
Model-based detection of putative synaptic connections from spike recordings with latency and type 1 

constraints 2 

Naixin Ren1, Shinya Ito2, Hadi Hafizi3, John M. Beggs3, and Ian H. Stevenson1,4 3 

1Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States 4 

2Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California, United States 5 

3Department of Physics, Indiana University, Bloomington, Indiana, United States 6 

4Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States 7 

 8 

 9 

Abstract 10 

Detecting synaptic connections using large-scale extracellular spike recordings presents a statistical challenge. 11 

While previous methods often treat the detection of each putative connection as a separate hypothesis test, here 12 

we develop a modeling approach that infers synaptic connections while incorporating circuit properties learned 13 

from the whole network. We use an extension of the Generalized Linear Model framework to describe the cross-14 

correlograms between pairs of neurons and separate correlograms into two parts: a slowly varying effect due to 15 

background fluctuations and a fast, transient effect due to the synapse. We then use the observations from all 16 

putative connections in the recording to estimate two network properties: the presynaptic neuron type (excitatory 17 

or inhibitory) and the relationship between synaptic latency and distance between neurons. Constraining the 18 

presynaptic neuron’s type, synaptic latencies, and time constants improves synapse detection. In data from 19 

simulated networks, this model outperforms two previously developed synapse detection methods, especially on 20 

the weak connections. We also apply our model to in vitro multielectrode array recordings from mouse 21 

somatosensory cortex. Here our model automatically recovers plausible connections from hundreds of neurons, 22 

and the properties of the putative connections are largely consistent with previous research. 23 

 24 

New & Noteworthy Detecting synaptic connections using large-scale extracellular spike recordings is a difficult 25 

statistical problem. Here we develop an extension of a Generalized Linear Model that explicitly separates fast 26 

synaptic effects and slow background fluctuations in cross-correlograms between pairs of neurons while 27 

incorporating circuit properties learned from the whole network. This model outperforms two previously 28 

developed synapse detection methods in the simulated networks, and recovers plausible connections from 29 

hundreds of neurons in in-vitro multielectrode array data. 30 
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 33 

Introduction 34 

Using in vivo or in vitro multielectrode arrays, the extracellular spiking of hundreds of neurons can be recorded 35 

simultaneously. These recordings are allowing new, large-scale studies of neuronal networks (Hahn et al. 2019; 36 

Harris et al. 2003; Levenstein et al. 2019; Okun et al. 2015; Tingley and Buzsáki 2018), and the number of 37 

neurons that can be simultaneously recorded is increasing approximately exponentially (Stevenson and Kording 38 

2011). Depending on the species, brain area, and electrode configuration, these simultaneously recorded 39 

neurons can have tens of thousands of potential synapses between them. Detecting and characterizing these 40 

synapses represents a major challenge for neural data analysis. Here, we develop a model-based method 41 

incorporating network-level constraints on 1) the presynaptic neuron type and  2) the synaptic latencies 42 

between pre- and postsynaptic neurons. We examine whether these constraints can improve synapse detection 43 

using simulated data and large-scale in vitro multielectrode array recordings. 44 

 45 

Detecting synaptic connections from extracellular spike observations is a difficult statistical problem. Since both 46 

spiking and synapses themselves are sparse, it is often difficult to distinguish between changes in spike 47 

probability that are due to a specific synaptic input, changes that are due other (typically unobserved) inputs, or 48 

due to chance. Using extracellular spike data, researchers often identify putative monosynaptic connections by 49 

examining cross-correlograms between the spiking of two neurons. If two neurons are connected, there will often 50 

be a fast-onset, short-latency peak (excitatory) or trough (inhibitory) in the cross-correlogram, where the post-51 

synaptic neuron tends to spike more (excitatory) or less (inhibitory) following a pre-synaptic spike. Previous 52 

methods for distinguishing putative synaptic connections and non-connections in large-scale recordings used 53 

hypothesis testing to ask whether a peak or trough is significantly different from a baseline level of expected 54 

spiking (Barthó et al. 2004; Fetz et al. 1991; Fujisawa et al. 2008; Hatsopoulos et al. 2003; Perkel et al. 1967a). 55 

Recently, Kobayashi et al. (2019) developed a method that detects putative connections by applying a 56 

Generalized Linear Model to cross-correlograms (GLMCC), and used Matthews correlation coefficient (MCC, 57 

Matthews 1975) to find the optimal threshold for detecting connections. These methods typically treat decisions 58 



about the presence or absence of a synapse between each pair of neurons as separate hypothesis tests. 59 

However, synapses from the same presynaptic neuron are likely to share certain properties, and these shared 60 

properties could potentially improve the detection of synaptic connections. Here we aim to incorporate 61 

information from two basic features of neural circuits: 1) that neurons tend to be either excitatory or inhibitory 62 

and not both (Dale’s Law (Eccles et al. 1954)), and 2) that the synaptic latency between a pair of neurons should 63 

grow with the distance between the neurons (all else being equal). For example, knowing that there is an 64 

excitatory connection from neuron A to neuron B, increases the chances that other connections from neuron A 65 

should be excitatory. Similarly, if the distance between neuron A and B is known, then the latency of that 66 

connection provides some information about what latencies we might expect for neuron A’s other connections. 67 

These sources of information could potentially allow weak connections that are consistent with the circuit to be 68 

more readily detected and false positives due to noise to be rejected when that noise is inconsistent with the 69 

circuit. 70 

 71 

To apply these circuit-level constraints, here we develop an extension of a Generalized Linear Model (extended 72 

GLM) to describe cross-correlograms between pairs of neurons and to automatically detect putative synaptic 73 

connections. Similar to (Kobayashi et al. 2019), here we fit an explicit model for the rate of post-synaptic spiking 74 

at each interval relative to the presynaptic neuron’s firing. This model includes both a fast, transient synaptic 75 

effect and a slower effect that accounts for potentially fluctuating baseline correlation. Here we add two 76 

constraints to the model: based on Dale’s law and the expected linear relationship between distance and synaptic 77 

latency, we rule out false positives by constraining presynaptic neuron type, synaptic latencies, and time 78 

constants. We then evaluate our model using two simulated integrate-and-fire networks. Our model outperforms 79 

previous synapse detection methods: spike jitter method and thresholding method, especially on the weak 80 

connections. We also apply our model to in vitro multielectrode array (MEA) data, where our model recovers 81 

plausible connections between hundreds of neurons in a slice culture of mouse somatosensory cortex. Many of 82 

the neurons appear to follow approximately linear distance-latency relationships, consistent with previous 83 

research in vivo (English et al. 2017), and neurons with excitatory/inhibitory connections often have waveforms 84 

that are wide/narrow, consistent with previous research in vivo (Barthó et al. 2004). Altogether, by incorporating 85 

constraints due to circuit structure, the model-based approach presented here may allow more accurate 86 



automated detection of synapses from large-scale spike recordings. 87 

 88 

Methods 89 

Extended Generalized Linear Model for Synaptic Detection 90 

Here we develop an extension of a generalized linear model (extended GLM) to describe the spike correlograms 91 

between pairs of neurons: a suspected presynaptic neuron 𝑖 and postsynaptic neuron 𝑗. For the binned spike 92 

trains of the two neurons, 𝑛𝑖 and 𝑛𝑗 (1 when there is a spike and 0 otherwise), the cross-correlogram is given by 93 

𝑦𝑖𝑗(𝑚)  =  ∑ 𝑛𝑖(𝑡)𝑛𝑗(𝑡 − 𝑚)

𝑡

 94 

where 𝑚  denotes the interval between pre- and postsynaptic spikes, and 𝑦𝑖𝑗(𝑚)  is the number of the times 95 

spikes in 𝑛𝑖 and 𝑛𝑗 are separated by an interval [𝑚 −
∆𝑡𝑏𝑖𝑛

2
, 𝑚 +

∆𝑡𝑏𝑖𝑛

2
) for bin size ∆𝑡𝑏𝑖𝑛. Here in this study, we set 96 

the bin size ∆𝑡𝑏𝑖𝑛 to 0.5 ms, and model the intervals within a ±25ms window 𝑚 = {−25, −24.5, ⋯ ,25}𝑚𝑠 97 

 98 

We then model the cross-correlogram using two components: 1) a slow effect caused by fluctuating firing rates 99 

and common input from other neurons, and 2) a fast effect caused by a potential synaptic connection. Namely, 100 

we model the rate of counts 𝜆𝑖𝑗 as a linear combination of the slow effect and the fast effect passed through an 101 

output nonlinearity: 102 

𝜆𝑖𝑗(𝑚) = exp(𝛽0 + 𝑋𝑐(𝑚)𝛽𝑐 +  𝑤𝑖𝑗 𝛼(𝑚, 𝜏, ∆𝑡) ) 103 

where 𝛽0 + 𝑋𝑐(𝑚)𝛽𝑐 describes the slow effect and  𝑤𝑖𝑗 𝛼(𝑚, 𝜏, ∆𝑡) describes the fast effect. For the slow effect, 104 

𝑋𝑐(𝑚) represents a set of smooth basis functions learned by applying a low-rank, nonlinear matrix factorization 105 

to all the cross-correlograms in the dataset (see below). For the fast effect, we use an alpha function 𝛼(𝑚, 𝜏, ∆𝑡) =106 

 
𝑚−∆𝑡

𝜏
exp (1 −

𝑚−∆𝑡

𝜏
), with a latency ∆𝑡 and a time constant 𝜏, while 𝑤𝑖,𝑗 represents the connection strength from 107 

neuron i  to neuron j (positive for excitatory connections, negative for inhibitory). 𝛽0,  𝛽𝑐,  ∆𝑡, 𝜏, and 𝑤𝑖,𝑗 are the 108 

parameters that are estimated in the model (see below for the details about optimization). Note that, since 109 

log 𝜆𝑖𝑗(𝑚) is nonlinear in the parameters 𝜏 and Δ𝑡, this model is not a traditional GLM but an extension. The 110 

parameters, thus, cannot be optimized with traditional methods (e.g. iterative reweighted least squares). 111 

 112 

In addition to this extended GLM (the full model), we also fit a reduced, slow model that is a GLM, 𝜆𝑖𝑗(𝑚) =113 



exp(𝛽0 + 𝑋𝑐(𝑚)𝛽𝑐  ), which only contains the basis functions without the alpha function to capture the synaptic 114 

effect. If the full model substantially outperforms the slow model, we can infer that there is putative synaptic 115 

connection from the pre- to postsynaptic neuron. 116 

 117 

Generating basis functions to describe the slow effect 118 

To capture the slow fluctuations in correlograms, we use low-rank nonlinear matrix factorization to learn a set of 119 

smooth basis functions 𝑋𝑐. Here we aim to reconstruct all of the correlograms in a given multielectrode recording 120 

using a generalized bilinear model:  121 

𝛬 = 𝑒𝑥𝑝(𝜇𝑥0  + 𝛢𝑋𝑐) 122 

where 𝛬 is a reconstruction matrix that aims to model the observed correlograms in terms of a vector of baseline 123 

correlations 𝜇 , a matrix of weights 𝐴 , and the smooth basis functions 𝑋𝑐 . Note that here we model all 𝑝 124 

correlograms in the dataset simultaneously (𝑝 = 𝑐(𝑐 − 1)/2 if there are 𝑐 neurons). To ensure that 𝑋𝑐 is smooth 125 

we further decompose this matrix as 𝑋𝑐 = 𝐵𝑋𝑠 where 𝑋𝑆 is a set of cubic B-spline curves with equally spaced 126 

knots. Altogether, the matrix of correlograms is reconstructed using the parameters 𝜇, 𝛢 and 𝛣. 𝛢 is a 𝑝 × 𝑛𝛽 127 

matrix, where 𝑛𝛽 is the number of basis functions that we aim to learn from the dataset (here set to 6). 𝛣 is a 128 

𝑛𝛽 × 𝑛𝑠 matrix, where 𝑛𝑠 is the number of spline curves (here set to 16). And 𝜇 is a vector that describes the 129 

baseline correlation for each correlogram, and that is multiplied by a row vector of ones 𝑥0. In order to estimate 130 

the parameters we use an alternating gradient descent algorithm to approximately maximize the overall log-131 

likelihood ∑ ∑ (𝑦𝑖𝑗(𝑚) log Λ𝑖𝑗(𝑚) − Λ𝑖𝑗(𝑚) )𝑚𝑖𝑗 . We alternate between updating the fits to each correlogram (𝜇 132 

and 𝐴) given a fixed set of bases (𝐵) and updating the bases (𝐵) given a fixed description of the individual 133 

correlograms (𝜇 and 𝐴). Finally, we generate the basis functions as 𝑋𝑐  =  𝛣𝑋𝑆. 134 

 135 

Although some pairs of neurons may have fast synaptic effects in addition to slower fluctuations due to common 136 

input, the proportion of these pairs is expected to be small. Since these connected pairs also have different 137 

weights, latencies, and time constants, the overall effect on the shapes of the learned bases 𝑋𝑐  should be 138 

relatively small.  139 

 140 

Parameter Estimation 141 



We fit the cross-correlogram 𝑦𝑖𝑗 using the full model 𝜆𝑖𝑗(𝑚) = exp(𝛽0 + 𝑋𝑐(𝑚)𝛽𝑐 +  𝑤𝑖𝑗  𝛼(𝑚, 𝜏, ∆𝑡) ) in two stages: 142 

1) an initial fit that does not constrain the synaptic latencies, and 2) a subsequent fit that does. Using the 143 

estimated synaptic latency from the initial fit, we estimate the linear relationship between the distance and the 144 

synaptic latency. This enables us to use the estimated relationship to constrain the synaptic latency in the 145 

subsequent fit.  146 

 147 

In stage 1, we fit the cross-correlogram 𝑦𝑖𝑗 optimizing the penalized negative Poisson log-likelihood: 𝑙𝑓𝑢𝑙𝑙_1(𝜃) ∝148 

 − ∑ (𝑦𝑖𝑗(𝑚)𝑙𝑜𝑔𝜆𝑖𝑗(𝑚) − 𝜆𝑖𝑗(𝑚))𝑚 +  𝜂𝑤‖𝑤𝑖𝑗‖
2

+ 𝜂𝜏‖𝜏𝑖𝑗 − 𝜏0‖
2
 , where 𝜆𝑖𝑗(𝑚) = exp(𝛽0 +149 

𝑋𝑐(𝑚)𝛽𝑐 +  𝑤𝑖𝑗 𝛼(𝑚, 𝜏, ∆𝑡) ) and estimate the parameters 𝜃 = {𝛽0, 𝛽𝑐 , 𝑤𝑖𝑗, 𝜏, ∆𝑡}. This function is not convex due 150 

to the structure of the alpha function. However, we optimize the penalized log-likelihood using a non-linear 151 

conjugate gradient descent algorithm by using the minFunc toolbox in MATLAB (Schmidt 2005), and we use 152 

random restarts (50 times) in order to reduce the chances of getting stuck in local minima. Here 𝜂𝑤 and 𝜂𝜏 are 153 

regularization hyperparameters that penalize large weights 𝑤𝑖𝑗 and differences between the time constant 𝜏𝑖𝑗 154 

from a reference 𝜏0, respectively. Using the estimated latency ∆𝑡𝑖𝑗 from the initial fit and the distance between 155 

the neurons, we then estimate a “conduction” velocity 𝑣𝑖  and synaptic delay 𝑑𝑡𝑖 for the presynaptic neuron 𝑖 156 

(see below).  157 

 158 

In stage 2, using the estimated 𝑣𝑖  and 𝑑𝑡𝑖, we fit the cross-correlogram with an additional constraint on synaptic 159 

latency and estimate the parameters 𝜃 = {𝛽0, 𝛽𝑐 , 𝑤𝑖𝑗, 𝜏, ∆𝑡}. Here we optimize the penalized negative Poisson 160 

log-likelihood: 161 

 𝑙𝑓𝑢𝑙𝑙_2(𝜃) =  − ∑ (𝑦𝑖𝑗(𝑚)𝑙𝑜𝑔𝜆𝑖𝑗(𝑚) − 𝜆𝑖𝑗(𝑚))𝑚 +  𝜂𝑤‖𝑤𝑖𝑗‖
2

+ 𝜂𝜏‖𝜏𝑖𝑗 − 𝜏0‖
2

+ 𝜂Δ𝑡,𝑖 ‖Δ𝑡𝑖𝑗 − (
1

𝑣𝑖
𝑑𝑖𝑗 + 𝑑𝑡𝑖) ‖

2
. 162 

Adding the convex L2 penalty terms does not change the overall convexity of the function. Since the log-163 

likelihood itself is not convex, here we again use a non-linear conjugate gradient descent algorithm with random 164 

restarts. 𝜂𝑤  and 𝜂𝜏  are hyperparameters constraining the weight and time constant, as before. Given the 165 

distance between the two neurons 𝑑𝑖𝑗 , the additional hyperparameter 𝜂Δ𝑡,𝑖  controls how strictly the synaptic 166 

latency Δ𝑡𝑖𝑗 should be tied to the predicted linear distance-latency relationship. Here 𝜂Δ𝑡,𝑖 is set based on the 167 

estimation of conduction velocity (see below, 𝜂𝛥𝑡,𝑖  =  2/𝜎̂). 168 



 169 

In both stages, 𝑤𝑖𝑗, 𝜏𝑖𝑗 , ∆𝑡𝑖𝑗 are log transformed so that they are strictly positive during the optimization (or, with 170 

a sign change, strictly negative when modeling an inhibitory 𝑤𝑖𝑗). In the results shown here we set 𝜂𝑤 = 5 and 171 

𝜂𝜏 = 20  through manual selection, and 𝜏0  is set to 0.8 ms. We have done a sensitivity analysis on the 172 

hyperparameters that we manually selected by doubling and halving the set values. We find that model 173 

performance is not very sensitive to the change in those hyperparameters, at least for the large-scale simulations 174 

we used here. 175 

 176 

In addition to the full model, we also fit the cross-correlogram 𝑦𝑖𝑗   using the slow model 𝜆𝑖𝑗(𝑚) =177 

exp(𝛽0 + 𝑋𝑐(𝑚)𝛽𝑐  ) . We minimize the negative Poisson log-likelihood: 𝑙𝑠𝑙𝑜𝑤(𝜃) ∝  − ∑ (𝑦𝑖𝑗(𝑚)𝑙𝑜𝑔𝜆𝑖𝑗(𝑚) −𝑚178 

𝜆𝑖,𝑗(𝑚)) and estimate the parameters 𝜃 =  {𝛽0, 𝛽𝑐} using iteratively reweighted least-squares. This provides a 179 

baseline null model, without a fast, synaptic effect. 180 

 181 

 After fitting, we compare the performance of the full model (stage 2) with the slow model by calculating the log 182 

likelihood ratio of the two models  𝐿𝐿𝑅 =  𝑙𝑓𝑢𝑙𝑙_2(𝜃) − 𝑙𝑠𝑙𝑜𝑤(𝜃). If the log likelihood ratio exceeds a certain 183 

threshold, we conclude that there is a putative connection from neuron 𝑖 to neuron 𝑗.  184 

 185 

Structural constraints on fast, synaptic effects 186 

While learned bases capture slow structure in the cross-correlograms across all pairs, we also aim to describe 187 

structure in the fast, synaptic effects for each presynaptic neuron. In the full model, we include two structural 188 

constraints: 1) we constrain the latency of synaptic connections to increase with increasing distance between 189 

neurons, and 2) we constrain presynaptic neurons to either excite or inhibit all of their postsynaptic targets, in 190 

accordance with Dale’s law. Together, these constraints have the potential to improve detection of weak 191 

connections that are consistent with the constraints and rule out the false positives that are inconsistent. 192 

 193 

Estimation of the “conduction velocity” 194 

To implement the constraint that synaptic latencies should increase with distance, we estimate an approximate 195 

“conduction velocity” for each presynaptic neuron based on the distances between neurons and the estimated 196 



synaptic latencies from stage 1 above. Physiologically, conduction velocities vary as a function of axon diameter 197 

and myelination (Sakaguchi et al. 1993) so some differences are perhaps expected. However, that in most 198 

extracellular applications we are estimating the soma locations based on uncertain waveform information, and 199 

the locations of axons and dendrites are unknown. “Conduction velocity” is, thus, just an approximation of the 200 

potential positive relationship between synaptic latency and the distance. 201 

 202 

Here we assume that there is a linear relationship between the synaptic latencies and the distances between 203 

the estimated somatic location of a presynaptic neuron 𝑖 and postsynaptic neuron 𝑗,  204 

∆𝑡𝑖𝑗 =
1

𝑣𝑖
𝑑𝑖𝑗 + 𝑑𝑡𝑖 205 

where ∆𝑡𝑖𝑗 is the synaptic latency, 𝑑𝑖𝑗 is the distance between neurons, and the parameters 𝑣𝑖 and 𝑑𝑡𝑖 describe 206 

the “conduction velocity” and “synaptic delay” of the presynaptic neuron. To estimate the parameters, we first fit 207 

all possible connections from the presynaptic neuron. Using initial estimates of ∆𝑡𝑖𝑗
̂  from the full model (stage 1), 208 

we then estimate 𝑣𝑖   and 𝑑𝑡𝑖 for the neuron using a penalized weighted linear regression with the inter-neuronal 209 

distances as predictors. Namely, we minimize the penalized, weighted negative log-likelihood 𝑙(𝑣𝑖 , 𝑑𝑡𝑖) ∝210 

𝛴(∆𝑡𝑖𝑗 − ∆𝑡𝑖𝑗
̂ )2𝑤𝑣

𝑖𝑗
/𝛴𝑤𝑣

𝑖𝑗
+ 𝜂𝑑𝑡‖𝑑𝑡𝑖‖2 , where the penalty ‖𝑑𝑡𝑖‖2  ensures that 𝑑𝑡𝑖  close to zero, and 𝜂𝑑𝑡  is a 211 

hyperparameter, which we set to 5 based on manual search. The weights 𝑤𝑣
𝑖𝑗

 are set by ranking each pair of 212 

neurons based on the likelihood ratio between the slow model and full model in stage 1 (𝑙𝑓𝑢𝑙𝑙_1 − 𝑙𝑠𝑙𝑜𝑤, see 213 

Parameter Estimation), with the 𝑟th ranked pair having  𝑤(𝑟) =
1

1+𝑒2(𝑟−5). This allows the pairs that are more 214 

likely to be true connections (those with larger likelihood ratios) to have larger weights. Then, after conducting 215 

the penalized weighted linear regression, we pick the 5 neuron pairs with the largest weights to estimate the 216 

mean squared prediction error 𝜎̂𝑖
2 =

1

5
∑(Δ𝑡𝑖𝑗 − Δ𝑡̂𝑖𝑗)

2
 , which measures the reliability of the estimation. This 217 

estimated prediction error, along with the estimated conduction velocity 𝑣𝑖  and delay 𝑑𝑡𝑖 , is then used to 218 

constrain the penalized full model in stage 2 (see Parameter Estimation above). 219 

 220 

Estimation of the presynaptic neuron type 221 

According to Dale’s Law, a single neuron should rarely be both excitatory and inhibitory, and connections with 222 

the same presynaptic neuron are most likely to be all excitatory or all inhibitory. In order to estimate the 223 



presynaptic neuron type, for each presynaptic neuron 𝑖, we fit all the cross-correlograms 𝑦𝑖1, 𝑦𝑖2, … 𝑦𝑖𝑛 using full 224 

model twice, once constraining 𝑤𝑖𝑗 ≥ 0    (excitatory model) and once constraining 𝑤𝑖𝑗 ≤ 0  (inhibitory model). 225 

Here we determine the presynaptic neuron type using the log likelihood ratio of the excitatory model fit to the 226 

inhibitory model fit. 227 

𝐿𝐿𝑅± = ∑ (𝑦𝑖𝑗(𝑚)𝑙𝑜𝑔𝜆𝑖𝑗
+ (𝑚) − 𝜆𝑖𝑗

+ (𝑚))
𝑚

− ∑ (𝑦𝑖𝑗(𝑚)𝑙𝑜𝑔𝜆𝑖𝑗
− (𝑚) − 𝜆𝑖𝑗

− (𝑚))
𝑚

 228 

If the log likelihood ratio is positive, this suggests that the excitatory model provides a better description of the 229 

correlogram than the inhibitory model. For each presynaptic neuron, we use the single neuron pair with the 230 

largest likelihood ratio between two models to classify the neuron type (we tried using several weighting schemes, 231 

such as the average 𝐿𝐿𝑅 across all pairs or the top-5 pairs, but for the simulations and datasets used here the 232 

top-1 pair performed the best of these schemes). We classify the presynaptic neuron 𝑖 as a putative excitatory 233 

neuron if 𝐿𝐿𝑅± > 0, or as a putative inhibitory neuron if 𝐿𝐿𝑅± < 0. After the neuron type classification, we only 234 

adopt the corresponding full model (excitatory/inhibitory model based on the presynaptic neuron type) to later 235 

determine whether there is a putative synaptic connection. We label all the putative connections from an 236 

excitatory presynaptic neuron as putative excitatory connection, and all the putative connections from an 237 

inhibitory presynaptic neuron as putative inhibitory connections.  238 

 239 

Simulated networks of synaptically connected neurons 240 

To examine how our model-based synapse detection approach performs we build two simulated networks of 241 

modified leaky integrate-and-fire (LIF) neurons. In real data, the shapes of cross-correlograms of two neurons 242 

can be affected by both the background activity of the network (external input shared by the network), and the 243 

patterns of presynaptic activity (e.g. high vs low firing rate, bursting). Here we designed two distinct simulations 244 

to capture these effects. In a first simulation we model a network of recurrently connected neurons that all receive 245 

background common input, creating slow fluctuations in the cross-correlograms similar to those observed in real 246 

data (Simulation 1 with common inputs). In a second simulation we then model a set of neurons receiving 247 

presynaptic inputs from experimentally observed spikes, creating presynaptic spike patterns similar to those 248 

present in real data (Simulation 2 with real presynaptic inputs). 249 

 250 

For Simulation 1 with common inputs, we build a simplified, simulated network of adaptive leaky integrate-and-251 



fire neurons with current-based synaptic inputs. 300 neurons are included in the simulation – 80% excitatory, 20% 252 

inhibitory. All the neurons are randomly distributed in a square area. The neurons are randomly connected, and 253 

only the neuron pairs whose distances are less than the median distance have synaptic connections. The 254 

connection probability is set to be 5% for the excitatory presynaptic neurons (Holmgren et al. 2003) and 20% for 255 

the inhibitory presynaptic neurons to balance the excitatory and inhibitory inputs (Barral and D’Reyes 2016; 256 

Dehghani et al. 2016; Haider et al. 2006). 60 minutes of current input and voltage recording for each neuron are 257 

simulated with a simulated sampling rate 10kHz for this network. The mean firing rate of all the neurons is 4.3Hz. 258 

In this modified LIF model (based on (Liu and Wang 2001)), the membrane potential dynamics are affected by 259 

three currents: 1) a leak current, 2) an after-hyperpolarization current, and 3) synaptic input 260 

𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
= −𝑔𝑙𝑒𝑎𝑘(𝑉𝑚 − 𝑉𝑟𝑒𝑠𝑡) − 𝑔𝐴𝐻𝑃[𝐶𝑎2+](𝑉𝑚 −  𝑉𝐴𝐻𝑃) +𝐼𝑖𝑛𝑝𝑢𝑡 261 

with  262 

𝑑[𝐶𝑎2+]

𝑑𝑡
=  −

[𝐶𝑎2+]

𝜏𝐶𝑎
 263 

and if 𝑉𝑚(𝑡) =  𝑉𝑡ℎ  the neuron resets with 264 

𝑉𝑚 →  𝑉𝑟𝑒𝑠𝑡, [𝐶𝑎2+] =  [𝐶𝑎2+] + 𝑎. 265 

 266 

Here the dynamics of the membrane potential 𝑉𝑚 are governed by leaky integration of the input current, but every 267 

time the neuron spikes Ca-currents lead to an after-hyperpolarization, preventing the neuron from spiking rapidly. 268 

In the modified LIF model, when the membrane potential 𝑉𝑚 reaches the threshold 𝑉𝑡ℎ,the neuron spikes, 𝑉𝑚 is 269 

reset to 𝑉𝑟𝑒𝑠𝑡, and [𝐶𝑎2+] increases by the amount 𝑎. 270 

 271 

The input current 𝐼𝑖𝑛𝑝𝑢𝑡 to each postsynaptic neuron is given by 272 

𝐼𝑖𝑛𝑝𝑢𝑡(𝑡) = (1 − 𝑤𝑐𝑜𝑚)𝐼𝑠𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠(𝑡) + 𝑤𝑐𝑜𝑚𝐼𝑐𝑜𝑚(𝑡 − ∆𝑡𝑐𝑜𝑚 ) + ∑ 𝐼𝑠𝑦𝑛,𝑖(𝑡)
𝑖

.  273 

where 𝐼𝑠𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 is 1/𝑓 noise independently generated for each neuron, 𝐼𝑐𝑜𝑚 is 1/𝑓 noise shared by the whole 274 

network. Each neuron receives the common input with random latencies ∆𝑡𝑐𝑜𝑚 to simulate the slow fluctuation 275 

caused by background common input, and 𝑤𝑐𝑜𝑚 is the random common input weight. 𝐼𝑠𝑦𝑛,𝑖 denotes the synaptic 276 

current from the 𝑖th presynaptic input added to the postsynaptic neuron with a synaptic latency ∆𝑡𝑖𝑗  after each 277 



presynaptic spike at 𝑡𝑠 , 𝐼𝑠𝑦𝑛,𝑖(𝑡) = 𝑤𝑠𝑦𝑛,𝑖 ∑
𝑡−𝑡𝑠−∆𝑡𝑖𝑗

𝜏𝑠𝑦𝑛
𝑒1−(𝑡−𝑡𝑠−∆𝑡𝑖𝑗)/𝜏𝑠𝑦𝑛

𝑡𝑠<𝑡  . 𝑤𝑠𝑦𝑛,𝑖  is the synaptic weight randomly 278 

drawn from a bounded log-normal distribution – positive when the connection is excitatory and negative when 279 

the connection is inhibitory. Note that, since max (
𝑡

𝜏
𝑒1−

𝑡

𝜏) = 1, 𝑤𝑠𝑦𝑛 sets the amplitude of individual Post synaptic 280 

current (PSC) in units of nA. Here we also give each presynaptic neuron a random “conduction velocity” 𝑣𝑖 and 281 

set the synaptic latency according to ∆𝑡𝑖𝑗 =  𝑑𝑖𝑗/𝑣𝑖𝑗. This simulated network, thus, obeys the rule that synaptic 282 

latencies increase linearly with the distances between presynaptic neuron and postsynaptic neuron (see Table 283 

1 for parameters). 284 

 285 

In Simulation 2 with real presynaptic inputs, we model 300 adaptive leaky integrate-and-fire neurons that receive 286 

input from 300 neurons whose spike trains are from an in vitro multielectrode array recording. We randomly 287 

assign 80% of the 300 presynaptic neurons to be excitatory neurons and the rest to be inhibitory. The connection 288 

probability, connection rules, and LIF parameters are the same as in the first simulation (see Table 1). Here the 289 

simulated sampling rate is 20Hz, which was used in the in vitro recording, and the input currents do not contain 290 

the background common input, 𝐼𝑖𝑛𝑝𝑢𝑡(𝑡) = 𝐼𝑠𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠(𝑡) + ∑ 𝑤𝑠𝑦𝑛,𝑖𝐼𝑠𝑦𝑛,𝑖(𝑡)𝑖 . 291 

 292 

Membrane properties 

membrane capacity 

𝐶𝑚 = 500 pF  

membrane conductance 

𝑔𝑙𝑒𝑎𝑘 =  .25 μS 

resting potential 

𝑉𝑟𝑒𝑠𝑡 =  −65 mV 

action potential threshold 

𝑉𝑡ℎ =  −50 mV 

After-hyperpolarization (AHP) adaption 

AHP conductance 

𝑔𝐴𝐻𝑃 = 0.015 mS/cm2 

AHP potential 

𝑉𝐴𝐻𝑃 =  −80 mV 

AHP time constant 

𝜏𝐶𝑎 = 100 ms 

influx 

𝛼 =  .2 μM 

Synaptic input current 

conduction velocity* 

Sim1: 𝑣𝑖  ~ 𝑈(. 6, 2.1) AU/s 

Sim2: 𝑣𝑖  ~ 𝑈(1, 3) AU/s  

synaptic time constant 

𝜏𝑠𝑦𝑛 = 1 ms 

synaptic weight (PSC amplitude) 

|𝑤𝑠𝑦𝑛|~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(−2.5, .5) ∈ [. 05, .4] nA 

Common input current 

common input weight 

𝑤𝑐𝑜𝑚 =  .5 

common input latency 

∆𝑡𝑐𝑜𝑚~𝑈(0, 50) ms 

 

Table 1: Parameters in the two simulated networks 293 

*Since we don’t specify the “area” of the square space, the unit of the velocity is in arbitrary units (AU/s). 294 



 295 

Synaptic detection based on hypothesis testing 296 

In addition to our model-based synapse detection method we also examine two previous methods based on 297 

hypothesis testing: a thresholding method and a spike jitter method. 298 

 299 

The thresholding method detects synapses by testing if the peak or trough in the correlogram is significantly 300 

different from the expected number of coincidences (Barthó et al. 2004; Perkel et al. 1967b). Here we model the 301 

count distribution using the mean 𝑦̅𝑖𝑗 and standard deviation 𝑠𝑖𝑗 of the cross-correlogram across bins – here 302 

between [-25,25] ms, excluding the bins within the interval of [-10,10] ms. We then compute the z-score 𝑧𝑖𝑗
𝑘  = 303 

(𝑦𝑖𝑗
𝑘 − 𝑦̅𝑖𝑗)/𝑠𝑖𝑗 for each bin 𝑘 and compare this to a critical value 𝑧𝑐. If there is at least one bin within the interval 304 

of interest that exceeds the upper threshold 𝑧𝑐, the connection from neuron i to neuron j is labeled as an excitatory 305 

connection. Similarly, if there is at least one bin within the interval below the lower threshold −𝑧𝑐, the connection 306 

from neuron 𝑖 to neuron 𝑗 is labeled as an inhibitory connection. In practice, the threshold 𝑧𝑐 can be adjusted to 307 

optimize the number of false positives/negatives. In comparing models, we use ROC curves to examine all 308 

thresholds (see below). 309 

 310 

One potential problem with the thresholding method is that the baseline for a correlogram is often not constant. 311 

To address this, an alternative method (Fujisawa et al. 2008; Hatsopoulos et al. 2003) uses jittered spike trains 312 

to generate a baseline cross-correlogram that keeps the shape of the slow fluctuation while removing fast 313 

synaptic effects. With the jitter method, the presence of synaptic connections can then be inferred by testing if 314 

there is a peak or trough that is significantly different from this time-varying baseline. Here we use a variant of 315 

this method where, for each neuron, we randomly and independently jitter each spike on a uniform interval of [-316 

5,5] ms (as in Fujisawa et al. 2008) and generate 1000 jittered spike trains. The baseline cross-correlogram 317 

between neurons 𝑖 and 𝑗 is then defined as the mean of the 1000 cross-correlograms constructed using the 318 

original spike trains of neuron 𝑖 and the 1000 jittered spike trains of neuron 𝑗. We calculate the mean 𝑦̅𝑖𝑗and 319 

standard deviation 𝑠𝑖𝑗 of the 1000 cross-correlograms for each neuron pair. We then compute the z-score of 320 

each bin based on the original correlogram 𝑧𝑖𝑗
𝑘  = (𝑦𝑖𝑗

𝑘 −  𝑦̅𝑖𝑗
𝑘 )/𝑠𝑖𝑗

𝑘 . As in the thresholding method, if at least one of 321 

the bins within the interval of [0,10] ms exceeds the upper threshold 𝑧𝑐, the connection is labeled as excitatory. 322 



Similarly, if there is at least one bin within the interval below the lower threshold −𝑧𝑐, the connection is labeled 323 

inhibitory. 324 

 325 

Evaluating methods for synapse detection 326 

Using the simulations described above we evaluate our model-based synapse detection method alongside the 327 

thresholding method and jitter method. Benchmarking the performance of synapse detection methods on real 328 

extracellular recordings is difficult,since we are almost always uncertain about whether or not two neurons are 329 

monosynaptically connected. However, with simulations, the ground-truth connectivity is known, and we can 330 

compare the detection accuracy for different methods. Here we use receiver operating characteristic (ROC) 331 

curves, specifically comparing false positive and true positive rates. Since the number of true positives is small 332 

(less that ~5%), these rates and the area under the ROC curve (AUC) give a more accurate impression of the 333 

detection performance than the overall accuracy and can be calculated without a set threshold. The scores we 334 

use to determine whether there is a synaptic connection in generating the ROC curves vary for the three methods. 335 

For the model-based method developed here, we use the log likelihood ratios of full model to slow model, while 336 

for thresholding and jitter methods, we use the largest z-score within the [0,10] ms interval. 337 

 338 

The ROC curves measure the overall performance of different methods on a series of thresholds. But when we 339 

apply the method to real data and plan to make decisions on synapse detection, we still need to specify a 340 

threshold. The choice of threshold has a large effect on the detection of putative synaptic connections. A 341 

threshold that is too strict will result in a large number of false negatives, while a threshold that is not strict enough 342 

will result in a large number of false positives. The uncertainty and diversity of the real datasets make it difficult 343 

to pick the optimal threshold. Here, for illustration, we pick the threshold based on the results in our simulated 344 

network (we pick Simulation 1 here since the threshold based on Simulation 1 is stricter). Since synaptic 345 

connections are relatively rare compared to the total number of neuron pairs, we use Matthews correlation 346 

coefficient (MCC, Matthews 1975) to measure the performance of different thresholds, which performs well for 347 

imbalanced data (Boughorbel et al. 2017): 348 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 , 349 

where 𝑇𝑃  is the number of true positives,  𝑇𝑁  is the number of true negatives, 𝐹𝑃  is the number of false 350 



negatives, and 𝐹𝑁 is the number of false negatives. For the model-based method, the maximum MCC is .86 351 

(TPR = 84.83%, FPR = 0.09%) for Simulation 1, the corresponding threshold is 4.64 (log likelihood ratio). It may 352 

be valuable to note that this threshold is relatively close to the decision rule that would be given by minimizing 353 

the Akaike or Bayesian Information Criteria (AIC or BIC), where the log likelihood ratios would need to be greater 354 

than 3 or ~6.9, respectively (based on 𝑘 = 3  extra parameters and 𝑛 = 100  bins of observations). For jitter 355 

method, the maximum MCC is .69 (TPR = 60.23%, FPR = 1.02%), the corresponding threshold is 3.59 (z-score) 356 

for Simulation 1. In comparing the results from different synapse detection methods with real data, we pick the 357 

thresholds for our method and the jitter method based on these maximum MCC results from the simulation.  358 

 359 

In addition to the choice of threshold, the jitter method has 1 hyperparameter (jitter interval) and the model-based 360 

method has 7 (𝜂𝑤 , 𝜂𝜏, 𝜏0, 𝜂Δ𝑡,𝑖, 𝜂𝑑𝑡 , 𝑛𝛽 , 𝑛𝑠) that are used for the entire set of putative connections. Here we fix the 361 

hyperparameters for the model-based approach based on a coarse, manual optimization that minimizes false 362 

positive fits with unlikely latencies (Δ𝑡) and time constants (𝜏). These values could also potentially be optimized 363 

using the cross-validated likelihood but, in practice, the results are robust across a wide range of settings.        364 

 365 

MEA data 366 

To examine how these methods detect putative synaptic connections in experimental data we use in vitro 367 

recordings of spontaneous activity from organotypic slice cultures of mouse somatosensory cortex made using 368 

a large and dense multielectrode array (512 electrodes, 60 μm interelectrode spacing, 5 μm electrode diameter, 369 

flat electrodes, roughly 1 mm by 2 mm total array area). The angle of the slices was approximately coronal, but 370 

the lateral side of the plane was advanced by 15 degrees in the anterior direction. The extracellular signals were 371 

recorded for 60 minutes at 20 kHz, and the spiking activity was then spike sorted based on the waveforms of the 372 

marked electrode and its six adjacent neighbors using principal component analysis (PCA). The location of each 373 

neuron was estimated using a 2D Gaussian fit to the maximum values of the spike triggered average waveforms 374 

across multiple electrodes. There are 25 datasets available, most of which possess hundreds of neurons (min: 375 

98, max: 594, mean: 309, total: 7735, mean firing rate of the neurons: 2.1 Hz). All data is available via the 376 

Collaborative Research in Computational Neuroscience (CRNCS) Data Sharing Initiative: https://crcns.org/data-377 

sets/ssc/ssc-3/about-ssc-3. Additional experimental details and raster plots can be found in (Ito et al. 2014, Fig. 378 

https://crcns.org/data-sets/ssc/ssc-3/about-ssc-3
https://crcns.org/data-sets/ssc/ssc-3/about-ssc-3


4A).  379 

 380 

To simulate the network with real data input (Simulation 2), we used spike trains from the highest firing rate 381 

neurons combined from two datasets (datasets 16 and 23), choosing 300 neurons in total (out of 904 possible). 382 

The mean firing rate of the 300 neurons was 5.57Hz (min: 1.88Hz, max: 44.55Hz). 383 

 384 

For examining putative synaptic connectivity in the experimental data, we use dataset #13 (number of neurons: 385 

381, mean firing rate: 1.95 Hz) and dataset #23 (number of neurons: 310, mean firing rate: 2.81 Hz). Here we 386 

exclude the neurons with less than 1000 spikes recorded, 68 neurons (17.85%) are excluded from dataset #13, 387 

21 neurons (6.77%) are excluded from dataset #23. Before we apply the detection methods on these datasets, 388 

we also exclude the neuron pairs where the correlogram may be misestimated due to the way that spike trains 389 

were sorted. If the waveforms of two neurons show up on the same set of electrodes, near simultaneous spikes 390 

tend to overlap and be sorted inaccurately (Pillow et al. 2013, "spike shadowing"). Here, we calculate a spike 391 

sorting index 𝑠𝑠 = 𝑚𝑖𝑛 {
𝜇𝑐−𝜇𝑙

𝜇𝑙
,

𝜇𝑐−𝜇𝑟

𝜇𝑟
} to exclude the cross-correlograms with a peak or trough near 𝑚 = 0. Here 392 

𝜇𝑐 is the total number of counts within 1.5 ms of the center of the correlogram (3 bins), 𝜇𝑙 is the total number of 393 

counts within 1.5 ms (3 bins) that are to the left of the center, 𝜇𝑟 is the total number of counts within 1.5 ms (3 394 

bins) that are to the right of the center. We exclude the neuron pairs when the spike sorting index 𝑠𝑠 is greater 395 

than 0.5. Based on this rule, 6.51% of the neuron pairs are excluded from dataset #13, 5.55% of the neuron 396 

pairs are excluded from dataset #23. 397 

 398 

Results 399 

Here we develop an extension of a generalized linear model (GLM) to describe the correlograms between pairs 400 

of neurons. This model aims to separate the cross-correlogram between each pair of neurons into two parts: 1) 401 

a slow effect caused by fluctuating firing rates and common input from other neurons, which is fit using a group 402 

of smooth basis functions learned from the data, and 2) a fast effect caused by the synaptic connection, which 403 

is fit by a short-latency, fast onset alpha function (Fig. 1A). In this study, we model the time interval between -25 404 

ms to 25 ms, with a binsize of 0.5 ms. To determine whether or not a given pair of neurons might be synaptically 405 

connected we then compare the full model with a reduced model that has the slow effect but not the fast effect. 406 



If the full model provides a better description of the data than the slow model (using log-likelihood ratio), this may 407 

indicate that there is a synaptic connection between the two neurons (Fig. 1B). 408 

 409 

Although this model comparison based on the correlogram between a single isolated pair of neurons can provide 410 

evidence of a putative synaptic connection, incorporating information from other connections may be able to 411 

improve detection accuracy. Here we first constrain the parameters of the full model based on the presynaptic 412 

neuron type. Since neurons are rarely both excitatory and inhibitory (Dale’s Law), synaptic connections with the 413 

same presynaptic neuron are most likely to be all of one sign. If a presynaptic neuron has a connection with a 414 

clear positive synaptic effect, this can indicate that other connections from this presynaptic neuron should be 415 

positive as well. Second, we constrain the parameters of the full model based on the synaptic latency. Synaptic 416 

latencies tend to increase with the distance between the pre- and postsynaptic neuron (Fig. 1C). Here we assume 417 

a linear relationship between distance and latency and estimate a “conduction velocity” for each presynaptic 418 

neuron. If this relationship is clearly linear, the possible latencies for other connections can be constrained. 419 

Together, these two constraints may act to better detect the weak connections and exclude the false positives 420 

that violate the expected structure (see more details in methods). 421 

 422 



 423 

Figure 1: Model-based description of the cross-correlogram between the spiking of a pair of potentially connected neurons.  A: The 424 

extended GLM separates the cross-correlogram into two parts: 1) a slow effect that we fit using a group of smooth basis functions which 425 

were learned from the whole network (outlined in red), and 2) a fast effect that we fit using a short-latency, fast onset alpha function 426 

(outlined in yellow). B: Some examples of model fits for cross-correlograms of putative excitatory, putative inhibitory, and putative non-427 

connections. If the full model (yellow) provides a better fit to the correlogram than the slow model (red), we label the neuron pair as a 428 

putative connection. C: The schematic figure shows the structural information that we use to constrain the model fits: 1) the connections 429 

from one presynaptic neuron should be either all excitatory or inhibitory, and 2) the synaptic latency should increase with increasing 430 

distance between pre- and postsynaptic neurons. 431 

 432 

Simulated networks with type and latency constraints 433 

To evaluate our model, we build two simulated networks of adaptive leaky integrate-and-fire (LIF) neurons: 434 

Simulation 1 with common inputs, a network of 300 recurrently connected LIF neurons receiving slow, 435 

background common input, and Simulation 2 with real presynaptic inputs, a network of 300 unconnected LIF 436 

neurons receiving input from a set of experimentally recorded spike trains. In the first simulation, 80% of the 437 

neurons are randomly assigned to be excitatory, with the rest being inhibitory. The neurons are randomly 438 



connected to each other with a connection probability of 5% for the excitatory presynaptic neurons and 20% for 439 

the inhibitory presynaptic neurons. Synaptic weights (as PSC amplitude) are then randomly drawn from a log-440 

normal distribution, similar to results from in vitro observations (Song et al. 2005). In addition to the synaptic 441 

input, all neurons receive background common input from a single slowly fluctuating, noisy source with a random 442 

delay (see Methods). This common input produces baseline fluctuations in the cross-correlograms similar to 443 

what is frequently observed in the real data (Fig 2A). Additionally, we assign each presynaptic neuron a 444 

“conduction velocity” and make the synaptic latencies between neurons distance-dependent. In Simulation 1, 445 

the mean firing rate of all the neurons is 4.35 Hz (min: 2.58 Hz, Q1: 3.72Hz, Q2:4.23 Hz, Q3: 4.78 Hz, max: 8.71 446 

Hz, SD = .89 Hz). This simulated network, thus, has realistic slow fluctuations in the correlograms, obeys Dale’s 447 

Law, and the relationship between synaptic latency and distance increases linearly for each presynaptic neuron.  448 

 449 

The second simulation consists of a set of 300 LIF neurons each receiving presynaptic inputs from a subset of 450 

300 spike trains recorded in vitro. Again, the presynaptic neurons are randomly assigned to be excitatory (80%) 451 

or inhibitory (20%). The presynaptic neurons are randomly connected to the postsynaptic neurons with a 452 

connection probability of 5% for the excitatory presynaptic neurons and 20% for the inhibitory presynaptic 453 

neurons, and the synaptic weights are randomly drawn from a log-normal distribution. The synaptic latencies 454 

also increase linearly with distance, as before. In this case, although there is no common input, the presynaptic 455 

spike patterns are drawn from experimental recordings and the presynaptic neurons have greater variation in 456 

their firings rates and inter-spike interval patterns. The mean firing rate of the presynaptic neurons in this 457 

simulation is 5.57 Hz (min: 1.88 Hz, Q1 = 2.84 Hz, Q2 = 4.26 Hz, Q3 = 6.55 Hz, max: 44.6 Hz, SD =4.98 Hz). 458 

The mean firing rate of the postsynaptic, LIF neurons is 5.63 Hz (min: 4.00 Hz, Q1: 5.10 Hz, Q2: 5.56 Hz, Q3: 459 

6.10, max: 8.89 Hz, SD = .80 Hz). Although the correlograms of Simulation 2 do not have slow baseline 460 

fluctuations (Fig 2B), they have a broader range of absolute baselines and will allow us to determine to what 461 

extent synapse detection is affected by more realistic presynaptic spike patterns. 462 

 463 



 464 

Figure 2: Two simulated networks of leaky integrate-and-fire (LIF) neurons. A: Schematic showing the structure of Simulation 1 with 465 

common inputs (left). 300 LIF neurons (80% excitatory, 20% inhibitory) are randomly connected to each other with constraints on synaptic 466 

latency (see Methods). They receive background common input to generate a slow baseline fluctuation in the cross-correlogram. 467 

Examples of the cross-correlograms for simulated excitatory, inhibitory and non-connections (right). B: Schematic showing the structure 468 

of Simulation 2 with real presynaptic inputs (left). 300 LIF neurons receive presynaptic inputs from 300 experimentally recorded spike 469 

trains. We randomly assign 80% of the presynaptic neurons to be excitatory and the rest to be inhibitory. Note that, although the schematic 470 

illustrates the bipartite connectivity structure, the 600 neurons are randomly distributed in space and the synaptic latencies increase 471 

linearly with distance between the neurons as in Simulation 1. Examples of the cross-correlograms of simulated excitatory, inhibitory, and 472 

non-connections from the second simulation (right). Due to the fact that the experimentally recorded spike trains have greater variation 473 

in the average firing rates and patterns, the cross-correlograms here have a wider range of absolute baselines. 474 

 475 

A central assumption of the model-based detection approach used here is that neuron type and latency 476 

constraints can, in principle, allow information to be shared across the connections made by a presynaptic neuron. 477 

However, in order for these constraints to be useful, the model must be able to accurately estimate both whether 478 

a presynaptic neuron is excitatory or inhibitory and the presynaptic neuron’s “conduction velocity” from noisy 479 

spiking data. Therefore, before evaluating whether these constraints improve detection, we determine how 480 

accurately we can recover neuron type and “conduction velocity” in each of the simulations. 481 



 482 

In order to determine the presynaptic neuron type, we compare two models of the cross-correlogram between 483 

each pair of neurons: one with a positive fast, synaptic effect and the other with a negative synaptic effect. We 484 

can then estimate the type of each presynaptic neuron by asking which of the two models provides a better 485 

description of the cross-correlograms involving that presynaptic neuron (see Methods). Using our model, in 486 

Simulation 1 with common inputs, 97.7% of the neurons are labeled correctly (7 out of 300 mislabeled). In 487 

Simulation 2 with real presynaptic inputs, 95% of the neurons are labeled correctly (15 out of 300 mislabeled). 488 

In this case the mislabeled neurons are also relatively low-firing rate (mean firing rate = 3.31 Hz, compared to 489 

5.57 Hz for all presynaptic neurons). 490 

 491 

We then evaluate how well we can estimate each presynaptic neuron’s conduction velocity from the cross-492 

correlograms. Here we estimate the synaptic latency between each pair of neurons and use a weighted linear 493 

regression to then estimate the “conduction velocity” of each presynaptic neuron (see Methods). Using this 494 

approach, we find that we can recover the true velocity that was assigned to each of the presynaptic neurons in 495 

the simulations relatively accurately. For Simulation 1 with common inputs, the estimated latency-distance 496 

parameters are correlated with their true values (
1

𝑣𝑖
), 𝑟 =  .95  , 𝑝 < .01, root mean squared error 𝑅𝑀𝑆𝐸 =  .0013 497 

AU/s (Fig. 3A) and for Simulation 2 with real presynaptic inputs, 𝑟 =  .67, 𝑝 < .01, 𝑅𝑀𝑆𝐸 =  .0015 AU/s (Fig. 3D). 498 

 499 

Given these constraints, we can then examine how well we are able to recover the properties of individual 500 

connections. Here we analyze only the true connections within the simulations and find that the true synaptic 501 

weight can be recovered relatively accurately: for Simulation 1 with common inputs, 𝑟 =  .96, 𝑝 < .01 , for 502 

Simulation 2 with real presynaptic inputs, 𝑟 =  .92, 𝑝 < .01 . Similarly, synaptic latency can be estimated 503 

accurately: for Simulation 1 with common inputs,  𝑟 =  .98, 𝑝 < .01, 𝑅𝑀𝑆𝐸 =  .37 ms, for Simulation 2 with real 504 

presynaptic inputs, 𝑟 =  .93, 𝑝 < .01, 𝑅𝑀𝑆𝐸 =  .58  ms. And Including neuron type and latency constraints 505 

improves those reconstructions (For the model without constraints, Simulation 1: latency:   𝑟 =  .73, 𝑝 <506 

.01, 𝑅𝑀𝑆𝐸 =  1.16  ms, weight:  𝑟 =  .92, 𝑝 < .01 . Simulation 2: latency:   𝑟 =  .38, 𝑝 < .01, 𝑅𝑀𝑆𝐸 =  2.32  ms, 507 

weight: 𝑟 =  .79, 𝑝 < .01). Together, these results illustrate how, for simulated networks, our model is able to 508 

capture the type and conduction velocity of presynaptic neurons, as well as the parameters of individual 509 



connections.  510 

 511 

 512 

Figure 3: The extended GLM can capture the properties of presynaptic neurons and individual synaptic connections in two simulated 513 

networks: a recurrent network with common input (A-C) and a network with realistic input (D-F). A & D: Estimated and true presynaptic 514 

conduction velocity. Each dot represents one simulated presynaptic neuron. Colors indicate the estimated presynaptic neuron type. 515 

Axes are normalized.  B & E: Estimated and simulated synaptic weight (𝑤𝑖𝑗, coefficient of the alpha function). Here each dot represents 516 

one true connection. Y-axis is the PSC amplitude assigned in the simulations. Note that dots in the second and fourth quadrants 517 

correspond to cases where the presynaptic neuron type has been misestimated. C & F: Estimated and simulated synaptic latency. 518 

Again, each dot represents one true connection. 519 

 520 

Synapse detection with simulated spike trains: Evaluating the model-based method 521 

Given that the model-based approach can recover the properties of presynaptic neurons (type and conduction 522 

velocity) and the properties of individual connections, we then ask how well our model can distinguish which 523 

pairs of simulated neurons are synaptically connected and which are not. We applied our model and two 524 



previously used synapse detection methods: the thresholding method and spike jitter method, to the two 525 

simulations described above. Briefly, the thresholding method is based on testing if the peak or trough in the 526 

correlogram immediately following a presynaptic spike is significantly different from a constant, baseline number 527 

of coincidences. Since the baseline is estimated with a single value, the thresholding method is generally 528 

effective in cases where there is little fluctuation but will not work well in situations where there are strong 529 

fluctuations (e.g. due to shared common input). To account for these fluctuations, Hatsopoulos et al. (2003) 530 

developed a pattern jitter method where jittered spike trains generate a baseline cross-correlogram that 531 

preserves slow structure in the correlogram while removing fast, transient effects such as those due to a synaptic 532 

connection. The spike jitter method is then based on testing if the peak or trough is significantly different from 533 

the local baseline estimated from the jittered spikes (see Methods for more details). In both the thresholding and 534 

the jitter methods there is no explicit model for the slow effects and fast, synaptic effects, and each cross-535 

correlogram is treated as a separate hypothesis test. In contrast, the extended GLM uses an explicit, parametric 536 

structure for the slow and fast effects, as well as constraints based on neuron type and conduction velocity. 537 

 538 

Since we know where the connections are in the simulations, we can compare the performance of the model-539 

based method to the thresholding and spike jitter methods. Fig. 4A and 4B show the overall receiver operating 540 

characteristic (ROC) curves for each method, for the two simulated networks, respectively. These curves 541 

compare the true positive rate (where a true, simulated synaptic connection is detected as a connection, 542 

regardless of whether the connection was excitatory or inhibitory) and the false positive rate (where the simulated 543 

neurons were not connected, but the method detected a connection). For Simulation 1 with common inputs, the 544 

extended GLM without any network constraints (area under the curve, AUC = .96) performs better than jitter 545 

method (AUC = .94) and thresholding method (AUC = .85). With the constraints on neuron type and conduction 546 

velocity, the performance of the model-based method improves (AUC = .99). Similarly, for Simulation 2 with real 547 

presynaptic inputs, the extended GLM with constraints (AUC = .92) outperforms the model without constraints 548 

(AUC = .86), the jitter method (AUC = .87), and the threshold method (AUC = .86). The standard errors of AUC 549 

generated using bootstrap for all the methods are less than .001. 550 

 551 

Although all methods perform well above chance in detecting connections, we find that both the jitter method 552 



and thresholding method have a bias towards the detection of excitatory connections. When the decision criterion 553 

is set such that the number of false positives is small (less than ~10%) both methods detect far more excitatory 554 

connections than inhibitory connections, despite the fact that the number and strengths of excitatory and 555 

inhibitory connections were approximately balanced in the simulations. This bias may be partially due to the fact 556 

that here, for jitter method and thresholding method, we approximate the noise distribution of the correlograms 557 

using a normal distribution (z-scores), rather than using an empirical distribution. On the other hand, the extended 558 

GLM shows no preference for either excitatory or inhibitory connections for simulation 1, and a slight bias towards 559 

inhibitory connections for simulation 2 (Fig. 4B & E). 560 

 561 

In addition to the overall performance and the performance on different cell types, we also expect the detectability 562 

of synapses to depend on the synaptic strength and the rates of the pre- and postsynaptic neurons. Here we 563 

find that, for both of the simulations, the extended GLM with constraints and the jitter method perform at a similar 564 

level for strong connections, but that the extended GLM has better detection for weak connections (Fig. 4C and 565 

F). We also find that the performance of both methods varies as a function of the firing rate of presynaptic 566 

neurons. Here the extended GLM outperforms the jitter method at all rates, but both of the methods show better 567 

performance for synaptic connections where the presynaptic firing rate is high compared to those where rate is 568 

low (Fig. 4G). By incorporating the learned network information, the extended GLM with constraints appears to 569 

better detect weak connections and rule out false positives. For example, although both the extended GLM and 570 

the jitter method can detect strong connections (Fig. 4H, top two correlograms), the jitter method has more false 571 

positives and false negatives. It may fail to detect a weak connection that does not exceed threshold (the third 572 

correlogram), or falsely detect a non-connection if there is noise that exceeds threshold (the bottom correlogram). 573 

On the other hand, if the weak connection has a sign and latency consistent with the constraints, the extended 574 

GLM can successfully detect it, and if the sign or latency are inconsistent with the constraints, the extended GLM 575 

can successfully rule this connection out (Fig. 4H). 576 



 577 

 578 

Figure 4: The extended GLM with constraints outperforms the jitter and thresholding methods on both of the simulations. Panel A, B and 579 

C show the results from Simulation 1 with background common inputs. Panel D, E and F show the results from Simulation 2 with real 580 

presynaptic inputs. A & D: ROC curves for the extended GLM with and without constraints, jitter method, and thresholding method. B & 581 

E: Jitter method and thresholding method are biased towards the detection of excitatory connections. The y-axis is the ratio of the 582 

excitatory true positive rate and the inhibitory true positive rate. If the method has no preference for connection type, the ratio should be 583 

1. C & F: The extended GLM with constraints performs better than jitter method especially on weak connections. Here we divide the 584 



synaptic connections into 20 groups based on their synaptic weights and calculate AUC for each group (each group contains 5% of the 585 

connections). The error bars denote standard error (estimated using bootstrapping). G: The performance of both of the two methods is 586 

affected by the presynaptic firing rate. We divide all the presynaptic neurons into 10 groups based on their firing rates and calculate AUC 587 

for each group (each group contains 10% of the presynaptic neuron). Only results from Simulation 2 are shown, since there is a wide 588 

range of presynaptic firing rates. H: The extended GLM with constraints can better detect weak connections and rule out the false positives 589 

based on the learned structural information. The two columns show the same four cross-correlograms with the same inhibitory presynaptic 590 

neuron along with the results for the extended GLM (left) and the jitter method (right). For the model the yellow line represents the full 591 

model with inhibitory alpha function, and the red line represents the slow model. For the jitter method, the red and blue lines denote the 592 

upper and lower bounds (based on the best MCC), respectively.  593 

 594 

In the above results, we set the bin size of the cross-correlograms to 0.5 ms for all the methods to tradeoff 595 

between the number of spikes within a bin and the time resolution. However, since bin size may affect 596 

performance, we also ran our model, the jitter method and the thresholding method with the bin sizes of 0.25 ms 597 

and 1 ms on the Simulation #1.  We find that finer time resolution improves the performance of our model-based 598 

methods and does impair the performance of the jitter and thresholding methods. However, the best overall 599 

performance is at small bin sizes where the latency and time constant of the fast synaptic effect can be accurately 600 

estimated (Table 2). 601 

 602 

 
GLM  

(w/ constraints) 

GLM 

 (w/o constraints) 
Jitter method 

Thresholding 

method 

Bin size = 0.25 ms .9883 .9627 .8850 .7837 

Bin size = 0.5 ms .9852 .9597 .9426 .8508 

Bin size = 1 ms .9775 .9472 .9668 .8772 

Table 2: Performance (Area Under the Curve) of different methods with different bin sizes on Simulation #1. 603 

 604 

The overall connection probability may also play a role in detection accuracy. Higher connection probabilities 605 

may cause more cases where pairs of neurons have spurious correlations due to common drive from a third 606 

neuron. Lower connection probabilities could also make the constraints less useful, since there will be fewer 607 

connections from which to estimate both types and distance-latency relationships. As a reference, we ran 608 

Simulation #1 with increased connection probability (20% for excitatory neurons, 80% for inhibitory). With this 609 

denser simulation the performance for all model decreased: the GLM with constraints had an AUC of .97, the 610 



GLM without constraints had an AUC of .89, the jitter method had an AUC of .90, and the thresholding method 611 

had an AUC of .78. However, the relationship among the methods remains very similar.  612 

 613 

Synapse detection with in vitro multielectrode array (MEA) data 614 

In order to evaluate the performance of our method on real data, we apply it to spontaneous in vitro spike activity 615 

recorded in a mouse somatosensory cortex slice culture using a 512-electrode array (see Methods). Here we 616 

adopt two representative datasets: dataset #13 and dataset #23, and examine potential connections between 617 

neurons with >1000 spikes recorded. Before we run the model on the dataset, in order to get rid of the possible 618 

influence of spike sorting problems, we exclude the neuron pairs when there is an anomalous peak or trough 619 

right in the middle of the correlogram (<7% of pairs, see Methods for more details). 620 

 621 

Since we don’t know the ground truth about where the synaptic connections are in the in vitro data, we are not 622 

able to directly measure the performance of our synapse detection methods. However, we can qualitatively 623 

assess whether or not the method gives results consistent with what we expect. We first validate whether our 624 

method can correctly classify excitatory neurons and inhibitory neurons by analyzing the shape the spike 625 

waveform of each neuron. Previous studies have shown that the excitatory neurons typically have broader spike 626 

waveforms, while the majority of inhibitory neurons have narrower spike waveforms (Barthó et al. 2004). In the 627 

two datasets used here, the neurons with broader waveforms are more likely to be classified as excitatory 628 

neurons by our model based on their putative synaptic connections, but the results for neurons with narrow 629 

waveforms are mixed (Fig. 5A). To quantify the relationship between waveform and connectivity, we fit a 630 

Gaussian mixture model with 3 components to the trough-to-peak duration and half-amplitude duration of the 631 

waveforms creating three clusters for “broad waveforms”, “narrow waveforms”, and “outliers”. After assigning 632 

each neuron to a cluster (based on the posterior probability), we analyze the consistency between the waveform 633 

shape and the neuron type given by their putative connections. From the presynaptic neurons with putative 634 

connections detected by our method, we find that 77% of the “broad-spiking” neurons are classified as putative 635 

excitatory neurons based on their connectivity, and 47% of the “narrow-spiking” neurons are classified as putative 636 

inhibitory neurons. Inhibitory, non-fast-spiking neurons with broad waveforms have been previously reported 637 

(Dehghani et al. 2016), however, excitatory neurons with narrow waveforms are unexpected. There are likely to 638 



be some cases where the extended GLM misidentifies the neuron type, however, there are also cases where 639 

neurons with narrow waveforms appear to have putative excitatory connections with typical short-latency, fast 640 

transient increases in the cross-correlograms. This may suggest that the in vitro recordings here contain 641 

excitatory neurons with narrow waveforms. Many single units in the MEA data here appear to be narrow due to 642 

the fact that they have triphasic waveforms. Previous work suggests that this could indicate a nearby axon (Barry 643 

2015; Gesteland et al. 1982; Robbins et al. 2013). 644 

 645 

We then analyze the properties of the putative synaptic connections detected by our method. Here we pick the 646 

thresholds for our method based on the maximum MCC from the simulation with background fluctuations (see 647 

details in Methods). We first find that the neurons close to each other are more likely to have putative connections 648 

(Fig. 5B). The median distance between neuron pairs with putative connections is 708 μm, compared to a median 649 

distance between all the neurons of 813 μm for dataset #13. And for dataset #23, the median distance between 650 

neuron pairs with putative connections is 810 μm compared to the median distance between all the neurons 859 651 

μm. These results are consistent with previous findings in other cortical areas that the probability of a synaptic 652 

connection decreases with distance (pyramidal cells in layer 2/3 of rat visual and somatosensory cortex: 653 

Holmgren et al. 2003; pyramidal cells in layer 5 of rat visual cortex: Song et al. 2005).    654 

 655 

We then compare the putative connections detected by the extended GLM and the jitter method on these same 656 

datasets. As with our method, we pick the threshold for jitter method based on the maximum MCC (see details 657 

in Methods) from Simulation 1 with background fluctuations. In general, the extended GLM and jitter method 658 

detect highly distinct sets of connections (Fig. 5C and 5D). Here we sort the neurons based on the similarity of 659 

their putative connections detected by our method (using hierarchical clustering). For the Hinton plot of our 660 

method, the size of each square represents the magnitude of the estimated synaptic weight 𝑤𝑖,𝑗  of the 661 

corresponding neuron pair. For the Hinton plot of jitter method, the size of each square represents the magnitude 662 

of the z-score of the corresponding neuron pair.  663 

 664 

Based on the Hinton plots, we do see that the results from our method and jitter method show certain agreements 665 

on the detection of putative connections, especially on the strong connections: For dataset #13, the two methods 666 



show the same detection results (whether there is a synaptic connection or not) on 96.8% of the neuron pairs, 667 

for dataset #23, the two method show the same detection results on 94.13% of the neuron pairs. However, since 668 

the vast majority of pairs are not connected, we also use MCC to measure the similarity between the results of 669 

the two methods. The MCC between the results of the two methods is .30 (dataset #13) and .46 (dataset #23), 670 

which implies some disagreements between the results of the two methods. We find that jitter method reports 671 

more putative connections than our method (dataset #13: 2582 vs. 1423, dataset #23: 5204 vs. 3543). In addition, 672 

our method reports more putative inhibitory connections. For dataset #13, 26.4% (375 out of 1423) of the putative 673 

connections are inhibitory when using our method, while 5.9% (152 out of 2582) of the putative connections are 674 

inhibitory when using jitter method. For dataset #23, 50.7% (1797 out of 3543) of the putative connections are 675 

inhibitory when using our method, while 16.3% (846 out of 5204) of the putative connections are inhibitory when 676 

using jitter method. 677 

 678 

 679 

Figure 5: Applying the extended GLM to in vitro multielectrode array data. A: left: most of the neurons with wide waveforms are classified 680 

as putative excitatory neurons by our method, while the results for neurons with narrower waveforms are rather mixed. Right: The 681 



waveforms of putative excitatory neurons and inhibitory neurons. For putative inhibitory neurons, the waveforms are narrow, while for the 682 

putative excitatory neurons, there are two clusters of waveforms. B: the histograms of the distance between neurons (top: dataset #13, 683 

bottom: dataset #23). Distances for all neuron pairs are in blue, while distance for neuron pairs with putative connections are in red. C & 684 

D: Hinton plots for dataset #13 (C) and #23 (D) using the extended GLM and jitter method, respectively. The putative excitatory 685 

connections are marked in red. The putative inhibitory connections are marked in blue. Here all the neurons are sorted by the similarity 686 

of their putative connections detected by our method. Each row represents the connections from one presynaptic neuron. In each Hinton 687 

plot, the two horizontal lines separate the neurons with no putative connections, putative inhibitory neurons, and the putative excitatory 688 

neurons. The two vertical lines mark the same boundaries for postsynaptic neurons.  689 

 690 

 691 

We then examine to what extent the synaptic latencies of the putative connections from one presynaptic neuron 692 

increase as function of distance. For each neuron with more than 2 putative connections (450 out of 602 neurons 693 

across both datasets), we calculate the Pearson correlation coefficient 𝑟 between the estimated synaptic latency 694 

∆𝑡 and the distance between the corresponding pre and postsynaptic neuron. Fig. 6E shows the histogram of all 695 

the correlation coefficients of the two datasets, 72% of the neurons show a positive correlation between the 696 

estimated synaptic latency and distance between neurons, 36% of them are statistically significant (𝑝 < .05). Fig. 697 

6A & 6B show some examples of presynaptic neurons that have many connections and are consistent with a 698 

linearly increasing latency-distance relationship (r > 0). We find both putative excitatory and putative inhibitory 699 

cases where this relationship seems to hold. In the cases where the neurons don’t obey the rule (𝑟 < 0, 29% of 700 

the neurons), the accuracy of the linear fit of the latency-distance relationship tends to be lower. Under the 701 

extended GLM the constraint on the synaptic latency for these ill-predicted connections (𝜂Δ𝑡) is also weaker 702 

(although not significant, unpaired t-test:𝑡(240) =  −1.91, 𝑝 = .058, 𝐶𝐼 =  [−1.73, .03], Fig. 6F). Since the strength 703 

of the constraint in our model is partially based on how well the latency-distance relationship is fit by a linear 704 

trend, these constraints thus have a weaker influence and our method is still able to detect putative connections 705 

at unexpected latencies (Fig. 6C & 6D). 706 

 707 



 708 



 709 

Figure 6: Applying the extended GLM to in vitro multielectrode array data. A,B, C & D: examples of neurons where the relationship 710 

between synaptic latency and distance is consistent with an increasing linear trend (panel A & B) and inconsistent with such a trend (panel 711 

C & D). Panel A & C: data points with the same color represent putative connections from the same presynaptic neuron. The dotted lines 712 

show the linear regression of the estimated synaptic latency and distance. Panel B & D : cross-correlograms for these connections with 713 

colors corresponding to the scatter plot. E: the histogram of Pearson correlation between the putative synaptic latency and distance for 714 

all the presynaptic neurons. F: mean 𝜂Δ𝑡 for the neurons that don’t obey the latency rule (𝑟 < 0) and the neurons that obey the rule (𝑟 >715 

0 & 𝑝 < .05).  716 

 717 

Discussion 718 

Traditionally, intracellular recording represents a gold standard for characterizing synaptic connections. 719 

Detecting synaptic connections using the intracellularly recorded postsynaptic potentials and currents is 720 

straightforward and reliable (Harris et al. 2016; Song et al. 2005). However, only a relatively small number of 721 

neurons can be recorded simultaneously using intracellular recording, particularly in vivo (but see Pawlak et al. 722 

2013). In recent decades, advances in multielectrode arrays have allowed the spiking of hundreds to thousands 723 

of neurons to be recorded simultaneously in vivo or in vitro with thousands of potential synapses between them 724 

(Cheung et al. 2007; Ito et al. 2014; Seeman et al. 2018; Spira and Hai 2013). Distinguishing the monosynaptic 725 

connections from the many tens of thousands of possible connections in these large-scale extracellular 726 

recordings is a difficult statistical problem. Previous methods for distinguishing putative synaptic connections 727 

and non-connections in large-scale recordings have used separate hypothesis tests on the cross-correlograms 728 

of all potentially connected neuron pairs (Hatsopoulos et al. 2003; Pastore et al. 2018; Perkel et al. 1967b). In  729 

recent work, Kobayashi et al. 2019 find that a model-based approach combining a slow background effect and 730 

a fast synaptic effect (GLMCC) provides improved performance. Here we develop an extended GLM that also 731 

incorporates two structural constraints learned from the whole network: presynaptic neuron type and the 732 

relationship between the synaptic latency and distance between pre- and postsynaptic neurons. On two 733 

simulated integrate-and-fire networks, our model outperforms previous synapse detection methods (the 734 

thresholding method and spike jitter method), especially on the weak connections. We also apply our model on 735 

in vitro multielectrode arrays (MEAs) data. Here our model recovers plausible connections from hundreds of 736 

neurons recorded extracellularly. 737 

 738 



Many factors affect how likely a synaptic connection is to be detected, including the firing rates of the pre- and 739 

postsynaptic neurons, the recording time, and the synaptic strength. Here, in our simulations, we find that the 740 

model-based approach outperforms the hypothesis testing-based approaches for a wide range of firing rates 741 

and shows particular improvement for detecting weak connections. At the same time, in our simulations, the 742 

model-based methods outperform the hypothesis test-based methods at all thresholds. That is, the distributions 743 

of likelihood ratios for connections and non-connections are more distinct than the distributions of test statistics 744 

with the jitter or thresholding methods. In practice, however, when detecting putative synapses, the choice of 745 

threshold has a strong effect on how many synapses are detected and also how many false positives there are. 746 

Here, in detecting putative synapses in experimental data we apply the same optimal (MCC maximizing) 747 

threshold from the simulation. This is largely for illustration, but selecting an appropriate threshold for 748 

experimental recordings depends on the researchers’ tolerance for false positives and false negatives. Ultimately, 749 

the choice of threshold should be based on the aims of the analysis and the costs/benefits of mistakes in 750 

interpreting the underlying data. 751 

 752 

Since we don’t know the ground truth for experimental data, it is possible that the threshold used here might be 753 

either too strict or too permissive. However, the performance of the model-based method may be somewhat 754 

more robust to the choice of threshold than the jitter and thresholding methods. In our simulations, we find that 755 

both the jitter method and thresholding method show strong biases towards detecting excitatory connections, 756 

particularly at strict thresholds with few false positives. The model-based approach, on the other hand, detects 757 

excitatory and inhibitory connections in proportion to their prevalence in the simulation at all the thresholds. The 758 

bias of the jitter method may due to the fact that we here measure test statistics assuming that spike counts 759 

follow a normal distribution. This approximation clearly does not accurately account for the fact that spike counts 760 

can only be non-negative. However, in practice we find that this type of smooth approximation has better 761 

performance at strict thresholds compared to using the empirical count distributions (using the percentile of the 762 

true counts in the jittered count distribution), which do not have smooth tails. These biases we find in the 763 

simulation results may indicate that, when we apply these methods to real data, jitter method and thresholding 764 

method may distort the observed E-I ratio if the threshold is too strict. Consistent with the simulation results, in 765 

the in vitro data analysis, we find that the jitter method also typically detects many more excitatory than inhibitory 766 



connections (5-13x more), while the model-based method detects putative connections with a smaller EI ratio 767 

(~3:1). Previous work has found that approximately one in five neurons is GABAergic in many neocortical areas 768 

and species (Hendry et al. 1987; Sahara et al. 2012). Although there are many factors that might influence the 769 

observed EI ratios when measuring putative synapses from spikes, the model-based approach appears to be 770 

less biased. 771 

 772 

In the model-based approach, we learn two structural constraints from the whole network: presynaptic neuron 773 

type and the relationship between the synaptic latency and distance between pre- and postsynaptic neurons. 774 

For the presynaptic neuron type, using the simulation, we find that the model-based approach is able to 775 

successfully classify most neurons. However, when applying the method to the in vitro data, we compare the 776 

neuron type estimated based on putative synaptic connections with waveform shapes, and find that our results 777 

are somewhat less clear than previous findings in vivo (Barthó et al. 2004). Instead of two, well separated 778 

excitatory (broad waveforms) and inhibitory (narrow waveforms) clusters, we find substantial mixing of types 779 

across clusters. This may be partially due to the particulars of organotypic slice recording. Previous works have 780 

found that the waveforms in these recordings tend to be more triphasic potentially due to axonal conductance 781 

(Barry 2015; Robbins et al. 2013), and this could lead to misestimation of waveform width. New methods, such 782 

as optotagging (Lima et al. 2009) or optrodes (English et al. 2017) may offer a more reliable identification of 783 

neuron type. However, in the absence of experimental verification, it is difficult to evaluate the accuracy of cell 784 

type inferences. Additionally, although here we assume that presynaptic neurons are either exclusively excitatory 785 

or exclusively inhibitory, there is recent and growing evidence that presynaptic neurons can co-release multiple 786 

neurotransmitters (Root et al. 2014). 787 

 788 

For the relationship between the synaptic latency and distance between pre- and postsynaptic neurons, we found 789 

that the model-based method can successfully learn linear relationships in simulation and that these constraints 790 

improve detection performance. By applying our method to the in vitro data, we also find that for most of the 791 

neurons, the synaptic latencies tend to increase with the distance between the pre- and postsynaptic neurons. 792 

However, there appears to be a portion of neurons that don’t show this pattern. In many cases, we may not have 793 

enough putative synaptic connections to estimate such a trend. In the cases where there are enough connections, 794 



there may not be a trend due to several other reasons. First, the locations of the somas are only approximate – 795 

based on which electrodes have the highest amplitude waveforms. Second, although here we model presynaptic 796 

conduction velocity, it’s possible that the dendritic distance constitutes a large portion of the distance. And third, 797 

the straight-line distance between somas may not be the same as the trajectory of the axons/dendrites, especially 798 

when the neurons are sampled from different barrel fields or different cortical layers. Although previous 799 

theoretical work on the minimum wiring length principle might suggest the conduction distance between two 800 

neurons can be well approximated with straight-line (Chklovskii et al. 2002; Koulakov and Chklovskii 2001), there 801 

are clearly many sources of uncertainty when estimating conduction velocity here. However, it is important to 802 

note that, within the extended GLM, the conduction velocity is only a soft constraint, and the strength of the 803 

constraint is related to how accurately the relationship is fit by a straight line. We are still able to detect 804 

connections even if the relationship between synaptic latency and distance is not clearly linear. 805 

 806 

With the model-based method, we are able to learn the properties of each presynaptic neuron (type and 807 

conduction velocity) and use these properties to better detect individual synaptic connections based whether 808 

they are consistent with these properties. In the future application of this method, we could potentially include 809 

other sources of information to better estimate these properties. For instance, cell types can be classified 810 

according to: mean firing rate, the mode of the inter-spike interval distribution, burstiness, and spike asymmetry 811 

(English et al. 2017), using “center of mass” could provide an estimate of the directions of connections (Gerrard 812 

et al. 2008; Luczak et al. 2009; Takeuchi et al. 2011), and conduction velocity could also potentially be estimated 813 

using spatiotemporal electrical image generated using the spike waveforms across multiple electrodes (Li et al. 814 

2015). In addition, the model-based approach is flexible enough that other constraints could also be incorporated. 815 

For instance, we could use constraints based on connectivity across and between brain regions or other network 816 

structure (Linderman et al. 2016). Additionally, although we have not focused on these measures here, the log 817 

likelihood ratios that we use to detect the connections could also be used to calculate p-values (using a likelihood 818 

ratio test), and confidence intervals for the estimated synaptic weights can be calculated based on the log 819 

likelihood itself. Finally, as neural recording techniques continue developing, increasing numbers of neurons can 820 

be recorded simultaneously (Stevenson and Kording 2011). These recordings have the potential to contain more 821 

monosynaptic connections per recording, and this should result in more reliable estimation of neuronal properties. 822 



 823 

Although the methods presented here are likely to be useful for large-scale detection of putative synaptic 824 

connections, modeling the cross-correlogram directly does not necessarily provide unambiguous evidence for 825 

or against the presence of a synapse. Other detection methods have used other spike statistics (Casadiego et 826 

al. 2018; Chen et al. 2011; Ito et al. 2011; Kadirvelu et al. 2017; Ladenbauer et al. 2019; Monasson and Cocco 827 

2011; Song et al. 2013), and the shape of the cross-correlogram can be influenced by many other factors, such 828 

as the dynamics of the presynaptic neuron (Perkel et al. 1967b) and common input from unobserved neurons 829 

(Gerstein et al. 1989; Stevenson et al. 2008). Here we exclude the neuron pairs when there is a peak or trough 830 

in the cross-correlogram at t=0 to remove the potentially problematic connections, and expect our slow basis 831 

functions can act to model the common inputs if they occur on slow timescales (~10 ms). There are, however, 832 

examples of systems where common input on fast timescales does occur, see (Diba et al. 2014; Swadlow et al. 833 

1998). These could potentially result in false positives under our framework. Additionally, although we account 834 

for some potential structure due to properties of presynaptic neurons, modeling multiple inputs to the same 835 

postsynaptic neuron will likely result in more accurate estimates of the true connectivity  (Roudi et al. 2015; 836 

Volgushev et al. 2015; Zaytsev et al. 2015).  837 

 838 

Ultimately, being able to accurately detect putative synaptic connections from large-scale extracellular recordings 839 

opens a host of neuroscientific questions. Previous work found that synaptic weights detected from spikes can 840 

have strong type-dependent structure (Barthó et al. 2004), seem to vary based on behavior (Fujisawa et al. 841 

2008), and also have substantial short-term dynamics (English et al. 2017; Ghanbari et al. 2017). Although here 842 

we apply our method to an in vitro MEA dataset, this method can be applied to any datasets that contain spike 843 

trains and inter-neuron distances. Our method provides an additional tool for detecting putative synaptic 844 

connections in in vivo or in vitro large-scale recordings. As the scale of recording techniques increases, this 845 

approach may help us better understand how the properties of single neuronal connections relate to population 846 

neural activity and behavior. 847 

 848 

Code and MEA data availability 849 

The MATLAB code of the extended GLM method is available at GitHub: https://github.com/NaixinRen/extended-850 

https://github.com/NaixinRen/extended-GLM-for-synapse-detection


GLM-for-synapse-detection. 851 

The MEA in-vitro data is available at the Collaborative Research in Computational Neuroscience (CRNCS) Data 852 

Sharing Initiative: https://crcns.org/data-sets/ssc/ssc-3/about-ssc-3 853 
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