optimize the penalized negative Poisson

log-likelihood:

Lrun 2(0) = —Zm(}’ij(m)loglij(m) - Aij(m)) + Uw”Wij”Z + Tlr”Tij - To”2 + Nati

|at; - (viidi,- +dt;) ||2

Adding the convex L2 penalty terms does not change the overall convexity of the function. Since the log-
likelihood itself is not convex, here we again use a non-linear conjugate gradient descent algorithm with random
restarts. n,, and n, are hyperparameters constraining the weight and time constant, as before. Given the
distance between the two neurons d;;, the additional hyperparameter n,.; controls how strictly the synaptic

latency At;; should be tied to the predicted linear distance-latency relationship. Here 1, ; is set based on the

estimation of conduction velocity (see below, n,.; = 2/36).
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In both stages, w;;, 7;;, At;; are log transformed so that they are strictly positive during the optimization (or, with
a sign change, strictly negative when modeling an inhibitory w;;). In the results shown here we set n,, = 5 and
n: = 20 through manual selection, and 7, is set to 0.8 ms. We have done a sensitivity analysis on the
hyperparameters that we manually selected by doubling and halving the set values. We find that model
performance is not very sensitive to the change in those hyperparameters, at least for the large-scale simulations

we used here.

In addition to the full model, we also fit the cross-correlogram y;; using the slow model A;;(m) =
exp(fo + X.(m)B. ). We minimize the negative Poisson log-likelihood: I, (6) < —Zm(yij(m)logzij(m)—
Ai,j(m)) and estimate the parameters 6 = {B,, 8.} using iteratively reweighted least-squares. This provides a

baseline null model, without a fast, synaptic effect.

After fitting, we compare the performance of the full model (stage 2) with the slow model by calculating the log

likelihood ratio of the two models LLR = Ly 2(6) — L0 (6). If the log likelihood ratio exceeds a certain

threshold, we conclude that there is a putative connection from neuron i to neuron j.

Structural constraints on fast, synaptic effects

While learned bases capture slow structure in the cross-correlograms across all pairs, we also aim to describe
structure in the fast, synaptic effects for each presynaptic neuron. In the full model, we include two structural
constraints: 1) we constrain the latency of synaptic connections to increase with increasing distance between
neurons, and 2) we constrain presynaptic neurons to either excite or inhibit all of their postsynaptic targets, in
accordance with Dale’s law. Together, these constraints have the potential to improve detection of weak

connections that are consistent with the constraints and rule out the false positives that are inconsistent.

Estimation of the “conduction velocity”
To implement the constraint that synaptic latencies should increase with distance, we estimate an approximate

“conduction velocity” for each presynaptic neuron based on the distances between neurons and the estimated
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synaptic latencies from stage 1 above. Physiologically, conduction velocities vary as a function of axon diameter
and myelination (Sakaguchi et al. 1993) so some differences are perhaps expected. However, that in most
extracellular applications we are estimating the soma locations based on uncertain waveform information, and
the locations of axons and dendrites are unknown. “Conduction velocity” is, thus, just an approximation of the

potential positive relationship between synaptic latency and the distance.

Here we assume that there is a linear relationship between the synaptic latencies and the distances between

the estimated somatic location of a presynaptic neuron i and postsynaptic neuron j,
At = ! d;j +dt
i =5 i
where At;; is the synaptic latency, d;; is the distance between neurons, and the parameters v; and dt; describe

the “conduction velocity” and “synaptic delay” of the presynaptic neuron. To estimate the parameters, we first fit

all possible connections from the presynaptic neuron. Using initial estimates of A’t\l] from the full model (stage 1),

we then estimate v; and dt; for the neuron using a penalized weighted linear regression with the inter-neuronal

distances as predictors. Namely, we minimize the penalized, weighted negative log-likelihood [(v;, dt;) «
2(At;; —A/t\l])zw,ij/Zw,ﬁj + n4:lldtill,, where the penalty ||dt;||, ensures that dt; close to zero, and 7,4 is a

hyperparameter, which we set to 5 based on manual search. The weights wéj are set by ranking each pair of

neurons based on the likelihood ratio between the slow model and full model in stage 1 (lry 1 — Lsiow. S€€

Parameter Estimation), with the rth ranked pair having w(r) = This allows the pairs that are more

1
1+e2(r=5)"
likely to be true connections (those with larger likelihood ratios) to have larger weights. Then, after conducting

the penalized weighted linear regression, we pick the 5 neuron pairs with the largest weights to estimate the
mean squared prediction error 67 = %Z(Atij — Afij)z, which measures the reliability of the estimation. This

estimated prediction error, along with the estimated conduction velocity v; and delay dt;, is then used to

constrain the penalized full model in stage 2 (see Parameter Estimation above).

Estimation of the presynaptic neuron type
According to Dale’s Law, a single neuron should rarely be both excitatory and inhibitory, and connections with

the same presynaptic neuron are most likely to be all excitatory or all inhibitory. In order to estimate the
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presynaptic neuron type, for each presynaptic neuron i, we fit all the cross-correlograms y;4, yi», ... i, Using full
model twice, once constraining w;; = 0 (excitatory model) and once constraining w;; < 0 (inhibitory model).
Here we determine the presynaptic neuron type using the log likelihood ratio of the excitatory model fit to the
inhibitory model fit.
LLRs = ) (yij(m)logAfi(m) = 2f(m)) = > (vis(m)logai(m) — A;(m)

If the log likelihood ratio is positive, this suggests that the excitatory model provides a better description of the
correlogram than the inhibitory model. For each presynaptic neuron, we use the single neuron pair with the
largest likelihood ratio between two models to classify the neuron type (we tried using several weighting schemes,
such as the average LLR across all pairs or the top-5 pairs, but for the simulations and datasets used here the
top-1 pair performed the best of these schemes). We classify the presynaptic neuron i as a putative excitatory
neuron if LLRy > 0, or as a putative inhibitory neuron if LLR, < 0. After the neuron type classification, we only
adopt the corresponding full model (excitatory/inhibitory model based on the presynaptic neuron type) to later
determine whether there is a putative synaptic connection. We label all the putative connections from an
excitatory presynaptic neuron as putative excitatory connection, and all the putative connections from an

inhibitory presynaptic neuron as putative inhibitory connections.

Simulated networks of synaptically connected neurons

To examine how our model-based synapse detection approach performs we build two simulated networks of
modified leaky integrate-and-fire (LIF) neurons. In real data, the shapes of cross-correlograms of two neurons
can be affected by both the background activity of the network (external input shared by the network), and the
patterns of presynaptic activity (e.g. high vs low firing rate, bursting). Here we designed two distinct simulations
to capture these effects. In a first simulation we model a network of recurrently connected neurons that all receive
background common input, creating slow fluctuations in the cross-correlograms similar to those observed in real
data (Simulation 1 with common inputs). In a second simulation we then model a set of neurons receiving
presynaptic inputs from experimentally observed spikes, creating presynaptic spike patterns similar to those

present in real data (Simulation 2 with real presynaptic inputs).

For Simulation 1 with common inputs, we build a simplified, simulated network of adaptive leaky integrate-and-
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fire neurons with current-based synaptic inputs. 300 neurons are included in the simulation — 80% excitatory, 20%
inhibitory. All the neurons are randomly distributed in a square area. The neurons are randomly connected, and
only the neuron pairs whose distances are less than the median distance have synaptic connections. The
connection probability is set to be 5% for the excitatory presynaptic neurons (Holmgren et al. 2003) and 20% for
the inhibitory presynaptic neurons to balance the excitatory and inhibitory inputs (Barral and D’Reyes 2016;
Dehghani et al. 2016; Haider et al. 2006). 60 minutes of current input and voltage recording for each neuron are
simulated with a simulated sampling rate 10kHz for this network. The mean firing rate of all the neurons is 4.3Hz.
In this modified LIF model (based on (Liu and Wang 2001)), the membrane potential dynamics are affected by
three currents: 1) a leak current, 2) an after-hyperpolarization current, and 3) synaptic input

dvi,

C_
™ dt

= _gleak(Vm - Vrest) — gaHpP [Ca2+](vm - I/AHP) +Iinput
with

d[Ca?*] [Ca?*]
dt Tca

and if V,,(t) = V;, the neuron resets with

Vin = Viest [Ca2+] = [Ca2+] +a.

Here the dynamics of the membrane potential V,,, are governed by leaky integration of the input current, but every
time the neuron spikes Ca-currents lead to an after-hyperpolarization, preventing the neuron from spiking rapidly.
In the modified LIF model, when the membrane potential V;,, reaches the threshold V;,,the neuron spikes, 1}, is

reset to V,...;, and [Ca?*] increases by the amount a.

The input current I;,,,,,; to each postsynaptic neuron is given by

Iinput(t) = (1 - Wcom)lspontaneous(t) + Wcomlcom(t - Atcom ) + z ) Isyn,i(t)-
i

where Isyontancous iS 1/f noise independently generated for each neuron, ., is 1/f noise shared by the whole

network. Each neuron receives the common input with random latencies At.,,, to simulate the slow fluctuation

caused by background common input, and w,,,,, is the random common input weight. I,,,, ; denotes the synaptic

current from the ith presynaptic input added to the postsynaptic neuron with a synaptic latency At;; after each
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t—ts—Atyj p1-(t=ts

- ~At/Tsyn wn - is the synaptic weight randomly
syn

presynaptic spike at tg, Igyn i(t) = Weyni Xt <t
drawn from a bounded log-normal distribution — positive when the connection is excitatory and negative when

t
the connection is inhibitory. Note that, since max Gel_?) = 1, w,yy sets the amplitude of individual Post synaptic

current (PSC) in units of nA. Here we also give each presynaptic neuron a random “conduction velocity” v; and
set the synaptic latency according to At;; = d;;/v;;. This simulated network, thus, obeys the rule that synaptic
latencies increase linearly with the distances between presynaptic neuron and postsynaptic neuron (see Table

1 for parameters).

In Simulation 2 with real presynaptic inputs, we model 300 adaptive leaky integrate-and-fire neurons that receive
input from 300 neurons whose spike trains are from an in vitro multielectrode array recording. We randomly
assign 80% of the 300 presynaptic neurons to be excitatory neurons and the rest to be inhibitory. The connection
probability, connection rules, and LIF parameters are the same as in the first simulation (see Table 1). Here the
simulated sampling rate is 20Hz, which was used in the in vitro recording, and the input currents do not contain

the background common input, Iinput(t) = Ispontaneous(t) + Ziwsyn,ilsyn,i(t)-

Membrane properties
membrane capacity membrane conductance resting potential action potential threshold
Cn = 500 pF Jiear = -25 1S Viest = —65mV Vin = =50 mV
After-hyperpolarization (AHP) adaption
AHP conductance AHP potential AHP time constant influx

Gapp = 0.015 mS/cm? Vagp = —80mV Tcg = 100 ms a= .2uM

Synaptic input current
conduction velocity*

synaptic time constant synaptic weight (PSC amplitude)
Sim1: v; ~ U(.6,2.1) AU/s
Sim2: v; ~ U(1,3) AU/s Tgyn = 1 ms |Weyn|~lognormal(—2.5,.5) € [.05,.4] nA
Common input current
common input weight common input latency
Weom = -5 At.om~U(0,50) ms

Table 1: Parameters in the two simulated networks

*Since we don’t specify the “area” of the square space, the unit of the velocity is in arbitrary units (AU/s).
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Synaptic detection based on hypothesis testing
In addition to our model-based synapse detection method we also examine two previous methods based on

hypothesis testing: a thresholding method and a spike jitter method.

The thresholding method detects synapses by testing if the peak or trough in the correlogram is significantly
different from the expected number of coincidences (Barth¢ et al. 2004; Perkel et al. 1967b). Here we model the

count distribution using the mean y;; and standard deviation s;; of the cross-correlogram across bins — here
between [-25,25] ms, excluding the bins within the interval of [-10,10] ms. We then compute the z-score Zikj =
(yikj — ¥i;)/s;; for each bin k and compare this to a critical value z.. If there is at least one bin within the interval

of interest that exceeds the upper threshold z., the connection from neuron j to neuron j is labeled as an excitatory
connection. Similarly, if there is at least one bin within the interval below the lower threshold —z,, the connection
from neuron i to neuron j is labeled as an inhibitory connection. In practice, the threshold z. can be adjusted to
optimize the number of false positives/negatives. In comparing models, we use ROC curves to examine all

thresholds (see below).

One potential problem with the thresholding method is that the baseline for a correlogram is often not constant.
To address this, an alternative method (Fujisawa et al. 2008; Hatsopoulos et al. 2003) uses jittered spike trains
to generate a baseline cross-correlogram that keeps the shape of the slow fluctuation while removing fast
synaptic effects. With the jitter method, the presence of synaptic connections can then be inferred by testing if
there is a peak or trough that is significantly different from this time-varying baseline. Here we use a variant of
this method where, for each neuron, we randomly and independently jitter each spike on a uniform interval of [-
5,5] ms (as in Fujisawa et al. 2008) and generate 1000 jittered spike trains. The baseline cross-correlogram
between neurons i and j is then defined as the mean of the 1000 cross-correlograms constructed using the
original spike trains of neuron i and the 1000 jittered spike trains of neuron j. We calculate the mean y;;and
standard deviation s;; of the 1000 cross-correlograms for each neuron pair. We then compute the z-score of

each bin based on the original correlogram zf5 = (yfs — 75)/sf5. As in the thresholding method, if at least one of

the bins within the interval of [0,10] ms exceeds the upper threshold z., the connection is labeled as excitatory.
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Similarly, if there is at least one bin within the interval below the lower threshold —z,, the connection is labeled

inhibitory.

Evaluating methods for synapse detection

Using the simulations described above we evaluate our model-based synapse detection method alongside the
thresholding method and jitter method. Benchmarking the performance of synapse detection methods on real
extracellular recordings is difficult,since we are almost always uncertain about whether or not two neurons are
monosynaptically connected. However, with simulations, the ground-truth connectivity is known, and we can
compare the detection accuracy for different methods. Here we use receiver operating characteristic (ROC)
curves, specifically comparing false positive and true positive rates. Since the number of true positives is small
(less that ~5%), these rates and the area under the ROC curve (AUC) give a more accurate impression of the
detection performance than the overall accuracy and can be calculated without a set threshold. The scores we
use to determine whether there is a synaptic connection in generating the ROC curves vary for the three methods.
For the model-based method developed here, we use the log likelihood ratios of full model to slow model, while

for thresholding and jitter methods, we use the largest z-score within the [0,10] ms interval.

The ROC curves measure the overall performance of different methods on a series of thresholds. But when we
apply the method to real data and plan to make decisions on synapse detection, we still need to specify a
threshold. The choice of threshold has a large effect on the detection of putative synaptic connections. A
threshold that is too strict will result in a large number of false negatives, while a threshold that is not strict enough
will result in a large number of false positives. The uncertainty and diversity of the real datasets make it difficult
to pick the optimal threshold. Here, for illustration, we pick the threshold based on the results in our simulated
network (we pick Simulation 1 here since the threshold based on Simulation 1 is stricter). Since synaptic
connections are relatively rare compared to the total number of neuron pairs, we use Matthews correlation
coefficient (MCC, Matthews 1975) to measure the performance of different thresholds, which performs well for

imbalanced data (Boughorbel et al. 2017):

TP XTN — FP X FN

MCC = :
J(TP +FP)(TP + FN)(TN + FP)(TN + FN)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of false
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negatives, and FN is the number of false negatives. For the model-based method, the maximum MCC is .86
(TPR = 84.83%, FPR = 0.09%) for Simulation 1, the corresponding threshold is 4.64 (log likelihood ratio). It may
be valuable to note that this threshold is relatively close to the decision rule that would be given by minimizing
the Akaike or Bayesian Information Criteria (AIC or BIC), where the log likelihood ratios would need to be greater
than 3 or ~6.9, respectively (based on k = 3 extra parameters and n = 100 bins of observations). For jitter
method, the maximum MCC is .69 (TPR = 60.23%, FPR = 1.02%), the corresponding threshold is 3.59 (z-score)
for Simulation 1. In comparing the results from different synapse detection methods with real data, we pick the

thresholds for our method and the jitter method based on these maximum MCC results from the simulation.

In addition to the choice of threshold, the jitter method has 1 hyperparameter (jitter interval) and the model-based

method has 7 (1., 11, To, Maci Nae, N M) that are used for the entire set of putative connections. Here we fix the

hyperparameters for the model-based approach based on a coarse, manual optimization that minimizes false
positive fits with unlikely latencies (At) and time constants (t). These values could also potentially be optimized

using the cross-validated likelihood but, in practice, the results are robust across a wide range of settings.

MEA data

To examine how these methods detect putative synaptic connections in experimental data we use in vitro
recordings of spontaneous activity from organotypic slice cultures of mouse somatosensory cortex made using
a large and dense multielectrode array (512 electrodes, 60 pm interelectrode spacing, 5 um electrode diameter,
flat electrodes, roughly 1 mm by 2 mm total array area). The angle of the slices was approximately coronal, but
the lateral side of the plane was advanced by 15 degrees in the anterior direction. The extracellular signals were
recorded for 60 minutes at 20 kHz, and the spiking activity was then spike sorted based on the waveforms of the
marked electrode and its six adjacent neighbors using principal component analysis (PCA). The location of each
neuron was estimated using a 2D Gaussian fit to the maximum values of the spike triggered average waveforms
across multiple electrodes. There are 25 datasets available, most of which possess hundreds of neurons (min:
98, max: 594, mean: 309, total: 7735, mean firing rate of the neurons: 2.1 Hz). All data is available via the

Collaborative Research in Computational Neuroscience (CRNCS) Data Sharing Initiative: https://crcns.org/data-

sets/ssc/ssc-3/about-ssc-3. Additional experimental details and raster plots can be found in (Ito et al. 2014, Fig.
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4A).

To simulate the network with real data input (Simulation 2), we used spike trains from the highest firing rate
neurons combined from two datasets (datasets 16 and 23), choosing 300 neurons in total (out of 904 possible).

The mean firing rate of the 300 neurons was 5.57Hz (min: 1.88Hz, max: 44.55Hz).

For examining putative synaptic connectivity in the experimental data, we use dataset #13 (humber of neurons:
381, mean firing rate: 1.95 Hz) and dataset #23 (number of neurons: 310, mean firing rate: 2.81 Hz). Here we
exclude the neurons with less than 1000 spikes recorded, 68 neurons (17.85%) are excluded from dataset #13,
21 neurons (6.77%) are excluded from dataset #23. Before we apply the detection methods on these datasets,
we also exclude the neuron pairs where the correlogram may be misestimated due to the way that spike trains
were sorted. If the waveforms of two neurons show up on the same set of electrodes, near simultaneous spikes
tend to overlap and be sorted inaccurately (Pillow et al. 2013, "spike shadowing"). Here, we calculate a spike
He—li Be—

sorting index ss = min {u_ p “T} to exclude the cross-correlograms with a peak or trough near m = 0. Here
l T

U is the total number of counts within 1.5 ms of the center of the correlogram (3 bins), y; is the total number of
counts within 1.5 ms (3 bins) that are to the left of the center, p, is the total number of counts within 1.5 ms (3
bins) that are to the right of the center. We exclude the neuron pairs when the spike sorting index ss is greater
than 0.5. Based on this rule, 6.51% of the neuron pairs are excluded from dataset #13, 5.55% of the neuron

pairs are excluded from dataset #23.

Results

Here we develop an extension of a generalized linear model (GLM) to describe the correlograms between pairs
of neurons. This model aims to separate the cross-correlogram between each pair of neurons into two parts: 1)
a slow effect caused by fluctuating firing rates and common input from other neurons, which is fit using a group
of smooth basis functions learned from the data, and 2) a fast effect caused by the synaptic connection, which
is fit by a short-latency, fast onset alpha function (Fig. 1A). In this study, we model the time interval between -25
ms to 25 ms, with a binsize of 0.5 ms. To determine whether or not a given pair of neurons might be synaptically

connected we then compare the full model with a reduced model that has the slow effect but not the fast effect.
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If the full model provides a better description of the data than the slow model (using log-likelihood ratio), this may

indicate that there is a synaptic connection between the two neurons (Fig. 1B).

Although this model comparison based on the correlogram between a single isolated pair of neurons can provide
evidence of a putative synaptic connection, incorporating information from other connections may be able to
improve detection accuracy. Here we first constrain the parameters of the full model based on the presynaptic
neuron type. Since neurons are rarely both excitatory and inhibitory (Dale’s Law), synaptic connections with the
same presynaptic neuron are most likely to be all of one sign. If a presynaptic neuron has a connection with a
clear positive synaptic effect, this can indicate that other connections from this presynaptic neuron should be
positive as well. Second, we constrain the parameters of the full model based on the synaptic latency. Synaptic
latencies tend to increase with the distance between the pre- and postsynaptic neuron (Fig. 1C). Here we assume
a linear relationship between distance and latency and estimate a “conduction velocity” for each presynaptic
neuron. If this relationship is clearly linear, the possible latencies for other connections can be constrained.
Together, these two constraints may act to better detect the weak connections and exclude the false positives

that violate the expected structure (see more details in methods).



423
424
425
426
427
428
429
430

431

432

433

434

435

436

437

438

A C excitatory neuron i inhibitory neuron j

positive / negative alpha function

Lo ™ ]
'le_ain_eg _basis functions_ |
—_——————— ’:
| ; O ihialins |

—~———————— ! K
— i i
interval [ms] -10 0 10 -10 0 10
interval [ms] interval [ms]

Slow model
Full model

Putative excitatory connections

—&_: i ——— i e

Putative inhibitory connections

Putative no connections

y | ii , Lo ' _
-25 0 25
Interval [ms]

Figure 1: Model-based description of the cross-correlogram between the spiking of a pair of potentially connected neurons. A: The
extended GLM separates the cross-correlogram into two parts: 1) a slow effect that we fit using a group of smooth basis functions which
were learned from the whole network (outlined in red), and 2) a fast effect that we fit using a short-latency, fast onset alpha function
(outlined in yellow). B: Some examples of model fits for cross-correlograms of putative excitatory, putative inhibitory, and putative non-
connections. If the full model (yellow) provides a better fit to the correlogram than the slow model (red), we label the neuron pair as a
putative connection. C: The schematic figure shows the structural information that we use to constrain the model fits: 1) the connections
from one presynaptic neuron should be either all excitatory or inhibitory, and 2) the synaptic latency should increase with increasing

distance between pre- and postsynaptic neurons.

Simulated networks with type and latency constraints

To evaluate our model, we build two simulated networks of adaptive leaky integrate-and-fire (LIF) neurons:
Simulation 1 with common inputs, a network of 300 recurrently connected LIF neurons receiving slow,
background common input, and Simulation 2 with real presynaptic inputs, a network of 300 unconnected LIF
neurons receiving input from a set of experimentally recorded spike trains. In the first simulation, 80% of the

neurons are randomly assigned to be excitatory, with the rest being inhibitory. The neurons are randomly
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connected to each other with a connection probability of 5% for the excitatory presynaptic neurons and 20% for
the inhibitory presynaptic neurons. Synaptic weights (as PSC amplitude) are then randomly drawn from a log-
normal distribution, similar to results from in vitro observations (Song et al. 2005). In addition to the synaptic
input, all neurons receive background common input from a single slowly fluctuating, noisy source with a random
delay (see Methods). This common input produces baseline fluctuations in the cross-correlograms similar to
what is frequently observed in the real data (Fig 2A). Additionally, we assign each presynaptic neuron a
“conduction velocity” and make the synaptic latencies between neurons distance-dependent. In Simulation 1,
the mean firing rate of all the neurons is 4.35 Hz (min: 2.58 Hz, Q1: 3.72Hz, Q2:4.23 Hz, Q3: 4.78 Hz, max: 8.71
Hz, SD = .89 Hz). This simulated network, thus, has realistic slow fluctuations in the correlograms, obeys Dale’s

Law, and the relationship between synaptic latency and distance increases linearly for each presynaptic neuron.

The second simulation consists of a set of 300 LIF neurons each receiving presynaptic inputs from a subset of
300 spike trains recorded in vitro. Again, the presynaptic neurons are randomly assigned to be excitatory (80%)
or inhibitory (20%). The presynaptic neurons are randomly connected to the postsynaptic neurons with a
connection probability of 5% for the excitatory presynaptic neurons and 20% for the inhibitory presynaptic
neurons, and the synaptic weights are randomly drawn from a log-normal distribution. The synaptic latencies
also increase linearly with distance, as before. In this case, although there is no common input, the presynaptic
spike patterns are drawn from experimental recordings and the presynaptic neurons have greater variation in
their firings rates and inter-spike interval patterns. The mean firing rate of the presynaptic neurons in this
simulation is 5.57 Hz (min: 1.88 Hz, Q1 = 2.84 Hz, Q2 = 4.26 Hz, Q3 = 6.55 Hz, max: 44.6 Hz, SD =4.98 Hz).
The mean firing rate of the postsynaptic, LIF neurons is 5.63 Hz (min: 4.00 Hz, Q1: 5.10 Hz, Q2: 5.56 Hz, Q3:
6.10, max: 8.89 Hz, SD = .80 Hz). Although the correlograms of Simulation 2 do not have slow baseline
fluctuations (Fig 2B), they have a broader range of absolute baselines and will allow us to determine to what

extent synapse detection is affected by more realistic presynaptic spike patterns.



464
465
466
467
468
469
470
471
472
473
474

475

476

477

478

479

480

481

A 300 LIF neurons Simulated excitatory connections

Simulated inhibitory connections

Simulated no connections

-25 0
Interval [ms]

N

5

B

Simulated excitatory connections

.300. neurons Wit.h 300 LIF neurons
in vitro spike trains

‘
11 b

11 T

O
(o) Simulated inhibitory connections
° i

Simulated no connections

8><8 -25 0

Interval [ms]

N

5

Figure 2: Two simulated networks of leaky integrate-and-fire (LIF) neurons. A: Schematic showing the structure of Simulation 1 with
common inputs (left). 300 LIF neurons (80% excitatory, 20% inhibitory) are randomly connected to each other with constraints on synaptic
latency (see Methods). They receive background common input to generate a slow baseline fluctuation in the cross-correlogram.
Examples of the cross-correlograms for simulated excitatory, inhibitory and non-connections (right). B: Schematic showing the structure
of Simulation 2 with real presynaptic inputs (left). 300 LIF neurons receive presynaptic inputs from 300 experimentally recorded spike
trains. We randomly assign 80% of the presynaptic neurons to be excitatory and the rest to be inhibitory. Note that, although the schematic
illustrates the bipartite connectivity structure, the 600 neurons are randomly distributed in space and the synaptic latencies increase
linearly with distance between the neurons as in Simulation 1. Examples of the cross-correlograms of simulated excitatory, inhibitory, and
non-connections from the second simulation (right). Due to the fact that the experimentally recorded spike trains have greater variation

in the average firing rates and patterns, the cross-correlograms here have a wider range of absolute baselines.

A central assumption of the model-based detection approach used here is that neuron type and latency
constraints can, in principle, allow information to be shared across the connections made by a presynaptic neuron.
However, in order for these constraints to be useful, the model must be able to accurately estimate both whether
a presynaptic neuron is excitatory or inhibitory and the presynaptic neuron’s “conduction velocity” from noisy
spiking data. Therefore, before evaluating whether these constraints improve detection, we determine how

accurately we can recover neuron type and “conduction velocity” in each of the simulations.
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In order to determine the presynaptic neuron type, we compare two models of the cross-correlogram between
each pair of neurons: one with a positive fast, synaptic effect and the other with a negative synaptic effect. We
can then estimate the type of each presynaptic neuron by asking which of the two models provides a better
description of the cross-correlograms involving that presynaptic neuron (see Methods). Using our model, in
Simulation 1 with common inputs, 97.7% of the neurons are labeled correctly (7 out of 300 mislabeled). In
Simulation 2 with real presynaptic inputs, 95% of the neurons are labeled correctly (15 out of 300 mislabeled).
In this case the mislabeled neurons are also relatively low-firing rate (mean firing rate = 3.31 Hz, compared to

5.57 Hz for all presynaptic neurons).

We then evaluate how well we can estimate each presynaptic neuron’s conduction velocity from the cross-
correlograms. Here we estimate the synaptic latency between each pair of neurons and use a weighted linear
regression to then estimate the “conduction velocity” of each presynaptic neuron (see Methods). Using this
approach, we find that we can recover the true velocity that was assigned to each of the presynaptic neurons in

the simulations relatively accurately. For Simulation 1 with common inputs, the estimated latency-distance

parameters are correlated with their true values (5), r = .95 ,p <.01, root mean squared error RMSE = .0013

AU/s (Fig. 3A) and for Simulation 2 with real presynaptic inputs, r = .67,p <.01,RMSE = .0015 AU/s (Fig. 3D).

Given these constraints, we can then examine how well we are able to recover the properties of individual
connections. Here we analyze only the true connections within the simulations and find that the true synaptic
weight can be recovered relatively accurately: for Simulation 1 with common inputs, r = .96,p < .01, for
Simulation 2 with real presynaptic inputs, r = .92,p <.01. Similarly, synaptic latency can be estimated
accurately: for Simulation 1 with common inputs, r = .98,p <.01,RMSE = .37 ms, for Simulation 2 with real
presynaptic inputs, r = .93,p <.01,RMSE = .58 ms. And Including neuron type and latency constraints
improves those reconstructions (For the model without constraints, Simulation 1: latency: r = .73,p <
.01,RMSE = 1.16 ms, weight: r = .92,p <.01. Simulation 2: latency: r = .38,p <.01,RMSE = 2.32 ms,
weight: r = .79,p <.01). Together, these results illustrate how, for simulated networks, our model is able to

capture the type and conduction velocity of presynaptic neurons, as well as the parameters of individual
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Figure 3: The extended GLM can capture the properties of presynaptic neurons and individual synaptic connections in two simulated
networks: a recurrent network with common input (A-C) and a network with realistic input (D-F). A & D: Estimated and true presynaptic
conduction velocity. Each dot represents one simulated presynaptic neuron. Colors indicate the estimated presynaptic neuron type.
Axes are normalized. B & E: Estimated and simulated synaptic weight (w;;, coefficient of the alpha function). Here each dot represents
one true connection. Y-axis is the PSC amplitude assigned in the simulations. Note that dots in the second and fourth quadrants
correspond to cases where the presynaptic neuron type has been misestimated. C & F: Estimated and simulated synaptic latency.

Again, each dot represents one true connection.

Synapse detection with simulated spike trains: Evaluating the model-based method
Given that the model-based approach can recover the properties of presynaptic neurons (type and conduction
velocity) and the properties of individual connections, we then ask how well our model can distinguish which

pairs of simulated neurons are synaptically connected and which are not. We applied our model and two
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previously used synapse detection methods: the thresholding method and spike jitter method, to the two
simulations described above. Briefly, the thresholding method is based on testing if the peak or trough in the
correlogram immediately following a presynaptic spike is significantly different from a constant, baseline number
of coincidences. Since the baseline is estimated with a single value, the thresholding method is generally
effective in cases where there is little fluctuation but will not work well in situations where there are strong
fluctuations (e.g. due to shared common input). To account for these fluctuations, Hatsopoulos et al. (2003)
developed a pattern jitter method where jittered spike trains generate a baseline cross-correlogram that
preserves slow structure in the correlogram while removing fast, transient effects such as those due to a synaptic
connection. The spike jitter method is then based on testing if the peak or trough is significantly different from
the local baseline estimated from the jittered spikes (see Methods for more details). In both the thresholding and
the jitter methods there is no explicit model for the slow effects and fast, synaptic effects, and each cross-
correlogram is treated as a separate hypothesis test. In contrast, the extended GLM uses an explicit, parametric

structure for the slow and fast effects, as well as constraints based on neuron type and conduction velocity.

Since we know where the connections are in the simulations, we can compare the performance of the model-
based method to the thresholding and spike jitter methods. Fig. 4A and 4B show the overall receiver operating
characteristic (ROC) curves for each method, for the two simulated networks, respectively. These curves
compare the true positive rate (where a true, simulated synaptic connection is detected as a connection,
regardless of whether the connection was excitatory or inhibitory) and the false positive rate (where the simulated
neurons were not connected, but the method detected a connection). For Simulation 1 with common inputs, the
extended GLM without any network constraints (area under the curve, AUC = .96) performs better than jitter
method (AUC = .94) and thresholding method (AUC = .85). With the constraints on neuron type and conduction
velocity, the performance of the model-based method improves (AUC = .99). Similarly, for Simulation 2 with real
presynaptic inputs, the extended GLM with constraints (AUC = .92) outperforms the model without constraints
(AUC = .86), the jitter method (AUC = .87), and the threshold method (AUC = .86). The standard errors of AUC

generated using bootstrap for all the methods are less than .001.

Although all methods perform well above chance in detecting connections, we find that both the jitter method
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and thresholding method have a bias towards the detection of excitatory connections. When the decision criterion
is set such that the number of false positives is small (less than ~10%) both methods detect far more excitatory
connections than inhibitory connections, despite the fact that the number and strengths of excitatory and
inhibitory connections were approximately balanced in the simulations. This bias may be partially due to the fact
that here, for jitter method and thresholding method, we approximate the noise distribution of the correlograms
using a normal distribution (z-scores), rather than using an empirical distribution. On the other hand, the extended
GLM shows no preference for either excitatory or inhibitory connections for simulation 1, and a slight bias towards

inhibitory connections for simulation 2 (Fig. 4B & E).

In addition to the overall performance and the performance on different cell types, we also expect the detectability
of synapses to depend on the synaptic strength and the rates of the pre- and postsynaptic neurons. Here we
find that, for both of the simulations, the extended GLM with constraints and the jitter method perform at a similar
level for strong connections, but that the extended GLM has better detection for weak connections (Fig. 4C and
F). We also find that the performance of both methods varies as a function of the firing rate of presynaptic
neurons. Here the extended GLM outperforms the jitter method at all rates, but both of the methods show better
performance for synaptic connections where the presynaptic firing rate is high compared to those where rate is
low (Fig. 4G). By incorporating the learned network information, the extended GLM with constraints appears to
better detect weak connections and rule out false positives. For example, although both the extended GLM and
the jitter method can detect strong connections (Fig. 4H, top two correlograms), the jitter method has more false
positives and false negatives. It may fail to detect a weak connection that does not exceed threshold (the third
correlogram), or falsely detect a non-connection if there is noise that exceeds threshold (the bottom correlogram).
On the other hand, if the weak connection has a sign and latency consistent with the constraints, the extended
GLM can successfully detect it, and if the sign or latency are inconsistent with the constraints, the extended GLM

can successfully rule this connection out (Fig. 4H).
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Figure 4: The extended GLM with constraints outperforms the jitter and thresholding methods on both of the simulations. Panel A, B and
C show the results from Simulation 1 with background common inputs. Panel D, E and F show the results from Simulation 2 with real
presynaptic inputs. A & D: ROC curves for the extended GLM with and without constraints, jitter method, and thresholding method. B &
E: Jitter method and thresholding method are biased towards the detection of excitatory connections. The y-axis is the ratio of the
excitatory true positive rate and the inhibitory true positive rate. If the method has no preference for connection type, the ratio should be

1. C & F: The extended GLM with constraints performs better than jitter method especially on weak connections. Here we divide the
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synaptic connections into 20 groups based on their synaptic weights and calculate AUC for each group (each group contains 5% of the
connections). The error bars denote standard error (estimated using bootstrapping). G: The performance of both of the two methods is
affected by the presynaptic firing rate. We divide all the presynaptic neurons into 10 groups based on their firing rates and calculate AUC
for each group (each group contains 10% of the presynaptic neuron). Only results from Simulation 2 are shown, since there is a wide
range of presynaptic firing rates. H: The extended GLM with constraints can better detect weak connections and rule out the false positives
based on the learned structural information. The two columns show the same four cross-correlograms with the same inhibitory presynaptic
neuron along with the results for the extended GLM (left) and the jitter method (right). For the model the yellow line represents the full
model with inhibitory alpha function, and the red line represents the slow model. For the jitter method, the red and blue lines denote the

upper and lower bounds (based on the best MCC), respectively.

In the above results, we set the bin size of the cross-correlograms to 0.5 ms for all the methods to tradeoff
between the number of spikes within a bin and the time resolution. However, since bin size may affect
performance, we also ran our model, the jitter method and the thresholding method with the bin sizes of 0.25 ms
and 1 ms on the Simulation #1. We find that finer time resolution improves the performance of our model-based
methods and does impair the performance of the jitter and thresholding methods. However, the best overall
performance is at small bin sizes where the latency and time constant of the fast synaptic effect can be accurately

estimated (Table 2).

GLM GLM Jitter method Thresholding
(w/ constraints) (w/o constraints) method
Bin size = 0.25 ms .9883 9627 .8850 .7837
Bin size = 0.5 ms .9852 9597 .9426 .8508
Bin size =1 ms 9775 9472 .9668 8772

Table 2: Performance (Area Under the Curve) of different methods with different bin sizes on Simulation #1.

The overall connection probability may also play a role in detection accuracy. Higher connection probabilities
may cause more cases where pairs of neurons have spurious correlations due to common drive from a third
neuron. Lower connection probabilities could also make the constraints less useful, since there will be fewer
connections from which to estimate both types and distance-latency relationships. As a reference, we ran
Simulation #1 with increased connection probability (20% for excitatory neurons, 80% for inhibitory). With this

denser simulation the performance for all model decreased: the GLM with constraints had an AUC of .97, the
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GLM without constraints had an AUC of .89, the jitter method had an AUC of .90, and the thresholding method

had an AUC of .78. However, the relationship among the methods remains very similar.

Synapse detection with in vitro multielectrode array (MEA) data

In order to evaluate the performance of our method on real data, we apply it to spontaneous in vitro spike activity
recorded in a mouse somatosensory cortex slice culture using a 512-electrode array (see Methods). Here we
adopt two representative datasets: dataset #13 and dataset #23, and examine potential connections between
neurons with >1000 spikes recorded. Before we run the model on the dataset, in order to get rid of the possible
influence of spike sorting problems, we exclude the neuron pairs when there is an anomalous peak or trough

right in the middle of the correlogram (<7% of pairs, see Methods for more details).

Since we don’t know the ground truth about where the synaptic connections are in the in vitro data, we are not
able to directly measure the performance of our synapse detection methods. However, we can qualitatively
assess whether or not the method gives results consistent with what we expect. We first validate whether our
method can correctly classify excitatory neurons and inhibitory neurons by analyzing the shape the spike
waveform of each neuron. Previous studies have shown that the excitatory neurons typically have broader spike
waveforms, while the majority of inhibitory neurons have narrower spike waveforms (Bartho et al. 2004). In the
two datasets used here, the neurons with broader waveforms are more likely to be classified as excitatory
neurons by our model based on their putative synaptic connections, but the results for neurons with narrow
waveforms are mixed (Fig. 5A). To quantify the relationship between waveform and connectivity, we fit a
Gaussian mixture model with 3 components to the trough-to-peak duration and half-amplitude duration of the
waveforms creating three clusters for “broad waveforms”, “narrow waveforms”, and “outliers”. After assigning
each neuron to a cluster (based on the posterior probability), we analyze the consistency between the waveform
shape and the neuron type given by their putative connections. From the presynaptic neurons with putative
connections detected by our method, we find that 77% of the “broad-spiking” neurons are classified as putative
excitatory neurons based on their connectivity, and 47% of the “narrow-spiking” neurons are classified as putative

inhibitory neurons. Inhibitory, non-fast-spiking neurons with broad waveforms have been previously reported

(Dehghani et al. 2016), however, excitatory neurons with narrow waveforms are unexpected. There are likely to
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be some cases where the extended GLM misidentifies the neuron type, however, there are also cases where
neurons with narrow waveforms appear to have putative excitatory connections with typical short-latency, fast
transient increases in the cross-correlograms. This may suggest that the in vitro recordings here contain
excitatory neurons with narrow waveforms. Many single units in the MEA data here appear to be narrow due to
the fact that they have triphasic waveforms. Previous work suggests that this could indicate a nearby axon (Barry

2015; Gesteland et al. 1982; Robbins et al. 2013).

We then analyze the properties of the putative synaptic connections detected by our method. Here we pick the
thresholds for our method based on the maximum MCC from the simulation with background fluctuations (see
details in Methods). We first find that the neurons close to each other are more likely to have putative connections
(Fig. 5B). The median distance between neuron pairs with putative connections is 708 um, compared to a median
distance between all the neurons of 813 ym for dataset #13. And for dataset #23, the median distance between
neuron pairs with putative connections is 810 ym compared to the median distance between all the neurons 859
Mm. These results are consistent with previous findings in other cortical areas that the probability of a synaptic
connection decreases with distance (pyramidal cells in layer 2/3 of rat visual and somatosensory cortex:

Holmgren et al. 2003; pyramidal cells in layer 5 of rat visual cortex: Song et al. 2005).

We then compare the putative connections detected by the extended GLM and the jitter method on these same
datasets. As with our method, we pick the threshold for jitter method based on the maximum MCC (see details
in Methods) from Simulation 1 with background fluctuations. In general, the extended GLM and jitter method
detect highly distinct sets of connections (Fig. 5C and 5D). Here we sort the neurons based on the similarity of
their putative connections detected by our method (using hierarchical clustering). For the Hinton plot of our

method, the size of each square represents the magnitude of the estimated synaptic weight w;; of the

corresponding neuron pair. For the Hinton plot of jitter method, the size of each square represents the magnitude

of the z-score of the corresponding neuron pair.

Based on the Hinton plots, we do see that the results from our method and jitter method show certain agreements

on the detection of putative connections, especially on the strong connections: For dataset #13, the two methods



667  show the same detection results (whether there is a synaptic connection or not) on 96.8% of the neuron pairs,
668  for dataset #23, the two method show the same detection results on 94.13% of the neuron pairs. However, since
669 the vast majority of pairs are not connected, we also use MCC to measure the similarity between the results of
670 the two methods. The MCC between the results of the two methods is .30 (dataset #13) and .46 (dataset #23),
671  which implies some disagreements between the results of the two methods. We find that jitter method reports
672  more putative connections than our method (dataset #13: 2582 vs. 1423, dataset #23: 5204 vs. 3543). In addition,
673  our method reports more putative inhibitory connections. For dataset #13, 26.4% (375 out of 1423) of the putative
674  connections are inhibitory when using our method, while 5.9% (152 out of 2582) of the putative connections are
675 inhibitory when using jitter method. For dataset #23, 50.7% (1797 out of 3543) of the putative connections are
676  inhibitory when using our method, while 16.3% (846 out of 5204) of the putative connections are inhibitory when

677  using jitter method.
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680 Figure 5: Applying the extended GLM to in vitro multielectrode array data. A: left: most of the neurons with wide waveforms are classified

681 as putative excitatory neurons by our method, while the results for neurons with narrower waveforms are rather mixed. Right: The
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waveforms of putative excitatory neurons and inhibitory neurons. For putative inhibitory neurons, the waveforms are narrow, while for the
putative excitatory neurons, there are two clusters of waveforms. B: the histograms of the distance between neurons (top: dataset #13,
bottom: dataset #23). Distances for all neuron pairs are in blue, while distance for neuron pairs with putative connections are in red. C &
D: Hinton plots for dataset #13 (C) and #23 (D) using the extended GLM and jitter method, respectively. The putative excitatory
connections are marked in red. The putative inhibitory connections are marked in blue. Here all the neurons are sorted by the similarity
of their putative connections detected by our method. Each row represents the connections from one presynaptic neuron. In each Hinton
plot, the two horizontal lines separate the neurons with no putative connections, putative inhibitory neurons, and the putative excitatory

neurons. The two vertical lines mark the same boundaries for postsynaptic neurons.

We then examine to what extent the synaptic latencies of the putative connections from one presynaptic neuron
increase as function of distance. For each neuron with more than 2 putative connections (450 out of 602 neurons
across both datasets), we calculate the Pearson correlation coefficient r between the estimated synaptic latency
At and the distance between the corresponding pre and postsynaptic neuron. Fig. 6E shows the histogram of all
the correlation coefficients of the two datasets, 72% of the neurons show a positive correlation between the
estimated synaptic latency and distance between neurons, 36% of them are statistically significant (p < .05). Fig.
6A & 6B show some examples of presynaptic neurons that have many connections and are consistent with a
linearly increasing latency-distance relationship (r > 0). We find both putative excitatory and putative inhibitory
cases where this relationship seems to hold. In the cases where the neurons don’t obey the rule (r < 0, 29% of
the neurons), the accuracy of the linear fit of the latency-distance relationship tends to be lower. Under the
extended GLM the constraint on the synaptic latency for these ill-predicted connections (n,.) is also weaker
(although not significant, unpaired t-test:t(240) = —1.91,p = .058,CI = [—1.73,.03], Fig. 6F). Since the strength
of the constraint in our model is partially based on how well the latency-distance relationship is fit by a linear
trend, these constraints thus have a weaker influence and our method is still able to detect putative connections

at unexpected latencies (Fig. 6C & 6D).
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Figure 6: Applying the extended GLM to in vitro multielectrode array data. A,B, C & D: examples of neurons where the relationship
between synaptic latency and distance is consistent with an increasing linear trend (panel A & B) and inconsistent with such a trend (panel
C & D). Panel A & C: data points with the same color represent putative connections from the same presynaptic neuron. The dotted lines
show the linear regression of the estimated synaptic latency and distance. Panel B & D : cross-correlograms for these connections with
colors corresponding to the scatter plot. E: the histogram of Pearson correlation between the putative synaptic latency and distance for
all the presynaptic neurons. F: mean n,, for the neurons that don’t obey the latency rule (r < 0) and the neurons that obey the rule (r >

0&p < .05).

Discussion

Traditionally, intracellular recording represents a gold standard for characterizing synaptic connections.
Detecting synaptic connections using the intracellularly recorded postsynaptic potentials and currents is
straightforward and reliable (Harris et al. 2016; Song et al. 2005). However, only a relatively small number of
neurons can be recorded simultaneously using intracellular recording, particularly in vivo (but see Pawlak et al.
2013). In recent decades, advances in multielectrode arrays have allowed the spiking of hundreds to thousands
of neurons to be recorded simultaneously in vivo or in vitro with thousands of potential synapses between them
(Cheung et al. 2007; Ito et al. 2014; Seeman et al. 2018; Spira and Hai 2013). Distinguishing the monosynaptic
connections from the many tens of thousands of possible connections in these large-scale extracellular
recordings is a difficult statistical problem. Previous methods for distinguishing putative synaptic connections
and non-connections in large-scale recordings have used separate hypothesis tests on the cross-correlograms
of all potentially connected neuron pairs (Hatsopoulos et al. 2003; Pastore et al. 2018; Perkel et al. 1967b). In
recent work, Kobayashi et al. 2019 find that a model-based approach combining a slow background effect and
a fast synaptic effect (GLMCC) provides improved performance. Here we develop an extended GLM that also
incorporates two structural constraints learned from the whole network: presynaptic neuron type and the
relationship between the synaptic latency and distance between pre- and postsynaptic neurons. On two
simulated integrate-and-fire networks, our model outperforms previous synapse detection methods (the
thresholding method and spike jitter method), especially on the weak connections. We also apply our model on
in vitro multielectrode arrays (MEAs) data. Here our model recovers plausible connections from hundreds of

neurons recorded extracellularly.
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Many factors affect how likely a synaptic connection is to be detected, including the firing rates of the pre- and
postsynaptic neurons, the recording time, and the synaptic strength. Here, in our simulations, we find that the
model-based approach outperforms the hypothesis testing-based approaches for a wide range of firing rates
and shows particular improvement for detecting weak connections. At the same time, in our simulations, the
model-based methods outperform the hypothesis test-based methods at all thresholds. That is, the distributions
of likelihood ratios for connections and non-connections are more distinct than the distributions of test statistics
with the jitter or thresholding methods. In practice, however, when detecting putative synapses, the choice of
threshold has a strong effect on how many synapses are detected and also how many false positives there are.
Here, in detecting putative synapses in experimental data we apply the same optimal (MCC maximizing)
threshold from the simulation. This is largely for illustration, but selecting an appropriate threshold for
experimental recordings depends on the researchers’ tolerance for false positives and false negatives. Ultimately,
the choice of threshold should be based on the aims of the analysis and the costs/benefits of mistakes in

interpreting the underlying data.

Since we don’t know the ground truth for experimental data, it is possible that the threshold used here might be
either too strict or too permissive. However, the performance of the model-based method may be somewhat
more robust to the choice of threshold than the jitter and thresholding methods. In our simulations, we find that
both the jitter method and thresholding method show strong biases towards detecting excitatory connections,
particularly at strict thresholds with few false positives. The model-based approach, on the other hand, detects
excitatory and inhibitory connections in proportion to their prevalence in the simulation at all the thresholds. The
bias of the jitter method may due to the fact that we here measure test statistics assuming that spike counts
follow a normal distribution. This approximation clearly does not accurately account for the fact that spike counts
can only be non-negative. However, in practice we find that this type of smooth approximation has better
performance at strict thresholds compared to using the empirical count distributions (using the percentile of the
true counts in the jittered count distribution), which do not have smooth tails. These biases we find in the
simulation results may indicate that, when we apply these methods to real data, jitter method and thresholding
method may distort the observed E-I ratio if the threshold is too strict. Consistent with the simulation results, in

the in vitro data analysis, we find that the jitter method also typically detects many more excitatory than inhibitory
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connections (5-13x more), while the model-based method detects putative connections with a smaller El ratio
(~3:1). Previous work has found that approximately one in five neurons is GABAergic in many neocortical areas
and species (Hendry et al. 1987; Sahara et al. 2012). Although there are many factors that might influence the
observed El ratios when measuring putative synapses from spikes, the model-based approach appears to be

less biased.

In the model-based approach, we learn two structural constraints from the whole network: presynaptic neuron
type and the relationship between the synaptic latency and distance between pre- and postsynaptic neurons.
For the presynaptic neuron type, using the simulation, we find that the model-based approach is able to
successfully classify most neurons. However, when applying the method to the in vitro data, we compare the
neuron type estimated based on putative synaptic connections with waveform shapes, and find that our results
are somewhat less clear than previous findings in vivo (Barth6 et al. 2004). Instead of two, well separated
excitatory (broad waveforms) and inhibitory (narrow waveforms) clusters, we find substantial mixing of types
across clusters. This may be partially due to the particulars of organotypic slice recording. Previous works have
found that the waveforms in these recordings tend to be more triphasic potentially due to axonal conductance
(Barry 2015; Robbins et al. 2013), and this could lead to misestimation of waveform width. New methods, such
as optotagging (Lima et al. 2009) or optrodes (English et al. 2017) may offer a more reliable identification of
neuron type. However, in the absence of experimental verification, it is difficult to evaluate the accuracy of cell
type inferences. Additionally, although here we assume that presynaptic neurons are either exclusively excitatory
or exclusively inhibitory, there is recent and growing evidence that presynaptic neurons can co-release multiple

neurotransmitters (Root et al. 2014).

For the relationship between the synaptic latency and distance between pre- and postsynaptic neurons, we found
that the model-based method can successfully learn linear relationships in simulation and that these constraints
improve detection performance. By applying our method to the in vitro data, we also find that for most of the
neurons, the synaptic latencies tend to increase with the distance between the pre- and postsynaptic neurons.
However, there appears to be a portion of neurons that don’t show this pattern. In many cases, we may not have

enough putative synaptic connections to estimate such a trend. In the cases where there are enough connections,
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there may not be a trend due to several other reasons. First, the locations of the somas are only approximate —
based on which electrodes have the highest amplitude waveforms. Second, although here we model presynaptic
conduction velocity, it's possible that the dendritic distance constitutes a large portion of the distance. And third,
the straight-line distance between somas may not be the same as the trajectory of the axons/dendrites, especially
when the neurons are sampled from different barrel fields or different cortical layers. Although previous
theoretical work on the minimum wiring length principle might suggest the conduction distance between two
neurons can be well approximated with straight-line (Chklovskii et al. 2002; Koulakov and Chklovskii 2001), there
are clearly many sources of uncertainty when estimating conduction velocity here. However, it is important to
note that, within the extended GLM, the conduction velocity is only a soft constraint, and the strength of the
constraint is related to how accurately the relationship is fit by a straight line. We are still able to detect

connections even if the relationship between synaptic latency and distance is not clearly linear.

With the model-based method, we are able to learn the properties of each presynaptic neuron (type and
conduction velocity) and use these properties to better detect individual synaptic connections based whether
they are consistent with these properties. In the future application of this method, we could potentially include
other sources of information to better estimate these properties. For instance, cell types can be classified
according to: mean firing rate, the mode of the inter-spike interval distribution, burstiness, and spike asymmetry
(English et al. 2017), using “center of mass” could provide an estimate of the directions of connections (Gerrard
et al. 2008; Luczak et al. 2009; Takeuchi et al. 2011), and conduction velocity could also potentially be estimated
using spatiotemporal electrical image generated using the spike waveforms across multiple electrodes (Li et al.
2015). In addition, the model-based approach is flexible enough that other constraints could also be incorporated.
For instance, we could use constraints based on connectivity across and between brain regions or other network
structure (Linderman et al. 2016). Additionally, although we have not focused on these measures here, the log
likelihood ratios that we use to detect the connections could also be used to calculate p-values (using a likelihood
ratio test), and confidence intervals for the estimated synaptic weights can be calculated based on the log
likelihood itself. Finally, as neural recording techniques continue developing, increasing numbers of neurons can
be recorded simultaneously (Stevenson and Kording 2011). These recordings have the potential to contain more

monosynaptic connections per recording, and this should result in more reliable estimation of neuronal properties.
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Although the methods presented here are likely to be useful for large-scale detection of putative synaptic
connections, modeling the cross-correlogram directly does not necessarily provide unambiguous evidence for
or against the presence of a synapse. Other detection methods have used other spike statistics (Casadiego et
al. 2018; Chen et al. 2011; Ito et al. 2011; Kadirvelu et al. 2017; Ladenbauer et al. 2019; Monasson and Cocco
2011; Song et al. 2013), and the shape of the cross-correlogram can be influenced by many other factors, such
as the dynamics of the presynaptic neuron (Perkel et al. 1967b) and common input from unobserved neurons
(Gerstein et al. 1989; Stevenson et al. 2008). Here we exclude the neuron pairs when there is a peak or trough
in the cross-correlogram at t=0 to remove the potentially problematic connections, and expect our slow basis
functions can act to model the common inputs if they occur on slow timescales (~10 ms). There are, however,
examples of systems where common input on fast timescales does occur, see (Diba et al. 2014; Swadlow et al.
1998). These could potentially result in false positives under our framework. Additionally, although we account
for some potential structure due to properties of presynaptic neurons, modeling multiple inputs to the same
postsynaptic neuron will likely result in more accurate estimates of the true connectivity (Roudi et al. 2015;

Volgushev et al. 2015; Zaytsev et al. 2015).

Ultimately, being able to accurately detect putative synaptic connections from large-scale extracellular recordings
opens a host of neuroscientific questions. Previous work found that synaptic weights detected from spikes can
have strong type-dependent structure (Barthé et al. 2004), seem to vary based on behavior (Fujisawa et al.
2008), and also have substantial short-term dynamics (English et al. 2017; Ghanbari et al. 2017). Although here
we apply our method to an in vitro MEA dataset, this method can be applied to any datasets that contain spike
trains and inter-neuron distances. Our method provides an additional tool for detecting putative synaptic
connections in in vivo or in vitro large-scale recordings. As the scale of recording techniques increases, this
approach may help us better understand how the properties of single neuronal connections relate to population

neural activity and behavior.

Code and MEA data availability

The MATLAB code of the extended GLM method is available at GitHub: https://github.com/NaixinRen/extended-
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GLM-for-synapse-detection.

The MEA in-vitro data is available at the Collaborative Research in Computational Neuroscience (CRNCS) Data

Sharing Initiative: https://crcns.org/data-sets/ssc/ssc-3/about-ssc-3
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