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Some features of the phase diagram of the two-dimensional ANNNI model have long been debated.
The extended structural correlations and relaxation times associated with its Kosterlitz-Thouless
(KT) phase indeed result in analytical and numerical treatments making contradictory predictions.
Here, we introduce a numerical transfer matrix approach that bypasses these problems, and thus
clears up various ambiguities. In particular, we confirm the transition temperatures and the order of
the transition to the floating incommensurate phase. Our approach motivates considering transfer
matrices for solving long-standing problems in related models.

Introduction. Patterned and modulated phases ro-
bustly form when the components of a system interact
via competing short-range attractive and long-range re-
pulsive (SALR) interactions.1–4 Such phases have indeed
been observed in materials as varied as magnetic al-
loys,5,6 semiconducting nanowires,7 lipidic surfactants8,9

and biological tissues.10,11 Frustration, however, is also
associated with slowly decaying finite-size corrections
and complex relaxation processes, which both severely
impede the study of equilibrium phases. In numeri-
cal simulations, for instance, specialized sampling tech-
niques are needed to study even minimal microphase for-
mers,12–16 let along more realistic ones.

Lattice archetypes with SALR interactions were first
formulated forty years ago, the simplest being the ax-
ial next-nearest-neighbor Ising (ANNNI) model.17 Yet
even in two dimensions this small perturbation of the
simple Ising case is out of reach of exact treatments.
Different approximation methods have thus been con-
sidered, including the Hamiltonian limit,18–20 the free
fermion approximation,21 high-temperature series expan-
sion,22 and others.23–26 These approaches, however, do
not always concur. For instance, the cluster variational
method (CVM) gives a fairly wide range of incommensu-
rate (IC) phase23 while a density variation renormaliza-
tion group (DMRG) study26 suggests the IC phase only
exists over an infinitesimal temperature range. As a re-
sult, although the physics of both the small frustration
regime and the energetic ground states has long been
solved, that of the finite temperature-strong frustration
regime has not. Between the standard high-temperature
paramagnetic phase and low-temperature modulated an-
tiphase, a floating IC phase likely intercalates. A field-
theoretic treatment suggests that this critical phase—if
it exists—is of the Kosterlitz-Thouless (KT) type, and
thus belongs to the XY universality class.27,28 Numer-
ical validation, however, has remained elusive, as has
whether the IC phase persists at large frustrations or
disappears at a Lifshitz point.25 Equibrium Monte Carlo
simulation approaches have reported different high and
low transition temperatures,14,29–31 Tc1 and Tc2, respec-
tively. (Non-equilibrium relaxation simulations suggest-
ing that the IC phase has but an infinitesimal width32,33

have since been refuted.14) The proposed reentrance of
the IC phase around the multiphase point23,24 also re-
mains to be confirmed. Because these features are cen-
tral to our understanding of the floating IC phase in mi-
crophase formers, clarifying their nature is particularly
important.

As was recognized already in the mid-1980s, a transfer-
matrix (TM) approach should be able to sort out these
issues.34,35 For semi-infinite systems, the approach pro-
vides exact solutions that can then be extrapolated to
the thermodynamic limit by careful scaling. Because
both computational and space complexity grow exponen-
tially with system size, however, the accessible size range
has long been too narrow for physical insight to emerge
from TM studies. Thanks to marked improvements in
methodology, computer hardware and eigensolvers,36 the
TM approach has recently been applied to more complex
(quasi) one-dimensional continuum-space systems, in-
cluding SALR models with up to third-nearest-neighbor
interactions,37 and hard spheres in cylindrical confine-
ment up to next-nearest-neighbor interactions.38–40 For
two-dimensional lattice models with frustration, suffi-
ciently large systems have also recently become accessible
to the TM approach, thus enabling transition tempera-
tures on the related J1−J2 model to be determined.41 In
this Letter, we push the effective use of the TM formalism
to resolve various physical ambiguities of the somewhat
more complex ANNNI model. In particular, we deter-
mine the phase boundaries for the floating IC phase, and
critically assess proposals for the Lifshitz point and the
IC phase reentrance.
Transfer matrix approach. The ANNNI model Hamil-

tonian for Ising spin variables, si = ±1, reads

HANNNI = −J1
∑
〈i,j〉

sisj + J2
∑

[i,j]axial

sisj − J0
∑
i

si, (1)

where the coupling constant J = J1 > 0 sets the scale
for the frustration along the axial next-nearest-neighbor
direction κ = J2/J1 > 0 and the external field h = J0/J .
For κ = 0, the model reduces to the standard Ising model;
for the T = 0 ground state, ferromagnetic order domi-
nates until κ < 1/2, and the periodic antiphase (with pe-
riodicity 〈2〉) takes overs for κ > 1/2. Because in lattice-
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gas representation, ni = (si + 1)/2, the ANNNI model
corresponds to SALR interacting particles with effective
chemical potential h, it is also a minimal description of
layered microphases.

The finite-temperature, finite-frustration phase behav-
ior of semi-infinite strips is obtained by a TM approach
with each layer s having L spins s1, s2, ..., sL. (Setting
sL+1 ≡ s1 imposes periodic boundary conditions.) Be-
cause the interaction in the ANNNI model is anisotropic,
the TM can be propagated either perpendicular (⊥TM)34

or parallel (‖TM)35 to the axial next-nearest-neighbor
interaction direction. In both cases, the matrices can
be decomposed into intra-layer, Tx, and inter-layer, Ty,
contributions,

T = T
1
2
xTyT

1
2
x . (2)

In ⊥TM, row and column indices correspond to neigh-
boring layer configurations s and s′,⊥Tx(s) = exp

[
J
∑L

i=1(sisi+1 − κsisi+2 + hsi)
]
,

⊥Ty(s, s′) = exp
(
J
∑L

i=1 sis
′
i

)
,

(3)
which makes ⊥T a 2L × 2L symmetric dense matrix. In

‖TM, row and column indices correspond to two subse-

quent layers {s, s′} and {s′, s′′}, respectively, and then

‖Tx(s, s′) = exp
[
J
∑L

i=1(sisi+1 + sis
′
i + hsi)

]
,

‖Ty(s, s′′) = exp
(
−κJ

∑L
i=1 sis

′′
i

)
,

(4)

which makes ‖T a 4L × 4L non-symmetric sparse matrix

with 8L nonzero entries.
The leading eigenvalue (that with the largest magni-

tude) of these matrices, λ0, provides the free energy per
spin, f = − log λ0/(βL), and the product of left and right
leading eigenvectors, P (s) = ϕ−1(s)ϕ(s), provides the
equilibrium probability of a layer configuration. Equi-
librium configurations can thus be efficiently planted.42

Taking partial derivatives of f provides thermal prop-
erties, such as the energy u = −kBT 2∂(βf)/∂T and
specific heat c = ∂u/∂T per spin. The leading correla-
tion length can also be obtained from the spectrum gap,
ξ1 = 1/ log(λ0/|λ1|),35 albeit only along the direction
of layer propagation. Hence, although the compactness
of ⊥TM brings larger L within computational reach, the

‖TM geometry is more informative about the modulation
structure.

Iterative eigensolvers based on matrix-vector multipli-
cation are used to obtain first a few leading eigenvalues
and eigenvectors.43 When only the leading eigenpairs is
needed, the eigenproblem can be solved equivalently on
a reduced transfer matrix,34 knowing that the original
matrix is invariant to re-indexing by shifting one spin or
counting spins backwards, and has Z2 symmetry when
h = 0. Combining these equivalent configurations gener-
ically reduces the matrix size by a factor of 2L (4L when
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FIG. 1. Thermodynamic and structural observables from

⊥TM. Evolution of the energy for (a) κ = 0.3 and (b) 0.6 with
corresponding phase transition temperature estimates, Tc and
Tc2, respectively (dashed lines). (insets) For the former, the
heat capacity peak, c(T ∗;L), grows logarithmically with sys-
tem size; for the latter, the heat capacity curves present dis-
tinct peaks that sharpen with L. For κ = 0.6: (c) the peak
height of the lowest temperature peak, c(T ∗;L), grows expo-
nentially with system size. (Inset) Extrapolating T ∗ with a
quadratic form in 1/L suggests Tc2 = 0.90(1), and the second
peak is projected to merge with the first as 1/L→ 0. (d) The
number of modulation blocks on a layer Nmod correspondingly
decreases stepwise with T .

h = 0). As a result, ⊥TM systems with up to L = 36
and ‖TM systems with up to L = 16 can be efficiently
solved using < 60GB of memory.

Phase diagram for h = 0. We first consider results from
the ⊥TM route in absence of an external field (Fig. 1).
For κ < 1/2, energy curves for different L robustly cross
at a well-defined critical point Tc(κ). For the Ising, κ = 0,
limit u(Tc) is perfectly invariant with L,44,45 and for
0 < κ . 1/2, small systems with L . 10 exhibit a cor-
rection of at most 0.1%. From this identification of Tc(κ)
we confirm that the heat capacity peak, c(T ∗;L), grows
logarithmically with system size in this regime (Fig. 1(a)
inset), as expected for systems in the Ising universality
class.

For κ & 1/2 a markedly different behavior is observed.
As in simulations,30 u(T ) displays pronounced steps, thus
giving rise to sharp heat capacity peaks (Fig. 1(b)). Ex-
trapolating the lowest peak temperature for κ = 0.6 us-
ing a quadratic form in 1/L gives a thermodynamic limit,
1/L → 0, transition temperature consistent with recent
numerics for Tc2.31 At first glance, these sharp features
suggest a standard first-order transition,46,47 but the step
height scales as 1/L (not shown), and is thus projected
to vanish in the thermodynamic limit. Confusingly, the
peak height of the specific heat nonetheless scales ex-
ponentially, c(T ∗;L) ∼ exp(aL)/L (up to c ≥ 103)
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(Fig. 1(c)), i.e., faster than any power-law. These obser-
vations are in fact reminiscent of the Pokrovsky-Talapov
transition scenario.48 In d = 2, this second-order transi-
tion is expected to have heat capacity exponents α = 1/2
and α′ →∞ from the floating IC and commensurate 〈2〉
phases, respectively.49 Although the first scaling has long
been validated from the square-root singularity of the
modulation wavenumber,25,26,29 limited simulation accu-
racy prevented confirming the second.30 The exponential
growth of the heat capacity peak obtained by the TM
formalism completes its characterization.

Observations in the vicinity of T ≥ Tc2 further vali-
date the nature of the IC phase. As L increases, multiple
heat capacity peaks emerge, accompanied by a stepwise
evolution of the energy u and by a quantization of the
number of modulation layers, Nmod (Fig. 1(b, d)). The
second heat capacity peak that emerges for L ≥ 24 also
grows exponentially with L, and is projected to merge
with the first peak as 1/L→ 0 (Fig. 1 (c) inset); a third
peak similarly appears for L ≥ 32. For ⊥TM, the mod-
ulation wavenumber q = Nmod/L, also decreases step-
wise with T and the step height scales as 1/L. In other
words, at finite L the allowed modulations are separated
by sharp crossovers, but as 1/L → 0 infinite commen-
surate phases are separated by infinitesimal temperature
intervals. Each of these steps can be viewed as a “phase
transition” of infinitesimal singularity, a hallmark of the
persistent criticality of the floating IC phase.

As temperature increases, the floating IC to paramag-
netic phase transition at Tc1 leaves no thermal signature,
as expected of a KT-type transition. Certain observables
used for identifying Tc2, such as the wavevector q and the
domain free energy, thus exhibit no signature at Tc1.26

To determine Tc1, we instead investigate the correlation
length ξ1 in ‖TM. Specifically, following the finite-size
analysis proposed in Ref. 35, we define

YL =
log[ξ1(L+ 1)]− log[ξ1(L− 1)]

log(L+ 1)− log(L− 1)
, (5)

which is the finite-L (effective or local) critical exponent
for ξ1, i.e., ξ1 ∼ LYL . Because the thermodynamic limit
of this quantity gives the anisotropic scaling exponent,
i.e., limL→∞ YL = θ,50 different thermodynamic scenar-
ios can be discerned:

in the ordered phase, YL →∞,
in the disordered phase, YL → 0,

in the critical phase, or at Tc, YL → cnst > 0.

Reference 35 also proposed extracting the modulation
wavenumber q directly from the angular argument of the
subleading eigenvalue, i.e., q = | arg(λ1)|/2π. This quan-
tity brings about another local exponent, ZL, which char-
acterizes the convergence to the ground state modulation,

ZL = − log[δq(L+ 1)]− log[δq(L− 1)]

log(L+ 1)− log(L− 1)
, (6)
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FIG. 2. Correlation length analysis from ‖TM. Local expo-
nents (a, b) YL and (c, d) ZL for κ = 0.6 and 0.49, respec-
tively. For κ = 0.6: (e) the two characteristic temperatures
extracted from YL and ZL (see text for details) coincide at Tc1

and Tc2, respectively, as 1/L → 0; (f) the critical exponents
YL also coincide at these temperatures. In (e) and (f), solid
lines are quadratic fits (or linear fits if only three data points
are available). The dotted line in YL,mid is purely qualitative
because of the limited number of available data points. The
thermodynamic behavior of YL and ZL, extracted from panels
(e) and (f), are reported in (a-d) (dashed lines).

where δq = |q − q(T = 0)|, and similarly,
in the commensurate phase, ZL →∞,
in the IC phase, ZL → 0,

at the IC transition or disorder line, ZL → cnst > 0.

Without loss of generality, we here consider results for
κ = 0.6. Figure 2(a) shows the non-monotonic evolu-
tion of YL with T . Multiple crossing points (Tlow, Tmid

and Thigh) as well as local extrema (Tmin and Tmax) can
then be identified, in addition to the crossing point in
ZL, denoted TZ (Fig. 2(c)). The finite-L scaling of these
characteristic temperatures numerically determines the
transition temperatures as well as the corresponding θ
(Fig. 2(e, f)). In Ref. 35 and 50, the floating IC phase
could be loosely bound by TZ and Thigh; here, thanks to
a vastly larger range of L being accessible, more charac-
teristic temperatures can be analyzed, thus refining nu-
merical estimates and clarifying the underlying physics.

To extract thermodynamic information, we consider
again a quadratic fit of these characteristic temperatures
with 1/L. Although this choice arbitrarily assumes a
critical scaling of L−t with t = 1—no theoretical esti-
mate of t is known—it nevertheless leads to a good con-
vergence of the characteristic temperatures in the ther-
modynamic limit. Tlow, Tmid, Tmin and TZ all coincide
to Tc2 = 0.89(1), consistent with the ⊥TM analysis, and
Tmax and Thigh both coincide at Tc1 = 1.04(1) > Tc2.
This second temperature, however, markedly differs from
the two most recent simulation estimates, T = 1.16(1)14
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FIG. 3. Phase diagram for the two-dimensional ANNNI
model with h = 0. The TM approach provides
phase boundaries for the ferromagnetic 〈∞〉-paramagnetic
(squares), commensurate antiphase 〈2〉-floating IC (crosses),
and paramagnetic-floating IC (circles) transitions. The dis-
order line (asterisks) subdivides the paramagnetic phase in
two regimes with q = 0 and q > 0 modulation wavevectors.
Configuration snapshots generated by planting use blue and
yellow pixels to denote +1 and −1 spins, respectively. (In-
set) Extrapolated exponents at the boundaries of the floating
IC phase, θ(Tc1;κ) (orange) and θ(Tc2;κ) (blue). Error bars
denote the range of the extrapolated results obtained from dif-
ferent characteristic temperatures (see Fig. 2(f)). Lines are
guides to the eyes.

and 1.2730. (Earlier theoretical estimates vary even more,
from Tc1 ≈ Tc2

26,32 to 1.6423.) Because finite-size cor-
rections and equilibration difficulties in simulating this
regime are notoriously pronounced, such discrepancy is
not particularly surprising. The good agreement between
multiple characteristic temperatures and the small cur-
vature of the fits (suggestive of a relatively small pre-
asymptotic correction) tend instead to support our esti-
mate. As a further test of the scenario Thigh = Tc1 = Tc2,
we note that the extrapolated Thigh(L → ∞|κ = 0.6)
reaches a minimum of 1.00 for t = 0.75, still well above
Tc2. Interestingly, the DMRG study that supports this
scenario26 was conducted with ⊥TM. A DMRG formal-
ism with ‖TM may also locate Tc1 differently and more
robustly, although the confounding effect of other ap-
proximations cannot be excluded. In any event, results
of our exact transfer matrix treatment as well as recent
extensive simulations14 strongly support Tc1 > Tc2.

The distinctiveness of the two characteristic temper-
atures suggests that θ monotonically increases with T
for a fixed κ in the floating IC phase. Extrapolating YL
at different characteristic temperatures, namely YL,max,
YL,high and YL,min, YL,mid (as in Fig. 2(f)), provides
approximations for θ(Tc1;κ) and θ(Tc2;κ), respectively.
These exponents vary remarkably little with κ (Fig. 3
(inset)). The two distinct transition temperatures thus
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FIG. 4. (a) Phase diagram for the two-dimensional ANNNI
model with κ = 0.6 and varying h. Crosses denote the tran-
sition between the antiphase 〈2〉 and the floating IC phase,
and circles that between the floating IC phase and the para-
magnetic phase. Snapshots are obtained as in Fig. 3. (b)
Evolution of the magnetization per spin with temperature
for h = 0.15 obtained from ⊥TM with L = 12 . . . 32, from
blue to red. Note the clear jump in magnetization at Tc2

(dashed line). (c) YL for h = 0.205 obtained from ‖TM with
L = 5 . . . 15, from blue to red. Extrapolating characteristic
temperatures (as in Fig. 2) shows that the floating IC phase
emerges at intermediate T as YL > 0 (dashed line).

likely persist as κ increases, even though a quantitative
distinction between the two transition temperatures by
finite-size scaling is here only feasible up to κ ≈ 2. The
non-monotonic behavior of YL that gives rise to this be-
havior in the thermodynamic limit hence lends support
to the floating IC phase surviving as κ → ∞, and goes
against the finite-κ Lifshitz point scenario.18,51

For κ slightly smaller than 1/2, a distinct feature
emerges in YL. For example, for κ = 0.49 a nar-
row disordered region with YL → 0 is squeezed be-
tween the ferromagnetic phase and the floating IC phase
(Fig. 2(b)). For κ < 1/2, a disorder line subdivides the
disordered regime,25,52 where the correlation length ex-
hibits a kinked local minimum. Given that the disorder
line identified by the fixed point of ZL (Fig. 2(d)) ex-
tends down to the multiphase point at (κ=1/2,T=0),23,53

we conclude that the floating IC and Ising ferromagnetic
phases never meet for T > 0. This analysis thus confirms
the reentrance of the floating IC phase in this regime, as
various theoretical treatments have proposed.23,24 The
disorder line for decreasing κ < 1/2 is also found to be
asymptotically tangent to κ = 0 as T → ∞, instead
of κ = 0.25, as was previously suggested.23 Combining
these various observations provides a complete quanti-
tative phase diagram for the two-dimensional ANNNI
model at h = 0 (Fig. 3).

Phases diagram for h > 0. As noted above, the ANNNI
model in lattice-gas representation can be viewed as a
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minimal model for lamellar microphases. For this model,
as in generic SALR microphase formers,2 at low T and
small κ a coexistence regime around h = 0 separates the
condensed (−1 spins dominated) and gas (+1 spins dom-
inated) phases, while for κ > 1/2 lamellar microphases
replace macroscopic phase separation. Increasing h then
depresses the 〈2〉 melting temperature down to T → 0
at h∗ = 2κ − 1.54 Figure 4 presents results for κ = 0.6
(for which h∗ = 0.2). At large h the ground state is a
saturated paramagnetic phase without modulations. Al-
though this regime exhibits spin configurations akin to
those of a ferromagnetic phase, its correlation length is
finite. At smaller h—as for h = 0—a floating IC phase
intercalates between the commensurate 〈2〉 and the para-
magnetic phases. The ⊥TM route confirms that the mag-
netization per spin, m, remains null in the 〈2〉 phase and
jumps (as does u) at the transition (Fig. 4(b)). By con-
trast, spin layers preferentially align with the external
field in the floating IC phase, which leads to the mag-
netization increasing stepwise with temperature. At yet
higher temperatures, in the paramagnetic phase m again
decreases as entropy increasingly dominate. Slightly
above h∗ the floating IC phase reenters, in a way remi-
niscent of the J1− J2 model.55 The behavior of the local
exponent YL, which crosses at the lower-T boundary of
the IC phase and peaks at the higher-T phase boundary
(Fig. 4(c)), is also similar to the reentrance in Fig. 2(b).
Extrapolating these special temperatures gives the phase
boundaries in Fig. 4(a). Note that for h & 0.22, the order
of the extrapolated lower and higher temperature bound-
ary of the IC phase changes and YL(Tc1) is projected to

vanish. The thermodynamic floating IC phase then ter-
minates, even though strong finite-size echoes of it appear
to persist.
Conclusion. Using a numerical TM approach, we have

resolved various ambiguities in the phase diagram of the
two-dimensional ANNNI model both with and without
an external field. Our results confirm the reentrance sce-
nario for the floating IC phase, suggest that the floating
IC phase persists up to κ → ∞, and that the exponent
of algebraic divergence of the correlation length remains
robust. Although larger-scale studies could bring fur-
ther credence to these findings, the latter two motivate
additional theoretical studies regardless. Because the ac-
curacy of the TM approach clearly outperforms that of
prior finite-size simulations, we also expect that method-
ological improvements in that latter field will be sought
out. Finally, our results motivate considering the TM
approach for resolving the equilibrium phase behavior of
related frustrated models, such as the BNNNI56 and lat-
tice surfactant57–59 models. The range of system sizes
now accessible further suggest that extending the TM
formalism to three-dimensional models60 might nearly be
within computational reach.
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12 M. Henkel, M. Pleimling, C. Godreche, and J.-M. Luck,

Phys. Rev. Lett. 87, 265701 (2001).
13 K. Zhang and P. Charbonneau, Phys. Rev. Lett. 104,

195703 (2010).
14 T. Shirakura, F. Matsubara, and N. Suzuki, Phys. Rev. B

90, 144410 (2014).

15 Y. Zhuang, K. Zhang, and P. Charbonneau, Phys. Rev.
Lett. 116, 098301 (2016).

16 Z. Lei, W. Krauth, and A. C. Maggs, Phys. Rev. E 99,
043301 (2019).

17 M. E. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502
(1980).

18 W. Selke, Z. Phys. B: Condens. Matter 43, 335 (1981).
19 M. Beccaria, M. Campostrini, and A. Feo, Phys. Rev. B

73, 052402 (2006).
20 M. Beccaria, M. Campostrini, and A. Feo, Phys. Rev. B

76, 094410 (2007).
21 J. Villain and P. Bak, J. Phys. (Paris) 42, 657 (1981).
22 J. Oitmaa, J. Phys. A 18, 365 (1985).
23 A. Finel and D. de Fontaine, J. Stat. Phys. 43, 645 (1986).
24 M. A. S. Saqi and D. S. McKenzie, J. Phys. A 20, 471

(1987).
25 W. Selke, Phys. Rep. 170, 213 (1988).
26 R. Derian, A. Gendiar, and T. Nishino, J. Phys. Soc. Jpn.

75, 114001 (2006).
27 W. Selke and M. E. Fisher, Z. Phys. B: Condens. Matter

40, 71 (1980).
28 J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181

(1973).
29 A. Sato and F. Matsubara, Phys. Rev. B 60, 10316 (1999).
30 E. Rastelli, S. Regina, and A. Tassi, Phys. Rev. B 81,

mailto:patrick.charbonneau@duke.edu
http://dx.doi.org/10.1103/PhysRevLett.93.055701
http://dx.doi.org/10.1039/C3SM50668A
http://dx.doi.org/10.1039/C3SM50668A
http://dx.doi.org/10.1021/acs.jpcb.6b05471
http://dx.doi.org/10.1021/acs.jpcb.6b05471
http://dx.doi.org/10.1039/C8SM00400E
http://dx.doi.org/10.1126/science.267.5197.476
http://dx.doi.org/10.1038/nature01538
http://dx.doi.org/10.1038/nature01538
http://dx.doi.org/10.1088/1367-2630/14/12/125018
http://dx.doi.org/10.1088/1367-2630/14/12/125018
http://dx.doi.org/10.1146/annurev.biophys.050708.133655
http://dx.doi.org/ 10.1021/acs.langmuir.9b00778
http://dx.doi.org/10.1038/nrm2222
http://dx.doi.org/10.1038/nrm2222
http://dx.doi.org/10.1016/j.cell.2013.05.008
http://dx.doi.org/10.1103/PhysRevLett.87.125702
http://dx.doi.org/10.1103/PhysRevLett.104.195703
http://dx.doi.org/10.1103/PhysRevLett.104.195703
http://dx.doi.org/10.1103/PhysRevB.90.144410
http://dx.doi.org/10.1103/PhysRevB.90.144410
http://dx.doi.org/10.1103/PhysRevLett.116.098301
http://dx.doi.org/10.1103/PhysRevLett.116.098301
http://dx.doi.org/10.1103/PhysRevE.99.043301
http://dx.doi.org/10.1103/PhysRevE.99.043301
http://dx.doi.org/10.1103/PhysRevLett.44.1502
http://dx.doi.org/10.1103/PhysRevLett.44.1502
http://dx.doi.org/10.1007/BF01292801
http://dx.doi.org/10.1103/PhysRevB.73.052402
http://dx.doi.org/10.1103/PhysRevB.73.052402
http://dx.doi.org/10.1103/PhysRevB.76.094410
http://dx.doi.org/10.1103/PhysRevB.76.094410
http://dx.doi.org/10.1051/jphys:01981004205065700
http://dx.doi.org/10.1088/0305-4470/18/2/026
http://dx.doi.org/10.1007/BF01020657
http://dx.doi.org/10.1088/0305-4470/20/2/032
http://dx.doi.org/10.1088/0305-4470/20/2/032
http://dx.doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1143/JPSJ.75.114001
http://dx.doi.org/10.1143/JPSJ.75.114001
http://dx.doi.org/10.1007/BF01295073
http://dx.doi.org/10.1007/BF01295073
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1103/PhysRevB.60.10316
http://dx.doi.org/10.1103/PhysRevB.81.094425


6

094425 (2010).
31 F. Matsubara, T. Shirakura, and N. Suzuki, Phys. Rev. B

95, 174409 (2017).
32 T. Shirahata and T. Nakamura, Phys. Rev. B 65, 024402

(2001).
33 A. K. Chandra and S. Dasgupta, J. Phys. A 40, 6251

(2007).
34 W. Pesch and J. Kroemer, Z. Phys. B: Condens. Matter

59, 317 (1985).
35 P. D. Beale, P. M. Duxbury, and J. Yeomans, Phys. Rev.

B 31, 7166 (1985).
36 R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK

users’ guide: solution of large-scale eigenvalue problems
with implicitly restarted Arnoldi methods (SIAM, 1998).

37 Y. Hu and P. Charbonneau, Soft Matter 14, 4101 (2018).
38 M. J. Godfrey and M. A. Moore, Phys. Rev. E 91, 022120

(2015).
39 J. F. Robinson, M. J. Godfrey, and M. A. Moore, Phys.

Rev. E 93, 032101 (2016).
40 Y. Hu, L. Fu, and P. Charbonneau, Mol. Phys. 116, 3345

(2018).
41 S. Jin, A. Sen, W. Guo, and A. W. Sandvik, Phys. Rev.

B 87, 144406 (2013).
42 Y. Hu and P. Charbonneau, arXiv preprint (2020),

arXiv:2009.11194.
43 Y. Qiu, “Spectralib (sparse eigenvalue computation toolkit

as a redesigned ARPACK36),” (2020).
44 A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832

(1969).

45 J. Salas, J. Phys. A 34, 1311 (2001).
46 P. Nightingale, J. Appl. Phys. 53, 7927 (1982).
47 D. Landau and K. Binder, Phys. Rev. B 31, 5946 (1985).
48 V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett. 42,

65 (1979).
49 B. Nienhuis, H. J. Hilhorst, and H. W. J. Blote, J. Phys.

A 17, 3559 (1984).
50 P. M. Duxbury, J. Yeomans, and P. D. Beale, J. Phys. A

17, L179 (1984).
51 M. N. Barber and P. M. Duxbury, J. Phys. A 14, L251

(1981).
52 J. Stephenson, Can. J. Phys. 48, 1724 (1970).
53 I. Peschel and V. J. Emery, Z. Phys. B: Condens. Matter

43, 241 (1981).
54 P. Rujan, W. Selke, and G. V. Uimin, Z. Phys. B: Condens.

Matter 53, 221 (1983).
55 A. I. Guerrero, D. A. Stariolo, and N. G. Almarza, Phys.

Rev. E 91, 052123 (2015).
56 J. Oitmaa, M. T. Batchelor, and M. N. Barber, J. Phys.

A 20, 1507 (1987).
57 J. C. Wheeler and B. Widom, J. Am. Chem. Soc. 90, 3064

(1968).
58 B. Widom, J. Chem. Phys. 84, 6943 (1986).
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